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DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE. PART II*

ISABEL SALGADO LABOURIAUfY

Abstract. The bifurcation from equilibrium of periodic solutions of the Hodgkin and Huxley equations
for the nerve impulse is studied. In earlier work singularity theory techniques were used to establish that
these equations have a branch of periodic solutions undergoing two Hopf bifurcations, and the equations
were conjectured to be equivalent to a member of a one-parameter family of generalized Hopf bifurcation
problems. Here the invariants for equivalence to this family and the value of the modal parameter are
computed (see [W. W. Farr et al., “Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem,”
SIAM J. Math. Anal., 20 (1989), pp. 13-30]). The value of this parameter determines the type of bifurcation,
and in this way it is decided which of the proposed bifurcation diagrams are actually to be found. Thus a
topological description of periodic orbits of the Hodgkin and Huxley equations near the equilibrium solution
is obtained. In this way, a periodic solution branch is found that does not arise through a classical Hopf
bifurcation.
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1. Introduction. It is well known [9] that many nerve cells generate trains of
impulses as a response to a constant stimulus. In this paper we describe periodic
solutions of the clamped Hodgkin and Huxley equations for the nerve impulse (HH),
a system of four nonlinear ordinary differential equations, that contain several auxiliary
parameters [5]. As in an earlier article [10], here we study the equations HH as a
bifurcation problem, regarding the stimulus intensity I as a bifurcation parameter. We
also describe the dependence of the periodic solutions on some of the other parameters
involved in HH, such as the temperature T and the maximum sodium conductance
&na that measures the maximum permeability of the nerve cell membrane to Na* ions.

Both here and in [10] we have studied the effect of varying gy, away from the
value, here called normal, of 120 m.mho/cm? obtained by Hodgkin and Huxley [5] in
experiments on the squid giant axon; all other values of gy, are called perturbed and
the HH equations with gy, different from normal are referred to as perturbed HH.
The reader should not be deceived by the word normal; the actual value of gy, varies
from cell to cell. Hodgkin and Huxley [5] report measurements of gy, in the interval
[65, 260] m.mho/cm? in normal giant squid axons. This variability may be largely due
to difficulties in the measurement of gy, in experiments, but all the same it makes
sense to ask what the equations yield for values different from the average of 120
m.mho/cm®. The maximum sodium conductance can also be modified by the experi-
mental conditions; low concentrations of local anesthetics or tetrodoxin have the effect
of lowering gn, and do not seem to affect the conductance of other ions (see [9,
Chap. 11]).

In this article, we obtain qualitative amplitude diagrams for the periodic solutions
of the perturbed HH (see Figs. 3 and 7) showing the response of a nerve cell to a
steadily applied current. This corresponds to a usual experimental procedure ([9] and
references therein).
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In §2 we describe the results of [10] on the temperature dependence of the
amplitude diagrams and the conjecture presented there concerning the hidden organiz-
ing centre for HH; we also give a naive description of the singularity theory concepts
used (we refer the reader to [2] for the rigorous construction and for proofs).

The main results are presented in § 3 where the invariants for generalized Hopf
bifurcation are evaluated numerically for HH. We determine which of the two possible
cases conjectured in [10] takes place and we discuss the behavior near the hidden
organizing center, thus obtaining a qualitative description of the amplitude of periodic
solutions of HH. We also show that around a critical temperature T,, the HH equations
must have a branch of periodic solutions that does not arise through a classical Hopf
bifurcation. These solutions are not easy to find in a numerical integration of the
equations—in order to find them we have to know where they are.

Amplitude diagrams for low gy, are described in § 4, with a discussion of the
possible form of transition from the hidden organizing center to this second family of
bifurcation problems.

2. Preliminary results and definitions. In what follows we use the notation and
sign conventions of [10]. The perturbed HH equations have a unique temperature-
independent, steady-state solution for each value of 1. This is only true for values of
the ionic equilibrium voltages Vi, close to those determined in [5], as is shown in [6].
After a change of variables, we introduced in [10] a new bifurcation parameter A, so
that for all values of A the origin of R* is a steady-state and f(A) =1 is a monotonically
decreasing function. In this way we eliminate one error factor in numerical computations
since we no longer compute the coordinates of the steady-state as a function of the
parameters, and we may think of HH as a family of ordinary differential equations
y=HH(y, A) with HH: R*->R* and HH (0, 1) =0 where HH also depends on the
parameters T and g,

For fixed T and gy, and below a critical temperature T,(gn.), there are two values
A, <A, of the bifurcation parameter where the linearization of HH at the origin has a
pair of eigenvalues crossing the imaginary axis transversely. Therefore, by the Hopf
bifurcation theorem [7], two distinct periodic solution branches emerge from the
equilibrium solution at (0, A,) and (0, A,).

For T> T, no Hopf bifurcation was observed. At T = T, the two bifurcations
coalesce at A, =A,=A.. We call (0,A.) a generalized Hopf bifurcation point; at this
point the linearization of HH has a pair of purely imaginary eigenvalues *iw; all other
eigenvalues are real and negative, but some of the other hypotheses in the classical
Hopf theorem [7] are violated.

Generalized Hopf bifurcation is studied in [1], [2] (see also [0]), for a system of
ordinary differential equations

(2.1) y=g(yA), g0,A)=0, yeR", AcR

such that D,g (0, 0) has simple eigenvalues +iw and no other eigenvalues of the form
+ikw with ke Z. The Lyapunov-Schmidt reduction and symmetry considerations are
used to represent periodic solutions of (2.1) as the solutions of an equation of the
following form:

(2.2) xa(x>,A)=0, a:R*>R, x=0.

Intuitively the reduction amounts to rewriting the original vector field locally in
“polar coordinates” on a suitable A-parametrized family of two-dimensional invariant
submanifolds of R", with periodic orbits corresponding, for each A, to solutions of
#=ra(r*, A) =0. The steady-state solution is represented by the x =0 solution of (2.2),
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and points where periodic orbits bifurcate from it are multiple roots of (2.2) at x =0.
The set {(x, A): xa(x?, A) =0} is called a bifurcation diagram, and its graph represents
a qualitative amplitude diagram for periodic solution branches.

As an example, a vector field (2.1) satisfying the hypotheses of the Hopf theorem
[7] at A = A, after reduction yields a map a(x> A) that for u = x? satisfies:

0 9
(2.3) a(0,1,)=0, a,=22(0,1,)%0, a,=22(0,A,)#0.
ou dA

Therefore near (0, A.) there is a unique solution ¢ to the equation a(u, ¢(u))=0
with ¢(0) =A., ¢'(0)=—a,/a, ; thus (2.2) has exactly two solution branches through
(0, A.) given by x=0 and by A(x)=¢(x?). If ¢'(0)<0, then A(x)=A. for x near 0
and (2.1) has a periodic solution of nonzero amplitude near (0, A.) for each A <A,
(Fig. 1(a)). Thus the sign of ¢'(0) determines the direction of bifurcation of periodic
solutions of (2.1).

(a) x

(b) x

A a=0 A a>0 A

(c) x

A A

F1G. 1. Examples of bifurcation diagrams for generalized Hopf bifurcation, ordinates always standing for
amplitude (x): (a) Classical Hopf bifurcation (2.3). (b) Generic perturbation (unfolding) of the codimension
1 Hopf bifurcation (2.7) in the case ¢,>0, ¢, =0, c,,>0. (c) Generic perturbation (unfolding) of the
codimension 1 Hopf bifurcation in the case h, =0, h, >0, h,, <O0.

The Lyapunov-Schmidt reduction uses the implicit function theorem in a suitable
function space and therefore all the results on generalized Hopf bifurcation mentioned
here are local both in the variables and in the parameters. In order to avoid repeating
phrases like “in some neighborhood of the point (0, A.),” we refer to the germ of a
map f at a point p—the class of all maps that agree with f in some neighborhood of
p- Similarly, we may define the germ of a set S at p as the class of all sets that coincide
with S in some neighborhood of p.

The germs at (0, A.) of two maps a, a of the form (2.2), obtained by Lyapunov-
Schmidt reduction, are called contact equivalent when there are smooth germs T(x, A),
X(x,A) and A(A) transforming one into the other, i.e.,

(2.4) xa(x* A)=T(x* L) o[xa(X?*(x% A)x, A(A)A)]

with T: R>>R, T(0,0)#0, X(0,0)>0, and A(0)> 0. The new parameter A does not
depend on x, so two systems such as (2.1) reducing to a and a have the same number
of periodic solutions near y =0 for corresponding values of A near A.. In other words,
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if two equations reduce to contact equivalent maps, the sets of their periodic orbits
can be smoothly transformed into each other (see [10]). For instance, any two germs
at (0, 0) of maps a, a: R*>- R satisfying (2.3) will be contact equivalent, provided their
partial derivatives at (0, 0) have the same sign (see [1]).

Another concept used here is that of universal unfolding of a germ a, a parametrized
family of germs that exhibit all the possible bifurcation diagrams present in a neighbor-
hood of a; the codimension of a is the minimum number of parameters necessary to
obtain a universal unfolding. For rigorous singularity theory results and definitions
we refer the reader to [1] and [2], where some methods for computing codimensions
and unfoldings are given.

Using singularity theory techniques, the germs of problems of the form (2.2) have
been classified up to contact equivalence in [1] and [2], where a representative in
simple polynomial form is given for each contact class occurring generically in three-
parameter families of generalized Hopf bifurcations and for its universal unfolding.
Each contact class is characterized in [1] and [2] by necessary and sufficient conditions
on the Taylor expansion of a(x? A) around the bifurcation point (0, A.). Explicit
formulae for the calculation of derivatives of a up to third order from those of the
original vector field can be found in [0].

For example, if the germ at (0, 0) of a: R*> R satisfies

a(0,0)=0 and for u =x?,
(2.5)

oa oa da
«=—(0,0)>0, =—(0,0)=0, =—(0,0)>0,
a au( ) a, a)t( ) a), aAz( )

then it can be shown [1], [2] that the germ of a(x?, A) is contact equivalent at (0, 0) to
(2.6) c(x* A)=x>+A>%

Since ¢(x?, 1) =0 only when x = A = 0, the germ of the solution set of both x¢ (x*, A) =0
and of xa(x? A)=0 is the A-axis. If a has ben obtained from a system like (2.1), this
means there are no periodic solutions near (0, 0).

The contact class of (2.6) is not structurally stable. An arbitrarily small perturbation
of the form

(2.7) C.(x}, M) =c(x’, A\)—a=x>+A*—aq, acR

is not contact equivalent to ¢ for a # 0; the set C, =0 is either a circle of radius va
or the empty set. If C, is the reduced form of a vector field, then for each a>0 it
undergoes two classical Hopf bifurcations at A = +va (see Fig. 1(b)). For @ <0 the
periodic solution set is still trivial (steady-state only) but C, =0 has no solutions, and
thus C, with « # 0 is not contact equivalent to ¢. Moreover, for a # 0, each germ (2.7)
is structurally stable and (2.6) is not. It can be shown [1] that the germ (2.6) has
codimension 1 and the family of bifurcation problems C, is a universal unfolding for
it. The one-parameter family of bifurcation problems (2.7) is structurally stable as a
whole, although this is not true of any germ satisfying (2.5).

Let xh(x>, A) be the germ of the perturbed HH after reduction. We have computed
the first-order derivatives of h and established the following results, appearing in [10].

(A) At the critical temperature T,(gn.) Where the two bifurcation points coalesce,
we have h, =9/9A h(0, A.) =0 for every choice of gy, in the interval [85, 130] (we will
omit units from now on). For normal HH if h,, > 0 then h is equivalent to the generalized
Hopf bifurcation germ (2.6). The effect of small temperature variations on the zero
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set of h is the same as that of variations in the value of a over the zero set of (2.7),
as in Fig. 1(b). Thus for T<T,, HH has a single stable periodic solution branch
undergoing two classical Hopf bifurcations.

(B) For normal HH, the direction of bifurcation changes at one of the Hopf
bifurcation points (0, A,) at a lower temperature, T, following a change in the sign
of 3/du h(0, A,) =h,. The corresponding periodic solution branch loses stability. If at
this temperature h,, # 0, then the system is contact equivalent to another generalized
Hopf bifurcation germ, also of codimension 1. The study of its universal unfolding,
as in the case above, provides the description of the amplitude of periodic solutions
(Fig. 1(c) for the case h,,, <0, h, >0) as T is varied around T;. Clearly, the neighbor-
hood of the bifurcation point where the contact equivalence holds does not include
the other (nondegenerate) Hopf bifurcation point of HH present at the same tem-
perature.

In both cases above, the study of HH at the .degenerate Hopf bifurcation points
provides additional information about periodic solutions at nearby parameter values.
In case (A) it shows that the two Hopf bifurcations involve the same periodic solution
branch, a nontrivial observation in a four-dimensional phase space. In the second case,
for T<T,, the classical Hopf bifurcation theorem shows the existence of unstable
periodic solutions for A < A,. Thus the presence of a degeneracy not only explains the
transition from one type of diagram to another, it also makes the analysis “more
global.” Here, a point in parameter space where a degenerate Hopf bifurcation occurs
will be called an organizing center for the equations.

(C) For the perturbed HH the function

(28) g_Na_) hu(gNa) = hu(oa Ac) at T= Tc(gNa) (Where hA = 0)

changes sign twice in the interval [85, 130] and one of its zeros lies within ten percent
of the normal value of gy,. This point we called a hidden organizing center for the
equations—it is hidden in the sense that HH had to be perturbed in order to find it.

Even if this value of gy, were never assumed in practice, we would expect the
study of the degeneracy to bring together the two descriptions (A) and (B) above, in
the same way local information about the two classical Hopf bifurcations in (A) was
put together by the study of (2.7). At the hidden organizing center, HH should be
equivalent after reduction to a germ containing the two original ones in its universal
unfolding, i.e., a family of germs (A,) such that each first derivative of (A,) is zero
for values of a arbitrarily close to zero. It is easy to see that this is possible only in a
structurally stable family if the parameter « is at least two-dimensional.

The simplest (lowest codimension) problems containing in its universal unfolding
both germs mentioned in (A) and (B) above are members of a family of codimension
3 problems. The family is characterized by zero first-order derivatives at the organizing
center, by the signs of its second-order derivatives, as well as by the value of a modal
parameter b. We discussed the geometry of the periodic solution branches for different
values of b when we conjectured in [10] that HH is contact equivalent to this family
at the zero of h,(gn.) closest to the normal value of 120.

In the next section we present the result of the numerical evaluation for HH of
the nondegeneracy conditions for equivalence to the one-parameter family discussed
above, and of the calculation of the modal parameter b. Our goal is to obtain a
description of all nonequivalent bifurcation diagrams that appear in HH at temperatures
close to T, a subset of those on the universal unfolding of h. As the value of the modal
parameter determines the type of bifurcation appearing on the unfolding of h, in this
way we decide which of the proposed bifurcation diagrams are actually to be found
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in HH. This is discussed in § 3 for the hidden organizing center, and in § 4 for the
second zero of h,(gn,)-

3. Diagrams near the hidden organizing center. The hidden organizing center for
HH is a point in parameter space where the reduction h of the perturbed HH satisfies

(3.1) h(0,A.)=h,(0,x,)=h,(0,A.)=0 with u= x>

We conjectured in [10] that around this point h is equivalent to a member of the
family

(3.2) ay(u, A) = eu’+2bAu+ 61>

studied in [1] and [12]. It is shown in [1] that a germ 4 is contact equivalent to (3.2)
if and only if it satisfies

5(0’ Ac) = 5u(oa /\c) = i)\ (09 Ac) = O,
a,,(0,1,)=2a,, #0#2,,(0,1,)=2,,, and

(3.3)
b = iu)\/lﬁuuﬁ)u\ll/2 ;é 0

with 8b’#1 where € =sign (a,,), & =sign (a,,).

The numbers €5 and B= ¢b form a complete set of invariants for the family (3.2)
under contact equivalence [11], i.e., two members of this family are contact equivalent
if and only if £6 and B are the same for them. The situation differs markedly from the
example of § 2, where a similar set of conditions defined a single contact equivalence
class. Here each choice of signs in the second-order derivatives of a defines a continuum
of nonequivalent bifurcation problems.

Using the methods of [2] it can be shown that (3.2) has universal unfolding given by

(3.4) A(u, A, a, B, b) = eu”+2bAu+ 61> +sign (b)BA + .

Therefore, for any sufficiently small perturbation of a germ satisfying (3.3) there are
smooth changes of coordinates of the form (2.4) transforming it into one of the germs
(3.4) for some choice of a, 8, and b. At @ = 8 =0 the family (3.4) coincides with (3.2).

The definition of contact equivalence can be weakened so as to obtain a discrete
classification of the family (3.2). We define topological contact equivalence in the same
way as the (smooth) contact equivalence (2.4), with continuity substituted for smooth-
ness (see [2]). Two germs belonging to the same equivalence class (called modal class)
have homeomorphic bifurcation diagrams.

Let (3.2). be the family (3.2) with £§ =+1 or —1, respectively. Under topological
contact equivalence, (3.2), splits into four equivalence classes (called modal classes),
corresponding to values of B in the intervals ]—oco, —1[; 1-1,0[; 10, 1[, and ]1, +oo[.
The solutions of A(y, A, a, B, b) = 0 are either ellipses or the empty set in the (u, A)-plane
for 0<|B|<1 (Fig. 2) or hyperbolas for |B|>1 (Fig. 3). In the unfolding of 3.2)_,
only two-modal classes occur corresponding to B>0 and B<0, and the solution to
A(u, A, a, B,b) =0 is always a hyperbola in the (u, A)-plane (Fig. 7).

By comparing the bifurcation diagrams for (3.4) to the results summarized in § 2
as well as to those in [4] and [13], we conjectured that €8 =+1, and B<0 for HH.
Besides checking the conjecture numerically, we obtain here an estimate of B, and
thus of the modal class of h.

The derivatives h, and h, are simultaneously zero for gn,=g. in the interval
[109, 110], and around this point we have the values of Table 1.



DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE 7

A TA A
(a) (b) (c)
A A
(d) (e)

FIG. 2. Bifurcation (or amplitude) diagrams for stable germs in the universal unfolding (3.4) of (3.2),
with —1<B <0, for the following parameter values: (a) a > B%/4 or & > B*/4(B—1) and B <0; (b) >0 and
B2/4(B—1)<a <B%/4;(c) B>0and 0<a<B/4(B-1);(d) B<0and 0<a <B?/4B-1); and (e) & <0.

FIG. 3. The universal unfolding (3.4) of (3.2), with B<—1. Each bifurcation (or amplitude) diagram is
drawn inside the region in (a, B)-plane where it occurs; the A axis is the steady-state in each case. Dotted lines
represent HH as temperature-parametrized curves on the unfolding of (3.2)., with temperature increasing as
indicated by the arrows: (a) §n,> 8.5 (b) na=&.; and (¢) gna<&.-

TABLE 1
gNa ’\c I(/\c) Tc(/\c)
m.mho/cm? mV mA/cm? °C
109 -15.97 74.06 26.278
110 -16.01 74.22 26.546

Numerical estimates of the second-order derivatives of h at T,(gn,) were obtained
for several values of gy,, by using the formulae of [0], a correction to those of § 5 of
[1] for the case when the imaginary eigenvalues are +iw, with w # 1. Thus the numerical
results of Table 1 differ both from the preliminary calculations presented in [2] and
from those in [11], but the qualitative behavior remains the same. For gy, in the
interval [85, 130] we have found the following:

(D) h,, is always negative and decreases with gy, (Fig. 4).
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FIG. 4. The derivative h,,, at the point where there is a single generalized Hopf bifurcation, as a function
of gna, for the perturbed Hodgkin and Huxley equations.
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F1G. 5. The derivative h,, at the point where there is a single generalized Hopf bifurcation, as a function
of &na, for the perturbed Hodgkin and Huxley equations.

(E) h,, is always positive and increases with gy, (Fig. 5).

(F) h,, increases with gy, and changes sign for gy, in the interval 196, 97[ (Fig 6).

We have confirmed the following conjecture presented in [10]: at the hidden
organizing center, conditions (3.4) are satisfied, and therefore the perturbed HH, in
reduced form, are equivalent to a member of the family (3.2) with e =+1=6.

The modal parameter b was found to be b= -7.0 at gy,=109.0, and b= —6.8 at
gna=110.0, where both values are rounded to the number of digits shown, and all
digits are believed to be correct. Thus we have also determined that at the hidden
organizing center the reduced HH are in the modal class B<—1 of the family (3.2),.

For gn. and T near g. and T.(g.), respectively, the perturbed HH are equivalent
to one of the germs (3.4). In this way we can visualize HH as a surface on R’
((e, B, b)-space) fibered by the T-parametrized curves corresponding to fixed values
of gna- A zero of h,(gn., T.(gna)) Will correspond to a curve through the organizing
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FIG. 6. The derivative h,,, at the point where there is a single generalized Hopf bifurcation, as a function
of §na, for the perturbed Hodgkin and Huxley equations.

center (0, 0, b), if we recall that h,(gna., T.(gna)) is always zero. We have represented
in Fig. 3 the perturbed HH as T-parametrized curves on the unfolding of (3.2), for
B < —1. Each persistent bifurcation diagram is drawn inside the corresponding region
in the (a, B)-plane. The B direction has been omitted since bifurcation diagrams look
the same along it, due to the topological contact equivalence.

The curves representing HH in Fig. 3 were obtained by inspecting the bifurcation
diagrams for (3.2), and comparing them to data on the direction of bifurcation from
[10], [11], and [13] and were confirmed for gy, =100.

We find that for g\,=g. only two persistent bifurcation diagrams are present.
For T < T, there is a single periodic solution branch undergoing two nondegenerate
Hopf bifurcations in the same direction as observed in (B) of § 2; this branch disappears
at T = T,(g.). Both bifurcation diagrams contain a solution branch isolated from the
trivial solution x =0.

The two persistent bifurcation diagrams described above occur for normal HH
along with a third diagram where the periodic solution branches grow toward each
other, corresponding to the situation described in (A) of § 2. In this way our knowledge
of the hidden organizing center allows us to put together the partial information of
§2, (A) and (B).

All diagrams for g, = g. contain a branch of solutions not connected to the trivial
solution x =0, a characteristic of the modal classes |B|>1 with €6 =1. Indeed it is
natural to find two disconnected branches in some of the bifurcation diagrams since
the zeros of (3.4), are hyperbolas in the (u, A)-plane in this case. This is not possible
for |B| <1, where A(u, A, a, 8,b) =0 on a bounded set.

The isolated solution branch has never been found in a numerical integration of
HH. Since these solutions do not arise through a classical Hopf bifurcation, they could
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easily be missed in a numerical tracing of the solutions. It is also possible, however,
that at the normal value of gy, the isolated branch has either disappeared through
some global bifurcation not captured by the Lyapunov-Schmidt reduction, or moved
to a region of parameter space without physiological meaning. On the other hand, the
presence of this solution branch may explain the damped oscillations observed both
numerically [5], [8] and in experiments described in [8], [3].

For gn. <109 the following two new types of diagram appear. As T increases the
two unconnected branches meet and form two periodic solution branches arising
through Hopf bifurcation; a further increase of T yields a change in the direction of
bifurcation, before the two Hopf bifurcation points coalesce. This change of direction
affects the first Hopf bifurcation point (0, A;) in contrast to the findings of [10] for
normal HH (cf. (B) of § 2). For gn, = 100 the first-order derivatives of h at nondegenerate
Hopf bifurcation points have been calculated, confirming the change in the direction
of bifurcation and thus providing furher evidence for the position of the T-
parametrized curve.

Changes in the direction of bifurcation would be observed experimentally as the
appearance of hysteresis at the onset of periodic behavior around A = A;. Recall that
the parameter A is a decreasing function of stimulus intensity I. When gy, < g., a cell
under overstimulation would stop its repetitive activity at a value of 1> f(A,) when I
increases. If I were subsequently decreased, then firing would resume at I=£(A,). For
Zna = &. there is hysteresis at T < T,(gn.), around 28°C for normal gy,. For gn. < &.,
hysteresis is also obtained at high temperature values.

Hysteresis at the offset of repetitive firing for an overstimulated cell has been
observed in experiments on squid axons bathed in low Ca** sea water [3]. The reduction
in [Ca™"] lowers the potential outside the cell membrane and is thus equivalent to the
effect of depolarization; a smaller stimulus will be required in order to obtain the same
response from the nerve cell [9]. The effective stimulus that can be applied without
damaging the cell will be larger and high stimulation effects may become experimentally
observable. However, the HH equations have to be modified if they are to describe
the new experimental situation [8].

4. Bifurcation diagrams for small g\,. The derivative h,,, computed for each value
of gy, at the temperature where the two Hopf bifurcation points coalesce, has a second
zero for gy, in the interval ]89,90[. This singularity is probably of less significance
for the nerve impulse than the one of the previous section, since gy, is far from the
normal value, although it is still physiologically meaningful. At this point, the charac-
teristics are (see Figs. 4-6):

hu :h/\ =09
h,. <0, h, <0, h,,>0.

(4.1)

Again, h is equivalent to a member of the family (3.2). Around this point the data are
as shown in Table 2.

TABLE 2
8na A I(A,) T.(A.)
m.mho/cm? mV mA/cm? °C £ F) e§ B=c¢b
89 -14.61 65.39 17.500 -1 +1 -1 +6.0

90 —14.72 66.22 18.264 -1 +1 -1 +6.8
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At this second zero g, of h,, the perturbed HH are equivalent to a member of the
family (3.2)_, in the modal class B> 0. The persistent bifurcation diagrams for the
germs in the unfolding of (3.2)_ are shown in Fig. 7, where the perturbed HH are
represented as a T-parametrized curve on (a, B)-space for values of gy, near g,.

F1G. 7. The universal unfolding (3.5) of (3.2)_ with B> 0. Bifurcation diagrams are drawn inside the
regions in a-B-space where they occur; the A axis is the steady-state in each diagram. Dotted lines represent
HH as temperature-parametrized curves on the unfolding of (3.2)_, with temperature increasing as indicated
by the arrows: (a) gna> 8,5 (b) Ena=8,; and (€) gna<§p-

The diagrams present on the unfolding of (3.2)_ differ markedly from those
discussed in § 2. First, most diagrams of Fig. 7 exhibit two Hopf bifurcations that
generate disjoint periodic solution branches. Second, for all diagrams in the unfolding
of (3.2)., the set of bifurcation parameter values for which the equation a(u, A) =0
has a nonzero solution is bounded below. This is not true of any diagram in Fig. 7,
where in all cases there is a periodic solution branch that can be extended indefinitely
in the A » —co direction. These differences may be due to global bifurcations, but it is
probable that they are simply an artifact of the local analysis; the methods used here
provide a local description of the bifurcation diagrams but give no information as to
the size and shape of the neighborhood where they can be applied. It is also clear that
as @y, increases from 90 to 109, the local behavior of HH is best explained by the
analysis of last section.

The situation here is analogous to the results of [10]; initially we knew HH had
two classical Hopf bifurcations at A, <A, with the same direction of bifurcation and
there was no a priori reason for the two periodic solution branches to meet. The
proximity of a degeneracy, in the first case a change in the direction of bifurcation as
described in (2.3) coinciding with the coalescence of the two bifurcation points given
by (2.2), made the analysis “more global.” The apparent lack of information about
the periodic solution branches away from the bifurcation points was introduced by
the local analysis.

The same discussion applies to the two hidden organizing centers presented here.
Bifurcation diagrams appear either “capped off”” or with an extended branch, depending
on whether they are interpreted as part of the unfolding of (3.2), or of (3.2)_ (cf. Figs.
3 and 7). Moreover, the unfolding of (3.2), contains no germ equivalent to (3.2)_ and
vice versa.
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Different bifurcation diagrams are obtained for (2.1) when it is studied on its own
or as part of the unfolding of a more degenerate (i.e., higher codimension) germ. The
presence of a degeneracy close by is extra information about the germ, and this is
reflected in the diagrams we obtain for it. The only codimension 3 germs whose universal
unfolding contains germs equivalent to (3.2) with B— 0 as they approach the origin
of the unfolding space are defined by the following conditions (see [2]):

A, =a,=2a, =0,
(4.2)
LY < 0, A > Oa Ay # Oa

where each sign of a,,,, corresponds to a contact equivalence class.

It may be possible to perturb HH so as to satisfy (4.2), but the perturbation may
introduce some further degeneracy into the problem. This is particularly crucial in the
present case, since the zero of a,, is very close to the minimum of the function
gna—~ h,(gna) defined in (2.8).

The comments made above for the second zero of h, apply equally well to this
hypothetical organizing center. Given the large number of parameters involved, it is
natural to expect HH to have a high codimension. Calculations become more compli-
cated as the codimension increases (see [0]), and therefore it only makes sense to look
for a second organizing center if evidence of low gy, persistence of isolated periodic
branches is found.

Acknowledgment. We thank W. Farr for the important correction mentioned in § 3.
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DEGENERATE HOPF BIFURCATION FORMULAS
AND HILBERT’S 16th PROBLEM*

W. W. FARRt, CHENGZHI LI%, 1. S. LABOURIAUS§, AND W. F. LANGFORDY{

Abstract. This paper presents explicit formulas for the solution of degenerate Hopf bifurcation problems
for general systems of differential equations of dimension n =2, with smooth vector fields. The main new
result is the general solution of the problem for a weak focus of order 3. For bifurcation problems with a
distinguished parameter, we present the formulas for the defining conditions of all cases with codimension
=3. The formulas have been applied to Hilbert’s 16th problem, yielding a new proof of Bautin’s theorem,
and correcting an error in Bautin’s formula for the third focal value. The approach used is the Lyapunov-
Schmidt method. A review of five other approaches is given, along with literature references and comparisons
to the present work.

Key words. Hopf bifurcation, Lyapunov-Schmidt reduction, Hilbert’s 16th problem

AMS(MOS) subject classifications. 58F14, 34C25

1. Introduction. The Hopf Bifurcation Theorem has become the standard tool in
applied mathematics for the study of the birth (or death) of a periodic solution of a
differential equation at an equilibrium point. This is fitting, since the classical Hopf
theorem states generic conditions on the differential equation for this bifurcation to
occur, and also provides an explicit formula (or algorithm) for calculating the periodic
solution and its stability. However, there is growing interest in degenerate cases, to
which the classical Hopf formula does not apply. This paper is concerned with
degeneracies in which multiple periodic solutions may coexist, as well as degeneracies
in the dependence on a parameter. Explicit formulas are given for the defining
conditions of all degeneracies having codimension =3, as defined in Golubitsky and
Langford [14].

The main new result of this paper is the general solution of the focal values of a
weak focus of order 3, for a system of dimension n =2, and an arbitrary smooth vector
field. A weak focus of order 3 implies the existence of up to three coexisting limit
cycles, under small perturbations. Previously, only the focus of order 2 had been solved
in this generality, and work on the weak focus of order 3 had been restricted to special
cases, such as dimension n =2 and quadratic nonlinearities.

The formulas presented here are applicable to investigations of oscillations in
chemical reactions (Farr and Aris [12]), biological systems (Labouriau [21], [22]), and
many other fields. Admittedly, the formulas are long and complex. The authors feel
that the effort involved in deriving and checking them is justified by the generality of
the results. The formulas are explicit in terms of the Taylor coefficients of the original
vector field. No preliminary transformations or reductions of the differential equations
are required; for example, the equilibrium is not required to be ““trivial” (i.e., identically
zero), and the basic frequency need not be scaled to 1. The formulas can be programmed
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in a symbolic computation language, such as MACSYMA or Maple, to compute the
bifurcation coefficients for specific examples conveniently and with minimal risk of
error.

As a nontrivial application of these formulas, we consider the second part of
Hilbert’s 16th problem, concerning the number and position of limit cycles of planar
(two-dimensional) differential equations with polynomial nonlinearities. This problem
is still unsolved, even in the quadratic case (see the surveys of Coppel [9], [10], and
references therein). Locally, the quadratic case was studied by Bautin in 1952 (see
Bautin [4]), who proved, after a long calculation by the succession function method,
that in a neighborhood of an equilibrium point of a planar quadratic system, there
can be 0, 1, 2, or 3 limit cycles and no more; otherwise the equilibrium point is a
center. This paper presents the first new derivation of Bautin’s results and corrects an
error in one of Bautin’s coefficients.

The approach used in this paper is the Lyapunov-Schmidt method, also known
as the Fredholm Alternative Method, or Method of Alternative Problems. It is essen-
tially the same method used by Hopf in his classic paper [18]. Recently, Golubitsky
and Langford [14] combined singularity theory with the Lyapunov-Schmidt method
to classify degenerate Hopf bifurcations and their unfoldings. They gave formulas for
the bifurcation coefficients for some degenerate cases. This paper extends those results,
giving formulas that are more readily applicable, and including the case of a weak
focus of order three.

In the existing literature on degenerate Hopf bifurcation, we can identify six
different methods of solution. These are: the method of Poincaré-Birkhoff normal
forms; the method of Lyapunov constants; the method of the succession function; the
method of averaging; the method of intrinsic harmonic balancing; and the Lyapunov-
Schmidt method, which is the one used here. Unfortunately the literature on the six
methods is nearly disjoint; there have been no comparative studies to guide the user
to a choice among these methods. Therefore, in this paper we briefly describe all of
the methods and relate them to the approach used here.

The plan of the paper is as follows. Section 2 briefly reviews the classical Hopf
theorem, and defines and compares the six different methods listed above for degenerate
Hopf bifurcation problems. Section 3 outlines the calculation and presents the new
formulas for the degenerate Hopf bifurcation coefficients. Section 4 applies these
formulas to a new proof of Bautin’s theorem for Hilbert’s 16th problem.

2. Degenerate Hopf bifurcations: alternative approaches. This section reviews six
different methods that have been used in studies of degenerate Hopf bifurcation
problems. Salient features of each of the methods are described; however, this review
is not intended to be an exhaustive comparative analysis. References to more complete
presentations of each of the methods are given. Most authors in the field have focused
on only one of these methods and have not related their work to the other approaches.
We hope this review may help reduce this fragmentation of the field and facilitate
comparison of the results presented here with previous work, for example, on Hilbert’s
16th problem.

First it is necessary to establish more precisely some terminology and notation,
and to briefly review the classical Hopf theorem. Let us consider a parametrized family
of differential equations

(2.1) u'=f(u, p)

where f:R" xR? >R" and f is a smooth (C) function of the state variables u and
parameters u, and n=2, p=1. For some applications it is important to preserve a
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physical control parameter A, in which case we define
(2.2) p=Q, a).

Then A represents a distinguished bifurcation parameter, as in [14], and a represents
additional ‘“unfolding” or free parameters; not all authors make this distinction. We
assume the existence of an equilibrium point, translated to the origin for convenience,

(23) £(0,0)=0
and at this equilibrium, the derivative with respect to u,
(2.4) A= (Duf)I(O,O)

has a simple pair of imaginary eigenvalues *tiw,, and no others with zero real part.
Then A is nonsingular, and the Implicit Function Theorem implies that the equilibrium
(2.3) has a smooth extension u(w) for u near zero. Usually it is assumed that this
branch of equilibria has been translated to the trivial solution u=0; however, to
facilitate applications, we do not make this assumption here. Now the derivative A
has a smooth extension along the branch of equilibria,

(2.5) A(p) = (Dufltuuym»

and the simplicity of the imaginary eigenvalues implies that they too have smooth
extensions along the branch, for u near 0,

(2:6) o(p)tio(w), 0(0)=0, w(0)=w,.

The classical Hopf theorem assumes the Hopf transversality or crossing condition,
with respect to a distinguished parameter A [18]

(2.7) 0,(0) #0.

(The consequences of the failure of this hypothesis have been explored in [14].) Then
the main conclusion of the Hopf theorem is that there is a unique (up to phase) smooth
branch of periodic solutions, in any small neighborhood of u =0, which can be
parametrized by an amplitude of the periodic solution, here denoted r, and there is a
smooth relationship between the parameters u and the amplitude r, of the form

(2.8) rleot e’ +egr*+-+-1=0,

where - - - denotes higher-order terms in r. The coefficients ¢, ¢,, etc. are functions of
. Hopf showed that (2.7) is equivalent to

(29) (€0)r(0)#0,

so that, by the Implicit Function Theorem, (2.8) can be solved uniquely for A as a
function of r> 0 near the origin. Hopf [18] also presented a formula for ¢,(0), in terms
of the Taylor coefficients of f. The nondegenerate (or classical) case of Hopf bifurcation
is that for which (2.7) holds and in addition

(2.10) ¢,(0) #0.

Then it is clear that (2.8) near (0, 0) defines a curve, asymptotically parabolic in shape,
with a unique r> 0 for each A of one sign, and no r for A of the opposite sign. This
curve is the classical Hopf bifurcation diagram. Additional parameters a do not
qualitatively change this picture when (2.7) and (2.10) hold, but become important if
either condition fails.
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The computation of the coefficients c,, ¢4, - - - is one principal theme of this paper.
In fact every one of the methods reviewed here can be described as a means of arriving
at an equation of the form (2.8), and then computing the coefficients c,;.

Degenerate Hopf bifurcation occurs when either of conditions (2.7) or (2.10) fails.
In this paper we are concerned mainly with (2.10). Then the problem is to calculate
the first nonvanishing c,, in (2.8) (only even powers of r appear in any of the methods).
Adopting the terminology used in much of the literature cited below, we will say that
the differential equation has a weak focus of order k, if

(2.11) co(0) ="+ = cr-1)=0, Cr #0,

and the constant c,;(0) is the jth focal value. When (2.11) holds we obtain multiple
periodic solutions from the following standard result.

THEOREM 2.1. Suppose that the differential equation (2.1) has a weak focus of order
k. Then by generic perturbations involving k parameters in the differential equation, it is
possible to obtain j limit cycles, in a neighborhood of u =0, for each j satisfying 1=j =k,
but not for any j> k.

A proof of Theorem 2.1 using singularity theory is given in [14], where a more
explicit prescription of the “‘generic perturbations,” as well as the effects of a distin-
guished parameter, can be found. Corresponding proofs for the other approaches to
degenerate Hopf bifurcation can be found in the references given below.

Several of the methods to be described here are applicable only in the two-
dimensional case. In principle, under the above hypotheses, the Center Manifold
Theorem can be used to reduce a system of dimension n>2 to a planar system.
However, in practice this reduction is rarely easy to carry out explicitly, so such
methods are severely limited. Let us proceed to the review of the methods.

Method of Poincaré- Birkhoff normal forms. This is one of the best-known methods.
Excellent references are the books of Arnold [2] and Guckenheimer and Holmes [16].
After a reduction to two dimensions, a sequence of near-identity nonlinear transforma-
tions brings the differential equation to a normal form. Written in amplitude-phase
coordinates (r, 8), the differential equation for r has right-hand side of the form (2.8),
up to a finite order, and the equation for 8 has a similar form except it is even in r
instead of odd. Higher-order terms do not have this symmetry, but it can be shown
that the nonsymmetric higher-order terms are not important, and Theorem 2.1 holds.
It should be noted that the reduction to two dimensions and the transformation to
normal form can be combined into one calculation for greater efficiency (see Bibikov
[5], Coullet and Spiegel [11]). This method has been applied to Hilbert’s 16th problem
by Rousseau [28], who found that the calculation of the third focal value ¢4(0) for a
particular example, using MACSYMA, strained the memory capacity of a modern
minicomputer.

Method of Lyapunov constants. A good reference for this method is Gébber and
Willamowski [13]. We begin with a two-dimensional system, and instead of trans-
forming the system, we construct a positive definite Lyapunov functional V(u, u)
(as in Lyapunov’s method for asymptotic stability) for which the derivative along
trajectories is

(2.12) V=VV-f=Y v

The coefficients v; are called the Lyapunov constants and are functions of the param-
eters. There is an algorithm for constructing V for which the leading v;’s are zero. The
level curves of finite truncations of the series (2.12) define Poincaré-Bendixson domains,
from which the existence of limit cycles is obtained. Recently, Bonin and Legault [6]
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have shown that (2.12) is equivalent to (2.8), and have verified that Theorem 2.1 holds
for this approach. They estimate that this approach is more efficient than the method
of Poincaré-Birkhoff normal forms, mainly because it involves computing one Taylor
series instead of two. The method was applied to the quadratic Liénard equation (a
subcase of Hilbert’s 16th problem) by Kohda, Imamura, and Oono [20].

Method of the succession function. A thorough exposition of this method can be
found in the book of Andronov, Leontovich, Gordon, and Maier [1]. Again we assume
a two-dimensional system, with a weak focus at the origin. We select a ray from the
origin (typically the x-axis) and choose initial points on this ray. Sufficiently near the
weak focus, the Poincaré map, which follows a solution from the ray back to the ray,
is well defined. This map is called the succession function. Locally it can be expanded
in a Taylor series in the coordinate along the ray, and this Taylor series can be put in
the form (2.8). Zeros of the succession function correspond to periodic solutions, and
again Theorem 2.1 holds for the succession function. This is the method used by Bautin
[4] on Hilbert’s 16th problem, and he proved Theorem 2.1 for that case. A formula
for the first focal value, derived by this method, is given in Andronov et al. [1].

Method of averaging. There are many good references for the method of averaging
as applied to bifurcation problems (see Chow and Hale [8], Guckenheimer and Holmes
[16], Sanders and Verhulst [29]). In a two-dimensional system near a weak focus, the
phase angle 6 is a strictly monotone function of time t. Therefore it is possible to
transform the independent variable from ¢ to 6, and reduce the dimension of the system
by one, but the new system is 2s-periodic in 6, instead of autonomous. Integral
averaging now leads to a vector field of the form (2.8), and Theorem 2.1 applies.

Method of intrinsic harmonic balancing. For this method, refer to Huseyin and Yu
[19] and the references therein. Harmonic balancing involves formally expanding a
trial solution in a Fourier series and matching coefficients. Certain inconsistencies that
arise in the naive approach are overcome in the method of intrinsic harmonic balancing.
it has only recently been applied to degenerate Hopf bifurcation problems.

Method of Lyapunov-Schmidt. We summarize the Lyapunov-Schmidt method, as
used in [14]. For a thorough exposition, see Golubitsky and Schaeffer [15] and
Vanderbauwhede [31]. The first step is to rescale the time in (2.1), to make the period
constant and equal to 2, by

(2.13) s =wo(1+ 7)1,

where the new parameter 7 is the correction to the period, and is to be determined.
Then (2.1) is rewritten

d
(2.14) N(u A, a, 7)=—wo(1+7) d—:+f(u, A a)=0,

and we seek solutions to (2.14) in the space C}, of continuously differentiable,
2m-periodic vector-valued functions.

The reader is warned that N in (2.14) is defined with the opposite sign to the
corresponding N in [14]. As a result, many of the formulas in this paper have differences
in sign from the formulas in the earlier paper. The motivation for this change is that
it leads to eigenvalue and focal values with the same signs as in the traditional
approaches described above, and so comparisons are made easier. We obtain the usual
correspondence that negative values imply stability. This is a consequence of the fact
that in (2.14), N and f have the same sign, so that eigenvalues and focal values
computed from N have the same sign as if they were computed directly from the
vector field f.
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The linearization of (2.14) is

(2.15) LuE[—wo—d—+A]u=0,
ds

with A defined by (2.4). The kernel of L is spanned by

(2.16) ¢.(s)=Re (ce®), ¢,(s)=Im (ce”)
where c is an eigenvector of A satisfying

2.17) Ac =iwgc, c*c=2.

Here * denotes complex conjugate transpose. Similarly, we define adjoint eigenfunc-
tions ¢, and ¢, as the real and imaginary parts of de”, where d* is the left eigenvector
satisfying

(2.18) d*A=iw,d*, d*c=2.

The vectors ¢ and d are needed in the formulas in the next section.

The Lyapunov-Schmidt method proceeds by projecting (2.14) onto Ker (L) and
a complement, solving on the complement where L is invertible, and substituting that
solution into the equation in the kernel. The result is a two-dimensional map, called
the bifurcation equation,

(2.19) g:R*XR?XR->R?,  g(x,y; p, 7)=0.

From the phase-shift symmetry of the periodic functions g is S' equivariant. We may
arbitrarily fix the phase and define an amplitude, for example, y =0 and x=0. Then
the bifurcation equation has the form

(2'20) &= P(xz’ M T)x = 0’ &= q(xza M, T)x = 0,

where p(0) =q(0) =0, and ¢,(0) = wy# 0. Periodic solutions correspond to nontrivial
solutions of p = g =0. By the Implicit Function Theorem, the g-equation can be solved
for 7, which we then substitute into the p-equation, which gives the final equation

(2.21) a(x?, p)x=p(x* p, 7(x*, pu))x =0.

Now (2.21) has the form (2.8), and it has been shown that Theorem 2.1 holds once
again. It remains to calculate the Taylor coefficients of a, which include the ¢;(0) in
(2.8). This is accomplished by repeated implicit differentiation of (2.20)-(2.21), and
the solution of linear differential equations in the complementary space. The results
are presented in the next section.

Recall that u=(A, a), where A is a distinguished parameter. The possible
degeneracies involving the distinguished parameter A have not been discussed here,
but are explored thoroughly in Golubitsky and Langford [14].

3. The bifurcation coefficients. In this section we present the explicit formulas for
the Hopf bifurcation coefficients, for the cases of weak foci up to order 3 (as defined
in § 2). The general solution for a weak focus of order 2 has been obtained by Golubitsky
and Langford [14], and earlier by Hassard and Wan [17]. The weak focus of order 3
seems not to have been solved before, except in special cases; for example, Bautin [4]
treated the case of a two-dimensional system with only quadratic nonlinearities.
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Furthermore, the formulas presented here remove two simplifying assumptions
that were made in [14]. From the theoretical point of view of that paper, there is no
loss of generality in assuming that the imaginary eigenvalues are scaled to +i and that
even as u varies the equilibrium solution remains fixed at the origin (i.e., is a trivial
solution). In applications, however, these simplifying assumptions are rarely satisfied.
The necessary extensions to the general case are presented here. Note also that our
formulas include those necessary to determine degeneracies involving the distinguished
parameter as defined in [14], as well as the focal values discussed in § 2. These formulas
allow the calculation of the defining conditions of all possible degeneracies of
codimension up to 3, as defined in [14].

To avoid repetition, it is assumed that the reader is familiar with the notation and
formulas in § 5 of [14]. However, the reader is warned that, since the nonlinear operator
N is defined here with a sign opposite to that in the earlier paper (for reasons explained
in § 2), some of the formulas have signs reversed.

First we provide the formulas that remove the assumption of a trivial solution.
Let f(u, A, @) be the right-hand side of our set of ordinary differential equations, and
assume that it does not have a trivial solution. (In this section we will suppress the
dependence of f on «, the vector of free parameters, for convenience.) We define a
function G that has a trivial solution locally by

(3.1) G(v,A)=f(v+i(r), )
where ii()) satisfies

(3.2) S(@(x), 1) =0,

for A in some neighborhood of the Hopf bifurcation point. That is, #(A) is the
steady-state solution written as a function of the distinguished parameter A. The
formulas we will present below for the derivatives of the functions p and g, as defined
in (2.20), will be in terms of G; we present immediately below the formulas relating
derivatives of G to derivatives of the original vector field f. Our purpose in splitting
up the calculations in this fashion is twofold. First, the subsequent formulas are
simplified to a certain extent, and second, some applications will have trivia! solutions
and the most general formulas would entail quite a few needless calculations. Note
first of all that DX G = D% for all k, where by DX G we mean the kth derivative of
G with respect to v thought of as a symmetric k-linear form. Thus if all we seek is
the focal values of § 2, it is irrelevant whether or not f has a trivial solution. It is only
when derivatives with respect to the distinguished bifurcation parameter occur that
complications arise. The extension of our notation to mixed v and A derivatives is
trivial, since we are considering A to be a single real parameter. The formulas we will
need are given below (in our calculations below all derivatives are to be evaluated at
the Hopf point, so we will supply as arguments only the k vectors on which the form
is to act):

D,D,G(x) =D f(v,, x)+ D,D, f(x),

DD, G(x,y)=Df(v;, x, )+ D} D, f(x, ),

D,D3 G(x) = D3f(v,, v,, x)+ D>f(v,, x)+2D2 D, f(v,, x)+ D, D3 f(x),
D; D, G(x,y, z) =Dy f(v:, %, 3, 2) + Dy Dy f(x, y, 2),

D, D3 f(x,y)=Dyf(v,, v1,%,y)+ D3 f(v2, X, y)+ 2D, D, f(v1, X, y)
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+D; D} f(x, y),
D,D3 G(x)=D?f(v,, vy, v, x)+3D3f(v,, v5, x)+ D,f(v5, x)
+3D} D, f(vy, v;, x)+3D3 D, f(v,, x) +3D3 D5 f(v,, x)
+D,D3 f(x),
D}D,G(x,y,z,w)=D,f(v,,x,y,2 w)+DiD,f(x,y, 2z, w),
D3D3f(x,y,z)=D.f(vy, v, x, ¥, 2)+Dif(v,,x,y,2)+2Ds D, f(vy, x, y, 2)
+ D D} f(x, 3, 2),
D}D,G(x,y,z,w,t)=DSf(v,,x,y, 2w, t)+D,D,f(x,y,z,w, 1),

where x, y, z, w, and t are vectors in R", and the quantities v; are derivatives of @#(A)
defined by

(3.3)

v, = —-(va)‘l(D,\f),
v,=—(D,f) (D3 f(v1, v,) +2D, D, f(v,) + D3 f),
v3=—(Dof) (D3 f(vy, v1, 01)+3D5 f (v, v;)

+3D.D, f(v,, v,)+3D,D, f(v,) +3D, D3 f(v,) + D3 f).

Next we present the formulas for the derivatives of a(z, A) in terms of the
derivatives of p and q (we let z=x?, see (2.20)-(2.21)). The notation is that of [14],
that is, we write

(3.5) a(z, 1) =Y ayz"N.

Note that the derivatives of a(z, A) with respect to z, at (z, A) =(0, 0), are equivalent
to the focal values defined in § 2.

The p; notation is a shorthand defined like that for the a; coefficients, which we
give below for completeness, although we assume readers of this paper are familiar
with either the paper of Golubitsky and Langford [14] or the treatment given in
Golubitsky and Schaeffer [15]. The notation depends on the two functions g, and g,
defined above in § 2 and the series expression

(3.4)

(3-6) P(z A, 7) =% puz'A'r

where z = x” as before. Hence Diik is given by

a7) - 1 a2i+1+j+kgl(0’ 0,0)
. l] -

Qi+1)1j1k! ax* 1 aal a7k

with analogous expressions for gy, involving g,. The formulas for the a; coefficients
are given below. Their derivation involves only elementary calculus, but they are given
here because there are sign changes from [14] due to the new definition of N and also
because they are for the case wy# 1:

Ao =0, @a10=Pioos @01 = Poos
@20 = P200— P101 G100/ @o> @11 = P110~ P101 o010/ @05 Aoz = Po2o>
(3.8) @30 = P300— P201 9100/ @0+ P102 G100/ ©5 = P101(G200/ @0 = G101 G100/ @)
@21 = P210= P11 9100/ @0 = P201 9010/ @0+ 2P102 G100 Go10/ @
= P101(q110/ @0 = G101 Gor0/ @5)
@12= P120 = P11 9o10/ @0+ Pr024o10/ @5 Pro1 Go20/ @0 = Po21 G100/ @o

Q03 = Po3o— Po21 Gor0/ @Wo-
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Finally we present the formulas for the derivatives of p and q. Deriving these
formulas is straightforward though tedious, and the labor involved especially in the
DPmoo coefficients increases rapidly with m. The formulas assume that G has a trivial
solution, so for where this is not true and where we are using a distinguished bifurcation
parameter, they should be modified according to the prescription above.

Computation of the coefficients proceeds in two steps. In the first step, linear
algebra problems must be solved to obtain complex-valued vectors that actually are
coefficients in a Fourier series for the function w(x, A, 7), and in the second, these
vectors are used to evaluate the p and g coefficients of the bifurcation equations. As
shown in Golubitsky and Langford [14], certain coefficients are identically zero or
have special values. These are

P00j=0, j=0,1,2,‘~-, q00j=0, j=2,3’4’...’
(39) Gooo =0, Goo1 = Wy,
Poij=901;=0, j=1,2,3,---.

The formulas for the first-order derivatives of a(z, A) at the origin have very simple
forms. The set of vectors for the p,o, coefficient, which determines stability in the case
of nondegenerate Hopf bifurcation, is found by solving

(3.9) Aay,=—3D?G(c, ¢), (A=2iwoIa,=—-3iD2G(c, c)

where A is the Jacobian matrix of F at the Hopf point and c is the right eigenvector
of A corresponding to the eigenvalue iw,, as in § 2. In computations it is useful to
form the intermediate PQ100 and PQO010 quantities, given by

(3.10) PQ100= D} G(c, ap) + D} G(&, a,) +3 D3 G(¢, ¢, @),
PQ010= D,D, G(c),

before computing

G0 Pioo=4Real (d*PQ100),  poio =3 Real (4*PQO10).

The coefficients g,9o and g0 are obtained by taking imaginary instead of real parts
and inserting a minus sign. It is a simple matter to identify po,o With o, (0, 0), so that
a nonzero value means the transversality condition is satisfied. If p,q, is not zero, then
a negative value indicates a stable periodic orbit and vice versa.

Higher-order calculations become increasingly complex. We need eight more
vectors to compute the second-order coefficients; six are obtained by solving:

(3.12)
(A=3iwoI)as=—-3D:G(c, a,) -3 D, G(q, ¢, c),
Aby=—-2[ D2 G(c, a;)+ D3 G(¢, a;)1-3D3 G(a,, ay) —6D3 G(a,, a,)

-3D}G(c, § ay)—3D}G(c, ¢, @) —3D3G(G, ¢ a,)—3 D3 G(c, ¢, G, €),
(A—2iw,I )by = —2D>G(c, a;) - 2D2G(E, as) — 6 D> G(a,, ay)

-3D3G(c, ¢ a,)—3D>G(c, ¢, a0) 3D G(c, ¢, ¢, €),

(A—=2iwgI)c,=2iwga,,
Ady=—-1D>G(c, &) —3D>G(E, ¢;) —3D3D,G(c, €) — D,D,G(a,)
(A=2iwol)d>=—31D>G(c, ¢,) —3D.D,G(c, ¢) — D,D,G(a,).
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The remaining two vectors require some explanation, since the left-hand sides of the
equations are singular. According to the Fredholm alternative, the solution exists and
is unique if we specify that the solution be orthogonal to the eigenvector of the adjoint
problem and if the right-hand side of the equation is orthogonal to the same eigenvector.
This eigenvector d is found from

(3.13) (A*+iweI)d =0

(where A* is the transpose of A) and normalized so that d*c =2. The two remaining

vectors thus are uniquely determined from
(.14) (A—iwoI)a,=—3PQ100+3[d*PQ100]c,  d*a,=0,
1
(A—iwoI)c, =—PQ010+3d*PQ010]c, d*c,=0.

The next step in determining the second-order coefficients is to compute the
following PQijk quantities, which will lead directly to the p;; and g quantities we
desire:

(3.15)
PQ101=D:G(¢¢;,), PQ020=D,D,G(¢,)+3D,Dj; G(c),
PQ110= D} G(c,, ap) + D> G(&,, @)+ D% G(c, do) + D2 G(&, d,) + D2 D, G(c, ao)
+ D2 D, G(¢, a;)+3D,D,G(a,)+3 D, G(c, ¢, &)
+3D}G(c, ¢, ¢,)+5D D, G(c, ¢, €)
PQ200=3D3 G(c, by) +3 D} G(, b,) +2D? G(ay, a,) +2D> G(a,, 4,)+2D} G(a,, a;)
+3D3G(c, ¢, a,)+ D) G(c, & a,)+3D2 G(G, ¢, a;)
+3D3G(c, ay, @) +3D; G(G, ay, a,) +3 D} G(c, ao, a,)
+iD%G(c, ¢, c, @) +3DiG(c ¢, ¢ a0)+3D:G(c, & ¢, a,)
+1D3G(c, ¢ ¢, G ).
The py coefficients for i+j+ k=2 are now obtained from the formulas
(3.16) Pio1 =4 Real (d*PQ101),  poy =3 Real (d*PQ020),
P110=34 Real (d*PQ110), D200 =24 Real (d*PQ200),

and the analogous g, coefficients, by changing the sign and taking the imaginary
instead of the real part.

Computing the third-order coeflicients is even more complicated, but proceeds in
exactly the same way. We first compute 24 vectors; these vectors, along with the ten
already computed, could be used to obtain approximations to the periodic orbits, but
we have not done this. We will only use them to obtain the p;; coefficients for i+j+ k = 3.
As far as we know, these coefficients have not been obtained before.

The first set of vectors are required for the PQ300 quantity and are obtained by
solving the following series of problems:

(3.17)
(A —410)01)b4= —3Di G(aZ, a2) _2Di G(C, a3) _%Di G(C, (&3 a2) _%D: G(C, (SN C),
(A—iwyI)e; = —5PQ200+3[d*PQ200]c, d*e,=0,
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(A-3iwyI)e;=—3D2G(¢, by) —3 D% G(c, b,) —10D3 G(ay, a3) —10D; G(a,, a,)
—5D}G(c, ¢ a3)—3D3G(c, ¢, a;)—15D3 G(c, ao, a,)
-2 D3G(e a,, ay)
-8¥DiG(c, ¢, ¢ a,)-iD,G(c,c c a0)—55DG(c, ¢ ¢ 0 ),
Ahy=-3D’G(¢, e,) —3D>G(c, &) — 15D} G(a,, b,) — 15D} G(a,, b,)
—15D2 G(a,, by)
—-20D}G(ay, a,)—20D% G(a;, @) - D3 G(¢, ¢, b,) -2 D} G(c, ¢, by)
-2 D3 G(c, ¢, by) —30D; G(¢, a,, a;) —30D3 G(c, a,, a5)
—30D3 G(E, a,, a;)
—30D3 G(c, ao, @) —30D} G(c, a,, a,) —30D} G(G, a, a,)
—15D3 G(ay, a,, a,)
—90D3 G(a,, a,, ay) —3 D2 G(E, ¢, ¢ a;) —3 D G(c, ¢, c, a;)
-$D}G(c ¢ ¢ ay)
-¥D}G(¢ ¢, c,a) -5 D} G(G, ¢ a,, a0) — % D} G(c, ¢, @, a,)
—-45D3G(c, ¢, a5, @,)
¥ D!G(c, § a0, a0) 3D G(c, G, ¢, ¢ a,) -2 D, G(c, ¢, ¢, G a)
—-¥D}G(c, ¢, 68 a,)—1sDSG(c, ¢, ¢, ¢, ¢, ),
(A—2iwoI)h,=—3D3 G(¢, e3) —3D% G(c, e,) —15D3 G(a,, by) —15D3 G(ao, b,)
—15D2G(a,, b)) — 10D’ G(a,, a,) —20D? G(as, a,)
-LD}G(¢ ¢ b,) - D3G(c, G by)
-2 D3 G(c, ¢, by) —30D2 G(c, a,, a;) —30D> G(, a,, a;)
-30D3G(¢, a,, a,) —30D3G(c, ay, a,) —30D3 G(c, a,, a,)
—45D} G(a,, a,, @,)
—45D3 G(a,, ay, a0) — 5 D} G(c, ¢, ¢ a3)—3 D3 G(c, ¢, ¢, @)
-¥DiG(c ¢ ¢ ay)
-$DiG(¢ ¢ a,,a,)—45D3G(c, ¢, a,, a)) —5 D} G(c, ¢, a,, a,)
-2 D?{G(c c, a0, ap)
-2 D3G(c,c,¢¢a,)-¥D}G(c ¢, ¢, ¢ a)—-12D)G(ccc c a,)

15 6 = =
—-aD,G(ccccC ).
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PQ210 vectors:

(3.18)

Any=—-D, D, G(by) —2D3 D, G(¢, a,) —2D> D, G(c, a,) —3D?* D, G(a,, a,)
—6D2 D, G(a,, a,)
-3D} D, G(¢, ¢, a,) -3 D3 D, G(q, ¢, a,) —3D D, G(q, T, a,)
-3D}D,G(c, ¢, ¢, ¢)

—2D2G(E n,)—2D%G(c, ii,) — 6D G(a,, d,) —6D* G(a,, d,)
—-6D}G(ay, do)—2D%G(ay, &) —2D%G(a,, ¢;) 3D G(c, ¢, dy)
—-3D}G(G, ¢ d,) —3D3G(c, ¢ do) —3D3 G(C, ¢y, a,) —3D3 G(c, ¢, @)
—3D}G(F, ¢;,a0)—3D3G(c, &, a0)—3D2G(¢, ¢, ¢, ) —2D* G(c, ¢, G, &),
(A—iwoI)n,=—3PQ110+3[d*PQ110]c,  d*n,=0,
(A=2iwoI)n,=—D, D, G(b,) —2D> D, G(¢, as) —2D?% D, G(c, a,) —6D? D, G(a,, a,)
—-3D,D,G(c,  a,)—3D3D,G(c, ¢, a))—2D* D, G(c, ¢, ¢, ©)
—2DXG(¢, n,)
—2D2G(c, n,) —6D? G(ay,, d,) —6D? G(a,, dy) —2D? G(ay, ¢;)
—2D3G(ay, &) -3D} G(c, &, dy) —2 D2 G(c, ¢, do)
-3D}G(G, ¢, ay)
—3D}G(c, &, a,)-3D3G(c, ¢1, a0) —3D*G(c, ¢, ¢, ¢;)
-iD{G(c ¢ ¢, &),
(A—=3iwoI)ny=—D, D, G(as) —3 D2 D, G(c, a;) —s D> D, G(c, ¢, ¢) -2 D? G(c, d,)
-3D2G(a,, c,)-3D3G(c, ¢, ).
PQ201 vectors:
(3.19)
Ak, =—-2D3G(E, k) —2D3 G(c, k) —6 D> G(a,, c,) —6D> G(a,, &,)
-3D}G(E, ¢ ¢c,) -3 D3 G(c, ¢, &),
(A—iwoI)k; =—3PQ101+3[d*PQ101]c + iwoa,,  d*k,=0,
(A—=2iwo Ik, = 2iwo b, —2D? G(T, k3) —2D2 G(c, k) —6 D% G(ay, ¢,) —3D> G(q, G, ¢,)
(A=3iwoI)k; =3iwgas; —3 D% G(c, c,).
PQ111 vectors:

b

Ajo=—D;G(¢, j1) - D3 G(§, j,),
(3.20) (A—iwoD)j, =3iwgc,,  d*j, =0,
(A=2iwyI)j,=2iwed,— D% G(c, j;) — D, D, G(c,).
PQ102 vector:
(3.21) (A=2iwo I)m,=4iwgc,.
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PQ120 vectors:

(3.22)

Ary=—-D*G(c,, &) — D2 G(c, 7,)— D5 G(¢, r,) —2D,D, G(d,) - D>D,G(E, c,)

— D3 D, G(c, &) - D,D3 G(a,) -3 D3 D G(c, ©),
(A—iwoI)r,=—PQ020+3[d*PQ020]c,  d*r,=0,
(A—=2iwoI)r,=—D2G(c, 1) —3D? G(cy, ¢;)—2D,D, G(d,) — D3 D, G(c, ¢;)

—D,D? G(a,)-3D%D3 G(c, c).
Next we define analogous PQijk quantities for i+j+k=3.

(3.23)

PQ300=1D2G(¢, h,) +1 D2 G(c, ho) +3D2G(a,, e5)+3D%G(a,, &) +3D3 G(a,, &)
+5D2G(as, b)) +5D%G(ay, b))+ 5D G(a,, by) +5D% G(as, b,)
+3D3G(G ¢ e) +2D3G(c, G e,)+3D3G(c, ¢, &) +5 D, G(G, ao, by)
+B D3 G(G ay, b)) +¥ D3 G(c, a,, b,) +5 D) G(G, ay, by)
+2 D3 G(c, aq,, bo)
+3D3G(c, ay, b)) +5D3G(G, a;, a;) +10D G(G, a3, a,)
+10D2 G(¢, a,, a,)
+10D3 G(c, a5, a;) +30D3 G(ao, @, as) +30D; G(a,, a,, a,)
+15D3 G(a,, a,, a;)
+30D3 G(ay, a,, a;)+15D3 G(a,, a,, ;) +3 D3 G(&, G, &, b,)
+¥DiG(c ¢ ¢ by)
+¥D¥G(c ¢ ¢ by)+3iD3G(c, ¢, ¢, b)) +15D; G(c, G, a,, as)
+B D! G(E ¢, ay, a;)
+B D G(E ¢ ay, a))+15D% G(c, G, ao, a;) +5 Dy G(c, ¢, @y, ay)
+15D; G(c, ¢, a,, a,)
+BD%G(c, ¢, a0, a)) +E D% G(c, ¢, ay, @) +%5 D} G(c, ao, ao, ao)
+%¥ D?G(¢ a,, ao, a,)
+% D G(G, ay, a,, d,) +45D% G(c, ao, as, @) +5D,G(c, G, ¢, G, a;)
+¥D}G(c ¢ ¢ ay)
+3D3G(c, ¢, ¢, ¢ a)+D3G(c ¢ ¢ ¢, d;)+5 D, G(C & G ay, a,)
+¥ D3 G(c, & ¢ ay, ay)
+$D3G(c, ¢, ¢ ao, a0)+4 D G(c, ¢, & ay, )+ D G(c, ¢, ¢, ao, G,)
+2D%G(c ¢, ¢ G ¢ a,)
+8D%G(c, ¢, ¢, & ¢ a)+5DSG(c ¢ c ¢ a,)

5 7 PPN
+T2-§DU G(c’ c’ c’ c’ c’ c’ c)’
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(3.24)

PQ210=1D, D, G(e,) +1 D? D, G(c, by) +1 D> D, G(¢ b,) +2D? D, G(a,, a,)
+2D2D, G(a,, a,)+2D?%D, G(a,, a;) +3 D3 D, G(c, ¢, a,)
+D2D,G(c, ¢ a;)
+iD3 D, G(E, ¢ a;)+3D3 D, G(c, a,, a,)+3 D> D, G(c, aq, a,)
+3D3 D, G(G, a,, a,)
+iDiD,G(c, ¢, ¢, a,)+3D%D,G(c, ¢, G ag) +2D2D,G(c, ¢, ¢, a,)
+%D3D,G(c ¢ ¢ ¢, )
+3D2G(c, ny)+3D2G(E, ny) +2D2 G(a,, i) +2D2% G(a,, ny)
+2D2G(a,, n;)+2D%G(a,, d,)+2D%G(a,, d,) +2D2G(a,, d,)
+iD2G(b,, ¢,)+3D2G(b,, ¢,)+3D3 G(c, ¢, ii,)+ D2 G(c, & n,)
+1D} G(G, ¢ ny)+3D3 G(c, a,, d,)+3D2 G(c, ao, do)+3D> G(c, a,, d,)
+3D3G(G a,,dy) +3D3G(E, ay, d,)+ D G(c, ay, &)+ D3 G(c, a,, ¢;)
+ D3 G(C, as, &)+ D3G(G a,, ¢,)+3D2 G(a,, a,, ¢,)
+3D3 G(a,, a,, ¢;)
+3 D3 G(ay, ay, ¢;)+3iD%G(c, ¢, ¢, d))+3 D% G(c, ¢, ¢, dy)
+3D}G(c G ¢ d,)
+3D%G(c, ¢, a0, &) +3DEG(c, ¢, ay,¢,)+3D*G(c, ¢, a,, G&)
+3D?G(c, G, ay, ¢))
+3D?G(E, ¢ ay, c,)+3D3G(c, ¢, ¢, ¢ &)+ D3 G(c, ¢, G ¢,);

(3.25)

PQ201=3D?G(¢, k) +3 D3 G(c, ko) +2D?% G(a,, k;) +2D%2 G(ay, k;) +2D2 G(a,, k)
+2D2G(a,, ¢;)+2D%G(as, &) +3D2 G(E, & ky)+ D> G(c, ¢, k)
+iD3G(c, ¢, k) +3D3G(c, &, ay) +3D3 G(G, ¢s, ay) +3D> G(c, ¢y, a,)
+3D%G(c, G ¢ c,)+iD%G(c, ¢, ¢, G,);

PQ111=%D, D, G(k,)+3D> D, G(¢, ¢c;) +1 D> G(&,, c,)

(3.26) +Di G(a,, J71)+Di G(ao,jl)"‘%Di G(c, jo)

+3D;G(5j2) +iD3G(¢, ¢, J)) +3D3 G(¢, 6,41);

(3.27)  PQ102=3iD2G(¢, m,);

(3.28)

PQ120=3D?G(G r,) +31D2G(c, o)+ D> G(ay, 1) + D> G(a,, 7,) + D> G(dy, ¢;)
+D2G(d,, &) +iD G(c, ¢, 7)) +iD3G(c, &, 1) +iD}G(E ¢y, 1)
+iD3G(c, ¢, 6)+3D,D,G(n,)+ D?D,G(E, d,)+ D> D, G(c, dy)

+ D2 D, G(a,, ¢,)+ D> D, G(a,, ¢,)+3D3 D, G(c, ¢ ¢,)
+iD3D,G(c ¢, &)
+3D,D3 G(a,)+31D2 D3 G(¢, a,) +2 D> D3 G(c, ay,) +2 D2 DA G(c, ¢, ©);
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(3.29) PQ021 = D,D, G(j,);

(3.30) PQ030= D,D, G(r,)+3D,D3} G(c,)+& D,D3 G(c).

Finally we obtain the p;; coefficients from
D300 = Real (d*PQ300)/6!, P210= Real (d*PQ210)/4!,
D201 = Real (d*PQ201)/4!, P11 = Real (d*PQ111)/2,
P12 = Real (d*PQ102)/4, P120= Real (d*PQ120)/4,
Po21 = Real (d*PQ021), Poso = Real (d*PQ030)/2,

(3.31)

and the analogous g;; coefficients can be obtained by changing the sign and taking
imaginary parts instead of real parts.

4. Application to Hilbert’s 16th problem. There is a large literature on Hilbert’s
16th problem; the reader is referred to the review articles of Coppel [9], [10] and Ye
[32], [33]. As remarked in the Introduction, the maximum number of limit cycles of
a quadratic system in the plane is still not known. The general quadratic system is

dx o dy -
4.1 - = Ai' ! j, i B,“ ! J.
(@1 dt i+]Z§2 % Y dt 5= iy
Let H,(A, B) denote the total number of limit cycles of (4.1) for given A; and B;.
Then it is known that

4.2) H,(A, B) <, sup H,(A, B)=4.
AB

It was shown by Bamoén [3] that H,(A, B) is finite, after several false proofs dating
back to Dulac. Examples of (4.1) with 4 limit cycles were constructed only recently
by Shi [30] and Chen and Wang [7]. Both of these examples employ Theorem 2.1, or
what is known as Bautin’s technique: perturbation of a weak focus to create multiple
limit cycles locally. Shi’s example has a weak focus of order 3 and a strong focus
surrounded by a unique limit cycle; Wang’s example has a weak focus of order 2 and
a strong focus, each of which is surrounded by a finite limit cycle. These local arguments
gain added significance in view of the following result.

THEOREM (Li [24]). There is no limit cycle around a weak focus of order 3, for any
quadratic system.

Thus it is not possible to construct an example of a quadratic system with 4 limit
cycles about the same equilibrium, using Bautin’s technique.

The remainder of this section is devoted to a new derivation of Bautin’s formulas
[4]. First we restate Bautin’s results. Assuming that (4.1) has an equilibrium that is a
focus, Bautin makes a linear transformation to the system
43) X' ==y+Ax— A3 X7+ (20, + As)xy + Ag ¥,
* Y =X+ A Y+ X2+ (2h5+ A)xy — A, 2
Then the focal value cy(0) defined in § 2 is clearly equal to A,, and corresponding to
the focal values ¢,(0), c4(0), and ¢s(0), Bautin calculated (by the method of the
succession function) the following quantities:

v3=—(7/4)As(A3— Aq),
(4.4) vs=(7/24) A3 A4(A5 = Ae)[Aa+5(A5—A6)],
v, =(257/32)A, A 4(A5— AG)Z[AZ& As— 2*%“ )tzz]
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The origin for (4.3) is a weak focus of order k, for 1=k =3, if
4.5) A=+ =0y_,=0, Vorar # 0.
Moreover, Bautin showed that the origin is a center, if and only if
(4.6) A =03=05=0,=0.

(Recently Li [23] has reformulated Bautin’s results, in terms of the coefficients of the
untransformed equation (4.1), for greater convenience in application.)

Now let us apply the formulas of § 3 to (4.3), with A, =0. Note that there exists
a trivial solution (x, y) = (0, 0), the frequency is scaled to be 1, and all of the derivatives
higher than second-order are zero, so the calculation is greatly simplified. We find

a=( 7o) ema=()
1 0 1
(o) w9 )
From this we obtain the first focal value
a10= P1oo =14 Real [d*(Dif(c, ao) + D..f(c, a3))]
= _%)‘5()‘3" Aé)s

(4.7)

(4.8)

in agreement with Bautin’s result, up to a scaling factor of 2.

Before proceeding, we make a simplifying assumption. The second focal value is
of interest only if the first focal value is 0. Therefore we may assume that a,,=0 in
(4.8). It can be shown directly that the origin is a center for (4.3) if

(4.9) /\1=(/\3"A6)=0.

Therefore the only possibility for the origin to be a weak focus of order 2 for (4.3)
is if

(4.10) A =2As=0,

which we assume henceforth. Then for the second focal value the formulas in § 3 give
(4.11) azo=2‘§)‘2)\4(/\3_)‘6)[)\4+ 5(A3—26)],

again in agreement with Bautin, up to a scaling factor of 2.

Before calculating a;, we may assume that a,, = 0, by the same argument. However,
when (4.10) holds, the origin is again a center if either A, =0 or A,=0, so again there
is only one choice, namely

(4.12) Aa==5(A3=Ag)

which we assume, in addition to (4.10). After a long calculation, by the formulas of
§ 3, the third focal value is obtained as

(4.13) 30 =8 A (A3 = 16)* (A3 A6 = 13— 21%).
Comparing this with Bautin’s formula using (4.12), we find
(4.14) v;=—5(2m)as.

Thus the two formulas differ not only in scaling, but also in sign.
Evidence for a sign error in Bautin’s formula came to light only recently, in the
example of Shi[30] and in computer analysis by Qin and Liu [27]. The sign is important,
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because it determines the stability of the weak focus of order 3, and also determines
the signs of the perturbations necessary to produce the three limit cycles of
Theorem 2.1.
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THE INSTABILITY OF AXISYMMETRIC SOLUTIONS IN PROBLEMS WITH
SPHERICAL SYMMETRY*

PASCAL CHOSSAT{ AND REINER LAUTERBACHi

Abstract. Among all possible equilibria that may bifurcate from the trivial state for one-parameter
vector fields with O(3)-symmetry, one generically exists, whatever the (absolutely irreducible) representation
of O(3) is. This state is characterized by its group of symmetry, which includes rotations about a fixed axis,
and for that reason is called “axisymmetric.”” Recall that invariant spaces under irreducible representations
of O(3) have dimension 2/+1 and are generated by spherical harmonics Y', (6, ¢), ~I=m=1 If | is even,
the instability of the axisymmetric solutions follows from a theorem of Ihrig and Golubitsky [ Phys. D (1984),
pp. 1-33]. If I is odd, this theorem fails because it requires a condition on the quadratic part of the Taylor
expansion of the equivariant vector field, but in that case it must have a zero quadratic part. However, the
linearized vector field along an axisymmetric solution is diagonal in this basis and the computation of its
eigenvalues is easy once the equivariant structure of the vector field is known.

In this paper, using this idea, it is shown that two eigenvalues, namely those with eigendirections given
by m=2 and m =3 in the basis of spherical harmonics, are simply related and have opposite signs what-
ever I

Key words. differential equations, stability, bifurcation, spherical symmetry
AMS(MOS) subject classifications. 68F, 74D

Introduction. Bifurcations with spherical symmetry appear in a number of prob-
lems in mechanics, such as in models of the onset of convective flows inside planets
and stars (Busse [1975]) and the buckling of a spherical shell (Knightly and Sather
[1980]). These bifurcation problems also provide examples where the kernel V of the
linearized equations is forced by symmetry to be of “high” dimension. Indeed, for
each [ there is a unique irreducible representation of SO(3) having dimension 2/+1,
and in general the group of symmetry acts irreducibly on V. For the lower-dimensional
cases (I=1 or 2), the stationary bifurcation problem has been solved completely,
because they reduce to dimension one or two (Golubitsky and Schaeffer [1982], Chossat
[1982]). For I>2, so far only partial results have been obtained, either by an explicit
computation of the lowest-order coefficients of the bifurcation equation (for /=3, 4,
6, see Busse [1975] and Busse and Riahi [1982]), or by means of group-theoretic
methods (Sattinger [1983], Ihrig and Golubitsky [1984]), which imply the following:
to each isotropy subgroup X of O(3) (having a one-dimensional fixed-point space in
V), there corresponds a branch of bifurcated solutions whose symmetries are precisely
3. Of course solutions in the same group orbit have isotropy subgroups conjugate
to X. Then a study of the (conjugacy classes of) isotropy subgroups of O(3) has led
to a complete classification of solutions associated with such ¥’s. In particular, for
every I=1 there exists a branch of axisymmetric solutions, i.e, of solutions whose
isotropy group contains SO(2). This branch is the easiest to compute, and for a long
time people dealing with the numerical solution of partial differential equations (PDE’s)
with spherical symmetry restricted themselves to spaces of axisymmetric functions. On
the other hand, it was shown by Ihrig and Golubitsky [1984, Thm. 3.2B] that these
solutions are unstable when [ is even. The crucial hypothesis in their result is that the
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Republic of Germany. The work of this author was supported by Deutsche Forschungsgemeinschaft under
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quadratic terms in the Taylor expansion of the bifurcation equation are not identically
equal to 0. However, when [ is odd the vector field must be odd and the quadratic
terms are precisely null, so that the theorem does not apply in this case. On the other
hand, a direct computation by Busse and Riahi [1982] of the eigenvalues of the Jacobian
matrix at an axisymmetric solution in the case /=3 shows that at least one of these
must be positive (they are real). Hence the axisymmetric solution is still unstable when
I=3. Further calculations by hand (for I=5---) and by computer (MaclIntosh)
allowed us to verify the validity of this result up to /=15 (the limit of our computer’s
capability - - - ). This was enough to convince us that the instability of the axisymmetric
solution must be true for every odd value of L In the present paper we present a proof
of this fact. More precisely, let

dx
(0.1) dt—F(x,A)
be the equation in V (it can, for example, derive from a PDE by the center manifold
reduction). We make the following hypotheses.

(H1) O(3) acts absolutely irreducibly on V by its natural odd representation:
dim V=2I+1, ] odd, and the inversion x> —x in O(3) acts as —1d on V. We
recall that a real representation is absolutely irreducible if the only linear maps
that commute with it are scalar multiples of the identity. We note this
representation by D',

(H2) F(.,A) is O(3)-equivariant, i.e., F(gx,A)=gF(x,A) for all ge O(@3),
(x,A)e VXR.

It follows from (H1)-(H2) that: (i) 0 is an equilibrium of (0.1) for every A; and
(1i) L, = D,F(0,A)=c(A)ldy.
We further assume the following:

(H3) ¢(0)=0and ¢'(0)#0 (we can set ¢'(0)=1).

Hypothesis (H3) implies that the ‘“equivariant branching lemma” holds (Cicogna
[1981], Vanderbauwhede [1980]): given an isotropy subgroup X of O(3) and its
fixed-point subspace V*={xe V: yx=x ¥Yye 2}, if dim V*=1 there exists a branch
of solutions in V* (it is straightforward algebra to check that V* is invariant under
equivariant F’s).

THEOREM. Let hypotheses (H1)-(H3) hold; then generically the axisymmetric equili-
bria of (0.1) bifurcating at A =0 are unstable.

Remark. We make the “generic” condition precise in § 2.2, Lemma 2. In the two
next sections we (1) recall some basic group-theoretic facts and construct the axisym-
metric bifurcated solutions; and (2) study the linearized equations at an axisymmetric
solution and show the instability result.

1. The existence of axisymmetric solutions. In this section we indicate which
solutions of an O(3)-equivariant bifurcation problem are axisymmetric and we compute
them using the equivariant branching lemma (stated in the Introduction).

For each odd number n=2I/+1 there exists (up to equivalence) precisely one
absolutely irreducible representation of SO(3) on an n-dimensional real vector space.
It is equivalent to the natural representation on the space V; of spherical harmonics
of order /, which are defined in spherical coordinates by

Y'.(6, ¢)= P, (cos 6)e™?, —-l=m=l,
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and the P!’s are the associate Legendre polynomials (Miller [1972]). For the group
O(3) there exist two representations on V; according to whether the inversion in O(3)
acts as 1d or —1d on V. These representations are called the plus or minus representation
of order I, respectively. For even I the plus representation is the natural one to occur
while the minus one is natural for odd I Recall that a spherical harmonic h(x) of
order I is a homogeneous polynomial on R? of degree [ restricted to the 2-sphere. Thus
it is easily seen from the action of an element vy on a spherical harmonic h(x) by

(yh)(x)=h(yx),

where x € S? and 7 acts on x by matrix multiplication, that (=1d)h(x) = (—=1)'h(x), and
hence the natural representation of O(3) is the one indicated above. We consider
bifurcation problems

F:VixR>V,

which are O(3) equivariant with respect to the natural action of O(3) on V. The
existence of axisymmetric solutions follows from the following remarks and the
equivariant branching lemma (Ihrig and Golubitsky [1984]): if I is even, all isotropy
subgroups have the form H@®{-1d}, where H is a subgroup of SO(3); therefore it
suffices to look at representations of SO(3). The subgroup O(2) of SO(3) has a
one-dimensional fixed point space. It is a maximal closed subgroup of SO(3) and
therefore it is maximal with respect to the property of having a one-dimensional fixed
point space. If | is odd then SO(2) has a one-dimensional fixed point space; however,
it is not maximal with this property. The normalizer of SO(2) in SO(3) is O(2) and
it acts as minus identity on V5°®, Therefore the product of an element in O(2)\SO(2)
with —1d fixes V5°®. The group generated by SO(2) and this particular element is
denoted by O(2)™ and is isomorphicto O(2). The spherical harmonic, which is invariant
under SO(2), is given by Y4(6, ¢). In either case the equivariant branching lemma
guarantees a unique branch with symmetry group O(2) or O(2)", respectively. We call
either of these solutions the axisymmetric solutions.

As was pointed out in the Introduction, the axisymmetric solutions are generically
transcritical, therefore unstable, when [ is even. This result goes back to Busse [1975],
whose method of proof was different. When [ is odd however, the branches of
axisymmetric solutions are of pitchfork type, because the inversion in O(3) acts as —1d
in V5°®_ For I=1 the representation is equivalent to the action of O(3) in R?, and
every element in V is axisymmetric. The problem, therefore, is similar to having a
bifurcation from a simple eigenvalue, and the bifurcated solutions are stable if super-
critical.

2. Instability for odd I, I>1.

2.1. Construction of the bifurcation equations. We briefly recall a method described
in more detail in Sattinger [1979], to construct the lowest-order terms in the Taylor
expansion of an equivariant bifurcation problem.

The Lie algebra so(3) is generated by the matrices

0 0 0 0 01 010
(2.1) Li=(0 0 1|, L,=| 0 0 0|, L;=|-1 0 O
0 -1 0 -1 0 0 0 00

Using these operators, we define J,=L,+iL,, J.=—L,+iL,, and J;=—iL;. We
further note

(2.2) Ym ={(I=m)(I+m+1)}2
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We then conclude from Theorem 5.21 in Sattinger [1979] that there exists a basis
{&_1, -+ -, &} in the complexification of V; such that

(23) J3§m = mgms J+§m = 7m§m+l ’ J—gm = y—mgm—l .
Moreover, since V, is real, the &,,’s must satisfy the relation (Sattinger [1979])
(2.4) En=(-1D)"¢_,., -l=m=l

These relations allow us to compute the terms in the Taylor expansion of F(., A)
up to any given order. First we observe that the linear term is ¢(A) ld. Second, the
constant and quadratic terms are 0 because —1d commutes with F (I is odd). Therefore
we are interested in the third-order terms. We use coordinates z; in terms of the basis
{&,j=—1 -, 1}. The third-order terms may be written in coordinates as
(2.5) F® = Y A prstZrZs 2y, —I=m=1

—l=r+s+t=1
The infinitesimal generators J;, J,, J_ act as derivations on the z;’s; hence the following
relations hold for the cubic terms:

Ji(z,z,z,) = (r+s+t)z,zz,
(2.6) Ji(2,2,2,) = V21122t Vo2 Zs 120+ ViZZZir1 s

J(z2,2,) = v 2o 122+ Y 22 120t Y222
Applying J; to F® we see that a,,,=0if r+s+t#m. Acting with J, on F,, we get
(2.7) JiFpi1=ymFn (-l1=m=1-1), J,F=0.

The latter equation gives a linear system for the coefficients a,,. It is underdetermined
and can be solved with respect to a certain number n(l) of parameters (independent
coefficients).

LemMA 1. n(l)=[1/3]+1.

Proof. Let T(l, m) be the set of triples t = (i, j, k) of integers —I=i, j, k=1 such
that i+j+k=m and i =j = k. We can view the equation J, F; =0 as a linear equation
from V, to V., where we note V,,, the free vector space over T(l, m). We want to
prove that the kernel of the associated operator A has dimension n(l) =[1/3]+1. Let
us first define an ordering in T(I, m): (i, j, k1) < (i, j», k») if i; < i, or i =i, and j, <},
or iy=1i,, jy=j, and k;<k,. Then there exists an integer r such that T(/,/+1)=
{71, ,n}with <7, i=1,- -, r—1. We write the system to solve in the coordin-
ates along the basis elements 7= (i, j, k) € T(I, I+1): each coordinate equation has the
form

Yi-1Q1i-1,jk + Yi-1Q1ij—1,k + Ye-1Q1ijk—1= 0.
We can now order the elements of T(I, I) as follows:

(1) 74, - -, 7, where each 7’ is deduced from = by taking 7' =(i—1, j, k); (2) the
remaining elements (in whatever order). Observe the following: (i) 7, < 7,=>7; <7}, for
all ,j=1,---,r; and (ii) 7'<(i,j—1, k) and 7' <(i, j, k—1). It now follows that the
matrix of A in this basis, truncated to the first r columns, is triangular and has only
nonzero elements on its diagonal, which proves that A is surjective.

To prove the lemma it remains to show that dim V,;—dim V., =[I/3]+1. Let
j*G,j, k)= (i, j, k+1) be a map from T(L I) to T(l, I+1). It is not defined if k=1, and
the image of j* is complementary to set {(i, j, j) € T(l, I+1)}. There are I+ 1 elements
in T(l,1) with k=1 On the other hand, the number of triples (i, j,j)e T(l,I+1) is
equal to the number of integer solutions of

i+2j=1+1, where—I=i=1/3, j>0.



INSTABILITY OF AXISYMMETRIC SOLUTIONS 35

If 1 is odd, this equals the number of even integers between —[1/2] and [(/+1)/3],
which is [1/2]+([[(I+1)/3]/2]+ 1. From here we get

n(l)=1+1-[(I+1)/3]-[1/2])+[[(I1+1)/3])/2]-1=[1/3]+1. a

A similar argument works in the case of even L

It follows that the size of the linear system derived from the equation J.F;=0
grows rapidly with L Once the structure of F{® is known, we apply J_ recursively to
FP, -, F®, in order to get the coefficients of F{>,, - - -, F$". We remark that F_,,
is deduced from F,, by means of (2.4). Also, it follows easily that all the coefficients
Q.. are real.

From (2.1) we see that the one-parameter subgroup exp (tJ;) acts as a rotation
on the two-dimensional subspace spanned by {&, £} for k=1, -, L Therefore it
fixes the linear span of &, (i.e., V5°® =span[£]), and the branch of axisymmetric
solutions can be computed by solving the equation in span [&,]:

(2'8) C(A)ZO+F£)3)(09 IR P ’O)=0'

The leading part of the solution is determined by the third-order terms. In the
following we set

2.9) B = Ammoo form=0,--- 1L
Then we have
(A +0(IA])zo) + Boza + 0(|zo*) =0,

the limits being taken for A, z,—> 0. After eliminating the trivial solution and applying
the implicit function theorem, we can solve for

(2.10) A(zo) = “Boztz)'*' O(IZOIZ)-

The next step is to express the eigenvalues of the linearization D,F along the branch
of axisymmetric solutions in terms of the B’s. We consider partial derivatives

aFgr::)(O"'.’ZO,”',O)
0z

(2.11)

If r+k+t=m and k# m, at least one of the numbers r or ¢ is nonzero and the
expression in (2.11) is zero. Therefore the linearization of f along the axisymmetric
solution has diagonal form (this in fact is due to the form of the Cartan decomposition
of D’ into irreducible representation of O(2)7). If m = k the expression in (2.11) is
the coefficient of z3z,,, which is by definition B,,. Therefore the linearization near z =0
along the axisymmetric solutions takes the form

(2'12) _ﬁOZ(Z) ld+diag (B—Iz(z)’ Y 3302(2), Y Blz(2))+0(|20|2)'
The eigenvalues are
(2.13) Om=(Bm—Bo)zot0(|z)") form=—1--- 1 m=0,

and g,=2B0z5+ 0(|zo|"). If the quotient of two of the constants B,, — B, is negative,
then the solution is unstable. Observe that two eigenvalues must be equal to 0, since
the orbit of axisymmetric solutions is two-dimensional (Chossat [1982]). These eigen-
values are o, and o_, since the tangent space to the orbit at z, is spanned by &, and
&_,. This program can be carried through numerically. We can compute (8,— B8,)/(B5—
Bo) by solving the equation j, F{> = 0, applying J_, and reading of the B’s. The symmetry
of the problem seems to stabilize the numerics since, for example, for I =15, the linear
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equation is a 85X 85 matrix, where the solution depends on five parameters and still
the numerical results are very precise. We give a short list of the numerical results:

! (B2=Bo)/ (Bs—Bo)

3 —0.6667
5 —2.6667
7 —5.5556
9 —9.3333
11 —14.0000
13 —19.5556
15 —26.00

By the method of computation we obtain n(l) numbers, which should be all equal.
This numerical result gives a strong indication that all axisymmetric solutions should
be unstable. The purpose of the next section will be to show that the quotient

(B2—Bo)/(Bs— Bo) is always negative for /> 1.

2.2. Computation of B,— B, and B;— B,.
LEMMA 2. If the coefficient of z2,z, in FS’ is not zero, we have

32_/30:6—1(“‘1)
Bs—Bo 9 ’

Remark. The hypothesis in this lemma is generic (it holds for a wide class of
problems with O(3)-symmetry).

Proof. We need to compute the B;’s, k=0,2,3, in terms of the independent
coefficients appearing in F®. For this we proceed as follows: (1) determine those
terms in F§ that contribute to the B,’s by successive application of the operator J,
to F, k=0, 1, 2; (2) compute the equivariant relations between these terms, by means
of the following expression (Miller [1972]):

(2.14) J_J+F0=I(I+I)F0;

and (3) deduce from (1) and (2) the relations between the B, ’s.
The part in F§> that gives a contribution to B,z3z, in F'(k=1, 2, 3) by applying
relations (2.7) is

(2.15)  az_szoz3+bz_sz_ 23+ cz_32,2,+ dz_y202,+ €22 2, + f7_ 1202, + 823+ hZ3Z_5.

Of course, we have g = B,. In addition, the following terms are needed for computing
the equivariant relations between the foregoing coefficients a, - - -, h in F,, because
they are generated by applying J,J_ to (2.15):

2.16 FZ_aZ0Za+ SZ 42123+ 12 422+ Uz_37 124+ 02%,2,.
42024 42123 4Z2 3Z-124 224

The terms in (2.15) are obtained in a straightforward way by applying formula (2.6)
for J_ recursively, starting from B;z3z; in F$¥. The terms in (2.16) are obtained by
applying J.J_ to (2.15), using (2.6). Now applying (2.14) to (2.15), we obtain a system
of eight linear equations for the corresponding coefficients. Recall that the coefficients
of the equivariant polynomial mappings are real, and that &, is a real vector. Therefore
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the coefficients of z;z;z; and z_;z_;z_; (i+j+ k= 0) must be equal. Using these remarks
and formula (2.2), we finally obtain the following eight equations:

b—c=0, e—h=0,

a(y3+7y3) +2byeyat dys=—sy_1y-a=uy_1v-a—rvis,

ayoy,+b(2yi+y3) +dyyy,+2ey,va = —uy_3y_s—20y_2¥_4,
(2.17) ay3+2by,y:+d(vit+y3) Haeyoy +fyi=0,

byiy:+dyoyi+e(yi+y2) +frov =0,

dyi+4eyoy +f(3yo+vi) +68y5=0,

frot2gvs=0,

where the 7,,’s are defined in (2.2). It is clear from this that only two coefficients can
be chosen independently from the others. For example, choosing d and e as these
coefficients, we get the relations

a=—d+2ey/vi(1-375/v3),  b=c=3e(vs=v3))/m7
h=d, f=-d-deyy/v:, g=—f/2.
It remains to apply J, three times to F,. We obtain successively
Bi=Bo=d/2+2eyo/ v, B2=d/2, B3=d/2—(vo/ v1—37s/ 11738
from which it follows that

Bo=By_6-1(I+1)
Bi—Bo 9

(2.18)

provided
(2.19) e#0. 0

Thus, when /=3, (2.19) is a generic condition implying that the eigenvalues o,
and o; have opposite signs, and thus we have proved the theorem stated in the
Introduction.
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ON A REDUCTION PROCESS FOR NONLINEAR EQUATIONS*

A. D. JEPSONt AND A. SPENCE}

Abstract. A method is discussed for reducing a nonlinear problem to a smaller (finite-dimensional)
equivalent problem. The method is a generalization of the Lyapunov-Schmidt reduction, and provides a
theoretical basis for more computationally convenient approaches. Our main results are on the equivalence
of reduced problems obtained from various forms of this reduction procedure.

Key words. Lyapunov-Schmidt reduction, singularity theory, bifurcation.
AMS(MOS) subject classifications. primary 58C27; secondary 47H17

1. Introduction. Nonlinear parameter dependent problems of the form
1.1) F(x,A, a)=0,

arise in the study of the equilibrium states of many nonlinear systems. Here x, the
state variable, lies in some Banach space X, A € R is some distinguished parameter,
which is called the bifurcation parameter, and @ € R? is a vector of control parameters.
It is assumed that the nonlinear function F maps X X Rx R” to Y, a Banach space,
and is sufficiently smooth so that any necessary derivatives exist. In physical situations
interest often centres on the critical points of (1.1), namely, the points (x, Ao, @),
say, at which F2= F.(x,, Ao, @) is singular, since it is at such points that a physical
system may lose stability (see, for example, [2], [3]).

The fundamental tools for the study of solutions of (1.1) in a neighborhood of a
critical point are the Lyapunov-Schmidt reduction [7], [11], [13]-[15], and the closely
related alternative method [1], [S]. No matter what the form of the original equation,
provided these reduction processes can be applied, a reduced problem is obtained of
the form

(1.2) h(e, A, @)=0, h:R™xRxR”->R™

whose solutions are in a one-to-one correspondence with those of (1.1). Typically the
dimension of the reduced problem is very small, say m =1 or 2, and hence it can be
readily analyzed using singularity theory. Recently this approach has led to significant
advances in our understanding of nonlinear phenomena arising from a wide variety
of problems (see [14] and the references cited therein). The reduction process we shall
describe and discuss is a generalization of the Lyapunov-Schmidt reduction.

The standard Lyapunov-Schmidt reduction requires a precise characterization of
both the null space of FJ and the range of F2, which we denote by N[F2] and R[F?],
respectively. The particular form of the reduction process is determined by this
knowledge along with choices for complementary spaces of N[F%] and R[F2].
Different choices of the complementary spaces lead to different reduced problems.
However, Golubitsky and Schaeffer [7] show that this nonuniqueness is unimportant
in that all reduced problems derived from one original problem (through the use of
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the Lyapunov-Schmidt procedure) are equivalent in the sense that their solutions
exhibit the same qualitative behavior. Furthermore, the solutions of the finite-
dimensional reduced problem (1.2) are qualitatively similar (for a precise definition
see § 3) to the solutions of the original problem (1.1). Therefore the local structure of
solutions for (1.1) near a singular point (x,, Ag, @) can be studied by analyzing any
reduced problem obtained through the Lyapunov-Schmidt procedure.

The motivation for this work arose in considering numerical techniques for
computing the location and type of singular points for (1.1). It is hoped that these
numerical techniques will form a bridge between the local results of singularity theory
and the global properties often of interest in physical applications. In [9] the singularity
theory of Golubitsky and Schaeffer [6] is used to derive numerically convenient defining
equations for singularities arising in problems of the form (1.2) with m = 1. In effect
it is assumed in [9] that the reduced problem (1.2) is given explicitly, as in the example
calculation described there. Clearly, an important extension is to develop numerical
techniques for obtaining a suitable reduction for problems of the general form (1.1).
Some preliminary ideas to this end are presented in [4] and [8], and a more complete
treatment is given in [10].

The fact that it is not necessary to know N[F] or R[F2] in order to carry out a
successful reduction is described in [11, § 22] and this observation leads to a generalised
reduction process, described in § 2, which provides more flexibility than the standard
Lyapunov-Schmidt procedure. This additional flexibility is important in the numerical
computation of singular points. The typical situation in this application is that some
point (x,, A, a,), near a singular point (x,, Ao, &) of a particular type, is known. The
known point need not be a singular point of (1.1), in fact, usually it is not a solution
point of (1.1). However, crude approximations to N[ F2] and N[(F2)*] (and therefore
R[F?]) are available. Given this starting data, the goal of the computation is to
accurately locate (xo, Ao, a). In this paper we show that crude approximations of
N[F?] and N[(F?)*] are sufficient to calculate a suitable reduced problem of the
form (1.2). This result is central in the development of computationally efficient and
robust numerical techniques (see [8] and [10]). Finally, we mention that the generalised
reduction might also be used to advantage in analytical calculations where the null
vectors of F and (F2)* are not available in simple closed form.

In § 3 we prove our main result. In particular we show that all reduced problems
of the form (1.2), obtained from one original problem using the generalised procedure,
are equivalent. This is an extension of the result given in [7] for the Lyapunov-Schmidt
reduction. (We are grateful to a referee of this paper for supplying a shorter proof of
the result for the Lyapunov-Schmidt reduction, which is presented in the Appendix.)
A simple form of this result appears without proof in [8]. Independently Beyn [4] has
shown that if F in (1.1) is finite-dimensional then, no matter how the generalised
reduction is carried out, F is equivalent to a nonsingular linear system together with
the particular reduced equation obtained. The equivalence of the reduced problems,
however, is not proved there.

Finally in § 4 we consider the nonlinear differential system

x+F(x,A, a)=0

where x € X x[0, ). If (x,, Ao, @) is an equilibrium solution with FY singular and
all other eigenvalues have positive real part, then it is often important to ascertain the
asymptotic stability of equilibrium solutions near (x,, Ao, ao). If FS has zero as a
simple eigenvalue Golubitsky and Schaeffer [7] show how this may be done by
examination of the reduced equation derived using the Lyapunov-Schmidt reduction.
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We show that the same stability information may be obtained from the generalised
procedure.

2. The generalised reduction. In this section we describe the generalised reduction
process as given in [11], and give necessary and sufficient conditions for its application
(Theorem 2.10).

First we remark that, although in applications it is often important to keep A a
distinguished parameter, here it is convenient to put A = a, and write (1.1) as

2.1 F(x,a)=0, a=(ag, ,a,) R

Furthermore, without loss of generality, we take (xo, o) =0€ X XR?*!, so that

(2.2) F(0,0)=0.
Throughout this paper we assume that the Frechet derivative L= F, (0, 0) satisfies
(2.3a) L:X - Y is a Fredholm operator of index zero,

with

(2.3b) N[L]=span{®,,- -, P}, dim N[L]=1,

(2.3¢) N[L*]=span{¥¥, -, ¥¥}, dim N[L*]=1L

Here L*: Y*-> X* is the adjoint operator associated with L.

As was mentioned in the Introduction, the aim of a reduction process is to obtain
a small (finite) system of equations which is, in some sense, equivalent to (1.1). The
first step in the generalised reduction is to choose closed subspaces X;, X,< X and
Y;, Y, Y with

(2.4a) X=X,®X,, dim X, =m,

(2.4b) Y=Y, ®Y,, dim Y,=m.

Here m =1 is taken to be finite. Let P and Q be the projections

(2.5a) P:X->X, R[P]=X,, N[P]=X,,

(2.5b) Q:Y-Y, R[Q]=Y,, N[Q]=Y;.

The fundamental assumption is that the decompositions in (2.4a), (2.4b) are such that
(2.6) N[P]NN[(I-Q)L]={0}.

Using the projections in (2.5) we rewrite (2.1) in the equivalent form

(2.7a) (I-Q)F(x,+x,,2)=0€Y,,

(2.7b) QF(x;+x,,a)=0€ Y,

where x, € X; for i =1, 2. In particular, notice that (2.7b) is a system of dimension m.
We emphasize that there is no need to restrict attention to reduced problems of
dimension I, and reduced problems of dimension m = I may be considered if deemed
necessary (for example, near a singularity of higher multiplicity).

The reduction proceeds by first solving (2.7a) for x, in terms of x, and «, and,
second, substituting this problem into (2.7b) to obtain

(2.8) QF (x,(x,, @)+ x,, a) =0.
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The key step is the first, and the Implicit Function Theorem ensures that this is possible
provided A= (I — Q)L(I — P) satisfies

2.9) A:X,~ Y, is nonsingular.

Under assumption (2.6) A is indeed nonsingular. In fact, we have Theorem 2.10.

THeEOREM 2.10. Let L, P, Q, and A be as above. Then (2.6) is a necessary and
sufficient condition for A to be nonsingular.

The proof of Theorem 2.10 is given at the end of this section. The theorem shows
that, under condition (2.6), the Implicit Function Theorem provides the existence and
local uniqueness of a solution x,(x,, a) of (2.7a) for (x,, a) near 0, and with x,(0, 0) =0.
At this point it is convenient to introduce bases {v;};L, and {w;}[~, of X, and Y,,
respectively, and to let V,:R™ > X, and W,: Y,>R™ be defined by

(2.113) ‘/2€ = Z €ivia EE(EI’ T, €m),
i=1

(211b) Wz{»gl ﬂiwi}="IE(771,' ..,nm)'

The final step in the reduction process is to obtain the reduced problem by writing
(2.8) in terms of these bases, that is,

(2.12a) h(e, a)= W,QF (Q (g, a), @) =0,
where h:R™ xR”*'>R™, and
(2.12b) Q(e, a)=x,(V,e, a)+ Ve

The Lyapunov-Schmidt reduction is a special case of the above procedure; in
particular, the decompositions in (2.4) are taken to satisfy

(2.13a) X=X,®X,, dimX,=] X,=N[L],
(2.13b) Y= Yl@ Y2, dim Y2 = l, Yl = R[L].

Notice that (2.5b) and (2.13b) imply that I — Q projects onto R[L]. Therefore (2.6)
becomes simply N[ P]N N[L]= {0}, which follows from (2.13a). That is, the decompo-
sitions used in the Lyapunov-Schmidt reduction are sufficient to guarantee (2.6) and
hence that A is nonsingular. By contrast, in the generalised reduction we have more
freedom in the choice of the decompositions of X and Y; in effect, the only restriction
is that the decompositions produce a nonsingular A.

A second reduction technique is the alternative method [1], [5]. For the case of
Fredholm operators treated here it is natural to consider only reduced problems of
the form (2.12). In this situation the alternative method assumes that the decompositions
(2.4a), (2.4b) are chosen such that

(2.14a) X,=N[(I-Q)L],
(2.14b) LX,C Y,,
(2.14¢) L(I—-P):X,~ Y, is nonsingular.

Therefore, if L is a Fredholm operator of index zero, the alternative method is also a
special case of the generalised reduction. However, it is important to note that the
alternative method can also be applied to more general problems.

We end this section with the following proof.

Proof of Theorem 2.10. Define

(2.15) A=(I-Q)L(I-P), A:X->Y.
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Then A is the product of three Fredholm operators, each of which has index zero.
Therefore it follows that (see [12]),

(2.16) A is Fredholm with index zero.
Assume that (2.6) is satisfied, that is,

(2.17) R[I-P]NN[(I-Q)L]={0}.

By (2.15) we have

(2.18) N[A]= N[I-P]®{R[I-P]INN[(I-Q)L]}.

Therefore, by (2.5a), (2.17), and (2.18),

(2.19a) N[A]l=X,, dimX,=m.

Furthermore, by (2.15), we have R[A]< R[I— Q]= X,. But by (2.16) and (2.19a) we
have codim R[A] = m. It follows from (2.4b) and (2.5b) that codim R[]I — Q] = m, and
hence

(2.19b) R[A]=R[I-Q]=Y,, codim R[A]=m.

It now follows that A = A|,, is one-to-one and onto Y,. By the Closed Graph Theorem
we conclude that A is nonsingular, and therefore (2.6) is sufficient.

Conversely, suppose that ¢ € N[P]JN N[(I —Q)L], ¢ #0. Then ¢ = (I — P)¢ and
A¢p =A¢p=(I-Q)Lp=0. That is ¢ € N[A], and hence (2.6) is necessary. 0

3. Equivalence of the reduced problems. The reduction processes discussed in § 2
all have the same goal, namely, the construction of a finite-dimensional reduced problem
from (1.1). The type and unfolding behavior of a singular point of F is to be determined
by studying the singular behavior of the reduced problem. However, the reduction
process is not unique; in particular there are infinitely many ways to choose the
decompositions in (2.4) such that (2.6) is satisfied. The usefulness of the reduction
process therefore lies, in part, in the fact that the singular behavior of the reduced
problem depends only on the function F and not on the details of the reduction. We
make this precise through the use of the following notion of equivalence.

DEFINITION 3.1. Suppose h(e, a), g(e, @):R™ xR”*'>R™ are two smooth func-
tions such that h(0, 0) = g(0,0) =0. Then h and g are said to be equivalent, which we
denote by h ~ g, if there exist smooth (C™) functions T(e, a) and E (e, @) such that

(3.2a) T(0, 0) is nonsingular,

(3.2b) E(0,0)=0, E?=E,(0,0) is nonsingular,
and, for (&, @) near (0, 0),

3.3) h(e, a)=T(¢, a)g(E (s a), a).

For the case in which F is C* in a neighbourhood of zero then (3.3) essentially states
that h and g are contact equivalent in the sense of the singularity theory of Golubitsky
and Schaeffer [6]. To be precise, (3.3) states that h is contact equivalent to R,g(R,¢, a)
for constant matrices R, and R, chosen so that T(0,0)R;"' and E2R, are positive
definite. These matrices are important when the dynamical stability of various steady
states are investigated in § 4; however, we can ignore them for the moment. As discussed
in [6], this notion of contact equivalence is an appropriate mathematical formulation
of the statement that solutions of (3.2a) and (3.2b) show the same qualitative behavior
near (&, a) =(0,0). Our main result is Theorem 3.4.
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THEOREM 3.4 (Equivalence Theorem). Let
(3.42) h(e, a)=0, h:R" xR >R™,
(3.4b) h(3,a)=0, h:R™"xR’*'>R™

be two reduced problems obtained from (1.1) by the generalised reduction procedure with
(2.6) satisfied in each case. Suppose m=m and let k:R™ xR” 15> R™ be the trivial
extension of h given by

(3‘5) k(e,a)=(ﬁ(81,~'~,e,;,,a), Ch+1s " " '38m)'
Then
3.6) h(e, a)~k(e, a).

Before proving the theorem we first note that a similar result has been proved in
[7] for the case of the Lyapunov-Schmidt reduction applied to problems with one-
dimensional null spaces (i.e., (2.3) is satisfied with I = 1). Our proof of the more general
result is guided by the proof presented there.

Proof of Theorem 3.4. It is convenient to first consider the case in which the
dimensions of the reduced systems are the same, that is, i = m. In this case we need
to show h~ h. It is obvious that if h and A are obtained through the use of the same
P and Q but with different choices of V, and W, in (2.9), then h ~ h. (Use Tieoy=To
and E (e, o) = Eje where T, and E, are constant m X m matrices.) An h obtained from
a particular choice of P and Q is denoted by hpo. Our first major task, then, is to show

whenever P, Q and 1?’, é satisfy (2.4), (2.5), and (2.6) with the same value of m.

In order to prove (3.7) we first show that a third projection P exists such that hs,
and hpp can be constructed (see Lemma 3.8 below). Second, we show that hpg ~ hpg
and h 5~ hso (see Lemma 3.9). Finally (3.7) follows by showing that hso~ hsp (see
Lemma 3.19).

LEMMA 3.8. Assume that P, Q and 13, é are two pairs of projections with each
projection having a range of dimension m, and with each pair satisfying (2.5) and (2.6).
Then there is a continuous projection P: X > X such that

(3.8a) dim R[P]=m,
(3.8b) N[PIN N[(I-Q)L]={0},
(3.8¢) N[PIN N[(I-Q)L]={0}.

Proof. Let X;= N[(I —Q)L], and similarly define X3 using Q In order to calculate
dim X5, notice that (I — Q)L is a product of two Fredholm operators with index zero,
and hence (I — Q)L is Fredholm with index zero. Therefore

dim X;=codim R[(I — Q)L]=codim R[I—-Q]=m.
However, by (2.6), we have
dim X5 =codim X, =

Therefore dim X;=m, and a similar argument with Q shows that dim X3
Now we choose X, such that it is the simultaneous complement of X, and X3
To be precise, X, is a closed subspace of X such that

X=X0X,=X,®X,.
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(To prove that such an X, exists, consider X, to be the direct sum of a finite-dimensional
space and a complement of X;® )?3. This reduces the problem to the finite-dimensional
space X3(-B)23. We omit the remaining details.) Finally, let X, be a complement of
X,,say X;, and define P to be the projection onto X, along X, . Conditions (3.8a)-(3.8c)
easily follow.

We remark that if I=m then P can be taken to be the projection used in the
standard Lyapunov-Schmidt procedure. O

The generalised reduction procedure can be used to construct hso and hpg, since
Lemma 3.8 ensures that conditions (2.4) and (2.6) are satisfied for the appropriate
pairs of projections. We now have Lemma 3.9.

LEMMA 3.9. In the notation used above,

(3.92) hpo(e, @) ~ hig(e, @),
(3.9b) hps(e, @)~ hpg(e, a).
Proof. We begin by considering (3.9a). In order to obtain hp, and hpp we must solve
(3.10a) (I-Q)F(x;+x;,a)=0,
(3.10b) (I-Q)F(x,+%;, ) =0,

for x, € X, and %, € X, respectively. As was mentioned in § 2, locally unique smooth
solutions x,(x,, ) and X,(X,, @) can be obtained for (x,, ) and (%,, a) near (0, 0).
With these solutions, define

(3.11a) u(x,, a)=(I—P){x,(x;, @)+ x,},
(3.11b) w(xy, a)=P{x,(x,, @)+ x,}.
The local uniqueness of X,(X,, @) as a solution of (3.10b) can now be used to show that
(3.12) u(x,, a)=x(x,, @) foru(x,, a)=2x%,.
Therefore, by (3.11) and (3.12) we have

QF(xy(x3, @) + x5, @) = QF (u(x,, @)+ u(x,, @), a)

= QF(x,(u(x2, @), @)+ u(x,, a), ).

From this and (2.12) it follows that

(3.13a) hpo(e, @) = hpo(E (e, a), a),
with
(3.13b) E(g, a)=V;'u(Vse, a).

Here V,:R™ - X, is the coordinate function (see (2.11a)) used in constructing hpo.
We are left with showing that E? is nonsingular. To do this, notice that (3.13b) gives

(3.14a) VLEY =l Vs.
Furthermore, by (3.11b) we find

~10
(3.14b) pl = P{—’ﬁ o, 0)+1}.
0X,
Let ¢ € N[E?]; then by (3.14),

(3.15) 0= V252¢=P{g—z‘- (0, 0)+I}V2¢.
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By differentiating (3.10a) with respect to x, we find
ax
(3.16) x(¢)= {a—xl (0, 0)+1} Vo, € N[(I-Q)L].
1

Together, (3.8b), (3.15), and (3.16) imply
x(¢)e N[P]N N[(I-Q)L]={0}.

That is, x(¢) =0 and therefore, by applying P to (3.16), we obtain V,¢ =0. Since V,
is nonsingular we finally have ¢ =0, and therefore E? is nonsingular.

The proof of (3.9b) is similar, with (3.8c) being used in place of (3.8b). 0

We are left with proving that hpo~ hps. To do this we will use the following
proposition, which is the analogue of Proposition I, 4.2 in [7] for vector-valued
functions.

ProrosITION 3.17. Let g(e, ) and g(&, @) be two smooth functions, g, §:R™ x
R**'>R™. Suppose

3g(0,0)] _ 98(0,0)] _
(3.17a) rank{a(g’a)}—rank{a(s’a)}—m,

and, for (&, a) in a neighbourhood of zero,
(3.17b) g(e, @) =0 implies (&, a) =0.

Then there exists a nonsingular m X m matrix T(e, ) such that
(3.18) g(e, @) =T(e, a)g(e, ),

for (&, a) in a neighbourhood of zero. Furthermore, T(&, a) inherits the smoothness of
gand g.

A proof of Proposition 3.17 can be obtained by a straightforward generalisation
of the proof of Proposition I, 4.2 given in [7]. We omit the details. This proposition
is used in the proof of Lemma 3.19.

LEmMMA 3.19. Let hpo and hpp be as above. Then hgo~ hpg.

Proof. 1f hpQ(a a)=0 then F(%,(V,e, a)+ V,e,a)=0, and so hp (a a)—
WZQF(x,(Vze a)+ V,&, a) =0. Therefore (3.17b) is satisfied for g = hpo and § = hpe
In order to apply Proposition 3.17 we must arrange for (3.17a) to be satisfied.

Specifically, we unfold F by writing

(3.20) G(x,a,B)=F(x,a)+BB8 =0,

where BeR™ and B:R™ - Y is a bounded linear map. Let g(&, a, B) and g(e, a, B)
be the reduced functions obtained by using P, Q and P, Q respectively, on problem
(3.20). In particular, we have

(3.21a) g(e, a,0) = hpo(e, a),

(3.21b) g(g, a,0) = hpp(e, a),

for (&, a) near 0. Furthermore, from (3.20) it follows that

(3.22) g% =KB, §%=KB,

where K, K:Y->R™ are given by

(3.23a) K =[-W,QFA35(I - Q)+ W,Q], =(I-Q)F%I-P),
(323b) K=[-W,QFAp(I-Q)+W,Q],  Ape=(I-Q)F3(I-P).
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We need to choose B such that g% and é‘}, are nonsingular. This can be done as follows.
By (2.11b) and (3.23) we see that

(3.24) KY,=W,Y,=R™,  KY,=R",
and
codim N[K]=m =codim N[K].
It is easily proved that there exists a simultaneous complement, Y,, such that
N[K]® Y,=Y=N[K]® Ys,
(3.25) _
dim Y,=m,

and hence we may define B such that R[B]=Y,. It now follows from (3.22), (3.24),
and (3.25) that

(3.26) rank [gg] =rank [§3]=m,
as desired.
Now Proposition 31.7 implies that
(3.27) g(e, @, B)=T(e, &, B)g(e, @, B)

for (&, @, B) near zero. By setting B =0 it follows from (3.21) that
hi’QA(ea a) = T(Ea Qa, O)hﬁQ(ea a)

for (e, @) near zero. Furthermore, by differentiating (3.27), it follows that g3 = T g3,
with (3.26) ensuring that T° is nonsingular. a

Lemmas 3.8, 3.9, and 3.19 complete the proof that hpo ~ hps when i = m. That
is, for a given m = the particular choice of P and Q does not effect the qualitative
behavior of the reduced equation near (g, ) =0.

The next major step is to show the equivalence of the reduced problems (3.4a),
(3.4b) obtained with m < m. In fact, it is sufficient to consider only the case I = <m,
since all other cases can be derived from this case in a straightforward manner.

In view of the above results for /it = m, we are free to choose convenient projections
P, Q and 13, é to define h and A. In particular, we take the splittings

(3.28a) X=X®X,® X,

(3.28b) Y=Y,9Y,DY;

where

(3.28¢) N[F]=X,, dim X, =m—1,
(3.28d) R[F1=Y,®Y,, dimY,=m-I,
(3.28¢) Y,=F’X,.

We choose P and (3 such that

(3.29a) P:X->X,, N[P]=X,®X,,

(3.29b) 0:Y->Y,, N[O]=R[F’]1=Y,@Y,

(which corresponds to the standard Lyapunov-Schmidt reduction). Similarly, we
choose P and Q such that

(3.30a) P:X->X,®X;, N[P]=X,,
(3.30b) Q:Y->Y,®Y,, N[Q]=Y,
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(which corresponds to the alternative method [1], [5]). It is straightforward to check
that both pairs of projections satisfy (2.6), and therefore hpo and hpg exist. The proof
of Theorem 3.4 is now completed by the use of Lemma 3.31.

LemMA 3.31. In the above notation

(3'31) hPQ(sla T Emy a)~(hf’é(€19 L, Ep a)’ Elr1," "7, sm)'

Proof. The reduced equation hpp =0 can be written as (see 2.12)

(3.32) hpo(a, 8, a) = ( W2$258)0> F(%(0,8, @), a) =0
where € = (0, 8), ccR™ ", § R, and

(3.33a) W,:Y,>R™ " W,: Y, >R,

(3.33b) V:R™ ' X, ViR > X5,

are nonsingular linear mappings. Furthermore, £(o, §, a) satisfies
(3.34a) (I-Q)F(%(o, 6, ), a)=0,

(3.34b) X(o, 8, a)=x,(0, 8, a)+ V,o+ V;6, x, € X,,

for (o, 8, a) near zero.
We claim that, with the above definitions,

(3.35) heo(a, 8, a)~(h0(;’a))

for some smooth function h,:R'XxR”*' >R’ Indeed, upon differentiating (3.32) with
respect to o, we find

8 \'_(WAQ- Q‘)>
36 H=(—hpy) = .5 4+ |FV,.
(3:36) (aa PQ) ( w,Q ?
Here we have used OQ = é (see (3.29b), (3.30b)), and 4x,/d0 (0,0,0)=0 (seg (3.28),
(3.30), (3.34)). 1t is easy to verify that the top block of H, namely W,(Q - Q)FV,,
is anonsingular (m —I) X (m — I) matrix. A standard argument now ensures the existence
of a smooth coordinate transformation (o, 8, @) > (D(o, 8, @), 8, @) such that

(3.37a) D°= 0, D‘; =0,
(3.37b) D? is nonsingular
and
a
.38 hpo(D ) () = A
(3:38) re(D(e, 3, &), 5, ) (WZQF(f(D(a,6,a),6,a),a))

for (o, 8, a) near zero. Finally it follows from (3.38) that there exists a nonsingular
matrix T;(o, §, @) such that

T\(0, 8, a)hpo(D(a, 8, @), 8, @) = (ho(g a))
where
(3.39) ho(8, ) = W,QF (£(D(0, 8, @), 8, @), ).
That is, we have verified (3.35) for h, as in (3.39).
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We are only left with relating h, to hps. Note that (3.34) and (3.38) imply that
X(D(0, 8, a), 8, @) satisfies

(I-Q)F(% a)=0 and (I-Q)QF(% a)=(Q-Q)F(% a)=0.

Hence

(3.40a) (I-Q)F(%, a)=0.
In addition, we find from (3.34b) that

(3.40b) Pi=v,s.

These are precisely the equations that need to be solved to obtain hps, and therefore
it follows from (3.39) and (3.40) that

(3.41) ho(8, a) = hps(8, )

(where V; and W; are used as the coordinate mappings in hpg). The equivalence (3.31)
is a consequence of (3.35) and (3.41). This completes the proof of Lemma 3.31, and
hence the proof of the Equivalence Theorem. 0

4. Linearized stability and the generalised reduction. Consider now the case that
(1.1) arises in the study of the differential system

(4.1) X+ F(x,a)=0, acR?*?

where x =x(t) € X, t >0 and we again write A = a,. It is convenient to take X =Y a
Hilbert space. Assume (0, 0) is an equilibrium solution. It is well known that the
asymptotic stability of (0,0) depends on the spectrum of L= F,(0,0) and that an
equilibrium solution that is a singular point of L, with all other eigenvalues of L having
positive real part, lies on a stability boundary. Golubitsky and Schaeffer [7, §4, Chap.
I] consider such a case with L having zero as a simple eigenvalue and discuss the
stability of an equilibrium solution (x, @) near (0, 0). In particular, suppose ®, and
W# are the null vectors of F2 and (F2)*, respectively, with

(4.2) WDy > 0.

(Here and in the sequel we denote the inner product (¥,, ®,) by ¥#®,.) Furthermore,
suppose h(e, a) is obtained from the Lyapunov-Schmidt reduction (use W,=W¥g,
V,=®, in § 2); then it is shown in [7] that the solution (x, @)= (Q(¢, a), a) of (1.1)
is stable if h.(e, @)>0 and unstable if h, (&, @) <0. The main result of this section is
to show how the analogous stability results can be obtained from a reduced function
computed through the use of the generalised reduction.

In the remainder of this section we assume that ¥¥ and ®, are as above with
TEdD,# 0, but we do not assume (4.2) is satisfied. Then zero is a simple eigenvalue of
F? and it follows (from the Implicit Function Theorem) that there are smooth functions
®(e, a), Y(e, a), and (e, @) such that

(4.3a) F.(Q(e, a), a)®P(e, @)= u(e, a)P(e, a),
(4.3b) P*P=1,

(4.3¢) T*F (Q(e, @), @) = u(e, a)¥*(e, a),
(4.3d) T Y =1,

with w(0,0)=u’=0, (0, 0) =Dy, ¥(0,0) ="V,.

As discussed above, in order to determine the (linear) stability of the steady state
(x, @) =(Q(e, @), @) we need only know the sign of w(g, @), which, in turn, is to be
determined from the reduced function.
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Suppose h:R™+R?*'>R™ is a reduced function obtained from (1.1) through the
use of the generalised reduction. Then the connection between the null spaces of h,
and F, is given in Lemma 4.4.

LeEMMA 4.4. For ¢, ¢ € R™ define

(4.4a) P(g,a,0)=Q0.(c,0)p =1 —-P)Q (¢, a)p+ V,0,

(4.4b) V*(e, a, ) = y* WoQ[I = F(Q(e, @), a)(I = P)A7 (¢, a)(I - Q).
Here A(e, a): X, - Y, is defined by (cf. (2.9))

(4.4¢) A(g, a)=(I-Q)F,(Q(e, @), a)(I—P).

Then, for (&, a) near (0, 0),

(4.5a) N[F,(Q(e, a), a)]=P(e, o, R™) ={D(¢, a, ¢)|p eR™},
(4.5b) N[(F.(Q(g, @), @))*]c ¥*(e, o, R™).

Furthermore,

(4.6a) h.(g, )¢ =0,

(4.6b) U*h. (e, @) =0,

if and only if

(4.7a) F.(Q(e, @), a)P(¢, a, ¢) =0,

(4.70) Y*(e, o, ¥)F (Q(g, @), @) =0.

Proof. First note that A(0, 0) is precisely the A used in (2.9), which is assumed
to be nonsingular, and therefore A™'(¢, &) exists for (g, a) near (0, 0). Also, recall
from § 2 that Q(e, a) is defined to be the solution of

(4.82a) (I-Q)F(Q(e, @), a)=0,

(4.8b) PQ(eg, a) = V¢,

and the reduced function is

(4.8¢) h(e, a) = WL,QF(Q(e, a), a).

By differentiating (4.7) we obtain

(4.92) (I-Q)F.(Q(e, @), a)Q. (¢, a) =0,
(4.9b) PQ. (e, a)=V,,

(4.9¢) h.(e, @)= W,QF,(Q(¢, ), a)Q (¢, a).

Equations (4.9a) and (4.9b) can be solved to give
(4.10) Q.(e,a)=[I1-(I-P)A7 (g, a)(I-Q)]Vs,

which we make use of below.

Now suppose (4.6) is satisfied. Then (4.7a) clearly follows from (4.4a), (4.6a),
(4.9a), (4.9c), and the nonsingularity of W,. In order to show that (4.7b) follows from
(4.6b), we rewrite (4.7b) as

V*F, =W*F ([ - P)+V*F,P=0
and consider the two components in the sum separately. By (4.4b) and (4.4c) we have
V*F,(I-P)=y*W,Q[F.(I-P)-F,(I-P)A'A(I-P)]=0.
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Similarly, by (4.4b), (4.9), and (4.10)
V*F.P = ¢*W,QF,[P—(I-P)A™'(I- Q)F.P]
= y*W,QF.Q.V;'
=y*h. V'
=0.

Therefore (4.7b) is satisfied.

The converse result, namely that (4.7) implies (4.6), can be obtained from (4.9)
and (4.10) in a straightforward manner. We omit the details. Finally, we are left with
showing (4.5), that is any null vector of F.(Q(¢, a), @) can be written in one of the
forms in (4.4). Suppose ®,€ N[F.(Q(¢, @), )] for (g, @) near (0,0). Then set ¢, =
V™ 'P®,. Moreover, we have 0= (I — Q) F(Q(¢, a), a)[(I — P)®, + P®,] and therefore
(I —P)q)l = '-A_](E’ a)(I_ Q)FxV2¢1'

Now using (4.10), we obtain

&, =P, +(I-P)P,=Q.(5, @) ;.

Similarly, if ¥¥e N[(F.(Q(e, @), @))*] then it can be shown that U} =V¥*(¢, a, ;)
where ¢, = W,QV,. 0

From Lemma 4.4 we see that the assumption that /=1 implies h,(0,0) has a
one-dimensional null space, with right and left null vectors ¢,, ¢, such that ®,=
®(0,0, ¢o), ¥o="P(0, 0, ,). However, the zero eigenvalue of h? need not be simple,
that is, it is possible that ¥ ¢, = 0. But the eigenstructure of h? depends on the choice
of basis elements used to define V, and W, in (2.11). Indeed we note from (4.9¢) and
(4.10) that

h.(e, @)= Wo[QF{I - AT (I- Q)}]V,.

Therefore, by reordering the basis vectors used to define V, and W,, the rows and
columns of A, can be rearranged. Similarly, by changing the sign of a basis vector, the
sign of a row or column of A, can be reversed. The effect on ¢, and ¢, is, of course,
that their elements can be permuted and reversed in sign. By choosing an appropriate
rearrangement the condition

(4.11) YEdo70

can be obtained. (For example, change all negative coefficients in {, and ¢, to positive
coefficients, and then move the largest elements to the first position in each vector.
Then (4.11) is a consequence of ¢, and ¢, being nonzero.) Finally, we note that when
(4.11) is satisfied, zero is a simple eigenvalue of h? and therefore there exist smooth
functions ¢ (&, @), ¥(e, a), and @(e, a) such that

(4123) he¢ = /1¢a ‘l/*he = f'“,/*

for (e, @) near (0, 0) with

(4'12b) ¢(0’ 0) = ¢0’ l/I(O’ O) = (I,Oa
(4.12¢) 2(0,0)=0.

We can now state the main result of this section.
THEOREM 4.13. Suppose |=1 and V{®d,#0. Also, assume that V, and W, are
such that (4.11) is satisfied. Then, for (&, a) near (0,0),

(4.13a) p(e, a)=a(e, a)i(e, a)
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Jfor some smooth function a(e, a). Moreover,
(4.13b) sign {a(0, 0)} = sign {(¢5 o) (Y5 Do)}

Before proving Theorem 4.13 we remark that in the case m =1 the result can be
rewritten as

u(e, @) =a(e, a)h. (e, @)
where
sign {a(0, 0)} =sign {¥¥d,}.

This is the result obtained in [7] for the Lyapunov-Schmidt decomposition. In par-
ticular, it provides the desired stability information for (&, a) near (0, 0) in terms of
a reduced function obtained from the generalised reduction procedure. For the case
m > 1 the theorem illustrates how the stability information can be obtained from the
behavior of the eigenvalue of h, (¢, a) that passes through zero at (g, «) =0. In both
cases the application of the theorem is trivial.

Proof of Theorem 4.13. Our proofis a simple modification of the proof of Theorem
4.1 presented in [7, p. 38]. It is clear from Lemma 4.4 that

(4.14) (e, a)=0 implies w(e, a)=0.

If Vp,o—=‘ 91 (0,0)/d(e, @) #0 and Vi°#0 then Proposition 1.4.2 of [7] guarantees
(4.13a) with a smooth (nonzero) a(e, ).

Unfortunately, Vi’ or Vi° could be zero, in which case the proposition does not
apply directly. It is convenient to add a new unfolding parameter to F(x, a) to ensure
the applicability of Proposition 1.4.2. of [7].

In particular, consider

(4.15) F(x, a, B)=F(x, a)+ V¥ ®*x =0.

Then the same generalised reduction can be applied to (4.15). In particular, define
Q(e, a, B) to be the solution of (cf. (4.8a), (4.8b).

(4.16a) (I-Q)F({(e, a, B), a, B) =0,
(4.16b) PQ(e, o, B) = Vs,

for (¢, a, B) near (0, 0,0). Then the reduced function is given by
(4.17) h(e, a, B)= W,QF(Q (e, o, B), a, B).
Note that this construction implies

(4.18) h(e, @)= h(e, a,0).

With some abuse of notation we extend u, g, ®, ¥, to be functions of (e, , B8).
Next consider au/ap (0, 0,0)= uj. By differentiating

E (e, 0, B), @, B)O = pu®
with respect to B and evaluating at (0, 0, 0), we find
(4.19) FoL®,0%+ Fldy+ FIO° = u5d,.

However, it follows from (4.16) that 3% =0. Furthermore, from (4.15) we have F%, =
¥,®@F. When we use these facts in (4.19), and apply V¥, we are provided with

(4.20) (‘I'Bk‘l'o)(q)f)kq)o) = Moﬂwgq)o‘
In particular, ,u?; #0 and sign (p,%) =sign (YED,).
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A similar calculation based on
h =i

shows that

(4.21) Ao hopdo.

However, it follows from (4.17) and f)% =0 that

hs = W,Q{F302+ F20.0).
By differentiating (4.16) twice we find
A’(1-P)Q%=-(1-Q)F%0°,  PQ%_,.

By solving this expression for 623 and substituting the result into the above formula
for hYs we obtain

h% = W,Q[I — FX(I-P)A™'(I - Q)1F,Q0.

Here we have usedf“?c =F% A=A’ and Q°=0°
Finally, from Fiz;=¥,®¥ and (4.4), we have

l//oﬁgﬁ bo= ‘I’gﬁgﬁ‘bo = (\P(’)"\IIO)((I)(’)"(I)O),
and so (4.21) becomes
(4.22) = (V) (PFDo)/ (¥ bo) # 0.

Now Proposition 4.2 of [7, § 4, Chap. I] ensures the existence of a smooth function
a(e, a, B) for (&, a, B) near (0,0, 0) such that

(4.23) n(e, a, B)=a(e, a, B)a(e, a, B).
By differentiating (4.23) and using (4.20), (4.22) we find

. Y& do
4.24 a(0,0,0)=a%/ us = #0.
( ) /‘Lﬁ/IJ‘B (\I,;)kq)o)

The theorem follows now from (4.24) by setting 8 =0 in (4.23). 0

Appendix by A. Vanderbauwhede. In [7] Golubitsky and Schaeffer give a proof of
the (contact) equivalence of the bifurcation functions that we obtain for different
choices of the projections in a Lyapunov-Schmidt reduction. Here we give an alternative
proof that, in our view, illustrates quite well the essential ideal of the Lyapunov-Schmidt
reduction.

In the notation of § 2, suppose that the projections P and Q satisfy (2.5) with

X,=N[Fil, Y,=R[F:]

It follows that (2.6) is satisfied, and therefore there is a local solution, x; = (x,, @),
to (2.7a). In fact, we find it more convenient to define v:X,x Y; x R¥> X,, where
k=p+1, and v(u, w, a) is the local solution of

(A1) (I-Q)F(u+v, a)=w.

Clearly v(u, 0, @) = ©(u, a). Substitution of this solution into (2.7b) provides the bifurca-
tion mapping g: X, x R* - R[ Q] defined by

(A.2) g(u,a)=QF(u+v(y,0,a),a).
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For P and Q as above, this reduction provides one version of the Lyapunov-Schmidt
procedure. The bifurcation mapping depends on the choice of projections P and Q;
however, as the following theorem shows, different choices lead to equivalent mappings.

THEOREM. Letg:X,x R* > R[Q]andg,: X,x R* - R[Q,] be two bifurcation map-
pings, obtained by choosing projections (P, Q) and (P,, Q,), respectively, in the reduction
described above. Then there exist smooth mappings

T: X2 X Rk -> L(R[Ql]’ R[Q])’

U:X,xR*>X,,
such that
(A3a) g(u, @) =T(u, a)g(U(y, a), a),
(A3b) T(0,0) = Qlrro,»
(A3c) U(0,0)=0 and U,(0,0)=Iy,.

Remark. All mappings in the statement and in the proof that follows are defined
and smooth in a neighbourhood of the origin. The result shows that g and g, are
contact equivalent at the origin (see [7]).

Proof. With v(u, w, a) defined as above, we set V:X,x Y; x R¥> X x R* to be

(A4) V(u,w,a)=(u+ov(uw a),a).

Then we have

(A5a) V(0,0,0)=(0,0),

(ASb) %1‘7/ (0,0,0)=1Iy,, and F? 2—: (0,0,0)=1Iy,.

Therefore, we easily see that V is a local diffeomorphism. Moreover, from (A1), we have
(A6) F(Vu,w,a))=w+G(u,w, a),

for G:X,x Y, x R*-> R[Q] defined by

(A7) G(u,w,a)=QF(V(u,w, a)).

It is clear from the construction that

(A8) g(u,a)=G(u,0, a).

Now, by replacing (P, Q) by (P, Q,) we find a similar local diffeomorphism
Vi: X, X Y, X R*> X x R* and a mapping G,: X, X Y, x R¥> R[Q,] such that

(A9) F(Vi(u,w,a))=w+ G,(u,w, a),
with

(A10) Gi(u,w,a)=Q,F(V,(u,w, a)).
A second bifurcation mapping is given by

(A11) g1(u, a)=G,(u,0, a).

Our task is to show that g and g, are contact equivalent.

It is convenient to introduce D:X,x Y;x R*> X,x Y, x R* defined by D=
Vi'e V. It follows that D is a local diffeomorphism with D(0, 0, 0) = (0, 0, 0). Further-
more, we define U and W by

(A12) D(u,0,a)=(U(u, a), W(u, a), a).
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Upon differentiating V, o D = V with respect to u and evaluating the result at (0, 0, 0),
we find from (A5b) that

(A13) U,(0,0) = Iy,.

We are now left with showing that (A3a) and (A3b) are satisfied for this definition of
Ul(u, a).
From (A6) and (A9) it follows that
g(u,a)=F(V,° D(4,0, a))
(A14) '
= W(u’ a)+ GI(U(u’ a)’ W(u’ a)’ a)‘

But (A11) and a first-order Taylor expansion together imply
(AIS) Gl(u, w, a)=g1(uaa)+Tl(u’ w, a)W

for some smooth T;:X,x Y, x R*> L(Y,, R[Q,]). Since dG,/aw (0, 0,0) =0 we also
have

(A16) T,(0, 0, 0) =0.
Combining (A12), (A14), and (A15), we obtain
glu,a)=W(u, a)+g,(U(y, a), a)+ T,(D(u, 0, a)) W(u, ).
Applying Q and (I — Q) to this equation gives
g(u, @) = Qgi(U, @) + QT(D) W,
(Iy,+(I-Q)TH(D) W =—-(I - Q)g:(U, a),
for U=U(u, a), W= W(u, @), and D= D(u,0, a). Solving the second equation for
W, and substituting the result into the first equation, provides (A3a) with
T(u, @) = Q|rroy~ QT(D)(Iy,+(I = Q)Ty(D))'(I -~ Q)|rro,

Equation (A3b) now follows from (A16). 0

The central idea of the Lyapunov-Schmidt reduction is clearly revealed in (A6).
Since V is a local diffeomorphism, we see from (A4) and (AS5) that F(x, a)=0 is
contact equivalent to

(A17) w+G(u, w,a)=0.

Applying Q and (I — Q) to this equation, we find that (A17) is equivalent to solving
the reduced equation g(u, @)= G(u,0, a) =0.
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VORTEX RINGS WITH SWIRL: AXISYMMETRIC SOLUTIONS OF THE
EULER EQUATIONS WITH NONZERO HELICITY*

BRUCE TURKINGTONT

Abstract. This work introduces a new class of steady solutions of the axisymmetric Euler equations
for an incompressible inviscid fluid. Each solution represents a three-dimensional vortex flow whose azimuthal
components of vorticity and velocity are nonzero inside a toroidal region determined by the solution. The
governing free-boundary problem is solved by variational techniques. The underlying variational principle
is formulated from the natural invariants associated with the evolution equations for axisymmetric flows,
and involves a family of invariants that generalizes the standard angular impulse and helicity integrals. A
direct method is employed to prove the existence of steady solutions in a bounded domain and steadily
translating solutions in space. Qualitative properties of these vortices are discussed and concentrated vortex
rings with large swirl are shown to constitute a desingularization of the classical circular vortex filament.

Key words. Euler fluid dynamical equations, vortex, helicity, variational methods, free-boundary
problems

AMS(MOS) subject classifications. 76C05, 49HO05

Introduction. In this paper we examine a new class of steady solutions of the
Euler equations governing the motion of an ideal fluid in three dimensions. The
solutions that we consider are axisymmetric: they define flows that are invariant under
rotation about the z-axis, when expressed in cylindrical coordinates (z, r, #). Further-
more, each solution has the property that there is a (solid) toroidal region inside of
which the #-components of velocity u® and of vorticity w® are nonzero, and outside
of which the flow is irrotational. Therefore, we shall refer to these solutions, and the
flows that they represent, as “vortex rings with swirl.”

The objectives of our work are, first, to establish the existence of these steady
solutions in a general and physically natural setting, and second, to derive some of
their qualitative and asymptotic properties. We obtain our results by appealing to a
variational formulation of the free-boundary problem satisfied by these solutions. The
variational principle underlying our analysis of steady flows follows directly from the
structure of the evolution equations governing the dynamics of axisymmetric vortex
flows, which we express as a nonlinear, nonlocal system of equations for the quantities
¢{=w’/r and y=ru® It is based on the reformulation of the steady equations in terms
of { alone, which is accomplished easily through the elimination of 7. In this way we
obtain a constrained maximization problem in £, the solutions of which define the
desired steady vortex rings with swirl, and which is readily treated analytically and
numerically. We utilize this approach to study both steady solutions in a bounded
(axisymmetric) domain and steadily translating solutions in all of space.

An alternate variational characterization to ours has been given by Arnold [1],
who considers fully three-dimensional flows, as well as by Benjamin [4], who specializes
it to axisymmetric flows expressed in terms of { and v. In this approach the variational
principle is derived from the (noncanonical) Hamiltonian structure of the equations
governing ¢ and v, and is formulated in the class of so-called isovortical variations of
agiven (extremal) flow. The resulting variational problem, though it arises very naturally

* Received by the editors October 1, 1986; accepted for publication (in revised form) May 2, 1988. The
work of this author was partially supported by National Science Foundation DMS-8501795.

t Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
01003.

57



58 B. TURKINGTON

from the dynamical problem, is, unfortunately, highly nonconvex, and so is not
amenable to the standard methods of analysis. Our variational problem, on the other
hand, is designed to avoid such difficulties; instead, we take a wider class of competing
functions, and compensate for this by adding to the objective (energy) functional
certain terms that are invariant under all isovortical variations. These additional terms
are constructed from the angular impulse (momentum) and helicity integrals. In fact,
the construction involves a family of integrals generalizing the classical helicity integral,
consequently, we are lead to introduce a family of conserved quantities—certain
functionals of { and vy that we call “generalized angular impulse” and “generalized
helicity integrals”—valid for evolving axisymmetric flows, which have not been used
before in the literature. In turn, the variational principle that we give serves to clarify
the role played by these generalized conserved quantities in determining the nature of
steady axisymmetric flows.

The outline of the paper is as follows. In § 1, we discuss the axisymmetric Euler
equations and the various conserved quantities associated with these equations. We
begin § 2 by reviewing the general variational principles that characterize steady flows,
and we conclude it by formulating the specific constrained maximization problem that
we use in the further analysis. Section 3 is devoted to proving our main existence
theorems for vortex rings with swirl. Finally, in § 4 we summarize some qualitative
and asymptotic properties of the solutions found in § 3. In particular, we indicate how
the parameters defining the angular impulse and helicity integrals determine the
structure of the vortex ring and the flow field within it, and we identify the salient
features of the solutions corresponding to extreme values of those parameters.

In a sequel to this paper [8] Eydeland and Turkington study propagating vortex
rings with swirl in free space using an iterative numerical method allied with the
variational structure of the governing problem formulated herein. The reader is referred
there for a further exposition of these particularly interesting vortices and for a full
discussion of their quantitative properties and physical characteristics.

1. Evolution equations and their invariants. Let (z, r, ) denote the usual cylindrical
coordinates in R®. Let D < R? be an axisymmetric domain, the axis of symmetry being
r=0; in the sequel, D will be either a bounded domain with a smooth boundary or
all of space. We consider the axisymmetric flow of an ideal fluid with unit density in
the domain D, and we write the velocity and pressure fields in the form

u=u’(z,r,t)e,+u’(z,r,t)e,+u’(zr, t)e,, p=p(zrt)

where {e,, e,, €5} is the usual coordinate frame. The governing equations are standard
(see [2], for instance):

ui+u-Vu*=-p,,

1
(1.1) uI+u-Vu'—-;(u0)2=—p,,
0 6 1 r,, 6
u;,+~u-Vu’+—u'u” =0,
r

1
(1.2) ui+ (), =0,

where u-V=u"(3/dz)+u"(3/dr) in view of the axisymmetry. For simplicity we will
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impose the standard boundary conditions
(1.3) ?-u=0 on 613,

where 7 is the outer unit normal on 9D.
The vorticity field, =V x u, which plays a basic role in the subsequent develop-
ment, is given by

w=0(z,rt)e,+w (z,rt)e,+w(zr, t)e,
(1.4)

1
=;(me)rez—uzoer+(u;_u:)e0‘

The dynamical equations (1.1) are most conveniently expressed as evolution equations
for the modified azimuthal vorticity, {={(z,r, t), and the azimuthal circulation
(density), y = y(z, r, t), which are defined by

1
(1.5) {=;w°, v=ru’.

The equation for ¢ is derived by taking the curl of the first two component equations
in (1.1):

1
0= l:u[+u- Vu'—; (ue)z] —[ui+u-Vu?],

z

(] (]
= r[(—(?——> +u- V(w—) —2r“2uouf];
r/. r

thus, we obtain the first evolution equation

1.7) Lru-VE=2r*yy,=0.

(1.6)

The equation for vy is equivalent to the conservation of circulation (Kelvin theorem),
and it results from a manipulation of the third component equation in (1.1):

O=ul+u-Vul+r'uu’=r[(ru’),+u-v(ru®)J;
thus, we obtain the second evolution equation
(1.8) v+u-Vy=0.

The continuity equation (1.2) furnishes a Stokes streamfunction ¢ =y (z,r, t)
satisfying u® = ¢,/r and u” = —¢,/r. Consequently, ¢ is determined by ¢ alone accord-
ing to

{=ru;—uil=Ly

where L is the linear elliptic operator
16 13(139
09) L 18 12010y

In terms of ¢, the boundary condition (1.3) becomes ¢ = const. on 813; we will assume
that 8D is connected, and that ¢y =0 on aD.

We now introduce a new notation which simplifies the various formulas encoun-
tered in the rest of the paper. Let D denote the cross section of the spatial domain D
in a meridional plane so that D={(z, r, )R’ (z, r)e D}, and let x=2z,y =r*/2 be
new (spatial) variables in D. Then, 8/dx =48/dz, 8/0y =(1/r)3/dr, and the volume
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element dv (in D) is replaced by 27 dx dy. Also, the Jacobian of any two functions
¢, ¢ transforms according to a(¢, ¥)/a(x, y)=r"'a(, ¥)/3(z, r); we will abbreviate
this expression to 3(¢, ¢) throughout the sequel. The elliptic operator L is now given
by

1 9 &
(1.10) L=—————.

We let G denote the Green operator for L in D (with Dirichlet boundary conditions),
so that ¢ = G{ defines the solution of

(1.11) Ly=¢ in D, =0 on 94D.

In this notation we may now write the governing equations (1.1)-(1.3) as a system of
nonlinear, nonlocal evolution equations for { and v:

(1.12) &+9(g, GO +a(y, v/2y)=0

n Dx(0, T).
(1.13) v +3(y, G¢) =0
This form of the axisymmetric Euler equations is also given in [4].

The construction of the operator G merits further comment in view of the apparent
singularity of L at y=0. In the axisymmetric domain DC R’ (Wthh may contain a
portion of the axis r=0), let axisymmetric vector fields § and x// corresponding to the
functions ¢ and ¢ be defined by { = rle, and x// = (¢/ r)eo Then, us1ng V- l/l 0, we
find that Ly =¢ in D is equivalent to —Al// VxVx:// { in D. Thus, the Green
operator G takes L? into HJ in the sense that the relevant norms are:

s d 1 Ay d
” 2y£2dxdy=j 182 22 < 4o, ” [—¢§+¢§] dxdy=I VP = < +oo.
D J5) 2w p L2y ) 2

Furthermore, since x/; € Hé(ﬁ) NH¥D)c c(DU aﬁ) it follows that ¢y =0 on D and,
by axisymmetry, that ¢y =0 at y =0. (More details about this construction appear in
the proofs of Theorems 1 and 2.)

In general, the existence and uniqueness of solutions of the initial value problem
for (1.12), (1.13) can be asserted only on a sufficiently small time interval 0=¢< T,
this result is just a special case of the known theory for fully three-dimensional flows.
Thus, in our discussion of these equations we will proceed (formally) by assuming
that a classical solution exists on some time interval 0=t < T. Of course, when ¥y is
identically zero (axisymmetric flow without swirl), equation (1.12) is solvable globally
in time [15].

We now turn our attention to the conserved quantities associated with the evolution
equations for ¢ and . In this discussion we impose an additional boundary condition,
namely,

(1.14) y=0 ondD;

we note that if (1.14) holds at ¢ =0, then it holds also for all ¢t >0, by (1.13). With this
(nonessential) condition in force, the derivation of the conserved quantities is simplified.
Furthermore, all of the steady solutions that we construct in § 3 satisfy (1.14), and the
purpose of the discussion here is to motivate the formulation of the main results of
that section.
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We claim that the following functionals are constant in the evolution governed
by (1.12) and (1.13):

(1.15) A(y)= a(y) dxdy (generalized angular impulse),
J JD
(1.16) B(, y)= ¢b(y) dxdy (generalized helicity),
J JD
rr
(1.17) C(y)= ldxdy (meridional circulation),
1( y?
(1.18) H(, y) =3 J [{G{+ ] dx dy (kinetic energy),

where a and b are arbitrary (suitably smooth) real functions. We leave to the reader
the verification of the claims, which is easily accomplished with the aid of the integration
by parts formula

ij ¢la(¢2, l/,) dx dy == JJ ¢Za(¢l’ dl) dx dy’

which holds whenever either ¢ = const. or ¢, =0 or ¢,=0 on 3dD.
The classical cases of (1.15) and (1.16) occur when a(y) =+ and b(y) =1, since
then we have

1
2WJJ ydxdy=——J r’w’dy, 2WJ‘J {*ydxdy=lJ’ - udp.
D 2J)p D 2J)p

We identify these integrals with the z-component of angular impulse (see [2]) and the
helicity (see [12]), respectively, which are known invariants even for fully three-
dimensional flows. The generalized angular impulse integral A(7y) and helicity integral
B(¢, v), valid for arbitrary functions a and b, seem to be new, however. The circulation

integral
jj {dxdy=J'J' w®dzdr
D D

has a standard interpretation by the Stokes theorem (see [2]). Upon integration by
parts, the kinetic energy functional is recognized as

o[ [eae 2] acar=L s

The system of equations (1.12), (1.13) has a (noncanonical) Hamiltonian (or
Poisson) structure, as has been noted in [4]. The functional H (¢, y) defined in (1.18)
is the Hamiltonian, and a Poisson bracket { -, -} can be defined so that dF/dt ={F, H}
for all (suitably smooth) functionals F = F({, y) defined on the appropriate phase
space. Naturally, the functionals F = A, B, C defined by (1.15)-(1.17) satisfy {F, H} =0,
as can easily be verified.
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2. Variational problems. The discussion in this section is divided into two parts.
First, we present the fundamental variational principle that characterizes steady
solutions of (1.12) and (1.13) directly in terms of the dynamical quantities ¢ and +y.
Second, we derive another version of this variational principle that involves only ¢ (y
being eliminated algebraically), and that, when appropriately normalized, forms the
basis of the subsequent analysis. This line of development is intended to motivate the
specific variational problem that we employ in §§ 3 and 4 to study vortex rings with swirl.

We characterize a steady solution pair {={(x, y), v=7y(x, y) of (1.12), (1.13)
variationally as follows. The governing equations become

(2.1) a(¢, GO +o(y, y/2v)=0
in D.
(2.2) a(y, G{)=0
Thus, to solve (2.2) we set
(2.3) G{=b(y),

where b is a specified (suitably smooth) function with b(0)=0 (recalling (1.14)).
Substitution of (2.3) into (2.1) then yields

0=9(, b(y))+a(y, v/2y)=0(Lb'(y) —v/2y, v).

Thus, to solve this equation we set
(2.4) {b'(y)—v/2y=—a'(y),

where a is a specified (suitably smooth) function. Therefore, given (essentially arbitrary)
a and b, it suffices to solve (2.3) and (2.4) for the desired pair £, y. We now define the
modified energy functional (assuming that appropriate dimensional constants scale
the given functions a and b):

(2.5) H( y)=H(, v)—A(y)- B y)

where the specified functions a, b determine the functlonals A, B in (1.15), (1.16).
Then it is obvious that (2. 3) and (2.4) are equivalent to H;=0and I-I =0, respectively,
where H; and H denote the Fréchet derivatives of H with respect to ¢ and v. In this
straightforward manner, we arrive at the variational principle:

(VP1) Any critical point (£, y) for the functional H(, y) is a solution of (2.1),
(2.2), and hence yields a steady flow in D.

An alternate variational principle given in [4] (and implicit in [1]) can be summar-
ized as follows. For arbitrary test functions ¢,, ¢, (each ¢, is smooth in D and vanishes
on D), consider the variations { = {(x, v, 8), ¥y=17v(x, y;s) defined by solving the
equations

£s+a(£; ¢1)+8(Y~’ ¢2)=03 is+8(’;a ¢l)=03
with ] ls=o={¢, Y|s=o=7v. Then (2.1), (2.2) result from the variational equation

d o
—H( #)l—0=0  for arbitrary ¢, ¢

As is remarked in [4], this characterization of solutions of (2.1), (2.2) is quite cumber-
some to use in analysis because of the particular form of the class of variations involved.
In contrast, (VP1) permits arbitrary variations by replacing H with H=H-A-B. In
this regard, we note that A(y), B({, y), and C(y) are invariant under the variations
lf, v defined above, as is easily checked.



VORTEX RINGS WITH SWIRL 63

We now reduce (VP1) to a more special variational principle that does not involve
v explicitly. For this reduction we require that

(2.6) a(0)=0, b(0)=0, a'(t)=0, b'(t)>0 forall t=0,
and we define
(2.7) f(,s)=[b""(s)1/4y—a(b7'(s)), s=0.

Then we see that a pair ¢, y satisfies (2.1), (2.2) whenever vy is defined by y =b""(G¢)
and ¢ satisfies the equation

(2.8) ¢ = £y, GO).

We now assume further that a and b are such that f(y, s) is strictly convex in s (this
holds in the “classical”” case when both a and b are linear, for instance). Let f*(y, o),
the conjugate function to f(y, s), be defined by

(2.9) [y, 0)= sup [so = f(y, s)]-

Then f* has the well-known properties

3 o)=sf(y, )= f(,5), [E(, o)=1f(p )]
with o =f,(y, s) or, equivalently, s =f%(y, o). Equation (2.7) may be rewritten in this
notation as

(2.10) GL=f¥(»0),
and this is clearly the variational equation for the functional
1
(2.11) ¢({)=JJ [5 {GE—f*(y, {)] dx dy.
D

Consequently, we have the variational principle:
(VP2) Any extremal ¢ for the functional ®({) yields a solution of (2.1), (2.2)
with y=b"'(GY).

The algebraic elimination of vy in terms of { may also be viewed as a restriction
on the admissible variations in (VP1). As is readily verified using the properties of the
convex conjugate function, the expression for y implied by (2.4) is

(2.12) y=T()=b"'(fX(»0);
indeed, this inverts the equation (equivalent to (2.4))
{=v/2yb'(y)—a'(y)/b'(y).

We now claim that the identity (2.12) reduces the objective functional in (VP1) as
follows:

(2.13) ®(¢)=H(LT(¢) for arbitrary admissible ¢.

To check this it suffices to observe that

40 =L o) s [ o),
and, consequently, that
f*(y,§)=—-— ( )—”(”{ a'(y)}
by 2

2

= -—a(y)={b().
y
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On the basis of the foregoing discussion, we now formulate the specific constrained
maximization problems that we solve in § 3 to obtain steady and steadily translating
vortex rings with swirl. These problems involve free boundaries, since the solutions
have the property that £, ¥y >0 in a subdomain Q= D and ¢, y =0 in D\Q. Therefore,
we introduce some additional constraints and normalizations into (VP2). We assume
that a(¢) and b(t) are specified satisfying (2.6) and that f,(y, s) > 0. We consider the
problem:

(2.14) maximize ®(¢) subject to the constraints {=0in D, C({) = IJ Ldxdy=C,,
D

where C, is a (suitably specified) positive constant. We claim that such a maximizer
¢ yields a solution of (2.1), (2.2) having the form

(=f(,G{—n), y=b""(Gl{-p) inQ:={Gl{>pu},
£=0, y=0 in D\Q,

where u is the Lagrange multiplier for the constraint C({)= C,. To verify the claim
we calculate the variational conditions at a maximizer {; we get

D'()-pu=0 on{{>0}, D'()-u=0 on{{=0},

where ®'(¢) = G¢ —f¥(y, {) is the Fréchet derivative of ® at {. These conditions imply
the claimed expression for ¢, since {0<¢ <f,(y, 0)} < {G¢= u}, and hence, invoking
the argument of Corollary 2.3 in [13], meas {0 < ¢ < f(y, 0)}=0. (If £;(y,0) =0, then ¢
is continuous across 3().) The claimed expression for y is immediate from (2.12). That
¢ and vy given by (2.15) satisfy (2.1) and (2.2) follows exactly as in the deviation of
(VP2). Thus, we have the desired varlatlonal characterization of steady vortex rings
with swirl in a bounded domain D.

We formulate the constrained maximization problem for steadily translating vortex
rings with swirl in R? in the same way. In this case the objective functional ®(¢)
(defined by (2.11) with R? replacing D) is maximized subject to the constraints

(2.15)

(216) ¢=0 in R2, C(g):=”Rngxdy=co, P(0)= “ _ydxdy =P,
+ R}

The maximizer { then yields a solution of (2.1), (2.2) having the form
(=f(0,Gl—cy—p), y=b""(G{-cy—p) inQ={G{>cy+nu},

(2.17)
(=0, y=0 inR3\Q,

where ¢ and u are the Lagrange multipliers for the constraints P({) = Pyand C(¢) = C,,
respectively. The additional constraint, P({)= P, fixes the z-component of llnear
impulse (see [2]), a further conserved quantity in this case given by

27TJI y{dxdy=lj ro’ dv.
R 2 Jg?

The constant ¢ represents the translational velocity, and is determined by the solution.

It is important to note that both the problem in D with constraints (2.14) and the
problem in R? with constraints (2.16) can be naturally nondimensionalized by appropri-
ately normalizing their constraint values. Indeed, if L and U are characteristic length
and velocity scales, respectively, then the constraint values scale according to C,=
ULCY¥ and P,= UL*P¥ when expressed in terms of dimensionless variables (indicated
by stars): x = Lx*, y=L*y* {= UL *{*, etc. Therefore, throughout the sequel we
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will assume that C,=1 and diameter (D) =1 (say) when dealing with solutions in a
bounded domain 13, and that Cy=1 and P,=1 when dealing with solutions in all of
space R®.

We remark that the steady flows considered above can also be characterized in
terms of their streamfunctions ¢, and a variational problem for ¢, which is dual to
(VP2), can be given. However, we prefer the equivalent formulation in ¢ because (i)
it is more closely tied to governing dynamical equations (through (VP1)), (ii) the
constraints imposed in (2.14) and (2.16) are more natural physically than a specification
of u and ¢, and (iii) the asymptotic properties of concentrated vortex rings with swirl
are more readily obtained (see § 4). These advantages have been utilized in the theory
of steady vortex rings without swirl in [3] and [11].

3. Existence theorems. In this section we state and prove two existence theorems
for vortex rings with swirl: Theorem 1 concerns steady solutions in a bounded (axisym-
metric) domain De R®, while Theorem 2 concerns steadily translating solutions in R>.
We establish both of these theorems by applying direct variational methods to the
corresponding constrained maximization problems formulated in § 2. This approach
is quite standard and has been used before in similar problems. The results obtained
in [5] parallel those in our Theorem 1, but unlike that paper we treat the case when
the domain D contains a portion of the z-axis (where certain singularities arise). Also,
the results of our Theorem 2 are analogous to those established in [11], although the
approach we take in the present paper is more direct.

For the sake of simplicity in the exposition we will restrict our detailed discussion
in this section to the “classical” case when

(3.1) a(t)=—at, b(t)=pt for given positive constants a and B.

This special case illustrates well the general case: some instances of the general case
for which the same results hold are discussed later in this section.

In the first theorem the constrained maximization problem under consideration
is defined on the class of competing functions

(3.2) K(D)={§€L‘(D):§§0 a.e., JJ {dxdy§1,J'j y{zdxdy<+oo}.

The constraint C({) =1 is relaxed to an inequality here for technical reasons related
to the range of the given parameters a and B. We recall that the objective functional
introduced in § 2, specialized according to (3.1), is defined as

(33) d>(;>=”D B ccc-p(-3) ]dxdy.

We let xo denote the characteristic function of Q) < D.
THEOREM 1. For every prescribed 0= a <+00, 0 <8 <+00 there exists a solution
¢ € K(D) of the problem

(3.4) maximize ®(¢) subject to { € K(D),

and there exists a multiplier u > 0 such that

a
=W(G§—“)++E

Furthermore, whenever u >0 there holds

(3.5) {

X(G¢—u>0p in D.

(3.6) ¢ has compact support in D, C({)=1.
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Remark. The condition that u > 0 is ensured whenever B is small enough depend-
ing on «, and this property is proved in § 4. The exact range of the parameter B, an
interval 0<B <B*(a), for which solutions satisfying (3.6) exist is best determined
numerically using the method given in [8].

Proof. We first construct a maximizer for ® over K (D). To be able to treat the
case when ﬁﬂ{r=0}#®, it is necessary to reexpress the problem in terms of the
(z, r, 8) coordinates and the naturally associated vector fields:

A A 1
(3‘7) g__‘rl(za r)eO’ (/’=; l//(Z’ ")eo in D'
We verify that Ly = ¢ in D with ¢ =0 on 4D if and only if —Aj ={ in D with =0
on 9D; we see this equivalence by virtue of the identity —Ay =V XV x ¢, Asince V-y=0.

Now the terms in the objective functional ® can be expressed in ¢ and ¢. In particular,
we have

1“ ;G;dxdy=1j f-zz?dm=1j IV§[? dm, “ y¢* dx dy = f |£)? dm,
2))s 2J)p 2J)p

where we write dm =r dr dz=(1/27) dv. Also, we have

IJ |{| dm =R = max r,
D D

by the circulation constraint. An upper bound for ® on K(D) is obtained as follows.
By the Sobolev inequality, we have

1/2
j vir dm=j ‘. wdmg||;n6/5||¢||6§clnzus/s{L wifam}
D D D

This yields the estimate

1/2
{ Ilezd'"} = G| €le;s= GIEN2N1E)1Y = CR)|IE)Y?,

on application of the standard interpolation inequality. We now obtain the desired
bound for ®: for {€ K(D),

<l 72 B_2 712 7

()=5| IVy[ dm— |{I"dm+ap | rlf|dm
2Jp 2 J)p b
N 1/3 BZ N
(3.8) = C4(R){ |Z]? dm} ——J |¢|> dm + aBR?
b 2 J)p
= C5(D a, ﬂ)<+w.

Consequently, we may take a sequence (€K (D) such that (i) ®({)~>
sup {<I>(§) [e K(D)}, (ii) I&]l.= Cs, and (iii) - £ L*(D) weakly. It follows that
1//,—> z/; weakly in HZ(D) and hence, by the standard imbedding theorem, that z/;,—> 1//
strongly in H O(D) Thus, we have the continuity of the first term of ®, namely,

“ QGdedy=JA|V1/Z|2dm»J' |v¢?|2dm=” (G dx dy.
D D D D

Also, we have the lower semicontinuity of the second term, namely,

a 2 a 2
lim inf %) axay=z -2} axay.
it [ [, (5-5), vz o (s-5), e
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This follows from the convexity of this term combined with the identity 2y = re, - Z
which implies that ;> ¢ weakly in L*(D) with respect to the measure y dx dy. Con-
sequently, we may conclude that <13({) = lAimj_,H,o ®(¢) =sup &, with { e K(D). (We
note that the statement that limits { and ¢ have the form (3.7) is easily checked.)

The derivation of the variational conditions (3.5) is sketched in § 2 in the general
case. In the present case, if u is the multiplier accounting for the constraint C({)=1,
then we have, by maximality,

0= “’D [G¢—p—2yB*(§ — a/B)+18¢ dx dy

for all variations 8¢ that respect the constraint { =0 almost everywhere in D. This
inequality implies that

G¢{—u=2yB*({—a/B), whenever {>0,
G{—un=0 whenever { =0,

which further implies that {0 < ¢ < a/B} < {G{ = u}. The stated form (3.5) then follows
immediately.

To complete the proof we must establish (3.6) when u >0, by assumption. Since
{ e L*(D), we have that y e H{(D)N HZ(D) c CY*(DUaD), by the Morrey-Sobolev
imbedding theorem. Then we must have |,_, =0, by continuity, and hence ¥ = r|1//|
o(r) as r->0". Now since u > 0, it follows that supp { < {¢y = u} < DN {y > 8} for some
>0, and thus we conclude that supp ¢ is a compact subset of D. The fact that the
corresponding multiplier is nonzero ensures that equality holds in the circulation
constraint.

The above theorem provides a solution pair ¢, y of the system (2.1), (2.2) in the
“classical” case (3.1), and that solution pair is expressed as

(3.9)

1 L.
(3.10) {= 232‘//++BX{¢>0), ’)’=E‘//+ with ¢ = G — .

The theorem generalizes in a straightforward way to a class of problems where the
structure functions a, be C?[0, +0) satisfy (2.6) and f(y, s) defined in (2.7) is strictly
convex in s for s> 0. In particular, it suffices that a(¢) and b(t) satisfy

(3.11) a(0)=0, —a,=a'(t)=0, a"()b'(1)za'(1)b"(1),
(3.12) b(0)=0, Bo=b(1)=p, b'(1)>1b"(1),

for all t=0, where a,, By, B, are positive constants. The solution pair ¢, vy is then
expressible as

b'W)__a'(b”'(§)
296'(b™'(4)) b'(b7())
y=b7'(§) in{§>0}, y=0 in {§=0}.

It follows from this that { € L™(D) and that { jumps by the constant |a’(0)|/b'(0) across
the free boundary a{¢7>0}; it also follows that ye C*'(D) and that, in general, vy,
and v, are discontinuous across the free boundary. In physical terms, the velocity field
is continuous everywhere (and that condition defines the free-boundary condition),
while the vorticity field may be discontinuous across the boundary of the vortex ring.
Of course, further generalizations are certainly possible (for instance, the quadratic
growth of f(y,s) in s can be relaxed and solutions with higher regularity can be
obtained), but these extensions are left to the reader.

(= n{y>0}, {=0 in{Jy=0},

(3.13)
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In the second theorem, we replace the domain D by R3 = {y > 0}, and we impose
the additional constraint P(¢) = 1. The class of competing functions is now taken to be

K(RY) = {geL‘(Ri):ggOa.e.,” ldxdy=1,
R

JJ yldxdy=1, JJ y¢* dx dy<+oo}.
R} R:

Both of the constraints C({)=1 and P({)=1 are relaxed to inequalities here again
for technical reasons. The proof of existence of solutions follows much as in the
preceding theorem, except that it is complicated by the fact that the domain is now
unbounded. 0

THEOREM 2. For every prescribed 0= a <+00, 0 < B <+00, there exists a solution
L€ K(R?) of the problem

(3.15) maximize ®({) subject to { € K(R?)

(3.14)

and there exist multipliers ©n=0 and c¢>0 such that

(3.16) (= 2 .3 5 (G{—cy— M)++B X(Gt-cy—u>0y in RE;
also, { is symmetrized about x =0, in the sense that
(3.17) L(x, y)=¢(=x,y) and {(x, y) = {(X', y) whenever 0=x=x'.

Furthermore, P({) =1 holds and whenever . > 0 there also holds
(3.18) ¢ has compact support in R%, C({) =1.

Remark. Asin Theorem 1, the condition that u > 0 is ensured whenever 8 is small
enough depending on a. In fact, the range 0<B < B*(a) in Theorem 2 is known
explicitly, since the limiting case 8 =8*(a) corresponds to a spherical vortex with
swirl found by Moffatt [12]. A complete discussion of these Moffatt vortices and the
role they play in determining the range of the given parameters a and B is given in
[8], where the vortex rings with swirl proven to exist in this theorem are exhibited
numerically.

Proof. We use the same direct variational method as in the proof of Theorem 1,
leaving some of the technical details to the reader. As before, we introduce { and (ﬁ
defined by (3.7). However, the constraints C({)=1 and P({) =1 now imply the bound

7| = l -H1# = 1 <§
Jn3lg|dm=jn32(r+r )|§|dm—JIRi<y+2){dxdy=2.

In turn, this yields the bound

1/3
3.19) @)= C,{J |f|2 dm} _B J |{A|2 dm+2aB = Cs(a, B) <+,
R’ 20 Jg3
where in contrast to (3.8), the constant C, is mdependent of the size of the support
of { It follows that there is a sequence g€ K(R ) such that (i) ®(¢)-
sup {®(£): e K(R2)}, (ii) |{]l.= Cs, and (iii) {,»{e LAR®) weakly. Furthermore,
using the standard arguments (see [9]), we may replace each {;(x, y) by its symmetrical
rearrangement in the x variable so that the properties (3.16) hold for each ¢;; in this
procedure we use the fact that symmetrization in x does not alter the constraints and
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does not decrease the ObjeCtIVC functional. Now, however, we are able to assert only
that d/, > l[l strongly in H'(B,), where B, = ={z*+r* < p?} for every fixed p <-+o0. Con-
sequently, the proof of continuity of the first term of ®, requires careful justification.
This is provided by the estimate

(3.20) |§;(z, | =n(Vz2+r?) where n(p)|0 as p—>+o.

Indeed, given such a rate of decay for |$J| (independently of j) we conclude that

A A 3
J.[Z . 2{,»G{,-dxdy=J'3 g}w//jdméin(p),
z°+rzp R\ B,

and similarly for {; this combined with the fact that

” Qngxdy=J V4,2 dm—>J’ V| dm=“ (G dx dy
zz-l—r2<p2 B, B, zz-}—r2<p2

for arbitrarily large p <+00, clearly yields the desired conclusion. The proof of the
clalmed estlmate (3. 20) depends upon the fact that (//, is expressible as the potential
of {,, namely, 1,11, *Q (component wise), where k= k(p) =1/4mp is the fundamental
solution of —A in R’—and || is axisymmetric, symmetrized in z, and ||§,||1_C1,
||§]||2_ C, for constants C;, C, independent of j. A derivation of such an estimate can
be given by modifying the calculations made in [10], where an analogous result is
proved with the L*-bound ||§,||oo C, replacing the L2 bound; the resulting estimate
shown in Theorem 2.5 of [10] involves n(p) = Csp ' log (1+ C,p), and an analogous
expression follows in the present case. Since the details of this argument are rather
lengthy and are of technical interest only, we will omit them here. The lower semicon-
tinuity of the second term in @ follows as before. Therefore, we have that ®({) =
hmﬁoo ®({) =supx @, with { € K(R?).

The variational conditions (3.15) follow using the standard methods, with multi-
pliers ¢, n €R umquely determined by the extremal {. That ¢, uw =0 follows from the
observation that |{|—r§ (Y—cr/2—p/r) = (~cr/2—u/r)" in R® with |{]e L'(R?).
Thus, ¢ <0 implies |{| = |c|r/2—|u|/r forlarge r, which is impossible; and, u <0 implies
|€|=|w|/r—|e|r/2 for small r, which is impossible. The strict positivity of ¢ is an
immediate consequence of the following identity, which is interesting in itself:

(3.21) 2c= J:Li [% {G{+Bzy(§—g>++6aﬁy ({—§)+] dx dy.

To prove this we use an alternative expression for the energy associated with flow in
the meridional planes, namely,

1

(3.22) —” [Ll/li'Fl,bi] dxdy=“ (3, +2y,) Lip dx dy.
2J)Je2 L2y R2

This formula is verified by an integration by parts argument; its complete derivation
is given in Lemma 3.1 of [11]. Now we let ¢ = ¢y — ¢y — u, and using (3.22) we obtain

2 R R

= ” g +2y(f+cp), 1s dx dy.
R}
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But an integration by parts yields

J‘J’R3 Xy dx dy = J'Li xtﬁx[ W ‘/’*+p X(¢>0):| dx dy
=“J’J- [4 yB? ‘/f++B */’4—] dx dy,

- - 1 ~ 2
J J 29§+ cy), ¢ dx dy = ” g, [—2 g +2= “m»»] dx dy
R% R} B B

+2c JJ y¢ dx dy
R}

=—J'J’ 2—a(/7+ dxdy+2c
&2 B

The claimed identity (3.21) now follows using the substitution ¢, =2yB*({—a/B)..

We note that equality must hold in the constraint P({)=1 since ¢ is nonzero. It
remains to establish (3.17) when u >0, by assumption. First, we note, as before, that
equality must hold in the constraint C({)=1. Next, we demonstrate that supp { =
{lx|=87",8=y=6""} for some 6> 0. The required bounds in y follow directly from
the fact that ¥ = cy+ u in supp ¢, since this implies that cr/2+ ur™' = |(//| = Csinsupp &
The required bounds in x follow from the inequality

x|y =c? JJ {G¢dx' dy' for all (x,y)esupp £
RL

To show this we use the fact that ¢(x',y)=¢(—x’, y) and ¢(x',y)=¢(x, y) for all
0<x'<x (a consequence of (3.16)), because then we obtain

[]

x| y
2C|x|yéJ | It//(x’,y) dx'=I | IJ Yy(x',y') dx’ dy’
—|x —|x 0

1/2
< <2|x|y>“2{U V2 d dy'} ,
R}

which clearly gives the desired inequality. This completes the proof. 0
The above theorem supplies a solution pair ¢, y of the system (2.1), (2.2) in the
““classical” case (3.1), and that solution pair is expressed as

1« L.
(3.23) {= 5 Bz ¢+ BX{./;>0}, 'Y=E Yy with §=G{—cy—p.

Remarks made after Theorem 2 concerning the generalization of the existence result
to a class of structure functions a and b satisfying (3.11) apply equally well to the
results of Theorem 2.

4. Qualitative properties of vortex rings with swirl. Here we summarize some of
the qualitative properties of the solutions found in Theorems 1 and 2. The specific
form of the constrained maximization problem we employ in the analysis of solutions
provides an especially convenient framework for the derivation of these results, par-
ticularly those pertaining to asymptotic properties. However, we will be content merely
to sketch the proofs of the results stated here, since our method of analysis has appeared
in several papers [7], [11], [13], [14] concerning very similar problems.
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As in § 3 and in our sequel paper [8], we restrict our attention to the “classical”
case in which the structure functions a and b satisfy (3.1). Then it is of interest to
determine how the solutions {={, g, ¥ = 7., depend on the given parameters o and
B. We will first consider the dependence upon B (for fixed a), emphasizing the
asymptotic limit 8 - 0+ that gives concentrated vortex rings with swirl. We will then
consider the dependence of these B-parametrized branches of solutions on «, which
dictates the flow structure within the vortex.

The asymptotic analysis of solutions as -0+ can be accomplished with a
modification of the methods given in [13]. The crucial estimates are as follows (C,, C,,
etc. denote generic positive constants independent of 8):

(4.1) diam (Q) = C,8,
(4.2) max (G{—u),=C,, max{=C;8% maxy=C,8 "

The geometric estimate (4.1) on the vortex core = {¢y >0} may be derived using an
extension of the arguments of Theorem 3.3 in [13]. We now briefly indicate the main
steps in this derivation for the solutions found in Theorem 1. First, we note the identity

o
(4.3) u=20({)-2ap “ y<§—~) dx dy,
D B +
which follows immediately from (3.5). Second, we establish that
20(0)220(0) 25 log '~ C,
o

taking an admissible function f =(1/wB?) Xs,(s5) approximating a delta function cen-
tered at some point (%, ) € D. This estimate depends upon some precise information
about the Green function for L in D; in particular, the Green function is known to
have the same singular behavior as the fundamental solution for L in R (the stream-
function for the classical circular vortex filament), which is given by

(rr/)l/z

27

’

k(z,r,z,r)= log &'+ 0(1) as é->0+
where ¢ =[(z—2z")?+(r—r')*1"?/2(rr")"/?, when expressed in terms of the variables

z=x, r=+2y (see [11]). It follows that for any (x, y)c Q
G{(x,y)zpnz20({)- ng2_rlog BI-C,.
o

A relatively crude argument using this estimate will demonstrate that diam (Q) = o(1)
as B - 0+, and with this fact in hand (and taking (%, ) € Q) the sharp version of the
argument ([13, Thm. 3.3) yields the desired estimate (4.1). These arguments rely on
showing that, as a consequence of the latter inequality, if (x, y) € Q then

JJ {(x,y")dx' dy'=c,(log M)™" for M>1,
D\ Bump(x%,y)

and hence that diam () =2Mp, when M is fixed large enough that C,(log M)™' <3.
Once (4.1) is proved, the asymptotically sharp estimates (4.2) follow from the scaling
arguments given in Theorems 4.4 and 4.5 of [13]. We omit any further details here.
An obvious conseqlience of the identity (4.3) is the positivity of u for small 8;
in fact, u = aolog B™' for some constant a,>0 as 8- 0+. Thus, we have justified the
remark following Theorem 1, and hence equality must hold in the constraint C({)=1



72 B. TURKINGTON

for small 8. (Presumably, u is positive for some parameter range 0 < 8 < 8*(a), which
could be determined numerically using the method in [8].)

We see from (4.1), (4.2) that { tends to a unit delta function in the sense of
distributions as 8 - 0+. (The location at which the delta function is concentrated can
be deduced from the Green function for L in D, as is explained in Theorem 4.3 of
[13].) Also, we see that y tends to zero in the sense of distributions as B8 - 0+, even
though max y - +00. This rather curious property is shared by all concentrated vortex
rings with (nonzero) swirl. Consequently, the limit solution is a (typically unique)
vortex filament (without swirl) in D which is independent of . A further manifestation
of this phenomenon is that the angular impulse A(y)- 0, while the helicity B(¢, y) =
0(B7") as B~ 0+.

Similar asymptotic results hold for the solutions found in Theorem 2, namely,
steadily translating vortex rings with swirl in all of space. First, recalling (3.21), we
observe that the translational speed c satisfies

(4.4) 2c=c1>(g)+”2 [2B2y<{—§-> +6aﬁy<g—§) ]dxdy.

Then, since (4.1), (4.2) are also valid for these solutions, it follows that ¢ = b,log 8~*
for some constant b,>0 as B - 0+. The identity (4.3) now holds with u replaced by
w+c¢, and so, in turn, it follows that u = a,log 8" for some constant a,> 0. (In fact,
the following asymptotic formulas as B -0+ are easily established: ®(¢)~
(V2/4m) log B7', ¢ ~3®({), u ~3®({).) As before, we see that as B0+

{->8(x,y—1), y>0 in the sense of distributions,

where 8(x, y —1) is the unit delta function at (x, y) = (0, 1). In other words, the unique
circular vortex filament with unit linear impulse is obtained as the limit solution,
independently of a.

These results justify the remark following Theorem 2, since w is positive for small
B, and hence C(¢{) =1 holds as an equality. However, much more precise information
on the parameter range 0 < 8 < 8*(a) over which this holds is available and is given
in [8]. There it is shown that the extreme case 8 = B*(a), for which u =0, corresponds
to an explicit spherical vortex found by Moffatt [12], and the function B*(a) is
calculated. The reader is referred there for the details as well as for a quantitative
description of the solutions over the full parameter range.

We now turn to the dependence of the solutions on the parameter «. While B
determines the cross-sectional diameter of the vortex ring with swirl, @ controls the
structure of the vortical flow within the vortex ring. When a =0, it is readily verified
that (3.10) is equivalent to the identity u = Bw in the vortex core. Thus, every solution
with @ =0 defines a vortex ring that consists of a Beltrami flow within its vortex core.
Roughly speaking, these solutions represent steady vortex flows whose swirl is maximal
with respect to their meridional circulation. (Unlike simple quasi-two-dimensional
flows it is not possible for the swirl y to take essentially arbitrary values, because of
the presence of the coupling term (7, y/2y) in (1.12).) The opposite extreme occurs
when a - +00. Since B*(a)—>+ as a >+ (as can be checked), there exist limit
solutions f)‘ =lim {, g when a, B>+00 and a/B—> A (provided that A > A*, say). In
the case of Theorem 1, these solutions satisfy

O = AXGE>npy YA =0 in D,

which corresponds to the limit of the free-boundary problems (3.10) for finite «, B.
Consequently, such a limit solution represents a classical steady vortex ring without
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swirl (see [3], [10]). The relevant parameter range is A* <A <+0 where (A*)7'=
§§ 5 dx dy. Similar results apply in the case of Theorem 2, where a branch of steadily
translating vortex rings is obtained for which A =A* gives the Hill spherical vortex
and A =+00 gives the circular vortex filament (both normalized by the constraints
C(Z)=1, P(£)=1). In either case the general situation with 0 < @ < +00 may be viewed
as mediating between the extremes described above. Hence the two-parameter family
of solutions {, g, Y. furnishes a very natural and precise extension of the familiar
concept of a vortex ring.

We conclude by commenting that our theoretical results are tied to some interesting
phenomena on the physical side. In an unpublished experiment, Bergerud [6] devised
an apparatus for imparting azimuthal swirl to concentrated vortex rings, and observed
that steady flows were produced when the swirl had a certain critical magnitude, while
unsteady (azimuthally oscillating) flows were produced for other swirl magnitudes. It
is noteworthy that the steady vortex rings with swirl he observed in water share some
qualitative features with our model flows in an ideal fluid. In particular, the bound
A(y)=pBP({), which holds for all of the solutions given in Theorem 2, confirms that
the total angular impulse of any steadily translating vortex ring must be small if it is
concentrated (8 small) and has a given linear impulse (P({) prescribed). However,
further experimentation is needed before a convincing evaluation of the relevance of
our solutions to vortex motions in real fluids can be made.
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STATIONARY STOKES AND NAVIER-STOKES SYSTEMS
ON TWO- OR THREE-DIMENSIONAL DOMAINS WITH CORNERS.
PART I: LINEARIZED EQUATIONS*

MONIQUE DAUGET®

Abstract. The H*-regularity (s being real and nonnegative) of solutions of the Stokes system in domains
with corners is studied. In particular, a H>-regularity result on a convex polyhedron that generalizes Kellogg
and Osborn’s result on a convex polygon to three-dimensional domains is stated. Sharper regularity on a
cube and on other domains with corners is attained. Conditions for the problem to be Fredholm are also
given, and its singular functions along with those of the nonlinear problem are studied in the second part
of this paper.

Key words. Stokes, corner, edge, polyhedron, regularity of solutions
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1. Introduction. The linearized equations corresponding to the Navier-Stokes
system describing gas-dynamics consist of the following Stokes system in R" (n=2 or
3):

(1.1) —Ai+Vp=f divi=g

where @ = (u,, -+, u,) is the speed of the fluid, p its pressure, and f the strength field.
On a domain (), the boundary conditions are

(12) ﬁ|ag =0.

The problem (1.1)-(1.2) can be approached as an elliptic boundary value problem
as in the paper by Agmon, Douglis, and Nirenberg [1]. On the other hand, it may be
proved by a variational method (see Temam [22]) that for a bounded domain Q and
data (f, g) in the product of Sobolev spaces [ H '(Q)]" x L*(Q) with the compatibility
condition

(1.3) J' gdX =0,

there exists a unique solution (i, p) of (1.1)-(1.2) in the space [H'(Q)]" x[L*(Q)/C].
Here, as usual, H'(Q) denotes the H'-space with null traces on the boundary, and
H™'is its dual with respect to the L>-duality.

Thus, if ( f, g) is more regular, let us say

(1.4) Fe[HY(Q)]" and ge H'(Q), s>0,

then, when () has a smooth boundary, we draw from [1] and interpolation (cf. [23]),
that

(1.5) de[H**'(Q)]" and pe H'(Q).

But, in the case of physical domains, or for partition of domains in numerical
analysis, it is natural to study the case when () has corners.

In two-dimensional domains (2D), when Q is a polygon, we have Kondrat’ev’s
[12] and Grisvard’s [10] results for the divergence-free system (g =0: incompressible
fluid) in spaces with integer exponents; for the general system (1.1), we have Osborn’s

* Received by the editors August 11, 1987; accepted for publication (in revised form) May 2, 1988.
1 U.A. Centre National de la Recherche Scientifique 758, Département de Mathématiques et Infor-
matique, 2, rue de la Houssiniére, 44072 Nantes Cedex 03, France.
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results [19], Dauge’s results [5] in weighted Sobolev spaces, and the regularity result
of Kellogg and Osborn [11].

In three-dimensional domains (3D), Maz’ja and Plamenevskii study the problem
(1.1)-(1.2) for a large class of domains in weighted Sobolev spaces: the results are
announced in [15] and proved in [16], [17a], [17b]. The spaces are general L”-Sobolev
spaces with weight (of Kondrat’ev type) and also Hélder classes with weight. Merigot
[18] and Grisvard [10] have also used LP-Sobolev spaces in the 2D divergence-free
problem on a polygon.

In this paper we state precise results of regularity in the ordinary spaces (1.4),
(1.5). Among other things, the Sobolev spaces with real exponents are useful for
studying the nonlinear Navier-Stokes system (Part II of this work is forthcoming),
and for successive approximation schemes (see [20]).

Theorems 5.4 and 5.5 in 2D are a generalization of [10] and [11]. In 3D we get
new results. For several examples of domains, we hereafter indicate a condition on s
under which the solution (7, p) of (1.1)-(1.2) with ( 7, g) in the space (1.4) has the
regularity of (1.5), provided g is zero at the singular points of Q if s=1 (cf. [11] and
the definition (9.17)):

(1.6) If Q) is any domain in our class of domains with corners 05 (introduced
in § 2 below), s <0.5.

(1.7) If Q= Q,\Q, where Q, and Q, are two rectangular parallelepipeds with
the same axes, s =0.544 (approximate value).

(1.8) If Q is any convex domain in our class 0;, s=1.

(1.9) If Q is any convex domain with wedge angles =2#/3, s <3/2.

(1.10) If ©Q is any cylinder with convex polygonal base, and angles <2#/3,
s=3/2.

(1.11) If Q is any cylinder with smooth base, s <2.
(1.12) If Q is a half-ball, s <2.

When we say a cylinder, we mean a bounded cylinder truncated perpendicularly
to its generating lines.

The plan of this paper is as follows. In § 2 we introduce our classes of domains
and the functional spaces. In § 3 we recall general results from Dauge’s works [6] and
[9], and we apply them to the problem (1.1)-(1.2). As these results are based on a
special condition of injectivity about tangent problems, in § 4 we link that condition
to the usual one used by Kondrat’ev in [12]. In § 5 we recall some properties of the
characteristic equation sin’ Aw — A’ sin® w =0, we give a graph and tables of values for
its roots, and we state results in 2D. In § 6 we study the domains in 3D that have
edges, but no vertices. In § 7 we study the tangent problem in a three-dimensional
cone, which gives rise to a quantity linked with the Laplace-Beltrami operator that
we estimate in § 8. Finally, we state 3D results in § 9.

2. Classes of domains and functional spaces. Our classes of domains contain various
curvilinear polygons (in 2D) and polyhedra or domains with piecewise-smooth boun-
dary (in 3D).

2.1. Plane and spherical domains. Our class 0,(R?) of plane domains consists of
all curvilinear polygons, possibly with cracks but without cusps (or turning points):
Q is in O,(R?) if and only if it enjoys the following properties:

(i) Q is bounded and connected.
(ii) The boundary of  consists of a finite number of smooth closed arcs
Fla e ,FN’FN+1=FI‘
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(iii) Let A; and A;,, be the ends of I';; the A; for j=1,---, N are the vertices
of () and at the neighborhood of A;, € is locally diffeomorphic to a neighborhood of
zero in a plane sector I'y,.

In the case when one of the sectors I'4, has its opening equal to 27, we have a
crack and we dissociate the two sides of the crack as in Fig. 1.

FiG. 1

In both cases, A, is at the bottom of the crack and I'; and I', coincide in the
neighborhood of A,.

Let us note that condition (iii) may be rewritten in the following form. If the
tangents of I'; and I';,; coincide in A;, then I'; and I';;, coincide in a neighborhood
of A;.

We denote by Ay(Q) the set {A;, - -+, Ay} and denote simply by x any element
of Ay(Q). Thus, for x=A;, Ty, is denoted by I',.

In the same way we define the class 0,(S?) of curvilinear polygons on the unit
sphere of R>.

2.2. Three-dimensional domains. Q belongs to 0;(R?) if and only if it satisfies the
following conditions:

(i) Q is bounded and connected.

(ii) At each point x of its “stretched”” boundary, Q is locally diffeomorphic to a
neighborhood of zero in one of the following three kinds of domains:

(1) A half-space: then x is a regular point;

(2) A dihedron isomorphic to RxT,, with I', a plane sector with an opening w,
different from #r: then x belongs to an edge;

(3) A cone I', with vertex zero (which is not a dihedron), such that its intersection
G, with S° belongs to 0,(S?): then x is a vertex.

Let A,(Q) be the set of vertices and A,;(Q2) be the union of the edges.

The stretched boundary is the notion corresponding to the doubling of the boundary
when there is a crack in 2D. This is more completely explained in § 2 of [9].

Note that if () has a piecewise-smooth boundary, and its faces meet two by two
or three by three with independent normals at meeting points, then ) belongs to our
class 0;(R>).

2.3. Sobolev spaces. For a positive integer s, H*(Q) is the usual Sobolev space of
all distributions u in 9'(Q) such that each derivative D*u with length |a|=s, in Q,
belongs to L*(Q). For a positive noninteger real number s, let [s] be the integer part
of s and o =s—[s]. H°(Q) is the space of all u in H"*(Q) that satisfy

Va,|a|=[s] JL} |D*u(x) — D*u(y)|* d(x, y) "> dx dy <+

where d(x, y) is the infimum of length of the paths joining x to y and included in Q.
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H*(Q) is the closure of 2(Q) in H*(Q) and H*(Q) its dual with respect to the
L*-duality.

2.4. Stokes operators. We denote by D% () the product of Sobolev spaces [H' N
H Q)] x HS(Q) (cf. (1.5)) and by E:(Q) the product [H* '(Q)]" x H*(Q2). We
then denote by &, the operator (1.1) applying (i, p) on (f, g), and we write especially
%[5, Q] for &, acting from D3(Q) to E;(Q). We suppose everywhere that s #3.

3. General Fredholm properties. General Fredholm properties rely on general
statements of [9] that we apply here to the Stokes system (1.1)-(1.2).

In[9], we develop general conditions for a strongly elliptic operator to be Fredholm
between Sobolev spaces H* (in the above sense; § 2.3), e.g., with Dirichlet conditions.
Moreover, we extend that theory to strongly elliptic systems, and other ones satisfying
a weaker ellipticity property that holds in particular for the Stokes system (see (7.7)
in [9]).

We will apply those results. To do so, we recall the characteristic conditions
concerning the operator and the domain. When () is a polygon, it is well known that
such conditions are related to the angle openings of Q) and to associated discriminant
functions (cf. [10], [12]). In fact it is related with the spectrum of a holomorphic
operator family; in three dimensions the condition may be written only in that form.
We show in [9] that those “‘spectral” conditions are fully convenient for “homogeneous”
weighted Sobolev spaces, and that, for ordinary Sobolev spaces, they must be replaced
with a new type of condition we call “injectivity modulo polynomials.”

Although that distinction is of lesser use for regularity properties than for Fredholm
properties, we introduce it in anticipation of the forthcoming Part II of this paper
where we will describe the singularities of solutions.

Our conditions are related to tangent (or frozen) operators at each singular point
of Q.

3.1. Frozen operators at a vertex. Let ) be a domain in 0,(R"), n=2,3 and
x € Ay(Q). We will suppose that the diffeomorphism y, which implies a neighborhood
of x in Q on a neighborhood of zero in I',, is such that

Dy (x) =1 is the identity matrix.

Then, the operator L,, obtained by taking the principal part of the operator
x° %, x ! frozen in zero, just coincides with &, on the cone T,.

3.2. Frozen operators along an edge. As in the case of a vertex, if x € A,(Q}), the
frozen operator on the wedge Rx T, is &5. But, we have to define a new frozen operator
L, on the plane sector I’y (cf. [9, (3.3)]). Let (y, z) be coordinates such that y € R and
zeT,. The operator L, is defined as

Lx(Dz) = y?»(o’ Dz)
(we remove tangential derivatives along the edge). Thus, we have

(3'1) Lx(ul’uZa u3,p)=(ﬁ’.ﬁ,.f;9 g)
if and only if
(3.2) Fo(uy, uy, p)=(f1,f>,8) and Au;=f;.

3.3. Injectivity modulo polynomials. For A € C, SA(T,) denotes the set of vector
functions (uy, - - - , u,, p) of the form:
w=r" Y u,(¥)log’r withu,eH'(G,),
0=¢q=Q

p=r""1" Y p,(¥)log’r withp,e L*(G,)

0=g=Q
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where (r, ¥)=(|z], z/|z|) are the polar coordinates and G, is the intersection of I,
with the unit sphere S"'.
We say that L is injective modulo polynomial on S)(T) if

(i, p)e SH(T'y) and L(d, p) is polynomial implies that
(4, p) is polynomial.

Here “polynomial” means polynomial with respect to cartesian variable z = (z,, z,)
or (z,, z,, z;). For instance, r* sin a6 is polynomial in R* for a € Z. Of course, the
zero function is polynomial.

3.4. Index and regularity results.
THEOREM 3.3. Let Q € O,(R"). The Stokes operator &, s, 1] is a Fredholm operator
if and only if both the following conditions are satisfied:

(3.4) Vxe Ay(Q), VA with ReA=s+1—n/2,
L, is injective modulo polynomials on S)(T',);

3.5) de>0,Vxec A (Q), VA with Re A €[0, s+ €],
L, is injective modulo polynomials on S5(T',).

This statement is derived from (7.15) in [9], with the variant (6.8) in [9].

If Q has only conical points (which is the case when n =2), the condition (3.5)
is void. If Q has no vertex (cf. examples (1.11), (1.12)), the condition (3.4) is void and
(3.5) may be replaced with (3.5'):

3.5") Vxe A, (Q), VA with Re A €[0, s],
L, is injective modulo polynomials on S3(T,).

If Q is a three-dimensional polyhedron with plane faces, (3.5) may still be replaced
with (3.5'): the £ in (3.5) is useful in the case when () is a three-dimensional domain
with smooth curved faces; that ¢ allows an easier formulation without introducing
“subsections” or “singular chains,” which describe the limit geometrical behavior at
the neighborhood of a vertex.

THEOREM 3.6. Assume that the conditions (3.5) and (3.7) are fulfilled:

3.7) Vxe Ay(Q), VA with ReAe[1—n/2,s+1—n/2],
L, is injective modulo polynomials on S)(T).
Then, each solution (i, p) € D%(Q) of (1.1) with (f, g) in E5(Q) has the regularity D5 ().
When (3.4) is satisfied, and not (3.7), there are singular functions. We will study
these in Part II of this paper, along with the nonlinear Navier-Stokes system.

Now, we will study (3.5) and (3.7) in order to give more precise regularity results
in two and three dimensions.

4. The link between the injectivity condition and the usual spectral condition.
4.1. Generalities. Let us study condition (3.4). In view of § 3.1, L, =,. If we
consider @ of the form r*%(¥) and p=r*""4(¥), then we get
S, p) = (f, )
where f = r*"2/(¥) and g = r* "g(¥), with
(4.1) £,(M @, p)=(7, 9),
Z,(X) being a system on the sphere "', depending in a polynomial way on A. As in

[17], we can derive from the writing of &, in polar coordinates that (4.1) may be
written in the form

8= AA+D]a+[(A-DT+V,p=/  AV+6 0=y
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where 8, is the positive Laplace-Beltrami operator on $" !, ¥ is the vector x/ |x| in
R", and V., is the tangential component of the gradient on the sphere
V,=V-95/5,.

£,()) gives rise to an operator acting from D%(G,) to E%(G,). It is almost everywhere
invertible. The set of A for which Z,(A) is not invertible is called the spectrum of &,
and the condition used by Kondrat’ev [12] or Maz’ja and Plamenevskii is that the
straight line Re A = s+1—n/2 does not meet the spectrum of £,. As we have already
said, this type of condition is correct for weighted Sobolev spaces (of the type
rlelpey e L?), but it is not always suitable for ordinary Sobolev spaces. Nevertheless,
we have (cf. (4.2) for s =0 and (4.6) in [9]):

LeEMMA 4.2. If A is not a positive integer, &, is injective modulo polynomials on
S*(T',) if and only if A does not belong to the spectrum of £, on G,.

If A is an integer number, the comparison depends on the difference d(A) between
the dimensions of two spaces of polynomial functions:

d(A)=dim P*(T',) —dim Q* 2

where P*(T,) is the set of the elements of S$*(I'y) that are polynomials in cartesian
variables, and Q"2 is the set of the (f, g) with f; (respectively, g) homogeneous
polynomial of degree A —2 (respectively, A —1) in z. d(A) depends only on T,.
According to [9, Annex D], there exists a homogeneous polynomial A that is zero on
the boundary of I', and such that if B is a polynomial that is zero on dI',, then A
divides B (i.e., P*(T',) is a principal ideal).

If the degree of A is two, then d(A)=0; and according to (4.9) and (7.14) in [9],
we have the following lemma.

LeMMa 4.3. Ifd°A =2, for each integer A we have the same equivalence as in (4.2).

According to (4.8) and (7.14) in [9], we have the following lemma.

LeEMMA 4.4, If d°A =3, for A =1 we have the same equivalence as in (4.2); but for
each integer A =2, &, is not injective modulo polynomials on S*(T,).

According to (4.10) and (7.14) in [9], we have Lemma 4.5.

LeMMA 4.5. If d’A=1, and A e N*, then &, is injective modulo polynomials on
S*(Ty) if and only if £,(u)~" has a pole of order one in = A and if

dim Ker &£,(A)=d(A).

4.2. Application to two-dimensional cones. It is well known that the poles £,(A)™"
coincide with the roots of the following equations:
sin® Aw — A% sin®

A2

because, more precisely, £,(A)"'F,(A) is holomorphic on C (cf. [12], [10],[11], [5]).

When the opening o of the plane sector I', is not 27, then the two sides of I',
are independent and d°A =2. So, the condition (3.4) is that F, has no zero with real
part s.

When o =2, then d°’A=1 and d(A)>0 for all positive integer numbers. As in
§ 15.B in [9] for fourth-order operators, we show in the Annex that, according to
Lemma 4.5, &, is injective modulo polynomials on S* for each A € N* (including
A =1). As the roots of (4.6) are the half integers, we find that condition (3.4) is reduced
to

(4.6) F,(A)=0 where F,(A)=

s#k+%, VkeN.

4.3. Application to three-dimensional cones. IfT', is a revolution cone, then d°A =2
and we apply Lemmas 4.2 and 4.3.
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If I, is a polyhedral cone, let D be the number of distinct planes containing at
least one side of I',. For a cube, D =3. For a pyramid with a square basis, D =4. If
D =3, we apply Lemmas 4.2 and 4.4.

5. Precise results in two-dimensional domains.

5.1. More about the discriminant function F,,. The roots of (4.6) have been studied
by Seif [21], Lozi [13], Dauge [7], Bernardi and Raugel [2], [3], and Maslovskaya
[14]. Bernardi and Raugel give a table for the roots of (4.6) with the lowest positive
real part. Here, we complete that work by a table for the roots of (4.6) with their real
parts £€[0, 4] and by the corresponding graph (Fig. 2) of ¢ in function of w.

Let us denote A by &+ in, with & 7 real. We are interested in roots of (4.6) with
£=0. A =1 is always a root of (4.6) and plays a particular role (see § 5.2).

We denote by & (w) the real part of the kth root of

(A=1)"F,(A)=0

the roots being ordered with increasing real part and repeated according to their
multiplicities. The following can be shown (cf. [7], [2]):

(a) If we ]0’ 7T[, f](w) > 7T/(l).

(b) If welm, 27[, &(w)e]sup (3, w,/w), w/w[, where w,=0.812825;
w, is the root of

sin w .
wel0,7[ and ——=—cosw, withtan w,= w,.
w

Tables 1 and 2 and Fig. 2 give values for &, - - -, &4 that occur in [0, 4]. A dash
means a value greater than four.

For j=1, let I; be the set of w such that &;(w) and &,,.,(w) coincide. In the
interior of I;, &,; and £,;,, are the real parts of two conjugate nonreal numbers. For
w €9l; and w # 0, there is a real double root and the bifurcation of two real roots.

TABLE 1

o & & & & &5 &

0.4 3.397 3.397 - -
0.5 2.740 2.740 4.808 4.808 - -
0.6 2.307 2.307 4.022 4.022 - -
0.7 2.004 2.004 3.464 3.464 -
0.8 1.783 1.783 3.051 3.051 4312 4.312

0.9 1.252 1.988 2.542 2.932 3.853 3.853
1 1 2 2 3 3 4

1.1 0.834 1.662 2.012 2.475 3.096 3.215
1.2 0.718 1.408 2.045 2.045 2.883 2.883
1.3 0.637 1.207 1.882 1.882 2.657 2.657
14 0.581 1.044 1.745 1.745 2.465 2.465
1.5 0.544 0.909 1.629 1.629 2.301 2.301

1.6 0.522 0.796 1.530 1.530 2.159 2.159
1.7 0.509 0.701 1.444 1.444 2.035 2.035
1.8 0.503 0.622 1.258 1.480 1.927 1.927
1.9 0.500 0.555 1111 1.498 1.670 1.994
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TABLE 2

[ & & & é10 & é12

1.1 4.067 4.067 - - - -
1.2 3.720 3.720 - -
1.3 3.430 3.430 4.203 4.203 - -
14 3.184 3.184 3.901 3.901 - -
1.5 2.972 2972 3.641 3.641 - -

1.6 2.788 2.788 3.415 3.415 4.042 4.042
1.7 2.626 2.626 3.216 3.216 3.806 3.806
1.8 2.484 2.484 3.041 3.041 3.597 3.597
1.9 2.233 2.485 2.808 2.964 3.413 3.413
2 2 2.5 2.5 3 3 3.5

3.5

2.5

1.5

0.5

(] 0.25 0.5 0.75 1 1.25 1.5 1.75 2 in 7rad

FiG. 2

I, has only one connected component: I, = ]0, ,]. For j =2, I, has two connected
components: ]0, w;] and [w], w]]. When j—>+, w;> 7 and wj - 27 increase, while
;- m decreases. All integers are double roots for @ =, and all half integers are
double roots for w =27.

On the graph, the dotted line is the graph of w - 7/ w. The heavy lines represent
a double value for the & (conjugate roots), and the ordinary lines represent real roots.

Table 3 gives the values of the w;, ®}, o] that occur in Fig. 2.

5.2. The special case of the pole A =1. As we have already shown A =1 is always
a pole for £,(A)". But, if the opening of the cone I' is w =2, &, is injective modulo
polynomials on S*(I'). If w # 2, this is not so for &,.

It is easy to show that Ker %,(1) is one-dimensional and is generated by (0, 1)
(see [11], [5]). As a consequence, we get the following lemma.
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TABLE 3
w w' w!!
1 0.813 - -
0.884 1.154 1.751
3 0.915 1.102 1.825

LEMMA 5.1. Let s be such that 1=s<¢,(w). Let (i, p) be in D3(T) such that
%1, p) = (£, g) € E3(T'). Moreover, if s> 1, we suppose that g(0) = 0; if s = 1 we suppose
that r ‘g e L*(T"). Then, if B denotes the unit ball, we have

(4, p) e D3(I'n B).

Proof. We derive the proof from the methods of [9]. For s =1, it is the result of [11].
By a cut-off, we assume that (i, p) has compact support. We use the Mellin
transform  of (i, rp), which is defined for Re A =0; we have

(5'2) $2(rar)(ﬁ9 "P)=("2f, rg)’
and thus using the Mellin transform we have
(5.3) LT (), P(L)) = (F(A), G(A)).

But (F()), G(1)) is defined for Re A <s. If s # 1, then we deduce from [9] (see
the condensed proof in [8]) that there exists (i, po) € D5(I' n B) such that for Re A =
1+ ¢ with £ €]0, min (1, s —1)[,

M (i, 1po)(X) = (T (1), P(1))
where (U, P)(A) is the extension determined by (5.3). And we have
(i, p)= (o, p)= ¥  Res[F*T), " 'P()].

O<ReA<l+e
Since s < ¢,(w), the sum is reduced to A =1. And we have
F>Res (r*U(A), * 'P(1)) =Res £,(r*U(1), * ' P(1))

=Res,_, (' ?F(A), " 'G(1))

=(0, g(0)).
The second equality is given by (5.3) and by the equivalence of %,(i, p) = (£, g) with
(5.2). Since g(0) =0, we get

FyRes,_, (PU), r* 'P()))=0.
Therefore
£,(1) Res, -, (U(A), P(A))=0.
The residue belongs to the kernel of £,(1). Thus it is equal to (0, ¢), with ¢ a constant.
We finally get
(4, p) = (o, po) = (0, c).

Thus (4, p) € D5(I'n B).

If s=1, since r 'ge L?, G(A) is defined up to Re A =1 (such is not the case if
ge H' only). Since Res,_, £>(A)"'=(0, 1)y, where x is a linear form, we get that
I1%,(1)~" is holomorphic in the neighborhood of A =1, where II is the projection on
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the speed component. Thus, [1%,(A) ' (F, G)(A) is defined up to Re A = 1,»with suitallle
estimates. Then, we deduce that iie H*('n B). Since peL? and Vp=Ai+fe
L*(I' n B), then pe H'(I'n B). O

5.3. Index and regularity results.

TuEOREM 5.4. Let Q€ 0,(R?), and let s> 0. %,(Q, s) is Fredholm if and only if the
three following conditions are fulfilled :

(a) s#1;

(b) Vxe Ay(Q) such that o, # 2w, Yk, s # &(wy);

(c) Vxe Ay(Q) such that w, =2, Yk, s #k+3.

Let us recall that & is defined in § 5.1. It is a straightforward consequence of
Theorem 3.3 and §§ 4.2, 4.3, and 5.1. From Theorem 3.6 and § 5.2 we derive Theorem
5.5.

THEOREM 5.5. Let Q€ 0,(R?) and s> 0. Let (i, p) € D3(Q) be the solution of (1.1)
with (f, g) € E3(Q):

(a) If s<1 and s <miny. 4 ) &(wy), then (i, p) € D3(Q);

(b) If s>1 and moreover g(x) =0 for each vertex x, and if s <min,c 40) &(wy),
then (4, p) € D3(Q);

(¢c) If s=1 and moreover r;'ge L*(Q) for each vertex x, and if 1<
minxer(ﬂ) fl(wx)a then (ﬁa P) € D%(Q)

As ¢(m)=1 and ¢, is a decreasing function, 1 <min,c ) é(@,) holds if Q is
convex. It coincides with the result in [11].

6. Precise results in three-dimensional domains when there are edges, but no vertex.

6.1. The statements. In such a case, we study condition (3.5): since, for x € A,(Q)),
L, is given by (3.1)-(3.2), it is obvious that L, is injective modulo polynomials on
S5(T',) and only if we have (6.1) and (6.2):

(6.1) ¥, is injective modulo polynomials on S5(T,),
(6.2) A is injective modulo polynomials on Sj(T,),

where S)(I) ={v=r"Y v,(¥)log?r, v,€ H'(G)}.

If w,#2m, (6.2) is equivalent to A £ {(kw/w.)/keN*} and if w,=2m, (6.2) is
equivalent to A £ {k+3, ke N} (for Re A =0). Our statement follows.

THEOREM 6.3. Let Qe O5(R?) such that Ay(Q)=. Let (i, p)e DYQ) be the
solution of (1.1) with (f, g) € E3(Q).

(a) If s<1 and s <min,ca () &(wy), then (i, p) e D3(Q);

(b) If s>1 and s <min,.a, () 7/ ®x, and moreover g(x)=0 for each xc A,(Q),
then (4, p) e D3(Q);

(c) If s=1 and Q is convex, and moreover p;'g € L*(Q), where p, is the distance
from A(Q), then (i, p) e D3(Q).

Proof. First, here are the main arguments of the proof.

(a) If s<1, then (6.1) (respectively, (6.2)) is true for all A such that Re A €[0, 5]
if s <§(w,) (respectively, s < 7/ w,). But, if &(w,) <1, then &(w,) <7/w,. Thus (a)
is derived from (3.6).

(b) As s>1, if s<w/w,, then o, <7 and & (w,)> 7/ w,. Thus, for each A # 1
in the strip Re A €[0, s], and for each x€ A,(Q)), L, is injective modulo polynomials
on S3(I',). We have that (b) is an adaptation of the proof of (5.12) in [9] by taking
advantage of Lemma 5.1 above. See some details that follow this proof.

(c) When () is convex, & (w,) and 7/w, are greater than one for each vertex x.
Like (b), (c) is derived from Lemma 5.1.
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6.2. A more detailed proof of Theorem 6.3. Because of the special role of the pole
A =1 (cf. Lemma 5.1) we are led to revise the proofs in § 12.C of [9] to take into
account the cancellation assumptions concerning g.

Let I be a plane sector. We first study &; on RxTI'. We denote by y the coordinate
in R and by z the coordinates in I'; r=|z|. We introduce the space Hy(RxT') as the
set of functions v such that

Va,|a|=1 r*'D*ve LX(RxT).

HLRXT) is the closure of Z(RxT) in HA(RxT) and Hy'(RxT) is its dual space.

LEMMA 6.4. #5 induces an isomorphism from Hix Hix Hix L*(RxT) to Hy'x
Hy'x Hy'x L*(RxT).

Sketch of the Proof (cf. [9, (8.1), (12.6)]). It is sufficient to prove that &; is injective
and has a closed range because its adjoint has the same form. Let B, be the ball with
center zero and radius p. For (i, p)e (H")?x L? with its support in B,, we have the
following estimate:

3 3 3
£ Bl + 1202 C( £ Ll lel 3 gl pline ).
j= j= j=

But H'(B,)< H(B,) and Hy'(B,)< H'(B,). Moreover, if supp (i, p) © B,, we have
lull2=pllulluy and by duality |[|plla-1=pllpll.-

Thus, if supp (i, p) = B,, we have the following estimate, for p >0 small enough:

63 gl p122€( £ 1l + L)

We deduce the same estimates for all (&, p) in (H2)>x L by homogeneity and density
of functions with compact support. 0

¥; may be written ¥5(D,, D,).

LEMMA 6.6. ¥5(+1, D,) induces an isomorphism from H'x H'x H'x L*(T) to
H 'xH 'x H 'x L¥T).

Sketch of the Proof. Let (i, p)e (H')’x LXT). With ¢ a cut-off function in R,
¢ =1 in the neighborhood of zero, we consider

(B, )y, 2) = ¢(y) €™ (i, p)(2),

for p =1 and apply the estimate (6.5) to (&, g). Denoting (£, g) = %(p, D,)(d, p), we
have

P33, 9) = o(y) €”(f, 8)(2) +e*(fr, gr)-
Let us introduce the H(T, p)-norm on H'(T):
(6.7) [Wlkswo=p | Wi+ r™ W||12+[ IZ;} ID*W|i:

and Hy'(T, p) the dual norm. We have the equivalences:
0]l Hiwxry = il irpy and [l eipyfj||hra‘(n><r)z 60 a5,
So the estimate (6.5) implies that
sl aywey ol = CE 1 fillag e+ €™ fr il mg mxr)

(6.8) )
+lglea t+lle™ gr | 2mxry)-
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The support of g is included in supp ¢, and
gr(y, z) =Y a;(y)u;(z), with a; smooth.
So,

le™ gr || 2rury = Co ™' (T 1]l a3, + 1 Pl 2,

and we can prove the same estimate for | e*”fx || in (6.8). So, for p large enough,

il aiao+Ipleay=2CE | £l astao + 1812w,

which is an a priori estimate for #5( p; D,). Using a suitable scaling, we get an estimate
for #5(1, D,). The proof for #5(—1, D,) is the same, with e instead of . 0O

For s> 1, we replace E3(I') by F3(I'), which is the space of the (f, g)e E5(I)
such that g(0) =0. For s =1, F}(I') is characterized by r~'ge L*(T'). When %5(1, D,)-
(i, p)=(f, g), we have

01Uy Uy tius=g.

Let us suppose that the opening w of I' is not 277. When the u; belong to H ST,
with s> 1, since they are zero on oI', Vu;(0) =0; thus g(0)=0. On the other hand, if
s=1 and w;€ H2 H'(T), then r°~ 2D°‘u e LX(T) for |a|=2 (cf. [9 (AC.6)]; thus
r'ge L*(1).
Therefore &5(£1, D,) operate from D3(I") to F3(I"). As a consequence of Lemmas
6.6 and 5.1, we get Proposition 6.9.
PROPOSITION 6.9. Lets =1 besuch that s < w/w. Then #5(+1, D,) is an isomorphism
from D5(T) to F5(T).
By partial Fourier transform with respect to y the equation ¥(D,, D,)(u, p) =
_(f, g) becomes

Fi(xp, D,) (@, p)(xp, 2) = (f, )(£p,2),  p=0.

We define F3(RxT) by the condition g(y,0)=0 if s>1 and |z|"'g(y, z) e L*(RxT) if
s=1.If (f, g) e F5(RxT), then for all p, (f, g)(xp)e F5(T'). By a scaling argument,
we deduce from Proposition 6.9 the uniform estimate for p=1:

(&, p)(£p) Dy, =

wher =+ p°|| |2 which obviously defines D3(T, p) and
F5(T, p) when s # 1; F}(T, p)=L*(T")*x Hy(T, p) (see (6.7)). We also have an a priori
estimate for p =1.

So, in the same way as in 9.C of [9], we get the following lemma.

LEMMA 6.10. 1=s<m/w. [,=Tn B,. Then the inverse operator (¥5)”" of (6.4)
induces a continuous operator from F5(RxT,) to D5(RxT,).

Now, if we go back to the operator &; on , for each x € A,(Q), we get an operator
equal to ¥3+ 7, I being a perturbation. It is important to note that the fourth equation
of (#5+ ) (i, p) = (£, g) has the following form:

Y. ajx(y,2z)9;u, =g with a;; smooth.
1=j,k=3
Thus, if (4, p) € D3(RxT), then (f, g)e F3(RxT). So, we are able to use Lemma 6.10
along with the perturbation argument and Neumann series of 10.D in [9] in order to
get the local regularity result in the neighborhood of each x € A;(Q)