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DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE. PART II*

ISABEL SALGADO LABOURIAUf

Abstract. The bifurcation from equilibrium of periodic solutions of the Hodgkin and Huxley equations
for the nerve impulse is studied. In earlier work singularity theory techniques were used to establish that
these equations have a branch of periodic solutions undergoing two Hopf bifurcations, and the equations
were conjectured to be equivalent to a member of a one-parameter family of generalized Hopf bifurcation
problems. Here the invariants for equivalence to this family and the value of the modal parameter are
computed (see [W. W. Farr et al., "Degenerate Hopf bifurcation formulas and Hilbert’s 16th problem,"
SlAM J. Math. Anal., 20 (1989), pp. 13-30]). The value of this parameter determines the type of bifurcation,
and in this way it is decided which of the proposed bifurcation diagrams are actually to be found. Thus a

topological description of periodic orbits of the Hodgkin and Huxley equations near the equilibrium solution
is obtained. In this way, a periodic solution branch is found that does not arise through a classical Hopf
bifurcation.
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1. Introduction. It is well known [9] that many nerve cells generate trains of
impulses as a response to a constant stimulus. In this paper we describe periodic
solutions of the clamped Hodgkin and Huxley equations for the nerve impulse (HH),
a system of four nonlinear ordinary differential equations, that contain several auxiliary
parameters [5]. As in an earlier article [10], here we study the equations HH as a
bifurcation problem, regarding the stimulus intensity I as a bifurcation parameter. We
also describe the dependence of the periodic solutions on some of the other parameters
involved in HH, such as the temperature T and the maximum sodium conductance
gNa that measures the maximum permeability of the nerve cell membrane to Na/ ions.

Both here and in [10] we have studied the effect of varying gNa away from the
value, here called normal, of 120 m.mho/cm2 obtained by Hodgkin and Huxley [5] in
experiments on the squid giant axon; all other values of gNa are called perturbed and
the HH equations with Na different from normal are referred to as perturbed HH.
The reader should not be deceived by the word normal; the actual value of gNa varies
from cell to cell. Hodgkin and Huxley [5] report measurements of gNa in the interval
[65, 260] m.mho/cm2 in normal giant squid axons. This variability may be largely due
to difficulties in the measurement of gNa in experiments, but all the same it makes
sense to ask what the equations yield for values different from the average of 120
m.mho/cm2. The maximum Sodium conductance can also be modified by the experi-
mental conditions; low concentrations of local anesthetics or tetrodoxin have the effect
of lowering Na and do not seem to affect the conductance of other ions (see [9,
Chap. 11 ]).

In this article, we obtain qualitative amplitude diagrams for the periodic solutions
of the perturbed HH (see Figs. 3 and 7) showing the response of a nerve cell to a
steadily applied current. This corresponds to a usual experimental procedure ([9] and
references therein).
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In 2 we describe the results of [10] on the temperature dependence of the
amplitude diagrams and the conjecture presented there concerning the hidden organiz-
ing centre for HH; we also give a naive description of the singularity theory concepts
used (we refer the reader to [2] for the rigorous construction and for proofs).

The main results are presented in 3 where the invariants for generalized Hopf
bifurcation are evaluated numerically for HH. We determine which of the two possible
cases conjectured in [10] takes place and we discuss the behavior near the hidden
organizing center, thus obtaining a qualitative description of the amplitude of periodic
solutions of HH. We also show that around a critical temperature To, the HH equations
must have a branch of periodic solutions that does not arise througl a classical Hopf
bifurcation. These solutions are not easy to find in a numerical integration of the
equations--in order to find them we have to know where they are.

Amplitude diagrams for low Na are described in 4, with a discussion of the
possible form of transition from the hidden organizing center to this second family of
bifurcation problems.

2. Preliminary results and definitions. In what follows we use the notation and
sign conventions of [10]. The perturbed HH equations have a unique temperature-
independent, steady-state solution for each value of I. This is only true for values of
thf ionic equilibrium voltages Vio, close to those determined in [5], as is shown in [6].
After a change of variables, we introduced in 10] a new bifurcation parameter A, so
that for all values of A the origin of R4 is a steady-state and f(A I is a monotonically
decreasing function. In this way we eliminate one error factor in numerical computations
since we no longer compute the coordinates of the steady-state as a function of the
parameters, and we may think of HH as a family of ordinary differential equations
=HH(y,A) with HH: RsR4 and HH (0, A)=0 where HH also depends on the
parameters T and

For fixed T and Na and below a critical temperature Tc(N), there are two values
A1 < A2 of the bifurcation parameter where the linearization of HH at the origin has a
pair of eigenvalues crossing the imaginary axis transversely. Therefore, by the Hopf
bifurcation theorem [7], two distinct periodic solution branches emerge from the
equilibrium solution at (0, A1) and (0, A2).

For T> Tc no Hopf bifurcation was observed. At T-T the two bifurcations
coalesce at A1 A2-A. We call (0, A) a generalized Hopf bifurcation point; at this
point the linearization of HH has a pair of purely imaginary eigenvalues +/- ito; all other
eigenvalues are real and negative, but some of the other hypotheses in the classical
Hopf theorem [7] are violated.

Generalized Hopf bifurcation is studied in [1], [2] (see also [0]), for a system of
ordinary differential equations

(2.1) ))=g(y,A), g(0, A)=0, yen, A eN

such that Dyg (0, 0) has simple eigenvalues +/-ito and no other eigenvalues of the form
+/-ikto with k Z. The Lyapunov-Schmidt reduction and symmetry considerations are
used to represent periodic solutions of (2.1) as the solutions of an equation of the
following form:

(2.2) xa(x2, A)=0, a:2-R, x_->0.

Intuitively the reduction amounts to rewriting the original vector field locally in
"polar coordinates" on a suitable A-parametrized family of two-dimensional invariant
submanifolds of n, with periodic orbits corresponding, for each A, to solutions of

ra(r2, A 0. The steady-state solution is represented by the x 0 solution of (2.2),
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and points where periodic orbits bifurcate from it are multiple roots of (2.2) at x 0.
The set {(x, A): xa(x2, )t)- 0) is called a bifurcation diagram, and its graph represents
a qualitative amplitude diagram for periodic solution branches.

As an example, a vector field (2.1) satisfying the hypotheses of the Hopf theorem
[7] at A Ac after reduction yields a map a(x2, A) that for u- x2 satisfies:

0a 0a
(2.3) a(0, Ac)=0, au=uu(0, Ac)rs0, a=-(0, Ac)S0.

Therefore near (0, Ac) there is a unique solution q to the equation a(u, 0(u))-= 0
with q(0)= Ac, q’(0)--au/a thus (2.2) has exactly two solution branches through
(0, Ac) given by x-0 and by A(x)- q(x2). If ’(0)< 0, then A(x)-<_ A for x near 0
and (2.1) has a periodic solution of nonzero amplitude near (0, Ac) for each A < Ac
(Fig. l(a)). Thus the sign of #’(0) determines the direction of bifurcation of periodic
solutions of (2.1).

(b) x

l .=oa<0 A a A

FIG. 1. Examples of bifurcation diagrams for generalized Hopf bifurcation, ordinates always standing for
amplitude (x): (a) Classical Hopf bifurcation (2.3). (b) Generic perturbation (unfolding) of the codimension
1Hopf bifurcation (2.7) in the case cu>0, c =0, c >0. (c) Generic perturbation (unfolding) of the
codimension Hopf bifurcation in the case h, 0, h > 0, h,, < 0.

The Lyapunov-Schmidt reduction uses the implicit function theorem in a suitable
function space and therefore all the results on generalized Hopf bifurcation mentioned
here are local both in the variables and in the parameters. In order to avoid repeating
phrases like "in some neighborhood of the point (0, Ac)," we refer to the germ of a
map f at a point p--the class of all maps that agree with f in some neighborhood of
p. Similarly, we may define the germ ofa set S at p as the class of all sets that coincide
with S in some neighborhood of p.

The germs at (0, Ac) of two maps a, of the form (2.2), obtained by Lyapunov-
Schmidt reduction, are called contact equivalent when there are smooth germs T(x, A),
X(x, A) and A(A) transforming one into the other, i.e.,

(2.4) xa(x2, A T(x2, A [xt(X2(x2, , )X, A(A )/ )]

with T: R2 "-R, T(0, 0)# 0, X(O, 0)> 0, and A(0)> 0. The new parameter A does not
depend on x, so two systems such as (2.1) reducing to a and a have the same number
of periodic solutions near y 0 for corresponding values of h near hc. In other words,
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if two equations reduce to contact equivalent maps, the sets of their periodic orbits
can be smoothly transformed into each other (see [10]). For instance, any two germs
at (0, 0) of maps a, : R2- R satisfying (2.3) will be contact equivalent, provided their
partial derivatives at (0, 0) have the same sign (see 1]).

Another concept used here is that of universal unfolding of a germ a, a parametrized
family of germs that exhibit all the possible bifurcation diagrams present in a neighbor-
hood of a; the codimension of a is the minimum number of parameters necessary to
obtain a universal unfolding. For rigorous singularity theory results and definitions
we refer the reader to [1] and [2], where some methods for computing codimensions
and unfoldings are given.

Using singularity theory techniques, the germs of problems of the form (2.2) have
been classified up to contact equivalence in [1] and [2], where a representative in
simple polynomial form is given for each contact class occurring generically in three-
parameter families of generalized Hopf bifurcations and for its universal unfolding.
Each contact class is characterized in 1] and [2] by necessary and sufficient conditions
on the Taylor expansion of a(x2, A) around the bifurcation point (0, At). Explicit
formulae for the calculation of derivatives of a up to third order from those of the
original vector field can be found in [0].

For example, if the germ at (0, 0) of a" - satisfies

a(0,0)-0 and foru-x2,
(2.5)

20a O a
a. (0, O) > O, ax -(0, O) O, axa -(0, O) > O,

then it can be shown 1], [2] that the germ of a(x2, A) is contact equivalent at (0, O) to

(2.6) c(x, A) x2+A.

Since c(x2, A 0 only when x A 0, the germ of the solution set of both xc (x2, A 0
and of xa(x2, A) 0 is the A-axis. If a has ben obtained from a system like (2.1), this
means there are no periodic solutions near (0, 0).

The contact class of (2.6) is not structurally stable. An arbitrarily small perturbation
of the form

(2.7) C(x,A)=c(x2, A)-a=x+A--t,

is not contact equivalent to e for c 0; the set C 0 is either a circle of radius
or the empty set. If C is the reduced form of a vector field, then for each c > 0 it
undergoes two classical Hopf bifurcations at A +v/- (see Fig. l(b)). For c <0 the
periodic solution set is still trivial (steady-state only) but C 0 has no solutions, and
thus C with a 0 is not contact equivalent to e. Moreover, for a 0, each germ (2.7)
is structurally stable and (2.6) is not. It can be shown [1] that the germ (2.6) has
codimension 1 and the family of bifurcation problems C is a universal unfolding for
it. The one-parameter family of bifurcation problems (2.7) is structurally stable as a
whole, although this is not true of any germ satisfying (2.5).

Let xh(x, A be the germ of the perturbed HH after reduction. We have computed
the first-order derivatives of h and established the following results, appearing in 10].

(A) At the critical temperature Tc(Na) where the two bifurcation points coalesce,
we have hx 0/0A h(0, Ac)= 0 for every choice of Sa in the interval [85, 130] (we will
omit units from now on). For normal HH ifhxx > 0.then h is equivalent to the generalized
Hopf bifurcation germ (2.6). The effect of small temperature variations on the zero
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set of h is the same as that of variations in the value of a over the zero set of (2.7),
as in Fig. l(b). Thus for T< To, HH has a single stable periodic solution branch
undergoing two classical Hopf bifurcations.

(B) For normal HH, the direction of bifurcation changes at one of the Hopf
bifurcation points (0, A2) at a lower temperature, T1, following a change in the sign
of O/Ou h(0, A2) hu. The corresponding periodic solution branch loses stability. If at
this temperature hu # 0, then the system is contact equivalent to another generalized
Hopf bifurcation germ, also of codimension 1. The study of its universal unfolding,
as in the case above, provides the description of the amplitude of periodic solutions
(Fig. 1 (c) for the case h < 0, ha > 0) as T is varied around T1. Clearly, the neighbor-
hood of the bifurcation point where the contact equivalence holds does not include
the other (nondegenerate) Hopf bifurcation point of HH present at the same tem-
perature.

In both cases above, the study of HH at the .degenerate Hopf bifurcation points
provides additional information about periodic solutions at nearby parameter values.
In case (A) it shows that the two Hopf bifurcations involve the same periodic solution
branch, a nontrivial observation in a four-dimensional phase space. In the second case,
for T < T1, the classical Hopf bifurcation theorem shows the existence of unstable
periodic solutions for A < A2. Thus the presence of a degeneracy not only explains the
transition from one type of diagram to another, it also makes the analysis "more
global." Here, a point in parameter space where a degenerate Hopf bifurcation occurs
will be called an organizing center for the equations.

(C) For the perturbed HH the function

(2.8) gNa -’> hu(gNa) h(O, Ac) at T Tc(gNa (where hx O)

changes sign twice in the interval [85, 130] and one of its zeros lies within ten percent
of the normal value of Na. This point we called a hidden organizing center for the
equations--it is hidden in the sense that HH had to be perturbed in order to find it.

Even if this value of gNa were never assumed in practice, we would expect the
study of the degeneracy to bring together the two descriptions (A) and (B) above, in
the same way local information about the two classical Hopf bifurcations in (A) was
put together by the study of (2.7). At the hidden organizing center, HH should be
equivalent after reduction to a germ containing the two original ones in its universal
unfolding, i.e., a family of germs (A) such that each first derivative of (A) is zero
for values of a arbitrarily close to zero. It is easy to see that this is possible only in a
structurally stable family if the parameter a is at least two-dimensional.

The simplest (lowest codimension) problems containing in its universal unfolding
both germs mentioned in (A) and (B) above are members of a family of codimension
3 problems. The family is characterized by zero first-order derivatives at the organizing
center, by the signs of its second-order derivatives, as well as by the value of a modal
parameter b. We discussed the geometry of the periodic solution branches for different
values of b when we conjectured in [10] that HH is contact equivalent to this family
at the zero of hu(Na) closest to the normal value of 120.

In the next section we present the result of the numerical evaluation for HH of
the nondegeneracy conditions for equivalence to the one-parameter family discussed
above, and of the calculation of the modal parameter b. Our goal is to obtain a
description of all nonequivalent bifurcation diagrams that appear in HH at temperatures
close to To, a subset of those on the universal unfolding of h. As the value of the modal
parameter determines the type of bifurcation appearing on the unfolding of h, in this
way we decide which of the proposed bifurcation diagrams are actually to be found
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in HH. This is discussed in 3 for the hidden organizing center, and in 4 for the
second zero of h,(Na).

3. Diagrams near the hidden organizing center. The hidden organizing center for
HH is a point in parameter space where the reduction h of the perturbed HH satisfies

(3.1) h(0, Ac) h,(0, Ac) hA (0, A) 0 with u x2.

We conjectured in [10] that around this point h is equivalent to a member of the
family

(3.2) ab(u, A eu2 + 2bAu + 6A 2

studied in [1] and [12]. It is shown in [1] that a germ is contact equivalent to (3.2)
if and only if it satisfies

(0, 0,

uu(O, h) auu 0 (0, h) , and
(3.3)

0

with b2 # 1 where e sign (u,), sign (xa).

The numbers e and B eh form a complete set of invariants for the family (3.2)
under contact equivalence 11 ], i.e., two members of this family are contact equivalent
if and only if e and B are the same for them. The situation differs markedly from the
example of 2, where a similar set of conditions defined a single contact equivalence
class. Here each choice of signs in the second-order derivatives of defines a continuum

of nonequivalent bifurcation problems.
Using the methods of [2] it can be shown that (3.2) has universal unfolding given by

(3.4) A(u, A, c,/3, b) eu2 + 2bAu + 6A 2 + sign (b)/3A + ce.

Therefore, for any sufficiently small perturbation of a germ satisfying (3.3) there are

smooth changes of coordinates of the form (2.4) transforming it into one of the germs
(3.4) for some choice of a,/3, and h. At a =/3 0 the family (3.4) coincides with (3.2).

The definition of contact equivalence can be weakened so as to obtain a discrete

classification of the family (3.2). We define topological contact equivalence in the same

way as the (smooth) contact equivalence (2.4), with continuity substituted for smooth-
ness (see [2]). Two germs belonging to the same equivalence class (called modal class)
have homeomorphic bifurcation diagrams..

Let (3.2)+/- be the family(3.2) with e5 +1 or -1, respectively. Under topological
contact equivalence, (3.2)+ splits into four equivalence classes (called modal classes),
corresponding to values of B in the intervals ]-o,-1[; ]-1, 0[; ]0, 1[, and ]1, +[.
The solutions of A(u, A, c,/3, b) 0 are either ellipses or the empty set in the (u, , )-plane
for 0<IBI<I (Fig. 2) or hyperbolas for IBI> 1 (Fig. 3). In the unfolding of (3.2)_,
only two. modal classes occur corresponding to B > 0 and B < 0, and the solution to

A(u, ,, a,/3, h)=0 is always a hyperbola in the (u, ,)-plane (Fig. 7).
By comparing the bifurcation diagrams for (3.4) to the results summarized in 2

as well as to those in [4] and [13], we conjectured that e5 =+1, and B<0 for HH.
Besides checking the conjecture numerically, we obtain here an estimate of B, and
thus of the modal class of h.

The derivatives hA and h, are simultaneously zero for gra g’c in the interval

[109, 110], and around this point we have the values of Table 1.
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(a) (b) (c)

(d) (e)

FIG. 2. Bifurcation (or amplitude) diagrams for stable germs in the universal unfolding (3.4) of (3.2)/
with -1 < B < 0, for the following parameter values: (a) a > [32/4 or > [32/4(B- 1) and [3 < 0; (b) [3 > 0 and
[3:z/4(B-1)<o<[32/4; (c) [3>Oand 0< a <[32/4(B- 1); (d) [3<Oand 0< a, <[32/4(B- 1); and (e) a<0.

FIG. 3. The universal unfolding (3.4) of (3.2)+ with B <-1. Each bifurcation (or amplitude) diagram is

drawn inside the region in o, [3)-plane where it occurs; the A axis is the steady-state in each case. Dotted lines

represem HH as temperature-parametrized curves on the unfolding of (3.2)+, with temperature increasing as

indicated by the arrows: (a) Na> .; (b) Na=c; and (c)

TABLE

Na Ac I(Ac) T(Ac)
m.mho/cm mV mA/cm C

109 15.97 74.06 26.278
110 16.01 74.22 26.546

Numerical estimates of the second-order derivatives of h at Tc(Na) were obtained
for several values of Na, by using the formulae of [0], a correction to those of 5 of
[ 1] for the case when the imaginary eigenvalues are + ito, with to 1. Thus the numerical
results of Table 1 differ both from the preliminary calculations presented in [2] and
from those in [11], but the qualitative behavior remains the same. For CNa in the
interval [85, 130] we have found the following:

(D) hua is always negative and decreases with Na (Fig. 4).
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(E) h is always positive and increases with Na (Fig. 5).
(F) h,, increases with Na and changes sign for Na in the interval ]96, 97[ (Fig 6).
We have confirmed the following conjecture presented in [10]" at the hidden

organizing center, conditions (3.4) are satisfied, and therefore the perturbed HH, in
reduced form, are equivalent to a member of the family (3.2) with e + 1 &

The modal parameter b was found to be b--7.0 at Na- 109.0, and b--6.8 at
Na--110.0, where both values are rounded to the number of digits shown, and all
digits are believed to be correct. Thus we have also determined that at the hidden
organizing center the reduced HH are in the modal class B <-1 of the family (3.2)+.

For Na and T near c and Tc(), respectively, the perturbed HH are equivalent
to one of the germs (3.4). In this way we can visualize HH as a surface on R
((a,/3, b)-space) fibered by the T-parametrized curves corresponding to fixed values
of Na. A zero of llu(Na, Tc(Na) will correspond to a curve through the organizing
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FIG. 6. The derivative h,, at the point where there is a single generalized Hopf bifurcation, as a function
of ,Na, for the perturbed Hodgkin and Huxley equations.

center (0, 0, 5), if we recall that hA (Na, Tc(Na)) is always zero. We have represented
in Fig. 3 the perturbed HH as T-parametrized curves on the unfolding of (3.2)+ for
B <-1. Each persistent bifurcation diagram is drawn inside the corresponding region
in the (t,/3)-plane. The B direction has been omitted since bifurcation diagrams look
the same along it, due to the topological contact equivalence.

The curves representing HH in Fig. 3 were obtained by inspecting the bifurcation
diagrams for (3.2)+ and comparing them to data on the direction of bifurcation from
10], 11], and 13] and were confirmed for Na 100.

We find that for Na c only two persistent bifurcation diagrams are present.
For T< Tc there is a single periodic solution branch undergoing two nondegenerate
Hopfbifurcations in the same direction as observed in (B) of 2; this branch disappears
at T T(,c). Both bifurcation diagrams contain a solution branch isolated from the
trivial solution x- 0.

The two persistent bifurcation diagrams described above occur for normal HH
along with a third diagram where the periodic solution branches grow toward each
other, corresponding to the situation described in (A) of 2. In this way our knowledge
of the hidden organizing center allows us to put together the partial information of

2, (A) and (a).
All diagrams for Na c contain a branch of solutions not connected to the trivial

solution x- 0, a characteristic of the modal classes IBI > 1 with e- 1. Indeed it is
natural to find two disconnected branches in some of the bifurcation diagrams since
the zeros of (3.4)+ are hyperbolas in the (u, A)-plane in this case. This is not possible
for IBI < 1, where A(u, A, a,/3, 5) 0 on a bounded set.

The isolated solution branch has never been found in a numerical integration of
HH. Since.these solutions do not arise through a classical Hopf bifurcation, they could
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easily be missed in a numerical tracing of the solutions. It is also possible, however,
that at the normal value of Na the isolated branch has either disappeared through
some global bifurcation not captured by the Lyapunov-Schmidt reduction, or moved
to a region of parameter space without physiological meaning. On the other hand, the
presence of this solution branch may explain the damped oscillations observed both
numerically [5], [8] and in experiments described in [8], [3].

For Na < 109 the following two new types of diagram appear. As T increases the
two unconnected branches meet and form two periodic solution branches arising
through Hopf bifurcation; a further increase of T yields a change in the direction of
bifurcation, before the two Hopf bifurcation points coalesce. This change of direction
attects the first Hopf bifurcation point (0, A) in contrast to the findings of [10] for
normal HH (cf. (B) of 2). For Na-- 100 the first-order derivatives ofh at nondegenerate
Hopf bifurcation points have been calculated, confirming the change in the direction
of bifurcation and thus providing furher evidence for the position of the T-
parametrized curve.

Changes in the direction of bifurcation would be observed experimentally as the
appearance of hysteresis at the onset of periodic behavior around A A. Recall that
the parameter A is a decreasing function of stimulus intensity I. When Na < c, a cell
under overstimulation would stop its repetitive activity at a value of l>f(A) when I
increases. If I were subsequently decreased, then firing would resume at I =f(A). For
Na c there is hysteresis at T < Te(Na), around 28C for normal Na. For Na < c,
hysteresis is also obtained at high temperature values.

Hysteresis at the offset of repetitive firing for an overstimulated cell has been
observed in experiments on squid axons bathed in low Ca// sea water 3 ]. The reduction
in [Ca+/ lowers the potential outside the cell membrane and is thus equivalent to the
effect of depolarization; a smaller stimulus will be required in order to obtain the same
response from the nerve cell [9]. The effective stimulus that can be applied without
damaging the cell will be larger and high stimulation effects may become experimentally
observable. However, the HH equations have to be modified if they are to describe
the new experimental situation [8].

4. Bifurcation diagrams for small Na The derivative h,, computed for each value
of Na at the temperature where the two Hopf bifurcation points coalesce, has a second
zero for Na in the interval ]89, 90[. This singularity is probably of less significance
for the nerve impulse than the one of the previous section, since Na is far from the
normal value, although it is still physiologically meaningful. At this point, the charac-
teristics are (see Figs. 4-6)"

h. =hA =0,
(4.1)

h.<O, h.<O, hxx >0.

Again, h is equivalent to a member of the family (3.2). Around this point the data are
as shown in Table 2.

TABLE 2

Na Ac l(Ac) L(Xc)
m.mho/cm mV mA/cm C e 8 e8 B eb

89 14.61 65.39 17.500 -1 +1 -1 +6.0
90 14.72 66.22 18.264 + +6.8



DEGENERATE HOPF BIFURCATION AND NERVE IMPULSE 11

At this second zero gp of hu, the perturbed HH are equivalent to a member of the
family (3.2)_, in the modal class B> 0. The persistent bifurcation diagrams for the
germs in the unfolding of (3.2)_ are shown in Fig. 7, where the perturbed HH are
represented as a T-parametrized curve on (a,/3)-space for values of gNa near gp.

... .........- ..;

(a) ";’" ..." ..’"
(b) " .... ..."’"
) r"

FIG. 7. The universal unfolding (3.5) of (3.2)_ with B>0. Bifurcation diagrams are drawn inside the
regions in a-E-space where they occur; the A axis is the steady-state in each diagram. Dotted lines represent
HH as temperature-parametrized curves on the unfolding of (3,2)_, with temperature increasing as indicated
by the arrows" (a) Na > p" (b) Na p" and (c) Na < p"

The diagrams present on the unfolding of (3.2)_ differ markedly from those
discussed in 2. First, most diagrams of Fig. 7 exhibit two Hopf bifurcations that
generate disjoint periodic solution branches. Second, for all diagrams in the unfolding
of (3.2)/, the set of bifurcation parameter values for which the equation a(u, A)=0
has a nonzero solution is bounded below. This is not true of any diagram in Fig. 7,
where in all cases there is a periodic solution branch that can be extended indefinitely
in the A -- direction. These differences may be due to global bifurcations, but it is
probable that they are simply an artifact of the local analysis; the methods used here
provide a local description of the bifurcation diagrams but give no information as to
the size and shape of the neighborhood where they can be applied. It is also clear that
as Na increases from 90 to 109, the local behavior of HH is best explained by the
analysis of last section.

The situation here is analogous to the results of [10]; initially we knew HH had
two classical Hopf bifurcations at h </.2 with the same direction of bifurcation and
there was no a priori reason for the two periodic solution branches to meet. The
proximity of a degeneracy, in the first case a change in the direction of bifurcation as

described in (2.3) coinciding with the coalescence of the two bifurcation points given
by (2.2), made the analysis "more global." The apparent lack of information about
the periodic solution branches away from the bifurcation points was introduced by
the local analysis.

The same discussion applies to the two hidden organizing centers presented here.
Bifurcation diagrams appear either "capped of[" or with an extended branch, depending
on whether they are interpreted as part of the unfolding of (3.2)+ or of (3.2)_ (cf. Figs.
3 and 7). Moreover, the unfolding of (3.2)+ contains no germ equivalent to (3.2)_ and
vice versa.
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Different bifurcation diagrams are obtained for (2.1) when it is studied on its own
or as part of the unfolding of a more degenerate (i.e., higher codimension) germ. The
presence of a degeneracy close by is extra information about the germ, and this is
reflected in the diagrams we obtain for it. The only codimension 3 germs whose universal
unfolding contains germs equivalent to (3.2) with B- +oo as they approach the origin
of the unfolding space are defined by the following conditions (see [2]):

Ruu Ru t,x 0,
(4.2)

au<0, axe>0,

where each sign of au corresponds to a contact equivalence class.
It may be possible to perturb HH so as to satisfy (4.2), but the perturbation may

introduce some further degeneracy into the problem. This is particularly crucial in the
present case, since the zero of a is very close to the minimum of the function
Na "- hu(Na) defined in (2.8).

The comments made above for the second zero of h, apply equally well to this
hypothetical organizing center. Given the large number of parameters involved, it is
natural to expect HH to have a high codimension. Calculations become more compli-
cated as the codimension increases (see [0]), and therefore it only makes sense to look
for a second organizing center if evidence of low Na persistence of isolated periodic
branches is found.

Acknowledgment. We thank W. Farr for the important correction mentioned in 3.
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Abstract. This paper presents explicit formulas for the solution of degenerate Hopfbifurcation problems
for general systems of differential equations of dimension n _-> 2, with smooth vector fields. The main new
result is the general solution of the problem for a weak focus of order 3. For bifurcation problems with a
distinguished parameter, we present the formulas for the defining conditions of all cases with codimension
_-<3. The formulas have been applied to Hilbert’s 16th problem, yielding a new proof of Bautin’s theorem,
and correcting an error in Bautin’s formula for the third focal value. The approach used is the Lyapunov-
Schmidt method. A review of five other approaches is given, along with literature references and comparisons
to the present work.

Key words. Hopf bifurcation, Lyapunov-Schmidt reduction, Hilbert’s 16th problem
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1. Introduction. The Hopf Bifurcation Theorem has become the standard tool in
applied mathematics for the study of the birth (or death) of a periodic solution of a
differential equation at an equilibrium point. This is fitting, since the classical Hopf
theorem states generic conditions on the differential equation for this bifurcation to
occur, and also provides an explicit formula (or algorithm) for calculating the periodic
solution and its stability. However, there is growing interest in degenerate cases, to
which the classical Hopf formula does not apply. This paper is concerned with
degeneracies in which multiple periodic solutions may coexist, as well as degeneracies
in the dependence on a parameter. Explicit formulas are given for the defining
conditions of all degeneracies having codimension =<3, as defined in Golubitsky and
Langford 14].

The main new result of this paper is the general solution of the focal values of a
weak focus of order 3, for a system of dimension n -> 2, and an arbitrary smooth vector
field. A weak focus of order 3 implies the existence of up to three coexisting limit
cycles, under small perturbations. Previously, only the focus of order 2 had been solved
in this generality, and work on the weak focus of order 3 had been restricted to special
cases, such as dimension n 2 and quadratic nonlinearities.

The formulas presented here are applicable to investigations of oscillations in
chemical reactions (Farr and Aris 12]), biological systems (Labouriau [21], [22]), and
many other fields. Admittedly, the formulas are long and complex. The authors feel
that the effort involved in deriving and checking them is justified by the generality of
the results. The formulas are explicit in terms of the Taylor coefficients of the original
vector field. No preliminary transformations or reductions of the differential equations
are required; for example, the equilibrium is not required to be "trivial" (i.e., identically
zero), and the basic frequency need not be scaled to 1. The formulas can be programmed
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in a symbolic computation language, such as MACSYMA or Maple, to compute the
bifurcation coefficients for specific examples conveniently and with minimal risk of
error.

As a nontrivial application of these formulas, we consider the second part of
Hilbert’s 16th problem, concerning the number and position of limit cycles of planar
(two-dimensional) differential equations with polynomial nonlinearities. This problem
is still unsolved, even in the quadratic case (see the surveys of Coppel [9], [10], and
references therein). Locally, the quadratic case was studied by Bautin in 1952 (see
Bautin [4]), who proved, after a long calculation by the succession function method,
that in a neighborhood of an equilibrium point of a planar quadratic system, there
can be 0, 1, 2, or 3 limit cycles and no more; otherwise the equilibrium point is a
center. This paper presents the first new derivation of Bautin’s results and corrects an
error in one of Bautin’s coefficients.

The approach used in this paper is the Lyapunov-Schmidt method, also known
as the Fredholm Alternative Method, or Method of Alternative Problems. It is essen-
tially the same method used by Hopf in his classic paper [18]. Recently, Golubitsky
and Langford [14] combined singularity theory with the Lyapunov-Schmidt method
to classify degenerate Hopf bifurcations and their unfoldings. They gave formulas for
the bifurcation coefficients for some degenerate cases. This paper extends those results,
giving formulas that are more readily applicable, and including the case of a weak
focus of order three.

In the existing literature on degenerate Hopf bifurcation, we can identify six
different methods of solution. These are: the method of Poincar6-Birkhott normal
forms; the method of Lyapunov constants; the method of the succession function; the
method of averaging; the method of intrinsic harmonic balancing; and the Lyapunov-
Schmidt method, which is the one used here. Unfortunately the literature on the six
methods is nearly disjoint; there have been no comparative studies to guide the user
to a choice among these methods. Therefore, in this paper we briefly describe all of
the methods and relate them to the approach used here.

The plan of the paper is as follows. Section 2 briefly reviews the classical Hopf
theorem, and defines and compares the six different methods listed above for degenerate
Hopf bifurcation problems. Section 3 outlines the calculation and presents the new
formulas for the degenerate Hopf bifurcation coefficients. Section 4 applies these
formulas to a new proof of Bautin’s theorem for Hilbert’s 16th problem.

2. Degenerate Hopf bifurcations: alternative approaches. This section reviews six
different methods that have been used in studies of degenerate Hopf bifurcation
problems. Salient features of each of the methods are described; however, this review
is not intended to be an exhaustive comparative analysis. References to more complete
presentations of each of the methods are given. Most authors in the field have focused
on only one of these methods and have not related their work to the other approaches.
We hope this review may help reduce this fragmentation of the field and facilitate
comparison of the results presented here with previous work, for example, on Hilbert’s
16th problem.

First it is necessary to establish more precisely some terminology and notation,
and to briefly review the classical Hopf theorem. Let us consider a parametrized family
of differential equations

(2.1) u’=f(u, la,)
where f" R" RP n, and f is a smooth (C) function of the state variables u and
parameters /x, and n >-2, p->-1. For some applications it is important to preserve a
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physical control parameter A, in which case we define

(2.2) /, (, a).

Then a represents a distinguished bifurcation parameter, as in [14], and a represents
additional "unfolding" or free parameters; not all authors make this distinction. We
assume the existence of an equilibrium point, translated to the origin for convenience,

(2.3) f(0, 0) 0

and at this equilibrium, the derivative with respect to u,

(2.4) A (Duf)l(o.o)
has a simple pair of imaginary eigenvalues +iwo, and no others with zero real part.
Then A is nonsingular, and the Implicit Function Theorem implies that the equilibrium
(2.3) has a smooth extension u(/z) for x near zero. Usually it is assumed that this
branch of equilibria has been translated to the .trivial solution u =0; however, to
facilitate applications, we do not make this assumption here. Now the derivative A
has a smooth extension along the branch of equilibria,

(2.5) A(/z) --- (Duf)[((.),.,
and the simplicity of the imaginary eigenvalues implies that they too have smooth
extensions along the branch, for/x near 0,

(2.6) o’(/z) + iw(/z), or(0) 0, w(0) Wo.

The classical Hopf theorem assumes the Hopf transversality or crossing condition,
with respect to a distinguished parameter A [18]

(2.7) o’(0) # 0.

(The consequences of the failure of this hypothesis have been explored in 14].) Then
the main conclusion of the Hopf theorem is that there is a unique (up to phase) smooth
branch of periodic solutions, in any small neighborhood of u =0, which can be
parametrized by an amplitude of the periodic solution, here denoted r, and there is a
smooth relationship between the parameters/z and the amplitude r, of the form

(2.8) r[co+ C2r24r Car44r "] 0,

where denotes higher-order terms in r. The coefficients Co, c2, etc. are functions of
z. Hopf showed that (2.7) is equivalent to

(2.9) (Co)a (0) : 0,

so that, by the Implicit Function Theorem, (2.8) can be solved uniquely for A as a
function of r > 0 near the origin. Hopf 18] also presented a formula for c2(0), in terms
ofthe Taylor coefficients off The nondegenerate (or classical) case of Hopfbifurcation
is that for which (2.7) holds and in addition

(2.10) c2(0) # 0.

Then it is clear that (2.8) near (0, 0) defines a curve, asymptotically parabolic in shape,
with a unique r > 0 for each X of one sign, and no r for X of the opposite sign. This
curve is the classical Hopf bifurcation diagram. Additional parameters a do not
qualitatively change this picture when (2.7) and (2.10) hold, but become important if
either condition fails.
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The computation of the coefficients c2, c4, is one principal theme of this paper.
In fact every one of the methods reviewed here can be described as a means of arriving
at an equation of the form (2.8), and then computing the coefficients c2j.

Degenerate Hopf bifurcation occurs when either of conditions (2.7) or (2.10) fails.
In this paper we are concerned mainly with (2.10). Then the problem is to calculate
the first nonvanishing C2k in (2.8) (only even powers of r appear in any of the methods).
Adopting the terminology used in much of the literature cited below, we will say that
the differential equation has a weak focus of order k, if

(2.11) co(O) C2(k-1) -- O, C2k O,

and the constant c2j(0) is the jth focal value. When (2.11) holds we obtainmultiple
periodic solutions from the following standard result.

THEOREM 2.1. Suppose that the differential equation (2.1) has a weakfocus oforder
k. Then by generic perturbations involving k parameters in the differential equation, it is
possible to obtain j limit cycles, in a neighborhood of u O, for each j satisfying 1 <=j <-_ k,
but not for any j > k.

A proof of Theorem 2.1 using singularity theory is given in [14], where a more
explicit prescription of the "generic perturbations," as well as the effects of a distin-
guished parameter, can be found. Corresponding proofs for the other approaches to
degenerate Hopf bifurcation can be found in the references given below.

Several of the methods to be described here are applicable only in the two-
dimensional case. In principle, under the above hypotheses, the Center Manifold
Theorem can be used to reduce a system of dimension n > 2 to a planar system.
However, in practice this reduction is rarely easy to carry out explicitly, so such
methods are severely limited. Let us proceed to the review of the methods.

Method ofPoincard-Birkhoffnormalforms. This is one ofthe best-known methods.
Excellent references are the books of Arnold [2] and Guckenheimer and Holmes [16].
After a reduction to two dimensions, a sequence of near-identity nonlinear transforma-
tions brings the differential equation to a normal form. Written in amplitude-phase
coordinates (r, 0), the differential equation for r has right-hand side of the form (2.8),
up to a finite order, and the equation for 0 has a similar form except it is even in r
instead of odd. Higher-order terms do not have this symmetry, but it can be shown
that the nonsymmetric higher-order terms are not important, and Theorem 2.1 holds.
It should be noted that the reduction to two dimensions and the transformation to
normal form can be combined into one calculation for greater efficiency (see Bibikov
[5], Coullet and Spiegel [11]). This method has been applied to Hilbert’s 16th problem
by Rousseau [28], who found that the calculation of the third focal value c6(0) for a
particular example, using MACSYMA, strained the memory capacity of a modern
minicomputer.

Method of Lyapunov constants. A good reference for this method is Gfbber and
Willamowski [13]. We begin with a two-dimensional system, and instead of trans-
forming the system, we construct a positive definite Lyapunov functional V(u,
(as in Lyapunov’s method for .asymptotic stability) for which the derivative along
trajectories is

(2.12) V= V V. f= vjr.
The coefficients v are called the Lyapunov constants and are functions of the param-
eters. There is an algorithm for constructing V for which the leading v’s are zero. The
level curves offinite truncations ofthe series (2.12) define Poincar6-Bendixson domains,
from which the existence of limit cycles is obtained. Recently, Bonin and Legault [6]
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have shown that (2.12) is equivalent to (2.8), and have verified that Theorem 2.1 holds
for this approach. They estimate that this approach is more efficient than the method
of Poincar6-Birkhoit normal forms, mainly because it involves computing one Taylor
series instead of two. The method was applied to the quadratic Li6nard equation (a
subcase of Hilbert’s 16th problem) by Kohda, Imamura, and Oono [20].

Method of the succession function. A thorough exposition of this method can be
found in the book of Andronov, Leontovich, Gordon, and Maier 1 ]. Again we assume
a two-dimensional system, with a weak focus at the origin. We select a ray from the
origin (typically the x-axis) and choose initial points on this ray. Sufficiently near the
weak focus, the Poincar6 map, which follows a solution from the ray back to the ray,
is well defined. This map is called the succession function. Locally it can be expanded
in a Taylor series in the coordinate along the ray, and this Taylor series can be put in
the form (2.8). Zeros of the succession function correspond to periodic solutions, and
again Theorem 2.1 holds for the succession function. This is the method used by Bautin
[4] on Hilbert’s 16th problem, and he proved Theorem 2.1 for that case. A formula
for the first focal value, derived by this method, is given in Andronov et al. 1 ].

Method ofaveraging. There are many good references for the method of averaging
as applied to bifurcation problems (see Chow and Hale [8], Guckenheimer and Holmes
[16], Sanders and Verhulst [29]). In a two-dimensional system near a weak focus, the
phase angle 0 is a strictly monotone function of time t. Therefore it is possible to
transform the independent variable from to 0, and reduce the dimension of the system
by one, but the new system is 27r-periodic in 0, instead of autonomous. Integral
averaging now leads to a vector field of the form (2.8), and Theorem 2.1 applies.

Method of intrinsic harmonic balancing. For this method, refer to Huseyin and Yu
[19] and the references therein. Harmonic balancing involves formally expanding a
trial solution in a Fourier series and matching coefficients. Certain inconsistencies that
arise in the naive approach are overcome in the method of intrinsic harmonic balancing.
It has only recently been applied to degenerate Hopf bifurcation problems.

Method ofLyapunov-Schmidt. We summarize the Lyapunov-Schmidt method, as
used in [14]. For a thorough exposition, see Golubitsky and Schaeiter [15] and
Vanderbauwhede [31]. The first step is to rescale the time in (2.1), to make the period
constant and equal to 27r, by

(2.13) s too(1 + r)t,

where the new parameter r is the correction to the period, and is to be determined.
Then (2.1) is rewritten

(2.14) N(u, A, c, "r)= -Oo(1 + "r) -ss+f(u, A, a) =0,

and we seek solutions to (2.14) in the space C of continuously ditterentiable,
27r-periodic vector-valued functions.

The reader is warned that N in (2.14) is defined with the opposite sign to the
corresponding N in 14]. As a result, many ofthe formulas in this paper have differences
in sign from the formulas in the earlier paper. The motivation for this change is that
it leads to eigenvalue and focal values with the same signs as in the traditional
approaches described above, and so comparisons are made easier. We obtain the usual
correspondence that negative values imply stability. This is a consequence of the fact
that in (2.14), N and f have the same sign, so that eigenvalues and focal values
computed from N have the same sign as if they were computed directly from the
vector field f.



18 W.W. FARR, C. LI, I. S. LABOURIAU, AND W. F. LANGFORD

The linearization of (2.14) is

(2.15) Lu -tOo ss+ A u 0,

with A defined by (2.4). The kernel of L is spanned by

(2.16) bl(s) Re (c eiS), bE(S) Im (c e is)

where c is an eigenvector of A satisfying

(2.17) Ac itooC, c*c 2.

Here * denotes complex conjugate transpose. Similarly, we define adjoint eigenfunc-
tions qq and q2 as the real and imaginary parts of de is, where d* is the left eigenvector
satisfying

(2.18) d*A itood*, d*c 2.

The vectors c and d are needed in the formulas in the next section.
The Lyapunov-Schmidt method proceeds by projecting (2.14) onto Ker (L) and

a complement, solving on the complement where L is invertible, and substituting that
solution into the equation in the kernel. The result is a two-dimensional map, called
the bifurcation equation,

(2.19) g :R2 X Rp X R "-’) RE, g(x, y; Ix, ’) O.

From the phase-shift symmetry of the periodic functions g is S equivariant. We may
arbitrarily fix the phase and define an amplitude, for example, y 0 and x >= 0. Then
the bifurcation equation has the form

(2.20) g p(x2, Ix, -)x 0, g2 q(X2, Ix, 7")X 0,

where p(0)- q(0)--0, and q(0)= tOo 0. Periodic solutions correspond to nontrivial
solutions of p q 0. By the Implicit Function Theorem, the q-equation can be solved
for -, which we then substitute into the p-equation, which gives the final equation

(2.21) a(x2, Ix)x=p(x, Ix, -(x2, Ix))x 0.

Now (2.21) has the form (2.8), and it has been shown that Theorem 2.1 holds once
again. It remains to calculate the Taylor coefficients of a, which include the c2j(0) in
(2.8). This is accomplished by repeated implicit differentiation of (2.20)-(2.21), and
the solution of linear differential equations in the complementary space. The results.
are presented in the next section.

Recall that Ix =(A, a), where A is a distinguished parameter. The possible
degeneracies involving the distinguished parameter A have not been discussed here,
but are explored thoroughly in Golubitsky and Langford 14].

3. The bifurcation coefficients. In this section we present the explicit formulas for
the Hopf bifurcation coefficients, for the cases of weak loci up to order 3 (as defined
in 2). The general solution for a weak focus of order 2 has been obtained by Golubitsky
and Langford 14], and earlier by Hassard and Wan 17]. The weak focus of order 3
seems not to have been solved before, except in special cases; for example, Bautin [4]
treated the case of a two-dimensional system with only quadratic nonlinearities.
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Furthermore, the formulas presented here remove two simplifying assumptions
that were made in [14]. From the theoretical point of view of that paper, there is no
loss of generality in assuming that the imaginary eigenvalues are scaled to + and that
even as/ varies the equilibrium solution remains fixed at the origin (i.e., is a trivial
solution). In applications, however, these simplifying assumptions are rarely satisfied.
The necessary extensions to the general case are presented here. Note also that our
formulas include those necessary to determine degeneracies involving the distinguished
parameter as defined in [ 14], as well as the focal values discussed in 2. These formulas
allow the calculation of the defining conditions of all possible degeneracies of
codimension up to 3, as defined in [14].

To avoid repetition, it is assumed that the reader is familiar with the notation and
formulas in 5 of 14]. However, the reader is warned that, since the nonlinear operator
N is defined here with a sign opposite to that in the earlier paper (for reasons explained
in 2), some of the formulas have signs reversed.

First we provide the formulas that remove the assumption of a trivial solution.
Let f(u, A, a) be the right-hand side of our set of ordinary differential equations, and
assume that it does not have a trivial solution. (In this section we will suppress the
dependence of f on a, the vector of free parameters, for convenience.) We define a
function G that has a trivial solution locally by

(3.1) G(v, A =f(v + (A ), A

where t(A) satisfies

(3.2) f(a(A), A) 0,

for ,t in some neighborhood of the Hopf bifurcation point. That is, (A) is the
steady-state solution written as a function of the distinguished parameter A. The
formulas we will present below for the derivatives of the functions p and q, as defined
in (2.20), will be in terms of G; we present immediately below the formulas relating
derivatives of G to derivatives of the original vector field f. Our purpose in splitting
up the calculations in this fashion is twofold. First, the subsequent formulas are
simplified to a certain extent, and second, some applications will have trivial solutions
and the most general formulas would entail quite a few needless calculations. Note
first of all that DkG,, Df for all k, where by D G we mean the kth derivative of
G with respect to v thought of as a symmetric k-linear form. Thus if all we seek is
the focal values of 2, it is irrelevant whether or not f has a trivial solution. It is only
when derivatives with respect to the distinguished bifurcation parameter occur that
complications arise. The extension of our notation to mixed v and A derivatives is
trivial, since we are considering to be a single real parameter. The formulas we will
need are given below (in our calculations below all derivatives are to be evaluated at
the Hopf point, so we will supply as arguments only the k vectors on which the form
is to act):

D,D G(x) D2of(v, x)+ D,D;,f(x),

D D, G(x, y) D3,,f( Vl x, y) +OO,f(x, y),
2 x) + 2D2 O,f(v x) + O,,O2xf(x),D,D] G(x) D3,f( v, v, x) + D,,f( v2,

D3vDxG(x,y,z) 4D,.,f(v, x, y, z)+ D3,., D,f(x, y, z),

D D]f(x, y) 4D,f(v,, Vl, X, y) + O3,.,f(v2, x, y) + 2D30 D,f(v, x, y)
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+ D2 DZf(x, y),
(3.3)

DvO3 G(x) 4 X) + 3 D3vf(1)l I)2, X) 3
I- Dvf(v3 x)Dvf(vl, vl, 1)1,

+ 3 D3v Daf(v, vl, x) + 3D2 Daf(v2, x) + 3D D2f(vl, x)

+ DoD3f(x),
D4 Da G(x, y, z, w)= DSvf( 1)1, X, y, Z, W)-1t-- D4v Daf(x, y, z, w),

4D3 O]f(x, y, z) OSvf(Vl, v,, x, y, z) + Of(v2, x, y, z) + 204 OAf(va, x, y, z)

+ D3v D]f(x, y, z),

Ds Da G(x, y, z, w, t)= D6f(vl, x, y, z, w, t)+ Dsv Daf(x, y, z, w, t),

where x, y, z, w, and are vectors in R", and the quantities vi are derivatives of t(A)
defined by

V -(Df)-’(Daf),
v2 (Df)-a(Df(v, vl) + 2DDaf(v) + D]f),

(3.4)
v3 -(D,,f)-a(D3f(vl, v,, vl)+ 3 D,f(vl,2 vz)

+ 3D Daf(v,, 1)1) -t- 3 DOaf(1)2) + 3DO2xf(v,) + D3f).
Next we present the formulas for the derivatives of a(z, A) in terms of the

derivatives of p and q (we let z= x2, see (2.20)-(2.21)). The notation is that of [14],
that is, we write

(3.5) a(z, , Y az%.
Note that the derivatives of a(z, A) with respect to z, at (z, A)= (0, 0), are equivalent
to the focal values defined in 2.

The Pijk notation is a shorthand defined like that for the a0 coefficients, which we
give below for completeness, although we assume readers of this paper are familiar
with either the paper of Golubitsky and Langford [14] or the treatment given in
Golubitsky and Schaeffer [15]. The notation depends on the two functions g and g
defined above in 2 and the series expression

(3.6) p(z, A, 7")= ., pi,z’h"’
where z x2 as before. Hence p is given by

1 o2i+l+j+kgl(O O, O)
(3.7) Pjk

(2i+ 1)!j!k! Ox+ OA 07"k

with analogous expressions for qk involving g2. The formulas for the ai coefficients
are given below. Their derivation involves only elementary calculus, but they are given
here because there are sign changes from [14] due to the new definition of N and also
because they are for the case too 1:

aoo O, ao- Ploo, aol Polo,

a20=P200-Poa qoo/too, a=Po-Pl01 qoio/too, ao=P020,

a30 P300-P20 qoo/too+ P102 qoo/to-Plo (q200/too qlo qoo/tog)
(3.8)

a2 P21o P qaoo/ tOo P_o qolo/ tOo + 2po2 qoo qoao/

--Plol(qllO/tOo-- qlOl qolo/

a12 P,o Pill qolo/tOo + Plo2 qg,o/tO Plo, qo2o/tOo Po21 qloo/tOo

ao3 Po3o Po21 qolo/tOo.
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Finally we present the formulas for the derivatives of p and q. Deriving these
formulas is straightforward though tedious, and the labor involved especially in the
P,oo coefficients increases rapidly with m. The formulas assume that G has a trivial
solution, so for where this is not true and where we are using a distinguished bifurcation
parameter, they should be modified according to the prescription above.

Computation of the coefficients proceeds in two steps. In the first step, linear
algebra problems must be solved to obtain complex-valued vectors that actually are
coefficients in a Fourier series for the function w(x, A, r), and in the second, these
vectors are used to evaluate the p and q coefficients of the bifurcation equations. As
shown in Golubitsky and Langford [14], certain coefficients are identically zero or
have special values. These are

Pooj=0, j=0,1,2,..., qooj 0, j=2,3,4,. .,
(3.9) qooo 0, qool tOo,

POlj qOlj --0, j 1, 2, 3,

The formulas for the first-order derivatives of a (z, A at the origin have very simple
forms. The set of vectors for the Ploo coefficient, which determines stability in the case
of nondegenerate Hopf bifurcation, is found by solving

(3.9) aao -1/2D2o G(c, e), (a-2itOoI)a2= -D G(c, c)

where A is the Jacobian matrix of F at the Hopf point and c is the right eigenvector
of A corresponding to the eigenvalue itOo, as in 2. In computations it is useful to
form the intermediate PQ100 and PQ010 quantities, given by

PQ1O0 D G(c, ao) + D2,_, G( e, a2) + 1/4 D3o G( c, c,
(3.10)

PQ010 DvD,x G(c),

before computing

(3.11) Ploo 1/4 Real (d*PQ100), Polo 1/2 Real (d*PQOIO).

The coefficients qloo and qolo are obtained by taking imaginary instead of real parts
and inserting a minus sign. It is a simple matter to identify Polo with tra (0, 0), so that
a nonzero value means the transversality condition is satisfied. If Ploo is not zero, then
a negative value indicates a stable periodic orbit and vice versa.

Higher-order calculations become increasingly complex. We need eight more
vectors to compute the second-order coefficients; six are obtained by solving:

(3.12)

(A-3itOoI)a3 -D G(c, a2) -D3, G(c, e, c),

Abo -2[D2 G(c, al)+D G(e, al)]-3DZv G(ao, ao) 6D2 G(a2,

3 D3v G( c, e, ao) -D3v G( c, c, a2) -D3 G(e, e, a2) -D4o G( c, c, e,
(A 2ia,oI)b2 -2DoG(c, a) 2DG(e, a3) 26D,,G(ao, a2)

-3D3 G(c, e, a)-D3 G(c, c, ao)-D4 G(c, c, c,

(A 2itooI)c2 2itooa:z,

Ado 2 2 2-DoD,G(e) DvD,G(ao)-DvG(c, el)-DoG(e, Cl)- c,

(A 2itOoI)d2 2 2-D,D,xG(c, c) DoD,G(a2).=--DG(c, Cl)-
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The remaining two vectors require some explanation, since the left-hand sides of the
equations are singular. According to the Fredholm alternative, the solution exists and
is unique if we specify that the solution be orthogonal to the eigenvector of the adjoint
problem and ifthe right-hand side ofthe equation is orthogonal to the same eigenvector.
This eigenvector d is found from

(3.13) (A* + itooI)d 0

(where A* is the transpose of A) and normalized so that d*c 2. The two remaining
vectors thus are uniquely determined from

(A- itooI)al -PQ100+[d*PQ100]c, d*al =0,
(3.14)

(A- itooI)c -PQ010+ 1/2[d*PQ010]c, d’c1 =0.

The next step in determining the second-order coefficients is to compute the
following PQijk quantities, which will lead directly to the Pik and qk quantities we
desire:

(3.15)

PQ101 D G(, c), PQ020 D,D G(Cl)+1/2DD G(),

PQll0- D2 G(c, ao)+ D2 G(’I, a2)+ D2 G(c, do)+ D2 G(, d)+DD G(c, ao)

+ D2oD, G(, a2)+DvDa G(al)+D3v G(C, c,

+1/2D3G(c, , c,)+1/4DDxG(c, c, )

PQ200 1/2D G(c, bo)+1/2D2o G(, bz) +2D G(ao, a) +2D2 G(a:z, 31) +2D G(a:z, a3)

-+’1/2D3v O(c, c, a,)q- O3v O(c, e, a,)+1/2O3v O(’, e, a3)

+ 3 D3,., O(c, az, a2) + 3 OZv G( e, ao, a2) + O3v G( c, ao, ao)

+1/4 D4o G(c, c, c, (tz)+-] D4o G(c, c, ?., ao)+-] D4v G(c, , 6., az)

+lOSvG(c, c, c, e, e).

The p coefficients for /j / k 2 are now obtained from the formulas

Po = Real (d*PQ101), Polo 1/2 Real (d*PQ020),
(3.16)

po 1/4 Real (d*POl 0), p:oo- Real (d*PO200),

and the analogous qk coefficients, by changing the sign and taking the imaginary
instead of the real part.

Computing the third-order coefficients is even more complicated, but proceeds in
exactly the same way. We first compute 24 vectors; these vectors, along with the ten
already computed, could be used to obtain approximations to the periodic orbits, but
we have not done this. We will only use them to obtain the Pk coefficients for +j + k 3.
As far as we know, these coefficients have not been obtained before.

The first set of vectors are required for the PQ300 quantity and are obtained by
solving the following series of problems"

(3.17)

(A-4itooI)b4= -3D G(a:z, a2)-2D G(c, a3)-D3o G(c, c, a:z)-D4v G(c, c, c, c),

(A-itooI)el -5PQ200+[d*PQ200]c, d’el =0,
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=-5 2 2 b2) 10D2,,G(ao, a3) 10D2,,G(a:,, a,)(A-3itooI)e3 -D, G(6, ba)-Dv G(c,

-5D3G(c, 6, a3)-D3G(c, c, al)-15D3,G(c, ao, a2)-D3 G( 6, a, a)

15--D, G(c, 6, bo) 30D3, G(6, 82, a3)-30D3o G(c, a2, 83)

30D3,, G(6, ao,

30D3, G(c, ao, 81) 30D3, G(c, 82, al) 30D3 G(6, a2, 81)

15D3, G(ao, ao, ao)

-90D3 G(a2, 82, ao)-D4 G(c, c, c, a3)-D4o G(c, c, c, 83)

15 4--D G(c, 6, 6, al)

15 4
-7Do G(6, c, c, 81)-D4 G(6, 6, a2, ao)-D4 G(c, c, 8_, ao)

45D4o G(c, 6, a2, 8:,)

45 4--D, G(c, 6, ao, ao)-DSv G(c, c, c, c, a2)-Ds, G(c, c, c, 6, a2)

45-D,, G(c, c, 6, 6, ao)-D6 G(c, c, c, 6, 6, 6),

(A-2iwoI)h2 -3D G(6, e3)- 3D2 G(c, el)- 15D2o G(82, b4)- 15D G(ao, b2)

15D G(a2, bo)- 10Do G(al, al) 20D2v G(a3,
15-Do G(6, 6, b4)- D3o G(c, 6, b2)

--z-DoG(c,15 C, bo) 30D3,, G(c, 8:,, a3) 30D3, G(6, ao, a3)

30D3o G(6, a2, aa) 30D3, G(c, ao, aa) 30D3o G(c, a2, 88)

45D3o G(a2, a2, 82)

-45D3 G(a2, ao, ao)-D4v G(c, 6, 6, a3)-D4 G(c, c, c, 81)

15 4
-7 D,., G(c, c, 6, al)

45 4 45 ]r)4 G(c c, a2 82)--Do G(6, 6, a2, a2)- 45D4o G(c, 6, a2, ao)---o

45 4
---gD G( c, c, ao, ao)

45--Do G(c, c, 6, 6, a2) Ds G(c, c, c, 6, ao) 15-DG(c, c, c, c, 8_)

15 6--D, G(c, c, c, c, 6, 6).
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PQ210 vectors:

(3.18)

Ano -DoDx G(bo)-2D2D, G(e, a,)-2D2Dx G(c, I)-3DDa G(ao, ao)

6D2o D, G(a2,

--D3oD,, G(e., e, a)-D3,,D,, G(c, c, a)-3D3oD,, G(c, , ao)

-DaD, G(c, c, e, e)

-2DZo G(e, nl)-2DEv G(c, tl) 692v O(t2, d2)- 6D2o G(a2, 2)
-602 G(ao, do)-2Oo G(al, el)-2Ov G(al, c,)-O3o G(c, c, 2)

D3, G(e, e, d:) 3 D3, G(c, e, do) 3 D3o G(
-3D3 G(e, c, ao)- 3D3 G(c, el, ao)-1/4D4 G(e, e, c, Cl)-D4 G(c, c, e, el),

(A-itooI)nl -PQ110+][d*PQll0]c, d*n =0,

(A 2itooI)n2 -Do D,x G(b2) 2D D,x G(e, a3) 2D D, G(c, al) -6DD, G(a2, ao)

-3D3oDx G(c, e, a2)-DD, G(c, c, ao)-DaD,x G(c, c, c,

-2D2oG(e, n3)

-2D G(c, n)-6D G(ao, d)-6Do G(a, do)-2D G(a, c)

-2D G(a, e)-3Do G(c, , d)--D G(c, c, do)

3D G(e, Cl, a2)

3 D3o G(c, e, a2) 3 D3v G(c, Cl, ao) -D4 G(c, c, e, Cl)

--14 o4 c, , ,
(A-3itooI)n3= -DoDx G(a3)-D2D, G(c, a2)--D3oDx G(c, c, c)- D2 G(c, d2)

-oa,c-oc, , c.
PQ201 vectors:

(3.19)

Ako -2Dv G(e, kl)-2D2o G(c, /) 6D G(a:, c2)-6D G(a2,

-D, G(e, e, c2)-Do G(c, c, e2),

(A-iooI)k -PQ101 +][d*PQ101]c + iooa, d’k1 =0,
(A-2itooI)k2= 2itoob2-2D G(e, k3)- 2D2o G(c, kl)-6D2o G(ao, c2) 3D3o G(c, e, c2),

(a- 3itooI)k3 3itooa3-D G(c, c2).

PQ111 vectors:

(3.20)

PQ102 vector:

(3.21)

Ajo -D O(c, ]’1) D2o G(e, j),
(A- ioooI)ja =1/2ioooC,, d’j, =0,

(A-2ioaoI)j2= 2ioaod2- D2,, G(C, jl)- D,,Dx G(c2).

(A-2itooI)m2 4it00 C2
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PQ120 vectors:

(3.22)

Aro -D2 G(cx, .) D2 G(c, ) D2 G(, rx) 2DDx G(do) D2 Dx G(, c)

DD G(c, 1) DoD G(ao)-DD G(c, ),

(A- ioI)rl -PQO2O+[d*PQO2O]c, d*r O,

(A- 2ioI)r: -D G( c, r) -DG(c c) 2DoD G(d) DDG(c, c)

-DoD G(a2)-DD G(c, c).

Next we define analogous PQijk quantities for +j + k 3.

(3.23)

PQ300 DG(, h2)+D G(c, ho) +3D G(fi2, e3) +3D G(ao, e) +3D G(a2, )

+5D G(a3, b4)+5D G(al, b2)+ 5D G(a,, bo)+5D G(a3, 2)

+O G(e, , e3)+D G(c, e, e,)+D G(c, c, 1)+OG(, ao, b2)

+ 93o G(, a2, b4) + D G(c, a2, b2) + O G(, a2, bo)

+D3v G(c, ao, bo)

+DO(c, a2, 2)+ 5D G(, a, a)+ 10D G(, a3,

+ 10D G(c, al, 1)

+ 10D G(c, a3, a3) +30D G(ao, a, a3) +30D G(a2, a2, a)

+ 15D3 G(ao, ao, al)

+30D G(ao, a2, a)+ 15D3 G(a, a, a3)+D G(, , , b4)

+n’G(c, e, , b)v

+v154 G(c c, bo)+O G(c c c 2)+ 15O G(c a2, a3)

+$v15n4 G( ao, a3)

+D G(e, e, a, a)+ 15D (c, e, ao, a)+D (c, c, a, a)

+ 15D G(c, , a,
+D(c, , o, a)+D(c, c, ., a)+D(, ao, ao, ao)

+ D (e,ao, ao, a)

+DG(e, a, a, a) +45D G(c, ao, a, a)+Do G(c, c, c, c, a)

+Do G(c, c, e, e, a)

+D G(c, c, c, , al)+DG(c, c, c, c, a3)+DG(c, c, c, a, a)

+v45n5 G(c a0, 02)
n5 G(c, c, c, ao,+son5 G(c, c, , ao, ao)+D G(c, c, , a2, a2)

+ D G(c, c, c, c, c, a)
15 6 15 6 a2+Do G(c, c, c, , , ao)+D G(c, c, c, c,

+DG(c, c, c, c, e, e,
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(3.24)

PQ210 - D, Dx G(e)+D2 Dx G(c, b0) +1/2D Dx G(, b2) + 2D2 Dx G(a2, fi)

+2DD,x G(ao, al)+2DDx G(a2, a3)+D3vDx G(c, c,

+ O3 Dx G(c, , al)

+O3vOx G(e, e, a3)+ 303oDx G(c, a2, az)+OOx G(c, ao, ao)

+ 3 D3o Dx G(, a2, ao)
4 4+zDoDxG(c, c, c, 2)+zDoDxG(c, c, , ao) 4+DoDG(c, , , az)

+ oc, no + oe, +20a, +20ao, n
+0 a, n+0a, +0a, do +20a,d
+0b,e+Obo, c+Oc, c,+0c, ,
+D3 G(, , n3)+3D3oG(c, a2, )+3D3oG(c, ao, do)+3DG(c, a, d)

+30 G(e, a, do)+30 (e, ao, d)+0 G(c, a, e)+O G(c, a, c)

+D G(, a3, el)+ D3v G(, a, Cl)+3D G(a2, ao,

+ 3D3 G(a, a2, Cl)
4 2) + D G(c do)+D3 G(ao, ao, c)+zD G(c, c, c, c,

+0 G(c, e, , d)

+0c, c, ao,+0c, c, a, c+Oc, , a,
+0(c, e, ao, c)

+0 G(e, e, a, c)+O G(c, c, c, e, e)+O G(c, c, e, e, c);
(3.5)

PQ01 =Oe, k+O(c, ko+O(a, k+Oao, k+20a,

+DI G(c, c, 1) + 3D3 G(c, 2, a) + 3D3v G(, c, ao) + 3D3o G(c, c2,

4+D G(c, , e, c)+zD G(c, c, c,

PQlll =DDxG(k)+DDx G(, c2)+DG(, c2)

(3.26) +D G(a, f)+DG(ao,jl)+D G(c, jo)

(3.27) PQ102=DG(, m2);

(3.8)

PQl0 oe, +o(c, r0+o a0, r)+o (a, )+o(d0, c)

+Od, e+Oc, c, e+Oo (c, , )+O(e, c, c
+D3 G(c, Cl, el) +DoDa G(nl) + DDx G(, d2)+ DDx G(c, do)

+ DDx G(ao, c)+ DDx G(a, el)+DDx G(c, , c)
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(3.29)

(3.30)

PQ021 DDx G(j,);

PQ030 DoDx G(rl)+1/2OoO] G(Cl)+OoO3x G(c).

Finally we obtain the Pijk coefficients from

(3.31)

P3oo Real (d*PQ300)/6!,

P_ol Real (d*PQ201)/4!,

plo2 Real (d*PQ102)/4,

poE1 Real (d*PQ021),

P21o-- Real (d*PQ210)/4!,

pill- Real (d*PQll 1)/2,

P12o Real (d*PQ120)/4,

po3o Real (d*PQ030)/2,

and the analogous qijk coefficients can be obtained by changing the sign and taking
imaginary parts instead of real parts.

4. Application to Hilbert’s 16th problem. There is a large literature on Hilbert’s
16th problem; the reader is referred to the review articles of Coppel [9], [10] and Ye
[32], [33]. As remarked in the Introduction, the maximum number of limit cycles of
a quadratic system in the plane is still not known. The general quadratic system is

dx
Ax,yJ, Bx,yJ.(4.1)

dt i+j<=2 dt

Let HE(A, B) denote the total number of limit cycles of (4.1) for given Aij and Bij.
Then it is known that

(4.2) H2(A, B) <, sup H2(A, B) >- 4.
A,B

It was shown by Bam6n [3] that H2(A, B) is finite, after several false proofs dating
back to Dulac. Examples of (4.1) with 4 limit cycles were constructed only recently
by Shi [30] and Chen and Wang [7]. Both of these examples employ Theorem 2.1, or
what is known as Bautin’s technique: perturbation of a weak focus to create multiple
limit cycles locally. Shi’s example has a weak focus of order 3 and a strong focus
surrounded by a unique limit cycle; Wang’s example has a weak focus of order 2 and
a strong focus, each ofwhich is surrounded by a finite limit cycle. These local arguments
gain added significance in view of the following result.

THEOREM (Li [24]). There is no limit cycle around a weakfocus oforder 3, for any
quadratic system.

Thus it is not possible to construct an example of a quadratic system with 4 limit
cycles about the same equilibrium, using Bautin’s technique.

The remainder of this section is devoted to a new derivation of Bautin’s formulas
[4]. First we restate Bautin’s results. Assuming that (4.1) has an equilibrium that is a
focus, Bautin makes a linear transformation to the system

x’ -y + A 1X A X
2 "" (2A2 + As)xy + A6y2,

(4.3)
y’= x + Aly + A2x2 + (2A3 + A4)xy AEy2.

Then the focal value Co(0) defined in 2 is clearly equal to A1, and corresponding to
the focal values c2(0), c4(0), and c6(0), Bautin calculated (by the method of the
succession function) the following quantities:

/)3--

(4.4) t5-- (Tr/24)A2 A4(A3 -/6)[/4 -] 5(/3 -/6)],

v7 (25 7r/32}A2/4(,3 -/6)2[/36-2/26-
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The origin for (4.3) is a weak focus of order k, for 1 =< k =< 3, if

(4.5) A v2t,-i 0, v2t+ # 0.

Moreover, Bautin showed that the origin is a center, if and only if

(4.6) A v3 v5 v7 0.

(Recently Li [23] has reformulated Bautin’s results, in terms of the coefficients of the
untransformed equation (4.1), for greater convenience in application.)

Now let us apply the formulas of 3 to (4.3), with A 0. Note that there exists
a trivial solution (x, y) (0, 0), the frequency is scaled to be 1, and all of the derivatives
higher than second-order are zero, so the calculation is greatly simplified. We find

(4.7)

a-- -(3‘3-3‘6

c=d=
1

(2(3‘2+3‘5)+i(3‘4--23‘6) )a2 (1/6)
33,3 + 23‘4- 3‘6 -{- i(23‘2-- 3‘5)

From this we obtain the first focal value

(4.8)
ao =Ploo =- Real [d*(Df(c, ao)+ Df(c, a))]

in agreement with Bautin’s result, up to a scaling factor of 2r.
Before proceeding, we make a simplifying assumption. The second focal value is

of interest only if the first focal value is 0. Therefore we may assume that alo 0 in
(4.8). It can be shown directly that the origin is a center for (4.3) if

(4.9) 3‘1=(3‘3-3‘6)=0.

Therefore the only possibility for the origin to be a weak focus of order 2 for (4.3)
is if

(4.10) 3‘1=3‘5=0,

which, we assume henceforth. Then for the second focai value the formulas in 3 give

(4.11) a2o 8 3‘2 3‘4(3‘3 3‘6)[3‘4 + 5(3‘3 3‘6)],

again in agreement with Bautin, up to a scaling factor of 27r.
Before calculating a3o we may assume that a2o 0, by the same argument. However,

when (4.10) holds, the origin is again a center if either 3‘2 0 Or 3‘4 0, SO again there
is only one choice, namely

(4.12) 3‘4-- --5(3‘3--3‘6)

which we assume, in addition to (4.10). After a long calculation, by the formulas of
3, the third focal value is obtained as

25 __3‘6)3(3‘33‘6 X2__ 2A).(4.13) a30 5-- A2(3‘

Comparing this with Bautin’s formula using (4.12), we find

(4.14) v7 -5(27r)a3o.

Thus the two formulas differ not only in scaling, but also in sign.
Evidence for a sign error in Bautin’s formula came to light only recently, in the

example of Shi [30] and in computer analysis by Qin and Liu [27]. The sign is important,
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because it determines the stability of the weak focus of order 3, and also determines
the signs of the perturbations necessary to produce the three limit cycles of
Theorem 2.1.
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THE INSTABILITY OF AXISYMMETRIC SOLUTIONS IN PROBLEMS WITH
SPHERICAL SYMMETRY*

PASCAL CHOSSATf AND REINER LAUTERBACHt

Abstract. Among all possible equilibria that may bifurcate from the trivial state for one-parameter
vector fields with O(3)-symmetry, one generically exists, whatever the (absolutely irreducible) representation
of 0(3) is. This state is characterized by its group of symmetry, which includes rotations about a fixed axis,
and for that reason is called "axisymmetric." Recall that invariant spaces under irreducible representations
of 0(3) have dimension 2/+ and are generated by spherical harmonics YI(o, b), -l_- m _-< I. If is even,
the instability of the axisymmetric solutions follows from a theorem of Ihrig and Golubitsky Phys. D (1984),
pp. 1-33]. If is odd, this theorem fails because it requires a condition on the quadratic part of the Taylor
expansion of the equivariant vector field, but in that case it must have a zero quadratic part. However, the
|inearized vector field along an axisymmetric solution is diagonal in this basis and the computation of its
eigenvalues is easy once the equivariant structure of the vector field is known.

In this paper, using this idea, it is shown that two eigenvalues, namely those with eigendirections given
by m 2 and m 3 in the basis of spherical harmonics, are simply related and have opposite signs what-
ever I.

Key words, differential equations, stability, bifurcation, spherical symmetry

AMS(MOS) subject classifications. 68F, 74D

Introduction. Bifurcations with spherical symmetry appear in a number of prob-
lems in mechanics, such as in models of the onset of convective flows inside planets
and stars (Busse [1975]) and the buckling of a spherical shell (Knightly and Sather
[1980]). These bifurcation problems also provide examples where the kernel V of the
linearized equations is forced by symmetry to be of "high" dimension. Indeed, for
each there is a unique irreducible representation of SO(3) having dimension 2/+ 1,
and in general the group of symmetry acts irreducibly on V. For the lower-dimensional
cases (l= 1 or 2), the stationary bifurcation problem has been solved completely,
because they reduce to dimension one or two (Golubitsky and Schaeffer 1982], Chossat
1982]). For > 2, so far only partial results have been obtained, either by an explicit
computation of the lowest-order coefficients of the bifurcation equation (for 3, 4,
6, see Busse [1975] and Busse and Riahi [1982]), or by means of group-theoretic
methods (Sattinger [19831, Ihrig and Golubitsky [1984]), which imply the following:
to each isotropy subgroup E of 0(3) (having a one-dimensional fixed-point space in
V), there corresponds a branch of bifurcated solutions whose symmetries are precisely
E. Of course solutions in the same group orbit have isotropy subgroups conjugate
to E. Then a study of the (conjugacy classes of) isotropy subgroups of 0(3) has led
to a complete classification of solutions associated with such E’s. In particular, for
every l_-> 1 there exists a branch of axisymmetric solutions, i.e, of solutions whose
isotropy group contains SO(2). This branch is the easiest to compute, and for a long
time people dealing with the numerical solution ofpartial differential equations (PDE’s)
with spherical symmetry restricted themselves to spaces of axisymmetric functions. On
the other hand, it was shown by Ihrig and Golubitsky [1984, Thm. 3.2B] that these
solutions are unstable when is even. The crucial hypothesis in their result is that the
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quadratic terms in the Taylor expansion of the bifurcation equation are not identically
equal to 0. However, when is odd the vector field must be odd and the quadratic
terms are precisely null, so that the theorem does not apply in this case. On the other
hand, a direct computation by Busse and Riahi 1982] ofthe eigenvalues ofthe Jacobian
matrix at an axisymmetric solution in the case 3 shows that at least one of these
must be positive (they are real). Hence the axisymmetric solution is still unstable when
/=3. Further calculations by hand (for /=5... and by computer (Macintosh)
allowed us to verify the validity of this result up to 15 (the limit of our computer’s
capability ). This was enough to convince us that the instability of the axisymmetric
solution must be true for every odd value of/. In the present paper we present a proof
of this fact. More precisely, let

dx
(0.1) d- F(x, h

be the equation in V (it can, for example, derive from a PDE by the center manifold
reduction). We make the following hypotheses.

(H1) 0(3) acts absolutely irreducibly on V by its natural odd representation:
dim V 21 + 1, odd, and the inversion x-x in 0(3) acts as -ld on V. We
recall that a real representation is absolutely irreducible if the only linear maps
that commute with it are scalar multiples of the identity. We note this
representation by D1.

(H2) F(., A) is O(3)-equivariant, i.e., F(gx, A) gF(x, A) for all g O(3),
(x,A) VxR.

It follows from (H1)-(H2) that: (i) 0 is an equilibrium of (0.1) for every A; and
(ii) Lx D,F(O, A c(h )ldv.

We further assume the following:

(H3) c(0) =0 and c’(0) 0 (we can set c’(0) 1).

Hypothesis (H3) implies that the "equivariant branching lemma" holds (Cicogna
[1981], Vanderbauwhede [1980])" given an isotropy subgroup of 0(3) and its
fixed-point subspace Vz= {x V: yx x ty E}, if dim Vx= 1 there exists a branch
of solutions in V (it is straightforward algebra to check that Vx is invariant under
equivariant F’s).

THEOREM. Let hypotheses (H1)-(H3) hold; then generically the axisymmetric equili-
bria of (0.1) bifurcating at h 0 are unstable.

Remark. We make the "generic" condition precise in 2.2, Lemma 2. In the two
next sections we (1) recall some basic group-theoretic facts and construct the axisym-
metric bifurcated solutions; and (2) study the linearized equations at an axisymmetric
solution and show the instability result.

1. The existence of axisymmetrie solutions. In this section we indicate which
solutions ofan O(3)-equivariant bifurcation problem are axisymmetric and we compute
them using the equivariant branching lemma (stated in the Introduction).

For each odd number n- 21+ 1 there exists (up to equivalence) precisely one
absolutely irreducible representation of SO(3) on an n-dimensional real vector space.
It is equivalent to the natural representation on the space V/ of spherical harmonics
of order 1, which are defined in spherical coordinates by

Yl.,(O, qb)=Pl.,(cosO)e"4", -l<m<l,=
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and the P/’s are the associate Legendre polynomials (Miller [1972]). For the group
0(3) there exist two representations on V/according to whether the inversion in 0(3)
acts as ld or -ld on V. These representations are called the plus or minus representation
of order l, respectively. For even the plus representation is the natural one to occur
while the minus one is natural for odd I. Recall that a spherical harmonic h(x) of
order is a homogeneous polynomial on R3 of degree restricted to the 2-sphere. Thus
it is easily seen from the action of an element y on a spherical harmonic h(x) by

yh)(x) h( yx),

where xS2 and y acts on x by matrix multiplication, that (-ld)h(x)= (-1)lh(x), and
hence the natural representation of 0(3) is the one indicated above. We consider
bifurcation problems

F: Vt x R- V,

which are 0(3) equivariant with respect to the natural action of 0(3) on V. The
existence of axisymmetric solutions follows from the following remarks and the
equivariant branching lemma (Ihrig and Golubitsky [1984]): if is even, all isotropy
subgroups have the form H{-ld}, where H is a subgroup of SO(3); therefore it
suffices to look at representations of SO(3). The subgroup 0(2) of SO(3) has a
one-dimensional fixed point space. It is a maximal closed subgroup of SO(3) and
therefore it is maximal with respect to the property of having a one-dimensional fixed
point space. If is odd then SO(2) has a one-dimensional fixed point space; however,
it is not maximal with this property. The normalizer of SO(2) in SO(3) is 0(2) and
it acts as minus identity on Vs:. Therefore the product of an element in 0(2)\S0(2)
with -ld fixes Vs:. The group generated by SO(2) and this particular element is
denoted by 0(2)- and is isomorphic to 0(2). The spherical harmonic, which is invariant
under SO(2), is given by Yto(O, ok). In either case the equivariant branching lemma
guarantees a unique branch with symmetry group 0(2) or O(2)-, respectively. We call
either of these solutions the axisymmetric solutions.

As was pointed out in the Introduction, the axisymmetric solutions are generically
transcritical, therefore unstable, when is even. This result goes back to Busse [1975],
whose method of proof was different. When is odd however, the branches of
axisymmetric solutions are of pitchfork type, because the inversion in 0(3) acts as -ld
in Vs2. For 1 the representation is equivalent to the action of 0(3) in R3, and
every element in V is axisymmetric. The problem, therefore, is similar to having a
bifurcation from a simple eigenvalue, and the bifurcated solutions are stable if super-
critical.

2. Instability for odd 1, > 1.
2.1. Construction of the bifurcation equations. We briefly recall a method described

in more detail in Sattinger [1979], to construct the lowest-order terms in the Taylor
expansion of an equivariant bifurcation problem.

The Lie algebra so(3) is generated by the matrices

0 0 0 0 0 1 0 1 0

(2.1) L1 0 0 1 L2 0 0 0 L3---1 0 O.
0 -1 0 -1 0 0 0 0 0

Using these operators, we. define J/ L2 + iLl, J_ -L+ iLl, and J3 -iL3. We
further note

(2.2) y, {(1-m)(l + m + 1)} 1/2.
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We then conclude from Theorem 5.21 in Sattinger [1979] that there exists a basis
{-1,""", :l} in the complexification of V/such that

(2.3) J3:,, mm, J+,,, Ymm+l, J-m ")/--mm--l"

Moreover, since V is real, the :,,’s must satisfy the relation (Sattinger [1979])

(2.4) :,, (- 1)’:_,,, -l<-m<=l.

These relations allow us to compute the terms in the Taylor expansion of F(., A)
up to any given order. First we observe that the linear term is c(A)ld. Second, the
constant and quadratic terms are 0 because -ld commutes with F (l is odd). Therefore
we are interested in the third-order terms. We use coordinates zj in terms of the basis
{,j =-l,..-, l}. The third-order terms may be written in coordinates as

(2.5) F)= E amrstZrZsZt, -l <- rn <= I.
--l<_r+s+t<_l

The infinitesimal generators J3, J/, J- act as derivations on the zj s, hence the following
relations hold for the cubic terms:

13 ZrZsZ r + s + t) ZrZsZt
(2.6) J+(zrZsZt) YrZr+lZsZt + %Z,Z+IZt + %ZrZZt+I,

J_( zrZsZt y_rZr_l ZsZt -- "f_sZrZs_l Zt "- y_tZrZsZt_l

Applying J3 to F we see that a.,rt =0 if r+ s + # m. Acting with J+ on F., we get

(2.7) J+Fm+l T,,F,, (-1 <= m <= 1-1), J+FI O.

The latter equation gives a linear system for the coefficients a Ir,. It is underdetermined
and can be solved with respect to a certain number n(l) of parameters (independent
coefficients).

LEMA 1. n(1)=[1/3]+l.
Proof Let T(1, rn) be the set of triples t=(i,j, k) of integers -l<-_i,j, k<-l such

that +j + k rn and =<j =< k. We can view the equation J+FI 0 as a linear equation
from V,l to Vl,l+, where we note V,m the free vector space over T(l, rn). We want to
prove that the kernel of the associated operator A has dimension n(l)= [//3]+ 1. Let
us first define an ordering in T(l, m): (il,j, kl) < (i2,j2, k2) if il < i2 or i2 andjl <j2
or i-i2, j-j2 and kl <k2. Then there exists an integer r such that T(l, l+ 1)-
{’1, ", ’r} with ’i < ’i+, 1,. , r- 1. We write the system to solve in the coordin-
ates along the basis elements "- (i, j, k) T(l, / 1): each coordinate equation has the
form

Ti_lal,i_l,j,k / ]/j_lal,i,j_l,k / Tk_lal,i,j,k_l O.

We can now order the elements of T(l, l) as follows:
(1) -,. , "r where each -’ is deduced from - by taking -’ (i 1, j, k); (2) the

remaining elements (in whatever order). Observe the following: (i) ’i < -’< ’, for
all i, j 1,. ., r; and (ii) " < (i, j 1, k) and " < (i, j, k 1). It now follows that the
matrix of A in this basis, truncated to the first r columns, is triangular and has only
nonzero elements on its diagonal, which proves that A is surjective.

To prove the lemma it remains to show that dim V/,l-dim Vl,l+l- [I/3] / 1. Let
j+(i,j, k)=(i,j, k+ 1) be a map from T(l, l) to T(l, l+ 1). It is not defined if k- l, and
the image of j+ is complementary to set {(i, j, j) 6 T(l, + 1)}. There are + 1 elements
in T(1, l) with k I. On the other hand, the number of triples (i, j,j) T(l, l+ 1) is
equal to the number of integer solutions of

i+2j=l+l, where-l<-_i<-l/3, j>0.
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If is odd, this equals the number of even integers between -[//2] and [(/+ 1)/3],
which is [l/2]+[[(l+ 1)/3]/2]+ 1. From here we get

n(l) l+ 1-[(/+ 1)13]-[II2]+[[(1+ 1)/3]/2]-l= [//3] + 1.

A similar argument works in the case of even/.
It follows that the size of the linear system derived from the equation J/FI 0

grows rapidly with/. Once the structure of F3) is known, we apply J_ recursively to
F3), F3), in order to get the coefficients of FI3_), Fo3). We remark that F-m
is deduced from Fm by means of (2.4). Also, it follows easily that all the coefficients
a mrst are real.

From (2.1) we see that the one-parameter subgroup exp (tJ3) acts as a rotation
on the two-dimensional subspace spanned by {:k, :-k} for k 1,...,/. Therefore it
fixes the linear span of o (i.e., Vs(:) =span [:o]), and the branch of axisymmetric
solutions can be computed by solving the equation in span [o]:

(.8) c()Zo+ Fo(0, ", Zo," ", 0) 0.

The leading part of the solution is determined by the third-order terms. In the
following we set

(2.9) /3,, a,,,oo for m 0,. , I.

Then we have

(x. + o(lxl)Zo) + to?o + o(Izol) =o,
the limits being taken for A, Zo 0. After eliminating the trivial solution and applying
the implicit function theorem, we can solve for

(2.10) A (Zo) -floZ+ o(Izol-).
The next step is to express the eigenvalues of the linearization DxF along the branch
of axisymmetric solutions in terms of the/3’s. We consider partial derivatives

(2.11)
OF(3,])(O, Zo, O)

0 <-_ k, rn <= 1.

If r+k+ m and k m, at least one of the numbers r or is nonzero and the
expression in (2.11) is zero. Therefore the linearization of f along the axisymmetric
solution has diagonal form (this in fact is due to the form of the Cartan decomposition
of D’ into irreducible representation of 0(2)-). If rn k the expression in (2.11) is
the coefficient of zz,, which is by definition/3,. Therefore the linearization near z 0
along the axisymmetric solutions takes the form

(2.12) -floZ2o ld + diag (fl_z, 3floZ, ", lZ) + o(Izol=).
The eigenvalues are

(2.13) tr,=(m-o)Z+O(IZol2) form=-l,...,l, mO,

and tro 2floZ+ o(Izol=). If the quotient of two of the constants /3,-/30 is negative,
then the solution is unstable. Observe that two eigenvalues must be equal to 0, since
the orbit of axisymmetric solutions is two-dimensional (Chossat [1982]). These eigen-
values are tr and tr_ since the tangent space to the orbit at Zo is spanned by : and
:_. This program can be carried through numerically. We can compute (/32 -/30)/(/33
/30) by solving the equationj/F3 0, applying J_, and reading ofthe/3’s. The symmetry
of the problem seems to stabilize the numerics since, for example, for 15, the linear
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equation is a 85 x 85 matrix, where the solution depends on five parameters and still
the numerical results are very precise. We give a short list of the numerical results:

3 -0.6667
5 -2.6667
7 -5.5556
9 -9.3333

11 -14.0000
13 -19.5556
15 -26.00

By the method of computation we obtain n(1) numbers, which should be all equal.
This numerical result gives a strong indication that all axisymmetric solutions should
be unstable. The purpose of the next section will be to show that the quotient
(2 0)/(3 0) is always negative for > 1.

2.2. Computation of 2-/0 and f13- flo.
LEMMA 2. If the coefficient of 2

Z_lZ2 in F(o3) is not zero, we have

/32-/30 6-/(/+1)
/33-/30 9

Remark. The hypothesis in this lemma is generic (it holds for a wide class of
problems with O(3)-symmetry).

Proof. We need to compute the fig’S, k =0, 2, 3, in terms of the independent
coefficients appearing in F(3). For this we proceed as follows: (1) determine those
terms in F(o3) that contribute to the /3k’S by successive application of the operator J+
to F(k3), k 0, 1, 2; (2) compute the equivariant relations between these terms, by means
of the following expression (Miller [1972]):

(2.14) J_J+Fo= l(l + l)Fo;

and (3) deduce from (1) and (2) the relations between the fig’S.
The part in F(03) that gives a contribution to flkZZk in F(ka)(k 1, 2, 3) by applying

relations (2.7) is

(2.15) az_3ZoZ d- bz_2g_lZ d- cz_3z1z2.4- dz_2ZoZ2 A- ez21g2+fz_lzOZ1 -Jr gz3o + hzz_2

Of course, we have g =/3o. In addition, the following terms are needed for computing
the equivariant relations between the foregoing coefficients a,..., h in Fo, because
they are generated by applying J+J_ to (2.15):

(2.16) rz_4ZoZ4 -I-- sz_4z1z + tz_4z2 -i- uz_3Z_lZ4 + I)z22z4

The terms in (2.15) are obtained in a straightforward way by applying formula (2.6)
for J_ recursively, starting from flaZZ3 in F(33). The terms in (2.16) are obtained by
applying J+J_ to (2.15), using (2.6). Now applying (2.14) to (2.15), we obtain a system
of eight linear equations for the corresponding coefficients. Recall that the coefficients
of the equivariant polynomial mappings are real, and that :o is a real vector. Therefore
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the coefficients of zizszk and z_iz_sz_k (i+j + k 0) must be equal. Using these remarks
and formula (2.2), we finally obtain the following eight equations:

b-c=O, e-h =0,
2a(y] + y]) + 2byoy2 + dy -sT-1 ’)/-4 u’Y-1 ’)/-4 rT-4,

ayoy2 + b(2y+ y3) + dyoy2 + 2eyl y2 -t/Y-3Y-4- 2vT-2T-4,

(2.17) ay2+2byoy2+d(yl+y)+4eyoyl+fyl=O,

byly+ ayoy + e(y+ y]) +fyoy 0,

dyl + 4eyoYl +f(3y+ yl) + 6gyg 0,

fyo + 2gyo 0,

where the /,’s are defined in (2.2). It is clear from this that only two coefficients can
be chosen independently from the others. For example, choosing d and e as these
coefficients, we get the relations

a=-d+2e/o//l(1-3//,), b-- c=3e(/-/)/l

h d, f= -a -4eyo/’)/1, g -f/2.

It remains to apply J/ three times to Fo. We obtain successively

/3 =/30 d/2 + 2e),o/y,

from which it follows that

(2.18)

provided

(2.19)

6-1(1+ 1)
33-3o 9

eO.

Thus, when I=> 3,’(2.19) is a generic condition implying that the eigenvalues 02
and tr3 have opposite signs, and thus we have proved the theorem stated in the
Introduction.
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ON A REDUCTION PROCESS FOR NONLINEAR EQUATIONS*

A. D. JEPSONf AND A. SPENCE:I:

Abstract. A method is discussed for reducing a nonlinear problem to a smaller (finite-dimensional)
equivalent problem. The method is a generalization of the Lyapunov-Schmidt reduction, and provides a
theoretical basis for more computationally convenient approaches. Our main results are on the equivalence
of reduced problems obtained from various forms of this reduction procedure.
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AMS(MOS) subject classifications, primary 58C27; secondary 47H17

1. Introduction. Nonlinear parameter dependent problems of the form

(1.1) F(x,A,a)=O,

arise in the study of the equilibrium states of many nonlinear systems. Here x, the
state variable, lies in some Banach space X, A R is some distinguished parameter,
which is called the bifurcation parameter, and a R p is a vector of control parameters.
It is assumed that the nonlinear function F maps X x R x R p to Y, a Banach space,
and is sufficiently smooth so that any necessary derivatives exist. In physical situations
interest often centres on the critical points of (1.1), namely, the points (Xo, Ao, Co),
say, at which F =- Fx(xo, Ao, ao) is singular, since it is at such points that a physical
system may lose stability (see, for example, [2], [3]).

The fundamental tools for the study of solutions of (1.1) in a neighborhood of a
critical point are the Lyapunov-Schmidt reduction [7], [11], 13]-[ 15], and the closely
related alternative method 1 ], [5]. No matter what the form of the original equation,
provided these reduction processes can be applied, a reduced problem is obtained of
the form

(1.2) h(e,A,a)=O, h:RmRRPoRm,
whose solutions are in a one-to-one correspondence with those of (1.1). Typically the
dimension of the reduced problem is very small, say m 1 or 2, and hence it can be
readily analyzed using singularity theory. Recently this approach has led to significant
advances in our understanding of nonlinear phenomena arising from a wide variety
of problems (see [14] and the references cited therein). The reduction process we shall
describe and discuss is a generalization of the Lyapunov-Schmidt reduction.

The standard Lyapunov-Schmidt reduction requires a precise characterization of
both the null space of F and the range of F, which we denote by N[Fx] and R[F],
respectively. The particular form of the reduction process is determined by this
knowledge along with choices for complementary spaces of N[F] and R[F].
Different choices of the complementary spaces lead to different reduced problems.
However, Golubitsky and Schaeffer [7] show that this nonuniqueness is unimportant
in that all reduced problems derived from one original problem (through the use of
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the Lyapunov-Schmidt procedure) are equivalent in the sense that their solutions
exhibit the same qualitative behavior. Furthermore, the solutions of the finite-
dimensional reduced problem (1.2) are qualitatively similar (for a precise definition
see 3) to the solutions of the original problem (1.1). Therefore the local structure of
solutions for (1.1) near a singular point (Xo, ho, ao) can be studied by analyzing any
reduced problem obtained through the Lyapunov-Schmidt procedure.

The motivation for this work arose in considering numerical techniques for
computing the location and type of singular points for (1.1). It is hoped that these
numerical techniques will form a bridge between the local results of singularity theory
and the global properties often of interest in physical applications. In [9] the singularity
theory of Golubitsky and Schaeffer [6] is used to derive numerically convenient defining
equations for singularities arising in problems of the form (1.2) with m 1. In effect
it is assumed in [9] that the reduced problem (1.2) is given explicitly, as in the example
calculation described there. Clearly, an important extension is to develop numerical
techniques for obtaining a suitable reduction for problems of the general form (1.1).
Some preliminary ideas to this end are presented in [4] and [8], and a more complete
treatment is given in [10].

The fact that it is not necessary to know N[F] or R[F] in order to carry out a
successful reduction is described in 11, 22] and this observation leads to a generalised
reduction process, described in 2, which provides more flexibility than the standard
Lyapunov-Schmidt procedure. This additional flexibility is important in the numerical
computation of singular points. The typical situation in this application is that some
point (Xl, hi, all), near a singular point (Xo, ho, do) of a particular type, is known. The
known point need not be a singular point of (1.1), in fact, usually it is not a solution
point of (1.1). However, crude approximations to N[F,,] and N[(F)*] (and therefore
R[Fx]) are available. Given this starting data, the goal of the computation is to
accurately locate (Xo, ho, do). In this paper we show that crude approximations of
N[F] and N[(F)*] are sufficient to calculate a suitable reduced problem of the
form (1.2). This result is central in the development of computationally efficient and
robust numerical techniques (see [8] and 10]). Finally, we mention that the generalised
reduction might also be used to advantage in analytical calculations where the null
vectors of F and (FOx) * are not available in simple closed form.

In 3 we prove our main result. In particular we show that all reduced problems
of the form (1.2), obtained from one original problem using the generalised procedure,
are equivalent. This is an extension of the result given in [7] for the Lyapunov-Schmidt
reduction. (We are grateful to a referee of this paper for supplying a shorter proof of
the result for the Lyapunov-Schmidt reduction, which is presented in the Appendix.)
A simple form of this result appears without proof in [8]. Independently Beyn [4] has
shown that if F in (1.1) is finite-dimensional then, no matter how the generalised
reduction is carried out, F is equivalent to a nonsingular linear system together with
the particular reduced equation obtained. The equivalence of the reduced problems,
however, is not proved there.

Finally in 4 we consider the nonlinear differential system

+F(x,X,a)=O

where x X x[0, o). If (Xo, ho, do) is an equilibrium solution with F singular and
all other eigenvalues have positive real part, then it is often important to ascertain the
asymptotic stability of equilibrium solutions near (Xo, ho, do). If F has zero as a
simple eigenvalue Golubitsky and Schaeffer [7] show how this may be done by
examination of the reduced equation derived using the Lyapunov-Schmidt reduction.
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We show that the same stability information may be obtained from the generalised
procedure.

2. The generalised reduction. In this section we describe the generalised reduction
process as given in 11 ], and give necessary and sufficient conditions for its application
(Theorem 2.10).

First we remark that, although in applications it is often important to keep A a
distinguished parameter, here it is convenient to put A ao and write (1.1) as

(2.1) F(x, a)=0, a =(ao,’", ap)Rp+I.

Furthermore, without loss of generality, we take (Xo, ao) =0X Rp+l, so that

(2.2) (0, 0) 0.

Throughout this paper we assume that the Frechet derivative L= F(0, 0) satisfies

L" X Y is a Fredholm operator of index zero,(2.3a)

with

(2.3b)

(2.3c)

N[L] span {O1,""" Ol} dim N[L] l,

N[L*] span {1",""", *}, dim N[L*] I.

Here L*" Y*-> X* is the adjoint operator associated with L.
As was mentioned in the Introduction, the aim of a reduction process is to obtain

a small (finite) system of equations which is, in some sense, equivalent to (1.1). The
first step in the generalised reduction is to choose closed subspaces X1, X2 c X and
Y1, Y2 = Y with

(2.4a) X X109 X2, dim X2 rn,

(2.4b) Y Y103 Y2, dim Y2 m.

Here rn _-> is taken to be finite. Let P and Q be the projections

(2.5a) P:X-->X, R[P]=X2, N[P]=X,

(2.5b) Q: Y--> Y, R[Q]= Yz, N[Q]= Y.
The fundamental assumption is that the decompositions in (2.4a), (2.4b) are such that

(2.6) N[P] fq N[(I Q)L] {0}.

Using the projections in (2.5) we rewrite (2.1) in the equivalent form

(2.7a) (I-Q)F(Xl+X2, a)=0 Y1,

(2.7b) QF(Xl + x2, a 0 Y,

where Xl X for 1, 2. In particular, notice that (2.7b) is a system of dimension m.
We emphasize that there is no need to restrict attention to reduced problems of
dimension l, and reduced problems of dimension m _-> may be considered if deemed
necessary (for example, near a singularity of higher multiplicity).

The reduction proceeds by first solving (2.7a) for x in terms of x2 and a, and,
second, substituting this problem into (2.7b) to obtain

(2.8) QF(xl(x2, a) + x2, a) O.
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The key step is the first, and the Implicit Function Theorem ensures that this is possible
provided A (I Q)L(! P) satisfies

(2.9) A: X1 Y1 is nonsingular.

Under assumption (2.6) A is indeed nonsingular. In fact, we have Theorem 2.10.
THEOREM 2.10. Let L, P, Q, and A be as above. Then (2.6) is a necessary and

sufficient condition for A to be nonsingular.
The proof of Theorem 2.10 is given at the end of this section. The theorem shows

that, under condition (2.6), the Implicit Function Theorem provides the existence and
local uniqueness of a solution xl(x2, t) of (2.7a) for (x2, a) near 0, and with xl(0, 0) 0.
At this point it is convenient to introduce bases {vi}’_- and Wi}?= of X2 and Y2,
respectively, and to let V :R" X and W2: Y_ R" be defined by

(2.11a)

(2.11b)

V2F_, Ell)i, e (E ,’’’, m),
i=1

The final step in the reduction process is to obtain the reduced problem by writing
(2.8) in terms of these bases, that is,

(2.12a) h(e, a) =- WEQF(f(e, a), c) 0,

where h :" p+l_m, and

(2.12b) f(e, a)=-Xl(Ve, o)+ V2e.
The Lyapunov-Schmidt reduction is a special case of the above procedure; in

particular, the decompositions in (2.4) are taken to satisfy

(2.13a) X= XO)X2, dim X2 l, X2= NIL],

(2.13b) Y= Y03 Y, dim Y2 l, Y RILl.
Notice that (2.5b) and (2.13b) imply that I-Q projects onto R[L]. Therefore (2.6)
becomes simply N[P] fq N[L] {0}, which follows from (2.13a). That is, the decompo-
sitions used in the Lyapunov-Schmidt reduction are sufficient to guarantee (2.6) and
hence that A is nonsingular. By contrast, in the generalised reduction we have more
freedom in the choice of the decompositions of X and Y; in effect, the only restriction
is that the decompositions produce a nonsingular A.

A second reduction technique is the alternative method[I], [5], For the case of
Fredholm operators treated here it is natural to consider only reduced problems of
the form (2.12). In this situation the alternative method assumes that the decompositions
(2.4a), (2.4b) are chosen such that

(2.14a) X= N[(I- Q)L],

(2.14b) LXc y,
(2.14c) L(I- P)" X1 Y1 is nonsingular.

Therefore, if L is a Fredholm operator of index zero, the alternative method is also a
special case of the generalised reduction. However, it is important to note that the
alternative method can also be applied to more general problems.

We end this section with the following proof.
Proof of Theorem 2.10. Define

(2.1.5) A =-- (I Q)L(I P), A" X - Y.
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Then A is the product of three Fredholm operators, each of which has index zero.
Therefore it follows that (see [12]),

(2.16) A is Fredholm with index zero.

Assume that (2.6) is satisfied, that is,

R[I- P] (3 N[(I Q)L] {0}.

By (2.15) we have

(2.18) N[A] N[I P]O){R[I P] f3 N[(I- Q)L]}.

Therefore, by (2.5a), (2.17), and (2.18),

(2.19a) N[A]=X2, dim X2= m.

Furthermore, by (2.15), we have R[A]c R[I-0] X1. But by (2.16) and (2.19a) we
have codim R[A] m. It follows from (2.4b) and (2.5b) that codim R[I-Q] m, and
hence

(2.19b) R[A] R[I-Q] Y1, codim R[A] m.

It now follows that A Alx is one-to-one and onto Y1. By the Closed Graph Theorem
we conclude that A is nonsingular, and therefore (2.6) is sufficient.

Conversely, suppose that th N[P] (3 N[(I- Q)L], b 0. Then b (I P)th and
Ack=Ad?=(I-Q)Lck=O. That is dpN[A], and hence (2.6) is necessary.

3. Equivalence of the reduced problems. The reduction processes discussed in 2
all have the same goal, namely, the construction of a finite-dimensional reduced problem
from (1.1). The type and unfolding behavior of a singular point of F is to be determined
by studying the singular behavior of the reduced problem. However, the reduction
process is not unique; in particular there are infinitely many ways to choose the
decompositions in (2.4) such that (2.6) is satisfied. The usefulness of the reduction
process therefore lies, in part, in the fact that the singular behavior of the reduced
problem depends only on the function F and not on the details of the reduction. We
make this precise through the use of the following notion of equivalence.

DEFINITION 3.1. Suppose h(e, a), g(e, a):m xRp+I ._)m are two smooth func-
tions such that h(0, 0)= g(0, 0)=0. Then h and g are said to be equivalent, which we
denote by h g, if there exist smooth (C) functions T(e, a) and E (e, a) such that

(3.2a)

(3.2b)

T(0, 0) is nonsingular,

E (0, 0)= 0, E E(0, 0) is nonsingular,

and, for (e, a) near (0, 0),

(3.3) h(e, a)= T(e, a)g(E(e, a), a).

For the case in which F is C in a neighbourhood of zero then (3.3) essentially states
that h and g are contact equivalent in the sense of the singularity theory of Golubitsky
and Schaeffer [6]. To be precise, (3.3) states that h is contact equivalent to Rg(R2e, a)
for constant matrices R1 and RE chosen so that T(0, 0)R-1 and ER2 are positive
definite. These matrices are important when the dynamical stability of various steady
states are investigated in 4; however, we can ignore them for the moment. As discussed
in [6], this notion of contact equivalence is an appropriate mathematical formulation
of the statement that solutions of (3.2a) and (3.2b) show the same qualitative behavior
near (e, a)- (0, 0). Our main result is Theorem 3.4.
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THEOREM 3.4 (Equivalence Theorem). Let

(3.4a) h(e, a)=0, h "R xR p+l - ’,(3.4b) h(e, a)=0, h"’ x p+

be two reduced problems obtainedfrom (1.1) by the generalised reduction procedure with
(2.6) satisfied, in each case. Suppose r<-_m and let k’R’xNP+l-N be the trivial
extension of h given by

(3.5) k(e, a)= (f(e,, e,, a), e,+,, 13m).

Then

(3.6) h(e,a)’--k(e,a).

Before proving the theorem we first note that a similar result has been proved in
[7] for the case of the Lyapunov-Schmidt reduction applied to problems with one-
dimensional null spaces (i.e., (2.3) is satisfied with 1). Our proof of the more general
result is guided by the proof presented there.

Proof of Theorem 3.4. It is convenient to first consider the case in which the
dimensions of the reduced systems are the same, that is, r m. In this case we need
to show h---h*. It is obvious that if h and/ are obtained through the use of the same
P and Q but with different choices of V and W in (2.9), then h---/. (Use T(,- To
and E (e, a) Eoe where To and Eo are constant m x m matrices.) An h obtained from
a particular choice of P and Q is denoted by hpQ. Our first major task, then, is to show

(3.7) hpQ hr,o
whenever P, Q and P, Q satisfy (2.4), (2.5), and (2.6) with the same value of m.

In order to prove (3.7) we first show that a third projection P exists such that hpo
and hpo can be constructed (see Lemma 3.8 below). Second, we show that hpQ hpQ
and h0---hp0 (see Lemma 3.9). Finally (3.7) follows by showing that hpo---hpo (see
Lemma 3.19).

LEMMA 3.8. Assume that P, Q and I3, 0 are two pairs of projections with each
projection having a range of dimension m, and with each pair satisfying (2.5) and (2.6).
Then there is a continuous projection P’X- X such that

(3.8a) dim R[P]- m,

(3.8b) N[P] VI N[(I Q)L] {0},

(3.8c) N[/5] 0 N[(I 0)L] {0).

Proof. Let X3 N[(I Q) L], and similarly define X3 using Q. In order to calculate
dim X3, notice that (I- Q)L is a product of two Fredholm operators with index zero,
and hence (I-Q)L is Fredholm with index zero. Therefore

dim X3 codim R[(I- Q)L] >- codim R[I- Q] m.

However, by (2.6), we have

dim X3--< codim X m.

Therefore dim X3 m, and a similar argument with ( shows that dim 3 m.
Now we choose X such that it is the simultaneous complement of X3 and X3.

To be precise, X is a closed subspace of X such that

X =X@X=X@X3.
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(To prove that such an X1 exists, consider X to be the direct sum of a finite-dimensional
space and a complement of X3 03 ’3. This reduces the problem to_ the finite-dimensional
space X303 X3. We omit the remaining details.) Finally, let X2 be a complement of
X1, say X3, and define P to be the projection onto X2 along X1. Conditions (3.8a)-(3.8c)
easily follow.

We remark that if m then P can be taken to be the projection used in the
standard Lyapunov-Schmidt procedure.

The generalised reduction procedure can be used to construct hpo and hpo, since
Lemma 3.8 ensures that conditions (2.4) and (2.6) are satisfied for the appropriate
pairs of projections. We now have Lemma 3.9.

LEMMA 3.9. In the notation used above,

(3.9a) hpQ(e, a)--- ho(e a),

(3.9b) ho(e a)’-- ho(e a).

Proof. We begin by considering (3.9a). In order to obtain hpQ and h0 we must solve

(3.10a) (I-Q)F(Xl+X2, a)=0,

(3.10b) (I-Q)F(+, a)=0,

for Xl X1 and X1, respectively. As was mentioned in 2, locally unique smooth
solutions x(x2, a) and (:2, a) can be obtained for (x2, a) and ($2, a) near (0, 0).
With these solutions, define

(3.1 la) u(x2, ce)--(I-P){Xl(X2,

(3.11b) Iz(x2, oz)-- P{Xl(X2, ot)nt- x2}.

The local uniqueness of 1(2, a) as a solution of (3.10b) can now be used to show that

(3.12) u(x2, )=(, a) for tx(x2, a)=.
Therefore, by (3.11) and (3.12) we have

QF(x,(x2, a)+x2, a)=QF(u(x2, a)+/x(x2, a), a)

QF(gl(tX(x2, a), a)+ tz(x2, a), a).

From this and (2.12) it follows that

(3.13a) hpq(e, a)= hpo(E(e, a), a),

with

(3.13b) E(e, a)= lx( V2e, a).

Here V:"" - X_ is the coordinate function (see (2.11a)) used in constructing hpo.
We are left with showing that E is nonsingular. To do this, notice that (3.13b) gives

0(3.14a) V2E Iz,: V2
Furthermore, by (3.11b) we find

(3.14b) /xo2= ,{Ox____lOx2
(0, O)+ I

Let 4 e N[E]; then by (3.14),

(3.15) O= 2Eck fi {Ox-’-!1(O’ O)+ I}Ox2
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By differentiating (3.10a) with respect to x2 we find

(3.16) x(b) (x (0, 0) + I V26N[(I-Q)L].

Together, (3.8b), (3.15), and (3.16) imply

x(qb) NIP] CI N[(I- Q)L] {0}.

That is, x(b) =0 and therefore, by applying P to (3.16), we obtain V2b =0. Since V2
is nonsingular we finally have b 0, and therefore E is nonsingular.

The proof of (3.9b) is similar, with (3.8c) being used in place of (3.8b).
We are left with proving that hpQ.-, hpO. To do this we will use the following

proposition, which is the analogue of Proposition I, 4.2 in [7] for vector-valued
functions.

PROPOSITION 3.17. Let g(e, a) and ,(e, a) be two smooth functions, g,
R p+

_ ,,. Suppose

(3.17a) rank {Og(O_,_O_)_. 0(0, 0)}0(e, a)J rank[ ,, m,

and, for e, a) in a neighbourhood of zero,

(3.17b) g(e, a)=0 implies (e, a)=0.

Then there exists a nonsingular m x m matrix T( e, a) such that

(3.18) ,(e,a)=T(e,a)g(e,a),

for (e, a) in a neighbourhood of zero. Furthermore, T(e, a) inherits the smoothness of
g and ,.

A proof of Proposition 3.17 can be obtained by a straightforward generalisation
of the proof of Proposition I, 4.2 given in [7]. We omit the details. This proposition
is used in the proof of Lemma 3.19.

LEMMA 3.19. Let hp0 and h0 be as above. Then ho.-- ho.
Proof If hpo(e a)=0 then F(XI(V2e, a)+ V2e, a)=O, and so hoo(e a)=

ff’20F(Xl(92e, a)+ 92e, a)=0. Therefore (3.17b) is satisfied for g= h0 and = hoO.
In order to apply Proposition 3.17 we must arrange for (3.17a) to be satisfied.

Specifically, we unfold F by writing

(3.20) G(x, a, fl)=- F(x, a)+ Bfl =O,

where/3 " and B"" Y is a bounded linear_ map_ Le,t g(e, a,/3) and if(e, a,/3)
be the reduced functions obtained by using P, Q and P, Q, respectively, on problem
(3.20). In particular, we have

(3.21a) g(e, a, O)= hpo(e, a),

(3.21b) ,(e, a, O)= hpo(e a),

for (e, a) near 0. Furthermore, from (3.20) it follows that
0(3.22) g KB, gt3 KB,

where K, /" YR" are given by

(3.23a) K =[-W2QFA,(I-Q)+ W2Q], ApQ=-(I-Q)F(I- fi),

(3.23b) / i/2 0 --1QF,Apo(I-Q)+ W2Q], ApO=(I-t)F(I-).
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^oWe need to choose B such that g and go are nonsingular. This can be done as follows.
By (2.11b) and (3.23) we see that

(3.24) KY2 W2 Y2 rn, Ky2 m,
and

codim N[K] m codim N[K].

It is easily proved that there exists a simultaneous complement, Y2, such that

N[K] ’2 Y= N[/]0) ’2,
(3.25)

dim Y2 m,

and hence we may define B such that R[B] Y. It now follows from (3.22), (3.24),
and (3.25) that

(3.26) rank [g rank[ m,

as desired.
Now Proposition 31.7 implies that

(3.27) (e, a,/3) T(e, a, )g(e, a, fl)

for (e, a,/3) near zero. By setting/3 =0 it follows from (3.21) that

hpo e, a T( e, a, O) hp,( e, a
^0for (e, a) near zero. Furthermore, by differentiating (3.27), it follows that go Tgo,

with (3.26) ensuring that TO is nonsingular. [3

Lemmas 3.8, 3.9, and 3..19 complete the proof that hp(.---hr,o when rh m. That
is, for a given rn => the particular choice of P and Q does not effect the qualitative
behavior of the reduced equation near (e, a) 0.

The next major step is to show the equivalence of the reduced problems (3.4a),
(3.4b) obtained with rh < m. In fact, it is sufficient to consider only the case rh < m,
since all other cases can be derived from this case in a straightforward manner.

In view of the above results for rh m, we are free to choose convenient projections
P, Q and/3, ( to define h and/. In particular, we take the splittings

(3.28a)

(3.28b)

where

(3.28c)

(3.28d)

(3.28e)

X XI(X2 X

Y= YI@Y Y3

N[F] X3, dim X_ m l,

R[F] YIO) Y., dim Y2= m l,

y o=FX:.
We choose/3 and such that

(3.29a) fi X --> X3, N[fi] XI O) X2,

(3.29b) t’ Y Y3, NITS] R[F] YI(R) Y
(which corresponds to the standard Lyapunov-Schmidt reduction). Similarly, we
choose P and Q such that

(3.30a) P" X --> X03 X3, NIP] XI,

(3.30b) Q" Y Yzt Y3, N[Q] Y
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(3.37a)

(3.37b)

and

(which corresponds to the alternative method [1], [5]). It is straightforward to check
that both pairs of projections satisfy (2.6), and therefore hpo and hO exist. The proof
of Theorem 3.4 is now completed by the use of Lemma 3.31.

LEMMA 3.31. In the above notation

(3.31) hpo(el, e,,, a)’-.(hr,O(el, el, a),

Proof. The reduced equation hpo 0 can be written as (see 2.12)

(3.32) hpo(cr, , a) ( W(I- Q)Q) F((cr, 5, a) a)=0
WQQ

where s (or, 8), (r e ’-, 8 e and

(3.33a) W2" Y: - ,-1, W3" Y3
(3.33b) V2" "- X, V3" X3,

are nonsingular linear mappings. Furthermore, :(ty, , a) satisfies

(3.34a) (I- Q)F((cr, 8, a), a)=0,

(3.34b) (tr, t, O)--Xl(tY , O) -[- V20" -- V3t x 21,

for (tr, , a) near zero.
We claim that, with the above definitions,

(3.35) hpo(O" , a)
ho(, a)

for some smooth function ho’ltllt p+I-It I. Indeed, upon differentiating (3.32) with
respect to o-, we find

(3.36) HO t9
hpO WQ FV2o

Here we have used tQ 0 (see (3.29b), (3.30b)), and OXl/Otr (0, 0, 0)= 0 (see (3.28),
(3.30), (3.34)). It is easy to verify that the top block of H, namely W(Q-t)FV2,
is a nonsingular (rn l) x (m l) matrix. A standard argument now ensures the existence
of a smooth coordinate transformation (tr, 8, a)- (D(tr, 8, a), 8, a) such that

D=0, D=0,

D is nonsingular

( )(3.38) hpo(D(cr, 5, a), 5, a)= W(F(.(D(o’, 5, a), 5, a), a)

for (or, 8, a) near zero. Finally it follows from (3.38) that there exists a nonsingular
matrix T(or, 8, a) such that

Tl(tr t, a)hPo(O(tr t, a), t, ce)=
ho(t, a)

where

(3.39) ho(t, a)= W:QF(x(D(O, 5, a), 5, a), a).
That is, we have verified (3.35) for ho as in (3.39).
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We are only left with relating ho to hO. Note that (3.34) and (3.38) imply that
(D(0, 6, a), 6, a) satisfies

(I-Q)F(;, a)=0 and (I-O)QF(x", a)=(Q-t)F(, a)=0.

Hence

(3.40a) (I-Q)F(x, a)=O.

In addition, we find from (3.34b) that

(3.40b) /3= V36.
These are precisely the equations that need to be solVed to obtain h,o, and therefore
it follows from (3.39) and (3.40) that

(3.41) ho(6, a)= ho(6,
(where V3 and W3 are used as the coordinate mappings in ho). The equivalence (3.31)
is a consequence of (3.35) and (3.41). This completes the proof of Lemma 3.31, and
hence the proof of the Equivalence Theorem.

4. Linearized stability and the generalised reduction. Consider now the case that
(1.1) arises in the study of the differential system

(4.1) :+ F(x, a) 0, ap+I

where x x(t)6 X, > 0 and we again write A ao. It is convenient to take X Y a
Hilbert space. Assume (0, 0) is an equilibrium solution. It is well known that the
asymptotic stability of (0, 0) depends on the spectrum of L= Fx(0, 0) and that an
equilibrium solution that is a singular point of L, with all other eigenvalues of L having
positive real part, lies on a stability boundary. Golubitsky and Schaeffer [7, 4, Chap.
I] consider such a case with L having zero as a simple eigenvalue and discuss the
stability of an equilibrium solution (x, a) near (0, 0). In particular, suppose o and
o* are the null vectors of F and o .F,) respectively, with

(4.2) o*o> 0.

(Here and in the sequel we denote the inner product (o, o) by o*o.) Furthermore,
suppose h(e, a) is obtained from the Lyapunov-Schmidt reduction (use W2=o*,
V2=o in 2); then it is shown in [7] that the solution (x, a) (12(e, a), a) of (1.1)
is stable if h(e, a)> 0 and unstable if h(e, a)< 0. The main result of this section is
to show how the analogous stability results can be obtained from a reduced function
computed through the use of the generalised reduction.

In the remainder of this section we assume that o* and o are as above with

o*o 0, but we do not assume (4.2) is satisfied. Then zero is a simple eigenvalue of
F and it follows (from the Implicit Function Theorem) that there are smooth functions

(e, a), (e, c), and/x (e, a) such that

(4.3a)

(4.3b) cI)* 1,

(4.3c)

(4.3d) * 1,

with/x(0, 0) =/x 0, (0, 0) o, (0, 0) o.
As discussed above, in order to determine the (linear) stability of the steady state

(x, a)= (O(e, a), a) we need only know the sign of Ix(e, a), which, in turn, is to be
determined from the reduced function.
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Suppose h :R ._Rp+l ... m is a reduced function obtained from (1.1) through the
use of the generalised reduction. Then the connection between the null spaces of h
and Fx is given in Lemma 4.4.

LEMMA 4.4. For dp, d I" define
(4.4a) (e, a, b)--l(e, a ck I P l, e, oe ck + V2
(4.4b) *(e, a, q)=-q*W2Q[I-F,(l(e, a), a)(I-P)a-l(e, a)(I- Q)].

Here A e, X1 --> Y1 is defined by cf (2.9))

(4.4c) a(e, a)=-(I-Q)Fx(l(e, a), a)(I-P).

Then, for e, a near (0, 0),

N[F,(I(e, a), a)] = O(e, a, ’)-= {O(e, a,

N[(Fx((e, ), a))*] c *(e,

(4.5a)

(4.5b)

Furthermore,

(4.6a)

(4.6b)

if and only if
(4.7a)

(4.7b)

F(n(, ), )o(, , 6)=0,

,I,*(e, , q)F(n(e, ), )=0.

Proof First note that A(0, 0) is precisely the A used in (2.9), which is assumed
to be nonsingular, and therefore A-I(E, a) exists for (e, a) near (0, 0). Also, recall
from 2 that O(e, a) is defined to be the solution of

(4.8a)

(4.8b)

and the reduced function is

(4.8c)

(I-Q)F(f(e, a), a)-O,

PlY(e, a V2e,

h(e, a)= W2QF((e, a), ).

By differentiating (4.7) we obtain

(4.9a) (I-Q)Fx(12(e, a), a)fl(e, a)=0,

(4.9b) PII e, a V2,

(4.9c) h(e, a)= W:QFx(I)(e, ), a)(e, a).

Equations (4.9a) and (4.9b) can be solved to give

(4.10) l)(e, a)=[I-(I-P)A-l(e, a)(I-Q)]V,

which we make use of below.
Now suppose (4.6) is satisfied. Then (4.7a) clearly follows from (4.4a), (4.6a),

(4.9a), (4.9c), and the nonsingularity of Wz. In order to show that (4.7b) follows from
(4.6b), we rewrite (4.7b) as

*Fx *Fx(I- P)+ *F,,P 0

and consider the two components in the sum separately. By (4.4b) and (4.4c) we have

*F(I- P) p* WQ[Fx(I- P) F,(I- P)A-1A(I P)] 0.
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Similarly, by (4.4b), (4.9), and (4.10)

*FP d/* W2QFx[P I P)A-I(I Q)FxP]

P* W2QFfV
p*heV

--0.

Therefore (4.7b) is satisfied.
The converse result, namely that (4.7) implies (4.6), can be obtained from (4.9)

and (4.10) in a straightforward manner. We omit the details. Finally, we are left with
showing (4.5), that is any null vector of F(l(e, a), a) can be written in one of the
forms in (4.4). Suppose 1 N[F(f(e, a), a)] for (e, a) near (0, 0). Then set bl-
V-1pI. Moreover, we have 0 (I Q)F(f(e, a), a)[(I P)I + PI] and therefore
(I- P)O1 -A-l(e, a)(I- Q)FVqbl.

Now using (4.10), we obtain

1 POl +(I- P)Ol O(e, a)bl.

Similarly, if* N[(F(f(e, a), a))*] then it can be shown that * =*(e, a, )
where

From Lemma 4.4 we see that the assumption that l= 1 implies he(0, 0) has a
one-dimensional null space, with right and left null vectors bo, o such that o

(0, 0, tho), o (0, 0, o). However, the zero eigenvalue of h need not be simple,
that is, it is possible that Oo*bo 0. But the eigenstructure of he depends on the choice
of basis elements used to define V and WE in (2.11). Indeed we note from (4.9c) and
(4.10) that

he(e, a)= W[QF{I-A-I(I-Q)}]V2

Therefore, by reordering the basis vectors used to define V2 and W, the rows and
columns of he can be rearranged. Similarly, by changing the sign of a basis vector, the
sign of a row or column of he can be reversed. The effect on o and bo is, of course,
that their elements can be permuted and reversed in sign. By choosing an appropriate
rearrangement the condition

(4.11) Oo*bo 0

can be obtained. (For example, change all negative coefficients in o and bo to positive
coefficients, and then move the largest elements to the first position in each vector.
Then (4.11) is a consequence of o and tho being nonzero.) Finally, we note that when
(4.11) is satisfied, zero is a simple eigenvalue of h and therefore there exist smooth
functions b(e, a), (e, a), and/2(e, a) such that

herb =/2b, *he =/.t0*(4.12a)

for (e, a) near (0, 0) with

(4.12b)

(4.12c)

6(o, o)= 6o, g,(o, o)

z(o, 0) o.
We can now state the main result of this section.

TIqEOREM 4.13. Suppose 1 and *oo O. Also, assume that V2 and W2 are
such that (4.11) is satisfied. Then, for e, a) near (0, 0),

(4.13a) /x(e, a)= a(e, a)ft(e, a)
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for some smooth function a( e, a). Moreover,

(4.13b) sign {a(0, 0)} sign {(qo*bo)(o*o)}.

Before proving Theorem 4.13 we remark that in the case m 1 the result can be
rewritten as

tx(e, a)=a(e, a)h(e, a)

where

sign {a(O, 0)} sign {o*o}.
This is the result obtained in [7] for the Lyapunov-Schmidt decomposition. In par-
ticular, it provides the desired stability information for (e, a) near (0, 0) in terms of
a reduced function obtained from the generalised reduction procedure. For the case
m > 1 the theorem illustrates how the stability information can be obtained from the
behavior of the eigenvalue of he(e, a) that passes through zero at (e, a)= 0. In both
cases the application of the theorem is trivial.

Proofof Theorem 4.13. Our proof is a simple modification of the proof of Theorem
4.1 presented in [7, p. 38]. It is clear from Lemma 4.4 that

(4.14) /2(e, a)=O implies/x(e, a)=O.

If V/z--O/x(O, O)/O(e, a)O and V/2O then Proposition 1.4.2 of [7] guarantees
(4.13a) with a smooth (nonzero) a(e, a).

Unfortunately, V/x or 7/2o could be zero, in which case the proposition does not
apply directly. It is convenient to add a new unfolding parameter to F(x, a) to ensure
the applicability of Proposition 1.4.2. of [7].

In particular, consider

(4.15) F(x, a, fl)=- F(x, a)+ /3oo*X O.

Then the same generalised reduction can be applied to (4.15). In particular, define
l(e, a,/3) to be the solution of (cf. (4.8a), (4.8b).

(4.16a) (I-Q)ff’(fi(e, a,), a,/3) 0,

(4.16b) Pfi(e, a, )= V2e,

for (e, a,/3) near (0, 0, 0). Then the reduced function is given by

(4.17) f(e, a, fl)-- W2Qff((e, a, fl), a, fl).

Note that this construction implies

(4.18) h(e, a)= f(e, a, O).

With some abuse of notation we extend/x,/2, , , to be functions of (e, a,/3).
Next consider 0/x/0/3 (0, 0, 0)--/z. By differentiating

(sS(, , t), , t) ,
with respect to/3 and evaluating at (0, 0, 0), we find

(4.19) ~o ~o ~o o= oFxxof + Fxoo+F /x

’0However, it follows from (4.16) that f-= 0. Furthermore, from (4.15) we have Fo
oo*. When we use these facts in (4.19), and apply o*, we are provided with

(4.20) (o*o)(o*o) =/Xo*o.
In particular,/z # 0 and sign (/x) sign (o*o).
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A similar calculation based on

shows that

(4.21) fi, o

However, it follows from (4.17) and 1 =0 that

fo WQ{ " -o-oF,c3f + F,12 3}.
By differentiating (4.16) twice we find

AO(i p)O ~o ~o-(I Q) pfiOFx
By solving this expression for 1 and substituting the result into the above formula
for h we obtain

fo W:Q[I F(I P)A-’(I Q)]~oFf.o
Here we have used o F, A A, and ff."o o

~0Finally, from F o(I)o* and (4.4), we have
~0oh o I’o* "Fxo (o*o)((I)o*(Po),

and so (4.21) becomes

(4.22) /2 (o*o)(o*o)/(0o*bo) # 0.

Now Proposition 4.2 of [7, 4, Chap. I] ensures the existence of a smooth function
a(e, a,/3) for (e, a,/3) near (0, 0, 0) such that

(4.23) /z(e, a,/3) a(e, a, )fi,(e, a, ).

By differentiating (4.23) and using (4.20), (4.22) we find

0o’6o #0.(4.24) a(0, 0, 0)=/2//x (o.(Po
The theorem follows now from (4.24) by setting/3 0 in (4.23). [3

Appendix by A. Vanderbauwhede. In [7] Golubitsky and Schaeffer give a proof of
the (contact) equivalence of the bifurcation functions that we obtain for different
choices ofthe projections in a Lyapunov-Schmidt reduction. Here we give an alternative
proofthat, in our view, illustrates quite well the essential ideal ofthe Lyapunov-Schmidt
reduction.

In the notation of 2, suppose that the projections P and Q satisfy (2.5) with

X2=N oFx], Y1 R[F]
It follows that (2.6) is satisfied, and therefore there is a local solution, Xl 3(x, a),
to (2.7a). In fact, we find it more convenient to define v’X2 x Y1 x gk+ 22, where
k p + 1, and v(u, w, a) is the local solution of

(A.1) (I-Q)F(u+v,a)=w.

Clearly v(u, 0, a) t3(u, a ). Substitution ofthis solution into (2.7b) provides the bifurca-
tion mapping g’X2 x Rk- R[Q] defined by

(A.2) g(u, a)=- QF(u + v(u, O, a), a).
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For P and Q as above, this reduction provides one version of the Lyapunov-Schmidt
procedure. The bifurcation mapping depends on the choice of projections P and Q;
however, as the following theorem shows, different choices lead to equivalent mappings.

THEOREM. Let g X2 x Rk
-) R[ Q] and gl X2 x Rk

--) R[ Q1] be two bifurcation map-
pings, obtained by choosing projections (P, Q) and (P1, Q1), respectively, in the reduction
described above. Then there exist smooth mappings

T:X2 x gk
--) L(R[ QI], R[ Q]),

U X2 x R k---) X2,

such that

(A3a)

(A3b)

(A3c)

g(u, a)= T(u, a)g( U(u, a), a),

r(0, 0)=

U(O, O)= 0 and U,(O, O)= Ix.
Remark. All mappings in the statement and in the proof that follows are defined

and smooth in a neighbourhood of the origin. The result shows that g and gl are
contact equivalent at the origin (see [7]).

Proof. With v(u, w, a) defined as above, we set V: X2 x Y1X Rk
-) X Rk to be

V(u, w, )-- (u + v(u, w, ), ).(A4)

Then we have

(A5a) V(o, o, o) (o, o),

0 V
(0, O, O) Ig(A5b) 0--V(0’0u O, O)= Ix2, and F 0-

Therefore, we easily see that V is a local diiteomorphism. Moreover, from (A1), we have

(A6) F(V(u, w, a))= w+G(u, w, a),

for G X2 x Y1 x Rk
--) R[ Q] defined by

(A7) G(u, w, a)=- QF( V(u, w, a)).

It is clear from the construction that

(A8) g(u,a)=G(u,O,a).

Now, by replacing (P, Q) by (P1, Q1) we find a similar local diffeomorphism
V X2 x Y1 x Rk --> X x Rk and a mapping G1 X: x Y x Rk --> R[ Q1] such that

(A9) F(V(u, w, a))= w+ G(u, w,

with

(A10) G(u, w, a)=- Q1F(VI(U, w, a)).

A second bifurcation mapping is given by

(All) gl(u, a)= Gl(U, O, a).

Our task is to show that g and g are contact equivalent.
It is convenient to introduce D: X2 X Y1 Rk -) 22 X Y1X R k defined by D-=

V-1 V. It follows that D is a local diffeomorphism with D(0, 0, 0)- (0, 0, 0). Further-
more, we define U and W by

(A12) D(u, O, a) U(u, a), W(u, a), a).
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Upon differentiating V1 D V with respect to u and evaluating the result at (0, 0, 0),
we find from (A5b) that

(A13) U.(O,O)=Ix2.
We are now left with showing that (A3a) and (A3b) are satisfied for this definition of
V(u, o).

From (A6) and (A9) it follows that

(A14)
g(u, a)= F( V1 D(u, O, a))

W(u, e)+ GI( U(u, ce), W(u, e),

But (A11) and a first-order Taylor expansion together imply

(A15) Gl(u, W, ce)= gl(U, O)+ TI(U w, o)w

for some smooth TI" X2 Y1 R k L( Y1, R[ Q1]). Since 8G1/sw (0, 0, 0) 0 we also
have

(A16) T,(0, 0, 0) 0.

Combining (A12), (A14), and (A15), we obtain

g(u, a)= W(u, a)+gl(U(u, a), a)+ rl(D(u,O, a))W(u, a).

Applying Q and (I-Q) to this equation gives

g(U, 0)-- Qgl( U, o) --[- OTI(D) W,

(Iy +(I-Q)TI(D)) W--(I-Q)gl(U, o),

for U U(u, a), W W(u, a), and D D(u, 0, a). Solving the second equation for
W, and substituting the result into the first equation, provides (A3a) with

T(u, a)= QIRtO,]-QTI(D)(Iy, +(I-Q)TI(D))-I(I-Q)IRtO,].
Equation (A3b) now follows from (A16). l-]

The central idea of the Lyapunov-Schmidt reduction is clearly revealed in (A6).
Since V is a local diffeomorphism, we see from (A4) and (A5) that F(x, a)=0 is
contact equivalent to

(A17) w+ G(u, w, a)=0.

Applying Q and (I-O) to this equation, we find that (A17) is equivalent to solving
the reduced equation g(u, a) G(u, 0, a) 0.
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VORTEX RINGS WITH SWIRL: AXISYMMETRIC SOLUTIONS OF THE
EULER EQUATIONS WITH NONZERO HELICITY*

BRUCE TURKINGTONf

Abstract. This work introduces a new class of steady solutions of the axisymmetric Euler equations
for an incompressible inviscid fluid. Each solution represents a three-dimensional vortex flow whose azimuthal
components of vorticity and velocity are nonzero inside a toroidal region determined by the solution. The
governing free-boundary problem is solved by variational techniques. The underlying variational principle
is formulated from the natural invariants associated with the evolution equations for axisymmetric flows,
and involves a family of invariants that generalizes the standard angular impulse and helicity integrals. A
direct method is employed to prove the existence of steady solutions in a bounded domain and steadily
translating solutions in space. Qualitative properties of these vortices are discussed and concentrated vortex
rings with large swirl are shown to constitute a desingularization of the classical circular vortex filament.

Key words. Euler fluid dynamical equations, vortex, helicity, variational methods, free-boundary
problems
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Introduction. In this paper we examine a new class of steady solutions of the
Euler equations governing the motion of an ideal fluid in three dimensions. The
solutions that we consider are axisymmetric: they define flows that are invariant under
rotation about the z-axis, when expressed in cylindrical coordinates (z, r, 0). Further-
more, each solution has the property that there is a (solid) toroidal region inside of
which the 0-components of velocity u and of vorticity to

o are nonzero, and outside
of which the flow is irrotational. Therefore, we shall refer to these solutions, and the
flows that they represent, as "vortex rings with swirl."

The objectives of our work are, first, to establish the existence of these steady
solutions in a general and physically natural setting, and second, to derive some of
their qualitative and asymptotic properties. We obtain our results by appealing to a
variational formulation of the free-boundary problem satisfied by these solutions. The
variational principle underlying our analysis of steady flows follows directly from the
structure of the evolution equations governing the dynamics of axisymmetric vortex
flows, which we express as a nonlinear, nonlocal system of equations for the quantities

to/r and 3’ ru. It is based on the reformulation of the steady equations in terms
of " alone, which is accomplished easily through the elimination of 3’. In this way we
obtain a constrained maximization problem in ’, the solutions of which define the
desired steady vortex rings with swirl, and which is readily treated analytically and
numerically. We utilize this approach to study both steady solutions in a bounded
(axisymmetric) domain and steadily translating solutions in all of space.

An alternate variational characterization to ours has been given by Arnold [1],
who considers fully three-dimensional flows, as well as by Benjamin [4], who specializes
it to axisymmetric flows expressed in terms of " and y. In this approach the variational
principle is derived from the (noncanonical) Hamiltonian structure of the equations
governing sr and y, and is formulated in the class of so-called isovortical variations of
a given (extremal) flow. The resulting variational problem, though it arises very naturally

* Received by the editors October 1, 1986" accepted for publication (in revised form) May 2, 1988. The
work of this author was partially supported by National Science Foundation DMS-8501795.

? Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
01003.
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from the dynamical problem, is, unfortunately, highly nonconvex, and so is not
amenable to the standard methods of analysis. Our variational problem, on the other
hand, is designed to avoid such difficulties; instead, we take a wider class of competing
functions, and compensate for this by adding to the objective (energy) functional
certain terms that are invariant under all isovortical variations. These additional terms
are constructed from the angular impulse (momentum) and helicity integrals. In fact,
the construction involves a family of integrals generalizing the classical helicity integral;
consequently, we are lead to introduce a family of conserved quantitiesmcertain
functionals of r and 3 that we call "generalized angular impulse" and "generalized
helicity integrals"mvalid for evolving axisymmetric flows, which have not been used
before in the literature. In turn, the variational principle that we give serves to clarify
the role played by these generalized conserved quantities in determining the nature of
steady axisymmetric flows.

The outline of the paper is as follows. In 1, we discuss the axisymmetric Euler
equations and the various conserved quantities associated with these equations. We
begin 2 by reviewing the general variational principles that characterize steady flows,
and we conclude it by formulating the specific constrained maximization problem that
we use in the further analysis. Section 3 is devoted to proving our main existence
theorems for vortex rings with swirl. Finally, in 4 we summarize some qualitative
and asymptotic properties of the solutions found in 3. In particular, we indicate how
the parameters defining the angular impulse and helicity integrals determine the
structure of the vortex ring and the flow field within it, and we identify the salient
features of the solutions Corresponding to extreme values of those parameters.

In a sequel to this paper [8] Eydeland and Turkington study propagating vortex
rings with swirl in free space using an iterative numerical method allied with the
variational structure of the governing problem formulated herein. The reader is referred
there for a further exposition of these particularly interesting vortices and for a full
discussion of their quantitative properties and physical characteristics.

1. Evolution equations and their invariants. Let (z, r, 0) denote the usual cylindrical
coordinates in R3. Let D R be an axisymmetric domain, the axis of symmetry being
r 0; in the sequel, D will be either a bounded domain with a smooth boundary or
all of space. We consider the axisymmetric flow of an ideal fluid with unit density in
the domain D, and we write the velocity and pressure fields in the form

u=uZ(z, r, t)ez+ur(z, r, t)er+U(Z, r, t)eo, p=p(z, r, t)

where {ez, er, e0} is the usual coordinate frame. The governing equations are standard
(see [2], for instance):

ttz+ tt Vtt Pz,

1 )2 --Pr,(1.1) ut+u’Vur--(u

1
rig 0+u" Vu+-u =0,Ut

_[_! r)r(1.2) Uz (ru =0,

where u. V--uZ(O/cqZ)+ur(O/Or) in view of the axisymmetry. For simplicity we will
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impose the standard boundary conditions

(1.3) B.u=O on

where is the outer unit normal on 0/.
The vorticity field, o V u, which plays a basic role in the subsequent develop-

ment, is given by

(1.4)
to=toZ(z, r, t)ez+tor(z, r, t)er+tO(Z, r, t)eo

1
(rU)rez uer + (Uz u)eo.

The dynamical equations (1.1) are most conveniently expressed as evolution equations
for the modified azimuthal vorticity, " st(z, r, t), and the azimuthal circulation
(density), y y(z, r, t), which are defined by

(1.5) sr
1 o, o

=-09 y= ru
r

The equation for " is derived by taking the curl of the first two component equations
in (1.1)"

0 Ut’+" u Vur----(U --[glzt-Ji-U VUZ]r
r

r + u V -2r-uu

thus, we obtain the first evolution equation

(1.7) , + u. V 2r-4% 0.

The equation for is equivalent to the conservation of circulation (Kelvin theorem),
and it results from a manipulation of the third component equation in (1.1)"

0 + U" Vu 0 + r-luru 0 -1[ o o0= u, r (ru )’t + u V(ru )];

thus, we obtain the second evolution equation

(1.8) ,+u. re=0.
The continuity equation (1.2) furnishes a Stokes streamfunction $=$(z, r, t)

satisfying u $r/r and ur= -$z/r. Consequently, is determined by ff alone accord-
ing to

=r-[u-u]=L$

where L is the linear elliptic operator

In terms of , the boundary condition (1.3)ecomes const, on 0; we will assume
that OD is connected, and that 0 on OD.

We now introduce a new notation which simplifies the various formulas encoun-
tered in the rest of the paper. Let D denote the cross section of the spatial domain
in a meridional plane so that {(z, r, 0)e R3. (z, r)e D}, and let x , y r/2 be
new (spatial) variables in D. Then, O/Ox=O/Oz, O/Oy=(1/r)O/Or, and the volume
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element dv (in D) is replaced by 27r dx dy. Also, the Jacobian of any two functions
b, q, transforms according to 0(b, q,)/O(x, y)= r-lo(qb, q,)/O(z, r); we will abbreviate
this expression to 0(b, q,) throughout the sequel. The elliptic operator L is now given
by

(1.10) L-
1 0 02

2y Ox2 Oy2"

We let G denote the Green operator for L in D (with Dirichlet boundary conditions),
so that q G" defines the solution of

(1.11) Lq,=" in D, q=0 on OD.

In this notation we may now write the governing equations (1.1)-(1.3) as a system of
nonlinear, nonlocal evolution equations for " and y"

(1.12) , + O(, G) + O( y, y/2y) 0
in D x (0, T).

(1.13) ’)/t "-0( ’)/, G) 0

This form of the axisymmetric Euler equations is also given in [4].
The construction ofthe operator G merits further comment in view of the apparent

singularity of L at y 0. In the axisymmetric domain / R (which may contain a
portion of the axis r 0),.let axisyrnmetric vector fields and q, corresponding to the
functions sr and be defined by sr := reo and := (/r)eo. Then,using V. =0, we
find that LO " in D is equivalent to -A= V x V x sr in D. Thus, the Green
operator G takes L- into H in the sense that the relevant norms are"

Furthermore, since c Hol(/) H2(/) C(IUOI) it follows that =0 on OD and,
by axisymmetry, that O =0 at y =0. (More details about this construction appear in
the proofs of Theorems 1 and 2.)

In general, the existence and uniqueness of solutions of the initial value problem
for (1.12), (1.13) can be asserted only on a sufficiently small time interval 0=< < T;
this result is just a special case of the known theory for fully three-dimensional flows.
Thus, in our discussion of these equations we will proceed (formally) by assuming
that a classical solution exists on some time interval 0=< < T. Of course, when y is
identically zero (axisymmetric flow without swirl), equation (1.12) is solvable globally
in time [15].

We now turn our attention to the conserved quantities associated with the evolution
equations for sr and y. In this discussion we impose an additional boundary condition,
namely,

(1.14) y=0 on OD;

we note that if (1.14) holds at =0, then it holds also for all t>0, by (1.13). With this
(nonessential) condition in force, the derivation ofthe conserved quantities is simplified.
Furthermore, all of the steady solutions that we construct in 3 satisfy (1.14), and the
purpose of the discussion here is to motivate the formulation of the main results of
that section.
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We claim that the following functionals are constant in the evolution governed
by (1.12) and (1.13):

(1.15) A(T)=ffID a(y) dxdy (generalized angular impulse),

(1.16) B(,T)=II
D
b(y) dxdy (generalized helicity),

(1.17) C(y)=ff dxdy (meridional circulation),

(1.18) H(sr, ),)= G+ dxdy (kinetic energy),

where a and b are arbitrary (suitably smooth) real functions. We leave to the reader
the verification ofthe claims, which is easily accomplished with the aid ofthe integration
by parts formula

which holds whenever either q const, or (1--0 or 2- 0 on OD.
The classical cases of (1.15) and (1.16) occur when a(y)= y and b(y)= y, since

then we have

27r y dx dy -- r2oo dr, ff. IIi2r y dx dy - to. u dr.

We identify these integrals with the z-component of angular impulse (see [2]) and the
helicity (see [12]), respectively, which are known invariants even for fully three-
dimensional flows. The generalized angular impulse integral A(3,) and helicity integral
B(sr, y), valid for arbitrary functions a and b, seem to be new, however. The circulation
integral

has a standard interpretation by the Stokes theorem (see [2]). Upon integration by
parts, the kinetic energy functional is recognized as

+ dxdr =-d lul

The system of equations (1.12), (1.13) has a (noncanonical) Hamiltonian (or
Poisson) structure, as has been noted in [4]. The functional H(’, y) defined in (1.18)
is the Hamiltonian, and a Poisson bracket {.,. } can be defined so that dF/dt {F, H}
for all (suitably smooth) functionals F= F(’, 3’) defined on the appropriate phase
space. Naturally, the functionals F A, B, C defined by (1.15)-(1.17) satisfy {F, H} 0,
as can easily be verified.



62 B. TURKINGTON

2. Variational problems. The discussion in this section is divided into two parts.
First, we present the fundamental variational principle that characterizes steady
solutions of (1.12) and (1.13) directly in terms of the dynamical quantities sr and 3’.
Second, we derive another version of this variational principle that involves only " (y
being eliminated algebraically), and that, when appropriately normalized, forms the
basis of the subsequent analysis. This line of development is intended to motivate the
specific variational problem that we employ in 3 and 4 to study vortex rings with swirl.

We characterize a steady solution pair ’= ’(x, y), 3, y(x, y) of (1.12), (1.13)
variationally as follows. The governing equations become

(2.1)

(2.2)

Thus, to solve (2.2) we set

(2.3)

O(’, G’) +O(y, y/2y) =0

0(%
in D.

Gr b(y),

where b is a specified (suitably smooth) function with b(0)=0 (recalling (1.14)).
Substitution of (2.3) into (2.1) then yields

0=a(sr, b(y))+a(y, y/2y)=O(b’(y)-y/2y, y).

Thus, to solve this equation we set

(2.4) b’(3,) Y/2y -a’( y),

where a is a specified (suitably smooth) function. Therefore, given (essentially arbitrary)
a and b, it suffices to solve (2.3) and (2.4) for the desired pair r, y. We now define the
modified energy functional (assuming that appropriate dimensional constants scale
the given functions a and b)"

(2.5) H(’, 3’)= H(’, 7)-A(7)-B(’, 7)

where the specified functions a, b determine the functionals A,B in (1.15), (1.16).
Then it is obvious that (2.3) and (2.4) are equivalent to/ 0 and r 0, respectively,
where and denote the FrOchet derivatives of with respect to sr and 7. In this
straightforward manner, we arrive at the variational principle"

(VP1) Any critical point (’, 3’) for the functional/-)(’, 7) is a solution of (2.1),
(2.2), and hence yields a steady flow in D.

An alternate variational principle given in [4] (and implicit in 1]) can be summar-
ized as follows. For arbitrary test functions b, b2 (each b is smooth in D and vanishes
on OD), consider the variations = (x, y; s), 3; 3;(x, y; s) defined by solving the
equations

+a(, ,) +a(, ) 0, + 0(,7, ,) 0,

with l,=o ’, ]=o T. Then (2.1), (2.2) result from the variational equation

d H(, )1 =o 0 for arbitrary 4,, 42.ds

As is remarked in [4], this characterization of solutions of (2.1), (2.2) is quite cumber-
some to use in analysis because ofthe particular form of the class of variations involved.
In contrast, (VP1) permits arbitrary variations by replacing H with H H-A- B. In
this regard, we note that A(T), B(’, y), and C(y) are invariant under the variations, 3 defined above, as is easily checked.
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We now reduce (VP1) to a more special variational principle that does not involve
3’ explicitly. For this reduction we require that

(2.6) a(0)=0, b(0)=0, a’(t)=<0, b’(t)>0 for all t=>0,

and we define

(2.7) f(y,s):=[b-l(s)]2/4y-a(b-(s)), s>-O.

Then we see that a pair ’, 3’ satisfies (2.1), (2.2) whenever 3’ is defined by 3’ b-l(Gsr)
and sr satisfies the equation

(2.8) sr =f, (y, Gsr).
We now assume further that a and b are such that f(y, s) is strictly convex in s (this
holds in the "classical" case when both a and b are linear, for instance). Let f*(y,
the conjugate function to f(y, s), be defined by

(2.9) f*(y, tr)= sup [scr-f(y, s)].

Then f* has the well-known properties

f*(y, or) sfs(y, s)-f(y, s), f*,,(y, tr) [f,s(y, s)]-’
with o’=f(y, s) or, equivalently, s =f*(y, r). Equation (2.7) may be rewritten in this
notation as

(2.10) G=f*(y, ),
and this is clearly the variational equation for the functional

(. ,(’ -f*(y, x y.

Consequently, we have the variational principle:

(VP2) Any extremal " for the functional q(’) yields a solution of (2.1), (2.2)
with 3’ b (G’).

The algebraic elimination of y in terms of " may also be viewed as a restriction
on the admissible variations in (VP1). As is readily verified using the properties of the
convex conjugate function, the expression for ,/implied by (2.4) is

(2.12) y F(’):= b-(f*(y, st));

indeed, this inverts the equation (equivalent to (2.4))
y/Zyb’( y) a’( y)/ b’( y).

We now claim that the identity (2.12) reduces the objective functional in (VP1) as
follows:

(2.13) (sr) (’, F(sr)) for arbitrary admissible ’.
To check this it suffices to observe that

-f*(Y’tr)[b-(s)]2 s{b-(s----)-2y -1}=-a(b-l(s))-b,(b_l(s) a’(b (s))
4y

and, consequently, that

f*(y, ) y a( 3,)
b’( y)

a y)

2
Y a(y)-b(y).
4y
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On the basis ofthe foregoing discussion, we now formulate the specific constrained
maximization problems that we solve in 3 to obtain steady and steadily translating
vortex rings with swirl. These problems involve free boundaries, since the solutions
have the property that ’, 3’ > 0 in a subdomain f c D and ’, 2’ 0 in D\f/. Therefore,
we introduce some additional constraints and normalizations into (VP2). We assume
that a(t) and b(t) are specified satisfying (2.6) and that fss(Y, s)> 0. We consider the
problem:

(2.14) maximize (sr) subject to the constraints " -> 0 in D, C(’):= f " dx dy Co,
./

where Co is a (suitably specified) positive constant. We claim that such a maximizer

" yields a solution of (2.1), (2.2) having the form

=fs(y, G’-/x), 3 b-l(Gsr-/x)
(2.15)

’=0, y=0 inD\O,

in fl:= {G’>/x},

where/x is the Lagrange multiplier for the constraint C(’)= Co. To verify the claim
we calculate the variational conditions at a maximizer ’; we get

’(sr)-/x=O on {’>0}, ’(’)-/x=<O on {’=0},

where ’(’)= G-f*(y, ) is the Fr6chet derivative of at sr. These conditions imply
the claimed expression for ’, since {0< sr <fs(y, 0)} {G’=/x}, and hence, invoking
the argument of Corollary 2.3 in [13], meas {0 < " <f(y, 0)} 0. (Iff(y, 0)=0, then "is continuous across cf.) The claimed expression for 3’ is immediate from (2.12). That

" and y given by (2.15) satisfy (2.1) and (2.2) follows exactly as in the deviation of
(VP2). Thus, we have the desired variational characterization of steady vortex rings
with swirl in a bounded domain D.

We formulate the constrained maximization problem for steadily translating vortex
rings with swirl in R in the same way. In this case the objective functional (’)
(defined by (2.11) with R replacing D) is maximized subject to the constraints

(2.16) ’>-0 in R2+, C(’):=ff dxdy=Co, P(sr):=ff ydxdy=Po.

The maximizer " then yields a solution of (2.1), (2.2) having the form

=f(y, G-cy-tz), y=b-(G-cy-tz) in f:={G>cy+tx},
(2.17)

’=0, 3’=0 inR+\f,
where c and/x are the Lagrange multipliers for the constraints P(’) Po and C(’) Co,
respectively. The additional constraint, P(’)= Po fixes the z-component of linear
impulse (see [2]), a further conserved quantity in this case given by

ffIl ll/ o27r y dx dy =- rto dv.

The constant c represents the translational velocity, and is determined by the solution.
It is important to note that both the problem in D with constraints (2.14) and the

problem in R2+ with constraints (2.16) can be naturally nondimensionalized by appropri-
ately normalizing their constraint values. Indeed, if L and U are characteristic length
and velocity scales, respectively, then the constraint values scale according to Co
ULC*o and Po UL4p*o when expressed in terms of dimensionless variables (indicated
by stars): x Lx*, y= L2y*, UL-2*, etc. Therefore, throughout the sequel we
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will assume that Co 1 and diameter (D)- 1 (say) when dealing with solutions in a
bounded domain D, and that Co 1 and Po 1 when dealing with solutions in all of
space R3.

We remark that the steady flows considered above can also be characterized in
terms of their streamfunctions q, and a variational problem for q, which is dual to
(VP2), can be given. However, we prefer the equivalent formulation in sr because (i)
it is more closely tied to governing dynamical equations (through (VP1)), (ii) the
constraints imposed in (2.14) and (2.16) are more natural physically than a specification
of/ and c, and (iii) the asymptotic properties of concentrated vortex rings with swirl
are more readily obtained (see 4). These advantages have been utilized in the theory
of steady vortex rings without swirl in [3] and [11].

3. Existence theorems. In this section we state and prove two existence theorems
for vortex rings with swirl: Theorem 1 concerns steady solutions in a bounded (axisym-
metric) domain/ c R3, while Theorem 2 concerns steadily translating solutions in 113.
We establish both of these theorems by applying direct variational methods to the
corresponding constrained maximization problems formulated in 2. This approach
is quite standard and has been used before in similar problems. The results obtained
in [5] parall those in our Theorem 1, but unlike that paper we treat the case when
the domain D contains a portion of the z-axis (where certain singularities arise). Also,
the results of our Theorem 2 are analogous to those established in [11], although the
approach we take in the present paper is more direct.

For the sake of simplicity in the exposition we will restrict our detailed discussion
in this section to the "classical" case when

(3.1) a(t) -at, b(t) fit for given positive constants a and/3.

This special case illustrates well the general case" some instances of the general case
for which the same results hold are discussed later in this section.

In the first theorem the constrained maximization problem under consideration
is defined on the class of competing functions

(3.2) K(D)={L(D)’>-Oa.e.,IIdxdy<-l, lfydxdy<+}.
The constraint C(’)= 1 is relaxed to an inequality here for technical reasons related
to the range of the given parameters a and/3. We recall that the objective functional
introduced in 2, specialized according to (3.1), is defined as

We let Xa denote the characteristic function of 1
_
D.

THEORE 1. For every prescribed 0 <- a < +o, 0 < fl < +c there exists a solution
6 K(D) of the problem

(3.4) maximize () subject to K(D),

and there exists a multiplier I > 0 such that

(3.5) sr 2y/3a (Gs
r -/)++X->o in D.

Furthermore, whenever I > 0 there holds

(3.6) has compact support in D, C()= 1.
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Remark. The condition that/z > 0 is ensured whenever/3 is small enough depend-
ing on or, and this property is proved in 4. The exact range of the parameter/3, an
interval 0</3 <fl*(a), for which solutions satisfying (3.6) exist is best determined
numerically using the method given in [8].

Proof. We first construct a maximizer for @ over K (D). To be able to treat the
case when / fq {r 0} # , it is necessary to reexpress the problem in terms of the
(z, r, 0) coordinates and the naturally associated vector fields:

(3.7) = r(z, r)eo, =_1 (z, r)eo in D.
r

We vrify that LO in D with =0 on OD if and ony}f -a }n with =0
on OD; we see this equivalence by viue of the identity -A@ V x V x @,ince V @ 0.
Now the terms in the objective functional can be expressed in and . In paicular,
we have

1 1 1
Gdx dy= (. dm IVl2 dm, y2 dx dy = I(I = dm,

2 .o 2

where we write dm r dr dz (1/2) dr. Also, we have

fro IldmR:=maxr’
by the circulation constraint. An upper bound for on K(D) is obtained as follows.
By the Sobolev inequality, we have

IVl dm . dm 116/5 116 C 116/5 IVl dm

This yields the estimate

Ivl= am c=llgl[6/, c=llill/311illg/ c3(e)llgl[/3,

on application of the standard interpolation inequality. We now obtain the desired
bound for " for e K(D),

(C) Ivl= dm-y I1= dm+ rlgl dm

(3.8) c4(e Igl am - Igl = dm+ae

C(D, a, #) < +.

Consequently, we may take a sequence (D) such that (i) ()
up {(): ( K(D)}, (ii) I111= c6, and (iii) - L(fi) weakly. It follows that
@- @ weakly in H2() and hence, by the standard imbedding theorem, that -strongly in H(). Thus, we have the continuity of the first term of , namely,

f f Gdxdy= lVldm lV’dm=
Also, we have the lower semicontinuity of the second term, namely,

lim inf Y

_
a

dx dy g y dx dy.
J++m + +
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This follows from the convexity of this term combined with the identity 2y" reo" ,
which implies that srj- " weakly in L2(D) with respect to the measure y dx dy. Con-
sequently, we may conclude that (’)=mj_+ ()=sup, with ’ K(D). (We
note that the statement that limits sr and have the form (3.7) is easily checked.)

The derivation of the variational conditions (3.5) is sketched in 2 in the general
case. In the present case, if/x is the multiplier accounting for the constraint C()-<_ 1,
then we have, by maximality,

O>=ffo[G-tx-2yfl2(-a/fl)+]6dxdy
for all variations 6" that respect the constraint " >= 0 almost everywhere in D. This
inequality implies that

(3.9)
G-tx=2yfl2(-a/fl)+ whenever ’>0,

G"-/z =< 0 whenever sr 0,

which further implies that {0< sr < al}_ {Gsr =/x}. The stated form (3.5) then follows
immediately.

To complete the proof we must establish (3.6)2twen > 0, by assumption. Since
L2(/), we have that ,H(1)fqH2(I)_ C DUOD), bythe Morrey-Sobolev

imbedding theorem. Then we must have qlr=o 0, by continuity, and hence q, r[q
o(r) as r -* 0+. Now since/z > 0, it follows that supp "

___
{q _->/z } c_ D f3 {y > 6} for some

6 > 0, and thus we conclude that supp sr is a compact subset of D. The fact that the
corresponding multiplier is nonzero ensures that equality holds in the circulation
constraint.

The above theorem provides a solution pair ’, y of the system (2.1), (2.2) in the
"classical" case (3.1), and that solution pair is expressed as

1 a 1
(3.10) " 2yf12 ++Xg;>o), )’ if+ with

The theorem generalizes in a straightforward way to a class of problems where the
structure functions a, b C2[0, +) satisfy (2.6) and f(y, s) defined in (2.7) is strictly
convex in s for s > 0. In particular, it suffices that a(t) and b(t) satisfy

(3.11) a(O) O, -t, <= a’(t) <-- O, a"(t)b’(t) >- a’(t)b"(t),

(3.12) b(0)=0, flo<-b’(t)<-fll, b’(t)> tb"(t),

for all t_>0, where 31,/30,/31 are positive constants. The solution pair ’, 3’ is then
expressible as

b-l() a’(b-l())
in {>0}, st=0 in {_-<0},2yb’(b-i(q)) b’(b-i(q))

(3.13)
y=b-l(q) in {q>0}, y=0 in {q-<_0}.

It follows from this that " L(D) and that " jumps by the constant la’(0)l/b’(0) across
the free boundary 0{q > 0}; it also follows that y C’I(D) and that, in general,
and yy are discontinuous across the free boundary. In physical terms, the velocity field
is continuous everywhere (and that condition defines the free-boundary condition),
while the vorticity field may be discontinuous across the boundary of the vortex ring.
Of course, further generalizations are certainly possible (for instance, the quadratic
growth of f(y, s) in s can be relaxed and solutions with higher regularity can be
obtained), but these extensions are left to the reader.
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In the second theorem, we replace the domain D by R2
+ {y > 0}, and we impose

the additional constraint P(’) 1. The class of competing functions is now taken to be

K(R+)={’LI(R+)" st->0 a’e" IIR dxdy<--l’

(3.14)
y dx dy <-_ 1, y2 dx dy < +oo

Both of the constraints C(’)= 1 and P(sr) 1 are relaxed to inequalities here again
for technical reasons. The proof of existence of solutions follows much as in the
preceding theorem, except that it is complicated by the fact that the domain is now
unbounded. I]

THEOREM 2. For every prescribed 0 <= a < +o, 0 < fl < +o, there exists a solution

" K (RE+) of the problem

(3.15) maximize dp() subject to K(R+)
and there exist multipliers tz >- 0 and c > 0 such that

(3.16)
1 O

zp"y’- G cy tx )+ +-p Xa,-y->o in R+;

also, is symmetrized about x O, in the sense that

(3.17) (x, y)=(-x, y) and (x, y)>-(x’, y) whenever O<=x<-x ’.

Furthermore, P()= 1 holds and whenever tx > 0 there also holds

(3.18) has compact support in R+, C() 1.

Remark. As in Theorem 1, the condition that/z > 0 is ensured whenever/3 is small
enough depending on a. In fact, the range 0</3 </3*(a) in Theorem 2 is known
explicitly, since the limiting case /3 =/3*(a) corresponds to a spherical vortex with
swirl found by Moffatt [12]. A complete discussion of these Moffatt vortices and the
role they play in determining the range of the given parameters a and/3 is given in
[8], where the vortex rings with swirl proven to exist in this theorem are exhibited
numerically.

Proof. We use the same direct variational method as in the proof of Theorem,, 1,,,
leaving some of the technical details to the reader. As before, we introduce " and
defined by (3.7). However, the constraints C(sr) =< 1 and P(’) =< 1 now imply the bound

1 ffi ( ) 3I[I dm <= (r+ r-)l/I dm y+ dx dy<= -.
+ 2

In turn, this yields the bound

{fR )1/3 13 fa l12 dm+2al3<C(a, 13)<+,(3.19) (sr) C4 I(1= dm -2---
where, in contrast to (3.8), the constant C4 is independent of the size of the support
of . It follows that there is a sequence jK(R2+) such that (i) (srj)-
sup {()" K(R2+)}, (ii) I111_-< c6, and (iii) - sr L2(R3) weakly. Furthermore,
using the standard arguments (see [9]), we may replace each ’(x, y) by its symmetrical
rearrangement in the x variable so that the properties (3.16) holdfor each sr; in this
procedure we use the fact that symmetrization in x does not alter the constraints and
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does not decrease the objective functional. Now, however, we are able to assert only
that qj - q strongly in HI(Bo), where Bo {z2 + r2 < p2} for every fixed p < +c. Con-
sequently, the proof of continuity of the first term of a requires careful justification.
This is provided by the estimate

(3.20) 16(z,r)l<-_n(,/z=+r) where n(p)$O as p+.

Indeed, given such a rate of decay for Il (independently of j) we conclude that

Gdx dy dm <
3

and similarly for if; this combined with the fact that

II Gdxdy: Is ’V’2 dm- f Ivl dm: I fz Gdxdy
2+r2<p2 2+r2<p2

for arbitrarily .large p < +, clearly yields the desired conclusion. The proof of the
claimed estimate (3.2p) depends upon the fact that is expressible as the potential
of , namely, ff k.ff (component-wise), where k k(p)= 1/4p is the fundamental
solution of- in R3--and I[ is axisymmetric, symmetrized in z, and 1[11 C,
][C for constants C, C independent ofj. A derivation of such an estimate can
be given by modifying the calculations made in [10], where an analogous result is
proved with the L-bound 1[[[ C replacing the L-bound; the resulting estimate
shown in Theorem 2.5 of [10] involves (p) C3p- log (1 + Cap), and an analogous
expression follows in the present case. Since the details of this argument are rather
lengthy and are of technical interest only, we will omit them here. The lower semicon-
tinuity of the second term in follows as before. Therefore, we have that (ff)=
lim (ffj)=sup , with ff K(R]).

The variational conditions (3.15) follow using the standard methods, with multi-
pliers c, R uniquely determined by the extremal ft. That c, 0 follows from the
observation that [[=r=(-cr/2-/r)+(-cr/Z-/r)+ in R with I[ L(R3).
Thus, c < 0 implies [[ [c[r/2-l[/r for large r, which is impossible; and, < 0 implies
I][]/r-lc[r/2 for small r, which is impossible. The strict positivity of c is an
immediate consequence of the following identity, which is interesting in itself:

(3.21) 2c G+ fl2y + 6afly - dx dy.
+ +

To prove this we use an alternative expression for the energy associated with flow in
the meridional planes, namely,

(3.22) l f f [:+] dx dy f (x6 + 2y6y)L6 dx dy.

This formula is verified by an integration b pas argument; its complete derivation
is given in Lemma 3.1 of [11]. Now we let ff-cy-, and using (3.22) we obtain
the expression

2

If’ [x,, + 2y(+ Cy)y]; dx dy.
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But an integration by parts yields

Xbx: dx dy Xx .ylfl.,_ k+ + dx de+ + X{>o}

:-IfR [4)1fl2 q2++ +] dx dy,

f.fR2y(WCy)ydxdy= I y +w

+dx#+2c.
The claimed identity (3.21) now follows using the substitution + =2yfl(C-a/)+.

We note that equality must hold in the constraint P(ff) 1 since c is nonzero. It
remains to establish (3.17) when >0, by assumption. First, we note, as before, that
equality must hold in the constraint C(ff) 1. Next, we demonstrate that supp C
{lxl 6 -, 6 =<y < 6-} for some > 0. The required bounds in y follow directly from
the fact that @ cy + in supp , since this )mplies that cr/2 +r-I C6 in supp .
The required bounds in x follow from the inequality

ff for a,,

To show this we use the fact that @(x’, y) @(-x’, y) and @(x’, y) -> @(x, y) for all
0<x’< x (a consequence of (3.16)), because then we obtain

clxly <- 4,(x’, y ax’= 4,,,(x’, y’l x’ ay’
J -Ixl J-Ixl-- (2lxly) 1/2 d/2y, dx’ dy’

which clearly gives the desired inequality. This completes the proof. [-1

The above theorem supplies a solution pair ’, y of the system (2.1), (2.2) in the
"classical" case (3.1), and that solution pair is expressed as

(3.23) sr=2yfl2 @++X(v;>o}, Y= @+ with

Remarks made after Theorem 2 concerning the generalization of the existence result
to a class of structure functions a and b satisfying (3.11) apply equally well to the
results of Theorem 2.

4. Qualitative properties of vortex rings with swirl. Here we summarize some of
the qualitative properties of the solutions found in Theorems and 2. The specific
form of the constrained maximization problem we employ in the analysis of solutions
provides an especially convenient framework for the derivation of these results, par-
ticularly those pertaining to asymptotic properties. However, we will be content merely
to sketch the proofs ofthe results stated here, since our method of analysis has appeared
in several papers [7], [11], [13], [14] concerning very similar problems.
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As in 3 and in our sequel paper [8], we restrict our attention to the "classical"
case in which the structure functions a and b satisfy (3.1). Then it is of interest to
determine how the solutions " ’,,0, y y,0 depend on the given parameters a and
/3. We will first consider the dependence upon /3 (for fixed ce), emphasizing the
asymptotic limit/3--> 0+ that gives concentrated vortex rings with swirl. We will then
consider the dependence of these fl-parametrized branches of solutions on a, which
dictates the flow structure within the vortex.

The asymptotic analysis of solutions as fl-->0+ can be accomplished with a
modification of the methods given in [13]. The crucial estimates are as follows (C1, C2,
etc. denote generic positive constants independent of/3)"

(4.1) diam ’ C13
(4.2) max (G’-/x)+ <- C2, max " <= C33-, max 3’ <= C43 -1.

The geometric estimate (4.1) on the vortex core f={ >0} may be derived using an
extension of the arguments of Theorem 3.3 in [13]. We now briefly indicate the main
steps in this derivation for the solutions found in Theorem 1. First, we note the identity

(4.3) x=2(sr)-2a/3 ffY(--l dxdy,
JJD \ [O/

which follows immediately from (3.5). Second, we establish that

20(’) --> 20(’) => log fl-l_ C1,

taking an admissible function (1/r )X<,; approximating a delta function cen-
tered at some point (:, fi) D. This estimate depends upon some precise information
about the Green function for L in D; in particula’r, the Green function is known to
have the same singular behavior as the fundamental solution for L in R+ (the stream-
function for the classical circular vortex filament), which is given by

(rr) 1/2

k(z, r, z’, r’) log :-1 + O(1) as
27r

where sc=[(z-z’)+(r-r’)]l/2/2(rr’)l/, when expressed in terms of the variables
z x, r= x/ (see [11]). It follows that for any (x, y)

G(x, y) >- tz >- 2(sr) C2 _-> log fl-a Ca.

A relatively crude argument using this estimate will demonstrate that diam (f) o(1)
as/3-0+, and with this fact in hand (and taking (,)3) 1)) the sharp version of the
argument ([13, Thm. 3.3) yields the desired estimate (4.1). These arguments rely on
showing that, as a consequence of the latter inequality, if (x, y) 1) then

f;19 ’(x"y’)dx’dy’<--ca(lgM)-I frM>l’
\BMI3(x,y)

and hence that diam (f)<-_2Mfl, when M is fixed large enough that Ca(log M)-I< 1/2.
Once (4.1) is proved, the asymptotically sharp estimates (4.2) follow from the scaling
arguments given in Theorems 4.4 and 4.5 of 13]. We omit any further details here.

An obvious conseqtence of the identity (4.3) is the positivity of/x for small/3;
in fact,/x ->_ a0 log -1 for some constant ao > 0 as/3 0+. Thus, we have justified the
remark following Theorem 1, and hence equality must hold in the constraint C(sr) _-< 1
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for small/3. (Presumably,/ is positive for some parameter range 0</3 < 3*(a), which
could be determined numerically using the method in [8].)

We see from (4.1), (4.2) that " tends to a unit delta function in the sense of
distributions as/3 0+. (The location at which the delta function is concentrated can
be deduced from the Green function for L in D, as is explained in Theorem 4.3 of
[13].) Also, we see that y tends to zero in the sense of distributions as/3 0+, even
though max y +oo. This rather curious property is shared by all concentrated vortex
rings with (nonzero) swirl. Consequently, the limit solution is a (typically unique)
vortex filament (without swirl) in D which is independent of a. A further manifestation
of this phenomenon is that the angular impulse A(y) 0, while the helicity B(sr, y)
0(/3-’) as/3->0+.

Similar asymptotic results hold for the solutions found in Theorem 2, namely,
steadily translating vortex rings with swirl in all of space. First, recalling (3.21), we
observe that the translational speed c satisfies

II [(4.4) 2c ()+ 2flZy
a

+ 6afly dx dy.
2+ + +

Then, since (4.1), (4.2) are also valid for these solutions, it follows that _-> bo log fl-1
for some constant bo> 0 as/3 0+. The identity (4.3) now holds with replaced by
+ c, and so, in turn, it follows that => ao log fl-1 for some constant ao > 0. (In fact,

the following asymptotic formulas as fl0+ are easily established:
(x//4r) log 3 -1, c 1/2(sr), /z (’).) As before, we see that as/3-0+

8(x, y 1), y --> 0 in the sense of distributions,

where 6(x, y 1) is the unit delta function at (x, y) (0, 1). In other words, the unique
circular vortex filament with unit linear impulse is obtained as the limit solution,
independently of a.

These results justify the remark following Theorem 2, since is positive for small
/3, and hence C(’)_-< 1 holds as an equality. However, much more precise information
on the parameter range 0</3 < fl*(a) over which this holds is available and is given
in [8]. There it is shown that the extreme case/3 fl*(a), for which/z =0, corresponds
to an explicit spherical vortex found by Moffatt [12], and the function /3*(or) is
calculated. The reader is referred there for the details as well as for a quantitative
description of the solutions over the full parameter range.

We now turn to the dependence of the solutions on the parameter a. While /3
determines the cross-sectional diameter of the vortex ring with swirl, a controls the
structure of the vortical flow within the vortex ring. When a 0, it is readily verified
that (3.10) is equivalent to the identity u flw in the vortex core. Thus, every solution
with a 0 defines a vortex ring that consists of a Beltrami flow within its vortex core.
Roughly speaking, these solutions represent steady vortex flows whose swirl is maximal
with respect to their meridional circulation. (Unlike simple quasi-two-dimensional
flows it is not possible for the swirl y to take essentially arbitrary values, because of
the presence of the coupling term 0(% y/2y) in (1.12).) The opposite extreme occurs
when a-+. Since /3*(a)+oo as a+oo (as can be checked), there exist limit
solutions sr := lim ’,,t when a,/3 +oo and a//3 A (provided that A > A*, say). In
the case of Theorem 1, these solutions satisfy, AXo&>,, y =0 in D,

which corresponds to the limit of the free-boundary problems (3.10) for finite a,/3.
Consequently, such a limit solution represents a classical steady vortex ring without
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swirl (see [3], [10]). The relevant parameter range is A*<A <+o where (,,)--1._
D dx dy. Similar results apply in the case of Theorem 2, where a branch of steadily
translating vortex rings is obtained for which A A* gives the Hill spherical vortex
and A- +oo gives the circular vortex filament (both normalized by the constraints
C(’) 1, P(sr) 1). In either case the general situation with 0< a < +o may be viewed
as mediating between the extremes described above. Hence the two-parameter family
of solutions ’,, y,z furnishes a very natural and precise extension of the familiar
concept of a vortex ring.

We conclude by commenting that our theoretical results are tied to some interesting
phenomena on the physical side. In an unpublished experiment, Bergerud [6] devised
an apparatus for imparting azimuthal swirl to concentrated vortex rings, and observed
that steady flows were produced when the swirl had a certain critical magnitude; while
unsteady (azimuthally oscillating) flows were produced for other swirl magnitudes. It
is noteworthy that the steady vortex rings with swirl he observed in water share some
qualitative features with our model flows in an ideal fluid. In particular, the bound
A(y) -tiP(st), which holds for all of the solutions given in Theorem 2, confirms that
the total angular impulse of any steadily translating vortex ring must be small if it is
concentrated (/3 small) and has a given linear impulse (P(sr) prescribed). However,
further experimentation is needed before a convincing evaluation of the relevance of
our solutions to vortex motions in real fluids can be made.
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STATIONARY STOKES AND NAVIER-STOKES SYSTEMS
ON TWO- OR THREE-DIMENSIONAL DOMAINS WITH CORNERS.

PART I: LINEARIZED EQUATIONS*

MONIQUE DAUGE]"

Abstract. The HS-regularity (s being real and nonnegative) of solutions of the Stokes system in domains
with corners is studied. In particular, a H2-regularity result on a convex polyhedron that generalizes Kellogg
and Osborn’s result on a convex polygon to three-dimensional domains is stated. Sharper regularity on a

cube and on other domains with corners is attained. Conditions for the problem to be Fredholm are also
given, and its singular functions along with those of the nonlinear problem are studied in the second part
of this paper.
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1. Introduction. The linearized equations corresponding to the Navier-Stokes
system describing gas-dynamics consist of the following Stokes system in R (n 2 or
3)"

(1.1) -At + Vp f, div ti g

where ff (Ul, , un) is the speed of the fluid, p its pressure, and f the strength field.
On a domain 12, the boundary conditions are

(1.2) aloa 0.

The problem (1.1)-(1.2) can be approached as an elliptic boundary value problem
as in the paper by Agmon, Douglis, and Nirenberg [1]. On the other hand, it may be
proved by a variational method (see Temam [22]) that for a bounded domain 12 and
data (f, g) in the product of Sobolev spaces [H-(fl)]" x L2(12) with the compatibility
condition

(1.3) Io. g dX =0,

there exists a unique solution (7, p) of (1.1)-(1.2) in the space [(12)]" [L2([I)/C].
Here, as usual, (12) denotes the H-space with null traces on the boundary, and
H-1 is its dual with respect to the L-duality.

Thus, if (f, g) is more regular, let us say

(1.4) f G [HS-l(’)] and g HS(l)), s> O,

then, when 12 has a smooth boundary, we draw from [1] and interpolation (cf. [23]),
that

(1.5) ti e [H+(f)]" and

But, in the case of physical domains, or for partition of domains in numerical
analysis, it is natural to study the case when 12 has corners.

In two-dimensional domains (2D), when lI is a polygon, we have Kondrat’ev’s
[12] and Grisvard’s [10] results for the divergence-free system (g=0: incompressible
fluid) in spaces with integer exponents; for the general system (1.1), we have Osborn’s

* Received by the editors August 11, 1987; accepted for publication (in revised form) May 2, 1988.
? U.A. Centre National de la Recherche Scientifique 758, D6partement de Math6matiques et Infor-

matique, 2, rue de la Houssinire, 44072 Nantes Cedex 03, France.
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results [19], Dauge’s results [5] in weighted Sobolev spaces, and the regularity result
of Kellogg and Osborn 11].

In three-dimensional domains (3D), Maz’ja and Plamenevskii study the problem
(1.1)-(1.2) for a large class of domains in weighted Sobolev spaces: the results are
announced in [15] and proved in [16], [17a], [17b]. The spaces are general LP-Sobolev
spaces with weight (of Kondrat’ev type) and also H61der classes with weight. Merigot
[18] and Grisvard [10] have also used LP-Sobolev spaces in the 2D divergence-free
problem on a polygon.

In this paper we state precise results of regularity in the ordinary spaces (1.4),
(1.5). Among other things, the Sobolev spaces with real exponents are useful for
studying the nonlinear Navier-Stokes system (Part II of this work is forthcoming),
and for successive approximation schemes (see [20]).

Theorems 5.4 and 5.5 in 2D are a generalization of [10] and [11]. In 3D we get
new results. For several examples of domains, we hereafter indicate a condition on s
under which the solution (, p) of (1.1)-(1.2) with (f, g) in the space (1.4) has the
regularity of (1.5), provided g is zero at the singular points of 12 if s ->_ 1 (cf. [11] and
the definition (9.17)):

(1.6)

(1.7)

(1.8)
(1.9)
(1.10)

(1.11)
(1.12)

If 12 is any domain in our class of domains with corners 3 (introduced
in 2 below), s < 0.5.
If QI\ Q2 where Q1 and Q2 are two rectangular parallelepipeds with
the same axes, s _-< 0.544 (approximate value).
If 1 is any convex domain in our class 3, s _<-1.

If 1 is any convex domain with wedge angles _-<2r/3, s <3/2.
If 12 is any cylinder with convex polygonal base, and angles <2r/3,
s<-3/2.
If 1 is any cylinder with smooth base, s < 2.
If 1) is a half-ball, s < 2.

When we say a cylinder, we mean a bounded cylinder truncated perpendicularly
to its generating lines.

The plan of this paper is as follows. In 2 we introduce our classes of domains
and the functional spaces. In 3 we recall general results from Dauge’s works [6] and
[9], and we apply them to the problem (1.1)-(1.2). As these results are based on a
special condition of injectivity about tangent problems, in 4 we link that condition
to the usual one used by Kondrat’ev in [12]. In 5 we recall some properties of the
characteristic equation sin2 )to) )t sin to 0, we give a graph and tables of values for
its roots, and we state results in 2D. In 6 we study the domains in 3D that have
edges, but no vertices. In 7 we study the tangent problem in a three-dimensional
cone, which gives rise to a quantity linked with the Laplace-Beltrami operator that
we estimate in 8. Finally, we state 3D results in 9.

2. Classes of domains and functional spaces. Our classes ofdomains contain various
curvilinear polygons (in 2D) and polyhedra or domains with piecewise-smooth boun-
dary (in 3D).

2.1. Plane and spherical domains. Our class 2(R) of plane domains consists of
all curvilinear polygons, possibly with cracks but without cusps (or turning points):
12 is in ta(R2) if and only if it enjoys the following properties:

(i) 12 is bounded and connected.
(ii) The boundary of 12 consists of a finite number of smooth closed arcs

F1,..., Fv, Fv/ =F.
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(iii) Let A and A+I be the ends of F; the A for j 1,..., N are the vertices
of fl and at the neighborhood of At, f/is locally diffeomorphic to a neighborhood of
zero in a plane sector FAj.

In the case when one of the sectors FAj has its opening equal to 27r, we have a
crack and we dissociate the two sides of the crack as in Fig. 1.

A2 A3 A5 A

F

,m
A2 A

FIG.

In both cases, A4 is at the bottom of the crack and F and F4 coincide in the
n.eighborhood of A4.

Let us note that condition (iii) may be rewritten in the following form. If the
tangents of F and F+I coincide in At, then F and Fj+I coincide in a neighborhood
of At.

We denote by Ao(12) the set {A1,’’-, An} and denote simply by x any element
of Ao(f/). Thus, for x At, FA is denoted by

In the same way we define the class 2(S2) of curvilinear polygons on the unit
sphere of R3.

2.2. Three-dimensional domains. belongs to r3(R3 if and only if it satisfies the
following conditions:

(i) f is bounded and connected.
(ii) At each point x of its "stretched" boundary, 12 is locally diffeomorphic to a

neighborhood of zero in one of the following three kinds of domains"
(1) A half-space: then x is a regular point;
(2) A dihedron isomorphic to R x Fx, with F, a plane sector with an opening

different from 7r" then x belongs to an edge;
(3) A cone F with vertex zero (which is not a dihedron), such that its intersection

G with S2 belongs to 2(Sa): then x is a vertex.
Let Ao(12) be the set of vertices and Al(f/) be the union of the edges.
The stretched boundary is the notion corresponding to the doubling ofthe boundary

when there is a crack in 2D. This is more completely explained in 2 of [9].
Note that if 12 has a piecewise-smooth boundary, and its faces meet two by two

or three by three with independent normals at meeting points, then 12 belongs to our
class 3(R3).

2.3. Sobolev spaces. For a positive integer s, HS(fl) is the usual Sobolev space of
all distributions u in 9’(12) such that each derivative Du with length lal<=s, in 12,
belongs to L(12). For a positive noninteger real number s, let [s] be the integer part
of s and cr s-Is]. HS(fl) is the space of all u in Ht(f) that satisfy

Va, [a] [s] f ]Du(x)- D’u(y)]2 d(x, y)-n-2s dx dy < +00

where d(x, y) is the infimum of length of the paths joining x to y and included in
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s(f) is the closure of (f) in HS(f) and H-S(f) its dual with respect to the
L--duality.

2.4. Stokes operators. We denote by D(f) the product of Sobolev spaces [1
H+l(f)]" x H(f) (cf. (1.5)) and by E(f) the product [H-a(f)] x HS(f). We
then denote by 8, the operator (1.1) applying (a, p) on (f, g), and we write especially
,[s, f] for Se, acting from D,(I) to E,(f). We suppose everywhere that s 1/2.

3. General Fredholm properties. General Fredholm properties rely on general
statements of [9] that we apply here to the Stokes system (1.1)-(1.2).

In [9], we develop general conditions for a strongly elliptic operator to be Fredholm
between Sobolev spaces H (in the above sense; 2.3), e.g., with Dirichlet conditions.
Moreover, we extend that theory to strongly elliptic systems, and other ones satisfying
a weaker ellipticity property that holds in particular for the Stokes system (see (7.7)
in [9]).

We will apply those results. To do so, we recall the characteristic conditions
concerning the operator and the domain. When f is a polygon, it is well known that
such conditions are related to the angle openings of and to associated discriminant
functions (cf. [10], [12]). In fact it is related with the spectrum of a holomorphic
operator family; in three dimensions the condition may be written only in that form.
We show in [9] that those "spectral" conditions are fully convenient for "homogeneous"
weighted Sobolev spaces, and that, for ordinary Sobolev spaces, they must be replaced
with a new type of condition we call "injectivity modulo polynomials."

Although that distinction is of lesser use for regularity properties than for Fredholm
properties, we introduce it in anticipation of the forthcoming Part II of this paper
wher we will describe the singularities of solutions.

Our conditions are related to tangent (or frozen) operators at each singular point
of f.

3.1. Frozen operators at a vertex. Let f be a domain in G,(R"), n=2,3 and
x Ao(f). We will suppose that the ditteomorphism X, which implies a neighborhood
of x in f on a neighborhood of zero in Fx, is such that

DX(x) I is the identity matrix.

Then, the operator Lx, obtained by taking the principal part of the operator
X Se, X- frozen in zero, just coincides with Sen on the cone F.

3.2. Frozen operators along an edge. As in the case of a vertex, if x Al(f), the
frozen operator on the wedge R x F is Se3. But, we have to define a new frozen operator
L on the plane sector F (cf. [9, (3.3)]). Let (y, z) be coordinates such that y R and
z Fx. The operator L is defined as

Lx(Dz)=3(O, Dz)
(we remove tangential derivatives along the edge). Thus, we have

(3.1) Lx(u,, U2, U3, p) (fl,f2,f3, g)

if and only if

(3.2) 9:(u,, u_,p)= (f,f:, g) and Au3-f3.
3.3. Injeetivity modulo polynomials. For A C, S(F,,) denotes the set of vector

functions (Ul," u,, p) of the form:

u r Y Uq(V) logo r with uo IY-I’( Gx),
Oq-O

p= r-1 , pq() logqr withpqL(G)
O-qQ
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where (r, )= ([z[, z/[z[) are the polar coordinates and Gx is the intersection of Fx
with the unit sphere Sn-1.

We say that L is injective modulo polynomial on S(Fx) if

(a, p) S(Fx) and L(ti, p) is polynomial implies that
(tl, p) is polynomial.

Here "polynomial" means polynomial with respect to cartesian variable z (Zl, ZE)
or (Zl, zE, z3). For instance, r sin aO is polynomial in RE for a Z. Of course, the
zero function is polynomial.

3.4. Index and regularity results.
THEOREM 3.3. Let gl ffn(Rn). The Stokes operator 5On[s, l)] is a Fredholm operator

if and only if both the following conditions are satisfied:
(3.4) Vx Ao(gl), VA with Re A s + 1 n/2,

Lx is injective modulo polynomials on S(Fx);
(3.5) ::le > 0, VX C AI(), ’h with Re h [0, s + e],

Lx is injective modulo polynomials on S(Fx).
This statement is derived from (7.15) in [9], with the variant (6.8) in [9].
If 1 has only conical points (which is the case when n--2), the condition (3.5)

is void. If l) has no vertex (cf. examples (1.11), (1.12)), the condition (3.4) is void and
(3.5) may be replaced with (3.5’):

(3.5’) Vx AI(), VA with Re h [0, s],
Lx is injective modulo polynomials on

If 12 is a three-dimensional polyhedron with plane faces, (3.5) may still be replaced
with (3.5’): the e in (3.5) is useful in the case when 1 is a three-dimensional domain
with smooth curved faces; that e allows an easier formulation without introducing
:’subsections" or "singular chains," which describe the limit geometrical behavior at
the neighborhood of a vertex.

THEOREM 3.6. Assume that the conditions (3.5) and (3.7) are fulfilled:
(3.7) VxAo(l), VA with Reh[1-n/2, s+l-n/2],

Lx is injective modulo polynomials on S(Fx).
Then, each solution , p) D(fl) of (1.1) with f, g) in E(gl) has the regularity

When (3.4) is satisfied, and not (3.7), there are singular functions. We will study
these in Part II of this paper, along with the nonlinear Navier-Stokes system.

Now, we will study (3.5) and (3.7) in order to give more precise regularity results
in two and three dimensions.

4. The link between the injectivity condition and the usual spectral condition.
4.1. Generalities. Let us study condition (3.4). In view of 3.1, Lx- 5. If we

consider g of the form r() and p- r--l(), then we get

n(,p)--(f,g)
where f r -E() and g r -1(), with

(4.1) (h)(, ) (, ),
n(h) being a system on the sphere S-1, depending in a polynomial way on h. As in
[17], we can derive from the writing of 5 in polar coordinates that (4.1) may be
written in the form

[t$, h (h + 1)] + [(h 1)+] ,
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where 6, is the positive Laplace-Beltrami operator on S"-1, is the vector x/Ix in
R", and ’s is the tangential component of the gradient on the sphere

v v-xI,a/a.,(h) gives rise to an operator acting from D(Gx) to E,(Gx). It is almost everywhere
invertible. The set of h for which ,(h) is not invertible is called the spectrum of
and the condition used by Kondrat’ev [12] or Maz’ja and Plamenevskii is that the
straight line Re h s + 1 n/2 does not meet the spectrum of ,. As we have already
.said, this type of condition is correct for weighted Sobolev spaces (of the type
rV+llDv L2), but it is not always suitable for ordinary Sobolev spaces. Nevertheless,
we have (cf. (4.2) for s =0 and (4.6) in [9]):

LEMMA 4.2. If h is not a positive integer, , is injective modulo polynomials on
Sx (Fx) if and only if h does not belong to the spectrum of, on G.

If h is an integer number, the comparison depends on the difference d (h) between
the dimensions of two spaces of polynomial functions"

d(h) dim PX(F)-dim QX-2
where PX(F,) is the set of the elements of S(F,) that are polynomials in cartesian

variables, and Qx-2 is the set of the (f, g) with f (respectively, g) homogeneous
polynomial of degree h-2 (respectively, h-l) in z. d(h) depends only on F.
According to [9, Annex D], there exists a homogeneous polynomial A that is zero on
the boundary of F and such that if B is a polynomial that is zero on 0F, then A
divides B (i.e., PX(F) is a principal ideal’).

If the degree of A is two, then d(h) =0; and according to (4.9) and (7.14) in [9],
we have the following lemma.

LEMMA 4.3. IfdA 2, for each integer h we have the same equivalence as in (4.2).
According to (4.8) and (7.14) in [9], we have the following lemma.
LEMMA 4.4. IfdA >---3, for h 1 we have the same equivalence as in (4.2); butfor

each integer h >= 2, , is not injective modulo polynomials on S (F,).
According to (4.10) and (7.14) in [9], we have Lemma 4.5.
LEMMA 4.5. If dA 1, and h N*, then , is injective modulo polynomials on

S (Fx) if and only if ,,(la, )--1 has a pole of order one in tz A and if
dim Ker n(A) d (A).

4.2. Application to two-tlimensional cones. It is well known that the poles 2(A)-I
coincide with the roots of the following equations"

sin2 Ato A sin2 to
(4.6) F,o(A)=0 where F,o(A)=

because, more precisely, c’2(A)-IF,o(A is holomorphic on C (cf. [12], [10],..[11], [5]).
When the opening to of the plane sector F is not 2r, then the two sides of

are independent and dA 2. So, the condition (3.4) is that Fo has no zero with real
part s.

When to 2r, then dA 1 and d(A)> 0 for all positive integer numbers. As in
15.B in [9] for fourth-order operators, we show in the Annex that, according to

Lemma 4.5, is injective modulo polynomials on Sa for each A N* (including
A 1). As the roots of (4.6) are the half integers, we find that condition (3.4) is reduced
to

sk+1/2, VkN.

4.3. Application to three-limensional cones. If Fx is a revolution cone, then dA 2
and we apply Lemmas 4.2 and 4.3.
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If Fx is a polyhedral cone, let D be the number of distinct planes containing at
least one side of Fx. For a cube, D 3. For a pyramid with a square basis, D 4. If
D _-> 3, we apply Lemmas 4.2 and 4.4.

5. Precise results in two-dimensional domains.
5.1. More about the discriminant function F,o. The roots of (4.6) have been studied

by Seif [21], Lozi [13], Dauge [7], Bernardi and Raugel [2], [3], and Maslovskaya
[14]. Bernardi and Raugel give a table for the roots of (4.6) with the lowest positive
real part. Here, we complete that work by a table for the roots of (4.6) with their real
parts : [0, 4] and by the corresponding graph (Fig. 2) of s in function of to.

Let us denote h by + i,/, with , real. We are interested in roots of (4.6) with
_-> 0. h 1 is always a root of (4.6) and plays a particular role (see 5.2).

We denote by k(to) the real part of the kth root of

(A 1)-IFo,(A) 0

the roots being ordered with increasing real part and repeated according to their
multiplicities. The following can be shown (cf. [7], [2]):

(a) If to ]0, r[, l(to) > ’/to.
(b) If toe ]r, 2r[, l(to) ]sup (1/2, tol/to), r/to[, where tol =0.812825r;

to is the root of

sin to
to]0,r[ and cos too with tan too=too.

Tables 1 and 2 and Fig. 2 give values for 1," ", 4 that occur in [0, 4]. A dash
means a value greater than four.

For j_-> 1, let / be the set of to such that 2j(to) and :2j+(to) coincide. In the
interior of/, 2 and s2+1 are the real parts of two conjugate nonreal numbers. For
to 0/ and to # 0, there is a real double root and the bifurcation of two real roots.

TABLE

0.4 3.397 3.397
0.5 2.740 2.740 4.808 4.808
0.6 2.307 2.307 4.022 4.022
0.7 2.004 2.004 3.464 3.464
0.8 1.783 1.783 3.051 3.051 4.312 4.312
0.9 1.252 1.988 2.542 2.932 3.853 3.853

2 2 3 3 4

1.1 0.834 1.662 2.012 2.475 3.096 3.215
1.2 0.718 1.408 2.045 2.045 2.883 2.883
1.3 0.637 1.207 1.882 1.882 2.657 2.657
1.4 0.581 1.044 1.745 1.745 2.465 2.465
1.5 0.544 0.909 1.629 1.629 2.301 2.301

1.6 0.522 0.796 1.530 1.530 2.159 2.159
1.7 0.509 0.701 1.444 1.444 2.035 2.035
1.8 0.503 0.622 1.258 1.480 1.927 1.927
1.9 0.500 0.555 1.111 1.498 1.670 1.994
2 0.5 0.5 1.5 1.5 2
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1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8
1.9
2

TABLE 2

4.067 4.067
3.720 3.720
3.430 3.430 4.203 4.203
3.184 3.184 3.901 3.901
2.972 2.972 3.641 3.641

2.788 2.788 3.415 3.415 4.042 4.042
2.626 2.626 3.216 3.216 3.806 3.806
2.484 2.484 3.041 3.041 3.597 3.597
2.233 2.485 2.808 2.964 3.413 3.413
2 2.5 2.5 3 3 3.5

4

3.5

2.5

1.5

0.5

O’ 0.’25 0.5 0.5’ 1.25 1.5 1.5 2 to in 7r rad.

FIG. 2

I1 has only one connected component: 11 ]0, to1]. For j-_> 2,/ has two connected
components" ]0, toj] and [toj, to ]. When j +, to r and to 2r increase, while

w- r decreases. All integers are double roots for to r, and all half integers are
double roots for to 2r.

On the graph, the dotted line is the graph of to r/to. The heavy lines represent
a double value for the k (conjugate roots), and the ordinary lines represent real roots.

Table 3 gives the values of the toj, to, to7 that occur in Fig. 2.

5.2. The special case of the pole A = 1. As we have already shown A is always
a pole for 2(A)-l. But, if the opening of the cone F is to 2r, 52 is injective modulo
polynomials on Sx (F). If to # 2r, this is not so for

It is easy to show that Ker 2(1) is one-dimensional and is generated by (, 1)
(see [11], [5]). As a consequence, we get the following lemma.
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TABLE 3

0.813
0.884 1.154
0.915 1.102

1.751
1.825

LEMMA 5.1. Let s be such that l_-<s<:l(tO). Let (a,p) be in DE(F) such that
6e2(ti p) (f, g) E(F). Moreover, ifs > 1, we suppose that g(O) =0; ifs 1 we suppose
that r-lg L-(F). Then, if B denotes the unit ball, we have

(a, p) o(r r B).

Proof. We derive the prooffrom the methods of [9]. For s 1, it is the result of 11].
By a cut-off, we assume that (ti, p) has compact support. We use the Mellin

transform J// of (if, rp), which is defined for Re X _-< 0; we have

(5.2) .2(rtgr)(l, rp) (r2f, rg),

and thus using the Mellin transform we have

(5.3) 2(A)(O(A), P(A)) ((A), G(A)).

But ((A), G()t)) is defined for Re A <s. If s 1, then we deduce from [9] (see
the condensed proof in [8]) that there exists (rio, Po) D(F B) such that for Re ,
1 + e with e ]0, min (1, s 1)[,

y// (rio, rpo) (A) O(A ), P(A ))

where (, P)(A) is the extension determined by (5.3). And we have

(ti, p) (rio, po) E Res[rO(A),r’-IP(A)]
0<ReA<l+e

Since s < sl(to), the sum is reduced to A 1. And we have

2 Res (r O(,X), r-P(,X)) Res 2(r 0(,), r-iP(,X))

ReSx=l (rX-2/6(A), rx-1G(A))
(6, g(0)).

The second equality is given by (5.3) and by the equivalence of 92(ti, p) (j g) with
(5.2). Since g(0) =0, we get

92 ReSx=l (rXO(A), rX-IP(A)) 0.

Therefore

:(1) ReS=l (O(A), P(A)) O.

The residue belongs to the kernel of 2(1). Thus it is equal to (, c), with c a constant.
We finally get

(a, p)-(ao, po) (6, c).

Thus (ti, p) D(F B).
If s 1, since r-lg L2, G(,) is defined up to Re )t 1 (such is not the case if

g H only). Since Resx=l _(A)-1 =(0, 1)X, where X is a linear form, we get that
1-I2(A)-I is holomorphic in the neighborhood of Z 1, where II is the projection on
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the speed component. Thus, II2(h )-I(F, G)(/ is defined up to Re h 1, with suitable
estimates. Then, we deduce that tiH2(FB). Since pL2, and p=Aff+f
L2(F c3 B), then p HI(F c B). 0

5.3. Index and regularity results.
THEOREM 5.4. Let fie r2(R2), and let s>0. .2([’, S) is Fredholm ifand only if the

three following conditions are fulfilled"
(a) s 1;
(b) x Ao([l) such that tOx 2r, Vk, s :k(tOx);
(C) VX Ao([l) such that tox 2r, Vk, s k +1/2.
Let us recall that :k is defined in 5.1. It is a straightforward congequence of

Theorem 3.3 and 4.2, 4.3, and 5.1. From Theorem 3.6 and 5.2 we derive Theorem
5.5.

THEOREM 5.5. Let 1) 72(R2) and s > O. Let , p) D(I-I) be the solution of (1.1)
with (f, g) E(I)"

(a) If s < 1 and s < minAon) srl(to), then (, p)
(b) If s> and moreover g(x)=0 for each vertex x, and if s<minxAon) :l(tOx),

then , p)
(c) If s-1 and moreover r-lgL2([l) for each vertex x, and if 1<

minAo) sty(fOx), then (, p)
As :l(r) 1 and Srl is a decreasing function, 1 <minAon):(tox) holds if 1 is

convex. It coincides with the result in 11].

6. Precise results in three-dimensional domains when there are edges, but no vertex.
6.1. The statements. In such a case, we study condition (3.5)" since, for x A(12),

L is given by (3.1)-(3.2), it is obvious that L, is injective modulo polynomials on
S(F,) and only if we have (6.1) and (6.2)"

(6.1) 2 is injective modulo polynomials on S(F),
(6.2) A is injective modulo polynomials on S(Fx),

where S(F) {v r Vq(XIt) logo r, Vq /-I(G)}.
If tox 2r, (6.2) is equivalent to A:{(kcr/to)/kN*} and if tOx=2r, (6.2) is

equivalent to A {k +1/2, k N} (for Re A _-> 0). Our statement follows.
THEOREM 6.3. Let I-/(?3(R3) such that Ao([l)=. Let (t,p) D3(12) be the

solution of (1.1) with (f, g) E(I)).
(a) If s<l and s<minxA<a):l((.Ox), then (t,p).D(l);
(b) If s > 1 and s < minAn) r/tox, and moreover g(x) 0 for each x A(),

then
(c) If s 1 and 11 is convex, and moreover p-(Ig L2([I), where p is the distance

from Al([l), then (, p) D(II).
Proof. First, here are the main arguments of the proof.
(a) If s < 1, then (6.1) (respectively, (6.2)) is true for all A such that Re A [0, s]

if s < :(to) (respectively, s < r/to). But, if :(to)< 1, then :l(tox)< r/tox. Thus (a)
is derived from (3.6).

(b) As s > 1, if s < r/to, then to < r and :l(tOx) > r/to. Thus, for each A 1
in the strip Re A [0, s], and for each x A(I-I), Lx is injective modulo polynomials
on S(Fx). We have that (b) is an adaptation of the proof of (5.12) in [9] by taking
advantage of Lemma 5.1 above. See some details that follow this proof.

(c) When [1 is convex, Srl(tOx) and r/tox are greater than one for each vertex x.
Like (b), (c) is derived from Lemma 5.1.
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6.2. A more detailed proof of Theorem 6.3. Because of the special role of the pole
A 1 (cf. Lemma 5.1) we are led to revise the proofs in 12.C of [9] to take into
account the cancellation assumptions concerning g.

Let F be a plane sector. We first study 6e3 on R F. We denote by y the coordinate
in R and by z the coordinates in F; r= [z[. We introduce the space Ho(R x F) as the
set of functions v such that

v,, 1.1=< 1 rll-Dv L:(RF).

(Rx F) is the closure of (R x F) in H(R x F) and H(R x F) is its dual space.
LEMMA 6.4. 3 induces an isomorphism from xxxL(Rx F) to Hfflx

HlxHlxL:(RxF).
Sketch ofthe Proof (cf. [9, (8.1), (12.6)]). It is sucient to prove that 3 is injective

and has a closed range because its adjoint has the same form. Let B be the ball with
center zero and radius p. For (a, p) ()3x L with its suppo in B1, we have the
following estimate"

j:l kj=l j=l /

But (B) H(B) and H(B) H-I(B). Moreover, if supp (5, p) B, we have

Ilujll=lljll. and by duality

Thus, if supp (5, p) B, we have the following estimate, for p > 0 small enough"

(6.5) E Ilull.+llpll=2c(
We deduce the same estimates for all (5, p) in ()3 x L: by homogeneity and density
of functions with compact suppo.
3 may be written 3(Dy, Dz).
LEMMA 6.6. 3(1, D) induces an isomorphism from 1 X 1X1X L(F) to

H-xH-lxH-lxL(F).
Sketch of the oo Let (6, p)(l)axL2(F). With a cut-off function in R,
1 in the neighborhood of zero, we consider

(, q)(y, z)= (y) e"Y(, p)(z),

for p 1 and apply the estimate (6.5) to (, q). Denoting (f, g)= 3(P, Dz)(, p), we
have

3(, q)= (Y) e’OY(f, g)(z)+ e’OY(fR, gR).

Let us introduce the H(F, p)-norm on I(F)"
(6.7) wllz(.) =11 wll=+ r- wll=+ IID"WII=
and H(F, p) the dual norm. We have the equivalences:

IIvll.:()llull.(.) and IIe’11-’()
So the estimate (6.5) implies that

(6.8)
+ g =() + ei,y

gR e<)).
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The support of gR is included in supp p, and

gg(Y, Z)=Z aj(y)uj(z), with aj smooth.

Ile’’gRIlar) Cp-I(E IIt/jllHo(F,p)-"
ipy (and we can prove the same estimate for lie JR,j[[ in (6.8). So, for p large enough,

which is an a priori estimate for 3( P; Dz). Using a suitable scaling, we get an estimate
for 3(1, Dz). The proof for 3(--1, Dz) is the same, with e-ipy instead of e ipy.

For s> 1, we replace E(F) by F(F), which is the space of the ( g) E(F)
such that g(0) 0. For s 1, F(F) is characterized by r-g L2(F). When 3(1, Dz)-
(, p) (f, g), we have

Let us suppose that the opening w of F is not 2. When the u; belong to H+I(F),
with s > l, since they are zero on 0F, Vu;(0)= 0; thus g(0)= 0. On the other hand, if
s=l and u;H:(F), then r-DuL(F) for ]a]2 (cf. [9 (AC.6)]; thus
r-gL2(F).

Therefore 3(1, D) operate from D(F) to F(F). As a consequence of Lemmas
6.6 and 5.1, we get Proposition 6.9.

PROPOSITION 6.9. Let s 1 be such that s < /. en3( 1, D) is an isomorphism
from (r) o F(r).

By paial Fourier transform with respect to y the equation 3(D, D)(u, p)=
(f g) becomes

(p, )(a,)(, z) (Z )(o, z),

We define F(R x V) by the condition g(y, 0= 0 if s > 1 and z]-g(y, z) L2(R U) if
s= 1. If (f g) F(RxF), then for all p, ( )(p) F(F). By a scaling argument,
we deduce from Proposition 6.9 the uniform estimate for p 1"

wh (r, p) ms th norm II- pll II whioh obviously dns n(r, p) d
F(F, p) when s l; F(F, p) L(F) x H(F, p) (see (6.7)). We also have an a priori
estimate for p 1.

So, in the same way as in 9.C of [9], we get the following lemma.
LMMA .10. 1 S ( /. F F m Bp. eu the inverse operator ()- o (6.4)

induces coutiuuous operatorrom F(x F2) to D(x F).
Now, if we go back to the operator on , for each x A(), we get an operator

equal to , being a peurbation. It is impoant to note that the rough equation
of ( )(, p) ( g) has the following form:

Z a,k(y, z)Ouk g with a.k smooth.
lj,k3

Thus, if (,p) D(x F), then ( g) F(x F). So, we are able to use Lemma 6.10
along with the peurbation argument and Neumann series of 10.D in [9] in order to
get the local regularity result in the neighborhood of each x A().
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(7.1)

(7.2)

(7.3)

(7.4)

We denote
: Re A, 7 Im A;

7. Study of the parametrical operator associated to the Stokes system in three-
dimensional domains: Description of areas free of poles.

7.1. First identities. Let F be a cone in R and let G be its intersection with the
unit sphere S2.

In 4.1 we introduced an operator -T3(A) acting from D(G) to E3(G). In view
of Lemmas 4.2 and 4.3, we wish to find areas in C where 3(A is everywhere invertible.
As the index of -T3(A) is zero, it is equivalent to find where -T3(A) is injective. But,
from the definition of -T3(A) we deduce that

3(A)(u, p) 0:>3(rXu, rX-lp)=0.

For Re A =-1/2, -3(A) is always injective; it is a consequence of Theorem 3.3 for
s 0 (see also [16]). On the other hand, according to condition (3.7), we are interested
in the strip Re A [-1/2, s-]. Thus, we suppose the following:

Re A >-1/2,
(u,p)(II(G))3L-(G), (u,p) 0,

-A(ru) + V(ra-p) 0,

div (rx u) 0.

z the cartesian coordinates in R3" air g/lg["
ur (fi, if), the radial component of u;
8 the positive Laplace-Beltrami operator on I(G);
V the spherical part of the gradient.

If C is F f’l {1 < r < 2}, we get by integrating (7.3) with rXfi and (7.4) with rX-1/:

rXfi)+div rau rX-p 0.
c

As in 16], it implies by integration by parts"

dG JG

And, again as in [16], we deduce from

(-A(ru)+V(rX-p), z)=0

and from (7.4) that

(7.6) Bur- (A + 1)(A +2)ur + (A 1)p 0.

By integrating (7.6) on G with fir, we get

(7.7) f IV,ul2 (a + )(a + 2)lull= + (a 1 )pfi o.

And from (7.4), which implies

we get

div (rXu) =0,

(7.8) (A + 2) f Ur 0.
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7.2. The case when A is not real.
LEMMA 7.9. Let us assume that we have (7.1)-(7.4) and moreover that q O. Then

1

where A1 is the first eigenvalue of
Proof We take the imaginary part of (7.5) and divide it by (2s + 1) and obtain

(7.10)

We take the imaginary pa of (7.7) and use (7.10); after we divide that by we obtain

We take the real pa of (7.5) and eliminate Re pfi by using (7.11). Then we obtain

Sino (Tf+ 1)(f+7)> 0, it implies

If. were zero, then (7.3) woula yiela

(ra-p) =0.

Thus r-p would be constant, which implies, as a @ 1, that p would be zero. Therefore,
if we have (7.2), then u 0. o we have

and, with (7.12) it implies that

As sc >-1/2, it is equivalent to

3s:2-1 r/2_> A1,

1 2)1/2:=> (AI+ 1 + 7

1 2)1/2>(Al+ 1+ 7

7.3. The case when A is real: -1/2< A < 1. As A # 1, we determine pfi, by using
(7.7), and putting that into (7.3), we get

(7.14) [ IVul2- A (A / 1)]lll2
2A + 1 [ iVsurl2_ (A + 1)(A + 2)]llrl2.
A-1 d

But, with (7.13), we have

I + 1)lul-->[Al-’t(,t + 1)] f I.I
(7.15)

J a

_-> [A,- A (A + 1)] i lu,I
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whenever

(7.16) A1----> A(A + 1).

So, with (7.15), (7.14) yields

IV,Url2-(a + 1)(a +2)lUr]2--> [A1-A(A + 1)1 f lu,.] 2.

As A- 1 is negative, this may be written in the form

(7.17) IV,rl 4’(’ I 112

with

(7.18)
1-A

@(a) (a + 1)(a +2)- [A1- a(a + 1)1
2A + 1"

a(a + 1)> A1 or b(a)->A’.

This statement is close to what is proved in [16].

7.4. The ease when , 1. Equations (7.6) and (7.8), respectively, give

(7.21) tllr 6U --0,

(7.22) f ur 0.

Then if Ur is nonzero, six is an eigenvalue of & But since the first eigenfunction
has a constant sign (cf. [4] and (19.B) in [9]), six cannot be equal to A1. Therefore,
if 6 < A2 (the second eigenvalue of 6), then Ur 0. SO (7.5) implies that

IVs,,I 21ul=- o.

If 2 < A1, then u 0 and p is a constant. We have just proved Lemma 7.23.
LEMMA 7.23. Let us suppose that a 1 and that

Al> 2 and A2> 6.

Then the solutions of (7.2)-(7.4) are proportional to (), 1).
Now, we are going to prove Lemma 7.24.
LEMMA 7.24. If A1 >= 6, then the pole of3(A)-I in A 1 has the order one.

Proof Because no confusion is possible, we drop the index 3 in 3(A).
Since (1) is not injective, -I(A) has a pole in A 1. Let us write the Laurent

expansion of -I(A) in the neighborhood of A 1, and the power series of w(A):

,(a )-1 L (A 1)/A

Just as in [16], we introduce Definition 7.19.
DEFINITION 7.19. Let A’ be the minimum of Iv, l when 1

and v O.
Formulae (7.17) and (7.8) imply that if b(a)< A’, then Ur=0. With (7.16), this

implies that u 0 and p 0 since a # 1. Therefore, we get the following lemma.
LEMMA 7.20. Let us suppose that we have (7.1)-(7.4) and moreover that a is real

and smaller than one. Then, with (7.18) and Definition 7.19, we have
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where J is the order of the pole

(h)= (h 1)J(J)(1)/j!
j_->o

where (J)(h) is the jth derivative of with respect to h. As (h)-l(h) I, we get
the relation

(7.25) (1)A_ =0,

and, only if J _-> 2,

(7.26) (1)(1)A_j + (1)A_+l 0.

Thus, (7.25) implies that A_ (0, 1) where is a linear form, and using (7.26)
we get that if

(7.27) Le()(1)(0, 1) (1)D(G),
then J 1. On the other hand

(7.28) 1(1)(0, 1) (, 0),

and

(7.29) (1)D(G) (ker (1)*) +/-.

But, according to [16], we have

(10 0 ) (-2)(u, -P).(7.30) (1)*(u, p)=
-1

So we search the kernel of (-2), which is one-dimensional just like the kernel
of (1). We may suppose that a basis ofker (-2) has the radial form (u, p) (v, p).
’According to (7.6), we have

p =1/26v.(7.31)

We also have

div (r-2v) (, r-3

r-3v(, )+ (, )(r-3 v)

3r-3v+(rOr)(r-3v)=0.
As a consequence, relation (7.4) is satisfied for any v (see also (7.8)). To take into

account relation (7.3), we notice that

A(r-3 zjv) zjA(r-31)) W 2Oj(r-3 v),

--A(r3/)) r-5(3v--6v),

Oj( r-31)) _3zjr-Sv + r-3OjV.
So (7.3), which may be written as

-A(r-3zjv)+1/2Oj(r-36v)=O, j= 1,2,3,

is equivalent to

Oj(6v-6v)=O, j= 1,2,3.

We have just proved Lemma 7.32.
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LEMMA 7.32. A basis of ker (-2) is given by (v, p), where p 6v/3 and
(i) If six is an eigenvalue of 6: v is an eigenfunction of 6 associated with six;
(ii) If not, v is the unique solution of 6v-6v 1.
End of the proof of Lemma 7.4. Using (7.28)-(7.30), we may rewrite condition

(7.27):

<,I,, vxI,> o,

(7.33) I vS0"
G

If A1 6, v has a constant sign and (7.33) is fulfilled. If A1 s 6, according to the
assumptions of Lemma 7.24, A1 > 6. Let (Ak, Vk) be the eigenvalues and eigenfunctions
sequence of & Using Lemma 7.32, we have

V 2 CkVk with Ck (Ak -6)-1 f Vk.
k ,]G

So

v= (Ak--6) -1
Vk

G k G

which is positive since A1 > 6. Thus (7.33) is true.

8. Study of the minimum value A’.
8.1. Minoration of A’(G). We study the minimum A’(G) of

Ilvll = >- 1 and v=0 (cf. Definition 7.19) occurring in Lemma 7.20. As the
extension by zero preserves the above conditions of v, we get (as in [16]):

(8.1) if G1 c G2, then A’(G1) >- A’(G2).

The minimum A’(G) is reached for some function v. We recall that (Ak, Vk) is the
eigenvalues and eigenfunctions sequence ofthe Laplace-Beltrami operator 6 on I(G).
We denote

/k T Vkd where y d
G

(we suppose that v 1). We have

(8.2) v Y cv

(8.3) 2 CkTk O,
k

(8.4) A’(G) 2 AkC.
k

with Y’, c 1,

If G S2, as y 1 and the other ’)/k are zero, it is obvious that (cf. [16])

(8.5) A’(S2) Az 2.

So, by (8.1) and (8.5), we get

(8.6) A’(G)-> 2.

We will obtain further information about A’(G).
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LEMMA 8.7. Let K be ( Vl d)2( d)-1. Then

A’(G) >= (1 K)AI(G) + KAz(G).

Proof. Using (8.3), we get

So, we have

(8.8)

Equation (8.4) implies that

Using (8.8), we get

c<= 1- 3,21.

A’(G) -> AlCl2 + A2(1 CZl).

A’(G) => A,(1 3,) + Az3,.

And as K is exactly 3,2, we get the lemma. [1

Now, if 3’2 0, instead of (8.8) we get

c1=2< (1 3,12)(1 c22).

And, with (8.4), we have

A’(G) ->_ AlCl2 + A2c22 + A3(1 c2- c).

Thus
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(8.9) A’(G) ->_ [(1 3,)A, + 3,A3](1 c) + A2c.
And, it is easy to show that, if moreover 3,3," ", 3,s- -0, A3 may be replaced by A
in (8.9). So we get Lemma 8.10.

LEMMA 8.10. If 3,2, 3,N-1 O, then

A’(G) >- min {[(1 K)A + KArl, A}.

8.2. The exact value of A’ in some special cases. For to ]0, 2r] and (0, ) the
spherical coordinates in [0, r] x [0, 27r[, we denote by G:

Go, { S:/ 0 ]0, zr[, p ]0, o[}.

The associated cone F,o is a dihedron with interior angle o. Since Vl is proportional
to sin (Tr/o)p, it is easy to compute the following:

(8.11) K(G,) 8/r2 0.81057.

The main result is Proposition 8.12.
PROPOSITION 8.12. A’(G) A2(G).
Proof. We denote zr/to by u. As a consequence of (18.6’) in [9] we obtain

Ak tZk(IZk + 1),

(/k) being the increasing sequence of positive numbers

h,+d withlN*anddN.

(The multiplicity of/ is given by the number of couples (1, d) providing/.)
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From (18.9) in [9], we derive that an eigenfunction associated with bk(lUk"-1)
with (/k Iv + d has the following form:

)k Op cosd-Ep O" sin lvo
O<_2p<=d

where the Op are some constants.
As a consequence

(8.13) if jb/k b’ -+- 1, /)k O COS 0 sin vo and ’)tk 0,
(8.14) if/Xg 2v, Vk a sin 2vo and Yk 0.

(a) If v[1/2, 1]"/Zl v, /2=2v, /x3 v+ 1, /Za=3V.
So 3’2 and Y3 are zero; and according to (8.10) it is sufficient to prove that

(1-K)v(v+ 1)+3Kv(3v+ 1)_-> 2v(2v + 1).

With (8.11), this is easy to check.
(b) If v[1,2]:/x= v,/x2 v+ 1, /z3--2v /-$4-- v+2.

So Y2 and 3’3 are zero again. And we can prove that

(8.15) (1-K)v(v+l)+K(v+2)(v+3)>-(v+l)(v+2).

Using Lemma 8.10 we get Proposition 8.12.
(e) If v -> 2: /-1-- b’ /.$2 -- /-- 1, /-/’3 /’+2. 2--0 and as in ease (b), (8.15) is true

and implies Proposition 8.12 by using Lemma 8.10. l-]

COROLLARY 8.16. If to [Tr, 27r], A’(G,o)=(27r/w)(l+2r/w).

9. Precise regularity results in three-dimensional domains.
9.1. Strips free of poles. Let be a domain in 3(R3). If has no vertex, it has

been studied in 6 (Theorem 6.3). If not, for each vertex x of , we must check
condition (3.7).

Let us assume that

(9.1) s<-.
So, using Lemma 4.2, we have that (3.7) is equivalent to

(9.2) /h, Re h [-, s-1/2], ,93(A is invertible on D3(G).

We are going to determine s(G,) so that (9.2) is true for s s(G,).
We denote

o= s( Gx) -.
As a consequence of Lemmas 7.9 and 7.20, if we have the three following

conditions, for a : ]-1/2, 1["

(9.3)

(9.4)

(9.5)

then

(9.6)

(9.7)

sc(:+ 1) + (2so+ 1)(:- 1) < AI(G),

s:(:+ 1) < AI(G),

b() < A’(G),

VA, Re A :, 3(A) is invertible on D3(G).

Condition (9.4) implies (9.3), and (9.5) may be written as

(+ 1)(:2 +6:+ 2) < (2:+ 1)A’+ (1 )A1.
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Using (8.6), A’>_-2 and A1 > 0, we obtain (9.7) if

(+ 1)(z+6+ 2) =< 2(2+ 1).

It is easy to check that for all [-21-, 0].
So

(9.8) :0_->0, i.e. s(G)>-1/2.

For > 0, we may use one of the following three conditions, each implying (9.7):

(9.9) (so+ 1)(2+6+ 2) < 2(2+ 1) + (1 )A1,

(9.10) (+ 1)(2+6+ 2)-< (2+ 1)A’,

(9.11) (+ 1)(z+6+ 2)_-< (:+ 1)a’+ al

(since A’> A1). Each of these conditions has the form

,() <- o,

0 being a strictly convex function on [-7/3, +c[. To have q(:) =<0 on [0, o], it
is enough to check that

q(O) _-< 0 and g(o) <- O.

Using (9.9), we find Proposition 9.12, as in [16].
PROPOSITION 9.12. s(G) may be taken as 1/2+/x/(/z +4), where/x>0 is such that

/( + 1) AI(G).
Now, if we consider condition (9.11) with A’> 2, we get

(so+ 1)(:z+ 6)-< A1,

and it is easy to prove the following proposition.
PROPOSITION 9.13. If A.I(G)-<2, s(G) may be taken to be 1/2 AI(G)/8.
It is better than Proposition 9.12 if A1 => 1.20.
We notice that the right-hand side of (9.11) increases when the domain G decreases.

So, we may determine sc such that (9.11) is satisfied for Go, (cf. 8.3), and then we are
sure that (9.11) is also satisfied for all G c Go,. It is not difficult to check Proposition
9.14.

PROPOSITION 9.14. If Gc Go, with to ]r, 2r], s(G) may be taken as 6r/5to.
Here, we use Corollary 8.16:

a’(Go,) =2u(,+l) and a(Go,)= ,(u+l), with ,= r/to.

In the important case when to =r, we have

A’(G=) =6

and we immediately see that (9.10) is true for all sc-< 1. Therefore, we have (9.5) for
s < 1 and as A 2, we have (9.4) also. Thus we have Proposition 9.15.

PROPOSITION 9.15. If G c G=, then we may take s(G)=-e, for all e > O.
Finally, for G=/2, A =6 and according to Lemma 7.24 we get Proposition 9.16.
PROPOSITION 9.16. If Gc G=/z, 3(A)-1 has only one pole in the strip Re A 6

[-1/2, 1]. That pole is A 1, it is simple, and Ker (1) is generated by (), 1). Here let
s(G) be 3/2.
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9.2. Regularity results. Just as in Theorem 6.3, we make various assumptions
concerning the behavior of g at the singular points of l-l, according to the value of s.

DEFINITION 9.17. Let g be in HS-l(fl) for s _-> 1. g is said to be zero at the singular
points of fl

(i) When s 1" p-fig L2(12) with pl(x) the distance of x from A1(12), the edges
of f;

(ii) When 1 < s < : g 0 on Al(f);
(iii) When s : g 0 on Al(f) and p-3/2g L2() where Po is the distance from

Ao(f), the vertices of
(iv) When s > : g 0 on AI(I) U Ao(f).
Remarks 9.18.
(1) If g HS-1 fq l(f), then it is zero at the singular points of f.
(2) If each vertex x is in the closure of an edge, then the conditions concerning

Ao(f) are implied by conditions concerning Al(f); such is the case when f is a
polyhedron.

This may be proved as is (AC.3) in [9].
DEFINITION 9.19. For each vertex x Ao(f), we denote by s the best value of

s(G,) drawn from Propositions 9.12-9.16.
THEOREM 9.20. Let [’ 3(R3). Let (a,p) D(12) be the solution of (1.1) with

(f,g)E(n).
(a) If s < 1, s-_< minxo(n s, and s <infA(n sl(o), then (, p) D().
(b) If s_-> 1, s<_-mino(n s, s <infA(n zr/o and moreover g is zero at the

singular points of fl, then (, p) D().
For s < 1, it is a straightforward consequence of Theorem 3.6, as in the case of

Theorem 6.3.
For s_-> 1, in view of Theorems 3.6 and 6.3, and the methods of proofs of [9], it

is enough to note that the Mellin transform (/(h), G(A )) of (r2, rg), after localization
in the neighborhood of any vertex, is defined up to Re h _-< s -1/2, with values in F().

Now, we derive from Theorem 9.20 the statements (1.6)-(1.12).
Since s>1/2 and :1(o)_->1/2, (1.6) is a straightforward consequence of Theorem

9.20a.
In situation (1.7), the openings of the edges are r/2 or 3r/2. 1(3r/2)>0.544,

so 0.544<infA,(n 1(o). If x is a vertex of , then the associated cone F is an
octant or the complementary of an octant. In the first case, Proposition 9.16 yields
s(G)- . In the last case, we note that F is included in the revolution cone

r {z [o, Oo[}

with 0o or- 01, 01 arc sin (’l/x/); so 0o 144.74. As a consequence of 18.D in [9],
we find that AI(G)-/x(/x + 1) with/x > 0.35. By Proposition 9.12 we get

1 0.35
s(G) >-+ 0.580 > 0.544.

2 4.35

When f is convex, we have r/to > 1 for any x AI(O), and by Proposition 9.15
s, > 1. Thus, we get (1.8).

If, for each XE AI(I’), 7r/tOx>=, as by Proposition 9.15 we have sx>--e, then
for all e > 0, we get (1.9).

In the situation (1.10), minxA,(n)r/co,> and, for each vertex x, owing to
Proposition 9.16, we have s

In the situations (1.11) or (1.12), we have: minA,(n)r/tOx- 2 and there is no
vertex.
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Appendix. Behavior of .T2(A)-t in the neighborhood of positive integer numbers, on
the domain ]0,2[ (the model for a crack). Given suitable changes of functions (see
[I I] and [5]), the problem

oOP2()(Ul, u2,p)=(f,f2, g) with Ul, U2 /-1(]0, 2"tr[)

is equivalent to the other:

u"+ (h / 1)2u + (1 -h)q 1,

(A1) (A -1)u’+(-h2)v+ q’= l,

[.(l+A)u+ v =/3,

(A2) u, v 1(]0, 2r[).

As in the above references, it can be proved that (A1) is holomorphically solvable.
To solve (A1)-(A2), it remains to solve (A1) with/ =0, and for any (c, c2, c3, c4) C4

v(0) ,, v(2) ,
(A3)

u(O) , u(2) 4.

Problem (A1) with the zero right-hand side is equivalent to (A4)-(A6):

(A4) u -v’(1 + A)-’,

(AS) q (v> + (1 + A)v’)(1 A

(A6) v<4+2(l+A2)v<2+(1-A2)2v=O.

For Re A > 0, a basis of solutions of (A6) is given by

sin (A 1)O
Vl=sin(A+l)O, v2= v3=cos(+l)O, v4=cos(A-1)O.

A-1

Let M(A) be the four x four matrix, the columns of which are

[ v(0), v(2),-v(0)(1 + )-’,-v(2)(1+ )-13.

The solvability of (A3), (A4), and (A6) is equivalent to finding
such that

(A7) M(A)a y

where y=’(y, Y4). Then the solution of (A3), (A4), and (A6) is

(AS) v Z av2 and u -v’(A + 1)-.

The determinant of M(A) is

4 sin2 2A (A 1)-’(A + 1)-.

So, in A 1, M(A)-I has a simple pole. On the other hand, when A is an integer
number and A 2, it is easy to see that the first and the third rows (respectively, the
second and the fouh) are equal; then the cofactors of M(A) are zero and the pole
is simple again.

It is obvious that, for integer A

(A9) dimKerM(1)=l and dimKerM(A)=2 whenA2.
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To deduce the properties of (h )--1, we must take (A5) into account. For h > 2,
it is holomorphic. It remains to study the case when A 1.

For v v, or v v3, (A5) yields q 0.
For v=v4, (A5) yields q=((h +l)-(h- 1)) sin (h- 1)0/(h +1).
For h 1, it is zero again.
For v= v, (A5) yields q ((h + 1)-(h-1)) cos (h 1)0/(I-A2).
With (A8), we have q

As q_ has a simple pole in h 1, it remains to state that a2 is holomorphic. That arises
from the structure ofM(h): the matrix M(A obtained by removing the second column
of M(A) has its rank equal to two, and the corresponding cofactors balance the
determinant of M(A).

So, for any h N, h => 1, (h)- has a simple pole, and with (A9), it is clear that

dim Ker 2(A) d(A).

With Lemma 4.5, we get that 5e2 is injective modulo polynomial on SX(R2\R+).
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Abstract. This paper gives Cauchy-type formulae for functions analytic of order two on C domains
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1. Introduction. In this paper, we give Cauchy-type formulae for functions analytic
of order two on C domains obtained from the solutions of corresponding biharmonic
problems. We show how functions analytic of order two are potentials for the solutions
of systems of linear partial differential equations in two-dimensional elastostatics and
hydrostatics. When combined with Cauchy formulae we obtain integral representations
for the traction problem and the linearized Stokes problem that are valid even for C
domains.

The traction problem in elastostatics is to determine the components of stress and
displacement from a system of partial differential equations satisfied within a domain
and the forces applied on the boundary. Airy showed [2] that in the absence of body
forces this problem could be reduced to finding a scalar biharmonic potential called
the stress function. The stationary Stokes problem in hydrostatics is the following.
Solve a system of partial differential equations satisfied by the velocity and pressure
that can likewise be reduced to a biharmonic problem. (See Mikhlin [11, pp. 176-178]
for an outline of these reductions.)

In [7] and [8] Cohen and Gosselin obtained solutions to the following biharmonic
problems on C domains in

A2u 0 in
(1.1)

Vuloa=g where |g.Tds=0,

T is the unit tangent vector and g LP LP(O), 1 <p<c

(1.2) A2u =0, UxxXs d- UxyYs, UxyX -- UyyYs

where q (o, )LqxLq(Of) and o =on d/=Jonx+yOds=O"
The first of these problems involves Dirichlet-type boundary conditions and solves

the stationary Stokes problem. The second involves adjoint or Neumann-type boundary
conditions and solves the traction problem.

The solutions are given by potentials that are modified versions of the multiple
layer potentials introduced by Agmon in 1 ]. The analysis at the boundary is obtained

* Received by the editors July 21, 1986; accepted for publication (in revised form) March 21, 1988.
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for C domains via an application of Calderon’s theorem on the Cauchy integral along
Lipschitz curves [5].

In practice it can be difficult to obtain the appropriate biharmonic potentials.
Muskhelishvili’s book on elasticity [12, Chap. 5] shows how assuming the existence
ofAiry’s stress function leads to the reformulation ofthe traction problem as a boundary
value problem for a system of analytic functions. The crucial point in the introduction
of anaiytic functions is that biharmonic functions can be represented as Re {f(z)+
g(z)} where f and g are analytic. If we define O=Ox+ iOy, a simple calculation shows
that 2(f(g)/g(g))-’O. This suggests a connection between elasticity and the 2
equation.

In fact, this connection is neither new nor surprising. In the 1920s Burgatti, in [3]
and [4], studied solutions of nf= 0 and introduced solutions of the equation 2f= 0
into the equations of elasticity to obtain Kolosoff’s formula for the complex displace-
ment (4, pp. 90-91].

In this pap.er we look at the complex function U/ i/] where U is the Airy stress
function and U is a biharmonic conjugate of U in the sense that 2( U / i/i)- 0. We
show how the displacements can be computed, up to a rigid infinitesimal deformation,
as a linear combination of the first derivatives of the stress function and its biharmonic
conjugate U. We then show how the layer potential representation of the solution to
the biharmonic reformulation of the traction problem can be extended to a "Cauchy
type" formula that automatically produces the biharmonic conjugate of the stress
function.

This procedure is simpler than the method outlined on pages 106-109 of
Muskhelishvili [12]. Furthermore, for half planes with any orientation, the layer
potential solutions reduce to Poisson integrals of the boundary forces.

2. The 2 equation. Functions satisfying the equation 2 0 are called analytic
of order two where 0 0x + iOy and is complex valued. In this section we review
some of the basic properties of these functions, some of which are discussed in a more
general context in the articles by Burgatti [3] and [4].

We let 0 denote the operator 0x-iOy and assume that is complex valued and
satisfies ’d2q,(z)= 0 in a domain fl. If we write q, U + i where U and are smooth
real-valued functions and observe that -2=O,x-Oyy +2iOn,y, then q, =0 implies

(2.1) Ux,, Uyy 2 Oy + i(2 U,y + O, (Jyy) O.

Equating real and imaginary parts, we obtain the following system of second-order
partial differential equations:

(2.2) U,, Uyy Z U,y,

(2.3) 2Uxy -( U,,- Uyy),

which is analogous to the Cauchy-Riemann equations.
Since the Laplace operator can be factored as A 00 we observe the following:

(2.4) A U+ iA is analytic

since (A U+ iA/) a( U+ iO) O;

(2.5) A U Re A2( U+ i0) Re 02( U+ i0) 0;

(2.6) A2 t) Im A2( U+ i0) Im 02( U+ i0) 0.
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Thus U and U are biharmonic and since A U/iAU is analytic, the pair of
functions A U and A U satisfy the Cauchy-Riemann equations:

(2.7) (A U)x (A U)y,

(2.8) (AU)y -(A U)x.

The system of real second-order equations (2.2) and (2.3) together with (2.8) and
(2.9) will be referred to as the biharmonic Cauchy-Riemann equations.

Analytic functions of order two can be represented as

(2.9) 0(z) f(z) + g(z)

where f and g are analytic. It follows that f(z)=0ff(z) and g(z)= @(z)-(/2)O@(z).
We then write

( )(2.10) (z)=O(z)+ (z)-(z)
and applying Cauchy’s formula to the analytic functions 0ff(z) and O(z)-(/2)OO(z),
we obtain the Cauchy-type representation

(2.11) O"z" w z 4i w z

where y is a simple closed contour in 1 containing z.
Formula (2.11) appears (except for a small error) on page 88 of Burgatti [4], and

we will refer to (2.11) as Burgatti’s formula.

3. The traction problem. The traction problem is to obtain the elastostatic state
of a thin plate from the forces at the edge. In this section we assume that l) is a
bounded C simply connected domain in E2. We let S [A ] denote the stress tensor
and let u, v denote the components of displacement. In the absence of body forces
the equilibrium equations are

(3.1) Ax+By=O, B+Cy=O

and the equations relating displacement and stress are

(3.2) A=(A+2)ux+AVy, B--(Uy/Vx), C=Au,+(A+2)Vy.

If we let (X,, Y,) denote the normal stress along the boundary 0O and (xs, Ys)
the unit tangent vector on 01, then the traction problem is to find components of stress
A, B, C and displacements u, v satisfying (3.1) and (3.2) in 1 and for which

B C -xs Y,
on0.

Airy showed that the equilibrium equations (3.1) imply the existence of a function
w such that A Wyy, B =-W,,y, and C Wx,. Furthermore, substituting the second
partials of w for A, B, and C into (3.2), it easily follows that AEw 0. This means that
the traction problem can be reformulated as the biharmonic problem:

(3.3)
A2W 0,

Wyy

Wxy Wxy Xs Yn
in 0.
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A quick inspection shows that this is problem (1.2) in the Introduction. The
solution w is called the Airy stress function.

To complete the solution to the traction problem it is necessary to compute the
displacements from the stress function. This procedure, as outlined in Muskhelishvili
[12, pp. 106-109], is somewhat complicated. We will now show how, if a biharmonic
conjugate can be found for the stress function, the computation can be simplified
considerably.

If we substitute the appropriate second partials of w for A and C in the first and
third equations of (3.1) and solve for Ux and Vy we get

-AWxx + (A + 2td,)Wyy
(3.4) u,,

(A + 2Ix)w,,,, lWyy(3.5) Vy= 4/z(A +/x)

We now assume there exists a function ff such that 2(w+ iff)=0. Using the
biharmonic Cauchy-Riemann equations we can substitute Wxx--21,xy for Wyy in (3.4)
and Wyy + 2ff,,y for w,,,, in (3.5) to get

0
(3.6) u =xx\ 2p,(A +/x)

O(tZWy+(A +2p,),)(3.7) "VY=ox 2[d, (/ -[- L{,

This is the main point. The introduction of the biharmonic conjugate ff enables
us to integrate u,, and vy to obtain

(3.8) u= wy+Fl(y),
2/(A +/)

(3.9) v
/ZWy + (a

+F2(x).
2/.(A +)

Substituting for u and v in (3.2), we have

-1
Wx (Uy + v,,)

la,W,,y-(A +21x)ffyy+Fl(y)+tXWxy-(A, + 2/x) ff,,,
+F.(x)(3.10)

2b(a +) 2(A +)

2p,w,y
+F(y)+F(x),

2(A +)

which, by the biharmonic Cauchy-Riemann equations,

2,wy (a + 2)(2Wxv) + F(y)+ F(x)
2,(a +,)

1
W,,y + F(y)+ F(x).

Thus we have 0= F(y)+ F’a(X). This implies that F(y) -F_(x) e and so F(y)
ey + r, Fa(X
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The choice of biharmonic conjugate ff was arbitrary. However, it follows from
Lemma 13.1 of Agmon [1] that if 2(w+iff)=0 and 2(w+iffl)=0, then l-ff
ax + fly +1/2(x2 + y2) + & Substituting ffl for ff in (3.8) and (3.9), we get a displacement
(Ul, Vl) that differs from (u, v) by

-(a + 2,)
(3.11) Ul-U= (yy+fl),

2(a+)

(x +2tz)
(3.12) v,-v=

This means that two distinct "biharmonic conjugates" give rise to displacements
that differ by, at worst, an infinitesimal rigid displacement. In other words, we have
introduced no new pure deformation by computing the displacement from the deriva-
tives of ff rather than ft. Up to an infinitesimal rigid displacement we have the formula

(3 13) (u, v)=(/x’-(A+2ft)ffy ftWy+(A+2/x)x)2/x(a +/x) 2/,(a +/z)

4. The stationary Stokes ltoblem. The stationary Stokes problem in hydrostatics
has the formulation in a domain

Au=Vp in

(4.1) divu=0 in

where u=(u, v) is the velocity of the fluid, p is the pressure, and f= (fl,f2) is the
velocity at the boundary. The second equation, div u 0, implies there exists a function

satisfying V=(-v, u). It then follows from substitution for u and v in the first
equation that A2(I --div (Ax, Ay)=-Pxy +Pxy =0. The Stokes problem then has the
biharmonic formulation:

A2
(4.2)

Vlen (-f2,f,)

It remains to obtain the pressure p from the solution of (4.2). If we assume
there exists a such that a2( + i)= 0, then by the second part of the biharmonic
Cauchy-Riemann equations,

(4.3) (A)x --(m(I))y --mu -Px, (A)y (A)x -Av -py.
Hence V(-A) Vp so that -A differs from the pressure by a constant. If a second
biharmonic conjugate is used, then AI-A is a constant.

It is clear that this same calculation shows that any harmonic conjugate of
will suffice to give the pressure. However, we will point out that the layer potential
solution of (4.2) automatically produces a biharmonic conjugate so that no additional
integrations are necessary to find the pressure.

5. The biharmonic results. We assume that f is a bounded, simply connected C
domain in R2 with boundary gf. We next introduce the following spaces of boundary
data.

DEFINITION 5.1.

C’={g=(g’h)(LPxLP)(of)’Ioct gdx+hdy=O}.
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DEFINITION 5.2. (Lp x LP)o(O[-) { (rp, )E (Lq x Lq)(0fl): o Vw.q ds 0 for
all w(x, y). tx + fly + y(x2 + y2) + and 1 < q < c}.

Let F(x, y)= (-1/4r){(xE+y) arg (x + iy)-xy} for some particular choice of the
argument. In what follows we will let X denote points in the domain l’l and P, and
Q will denote points on the boundary.

DEFINITION 5.3. For Q E0fl and Xfl we define the boundary differential
operator L Lo by

Lv(X) (,v(X), (x))

where

(5.4) LIV(X)- v,x(X)xs(Q)+vxy(X)ys(Q), L2v(X)= Vxy(X)xs(Q)+vyy(X)y(Q)
with (x(s), y(s)) being the arclength pararneterization of 01"1 and (x(Q), y(Q)) being
the unit tangent at Q.

DEFINITION 5.5. For g Cp we define the modified multiple layer potential by

(5.6) Um(g’X)’- g(Q)L1F(X-Q)+ h(Q)LEF(X-Q) ds(Q).

For q (Lqx Lq)o(Otl) we define the modified lower-order potential by

(5.7) v,(q; X)= f o(P),(P-X)+d/(P)’y(P-X) ds(P).

For X 0fl we can differentiate (5.6) and (5.7) under the integral signs to get

(5.8) VUm f g(Q)l(X, Q) ds(Q)

where

(5.9) I(X, Q) oX L2(X_ Q) OXy L:l(X- q)

and

(5.10)

where

LV’(x)T= foa l(X, P, Q)q(p)T ds(P)

roPL,(P -X) OLllb(P -X)](5.11) I(X, P, Q)= LoL.b(P-X) oPyLI(P-X)
and the superscript T denotes the transpose of a row vector. Note that the dependence
of on Q is built into the definition of L1 and L.

DEFINITION 5.12. For P Q, P, Q e oil, we can define the matrix kernels in (5.9)
and (5.11) by letting X- Q. Both kernels are then the same and we call them l(P, Q).
We define the operators

(5.13)
P-Ql>e

g(Q, Q)l(P, Q) ds( Q)

and

(5.14) *tc(P) IiP_Ol> l(P, Q)o(P) T ds(P).
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We tentatively define the operators g(P)=lim_,og(P) and *q(Q)=
lim_,o *q(Q).

THEOREM 5.15. For g Cp, we have the following:
(i) ’g(P) exists almost everywhere with respect to arclength, is bounded from

Cp to itself in the (LPx LP)(ofl) norm and in fact is compact from Cp to itself.
(ii) The nontangential

lim Vu.,(X):{(I+)g(P)’x-.P (-I + )g(P),

for almost every P Ofl,
(iii) (i+?)-1 exists on Cp and (_i+)-1 exists on the space (-I+))(Cp).
COROLLARY 5.16. The interior Dirichlet problem A)-u =0 in [l, Vu =g Cp on 01)

is solvable with u=u,,((I+)-Ig; X). The exterior Dirichlet problem A2u=0 in
1c, Vu =g Cp on Ol’l is solvable with u Um((-I + )-lgo; X)+Vw wherefor g Cp, g
can be written uniquely as g go +Vw with go (-I + ’)(Cp) and w ax + fly +
/ X

2 4. y2) 4. t%
THEOREM 5.17. For q (Lq Lq)o(O[’) we have the following:
(i) *q(Q) exists almost everywhere with respect to arclength, ) is boundedfrom

(Lq Lq)o(O[-) to itself in the (Lq Lq)(o[’) norm and is compact from (Lq Lq)o(O)
to itself.

(ii) The nontangential

lim Lv,,,(X)
(-I 4- *)q(Q), X

x-,o [ (I + *)q(Q),

for almost every Q
(iii) (-I + )*)- exists on (Lq Lq)o(OI)).
COROLLARY 5.18. The adjoint boundary value problem A2v=O in l-l, Lv=q

(Lq x Lq)o(Ofl) is solvable by v v,((-I + ,)-lq; X).
Remark. It is important to note that the operator -I +* is not exactly the adjoint

of-I +. The adjoint of-I + acts on the dual of Cp, which is a coset space. The
space (Lq x Lq)o(Ofl) is a function space that is close to the dual of Cp, however, work
is required to extend the invertibility of the adjoint of-I + from the dual of Cp to
invertibility on (Lqx Lq)o(Ofl). The details of the proofs can be found in Cohen and
Gosselin [7] and [8].

6. Cauchy formulae. In the theory of Hardy spaces of the upper half plane,
functions f LP(R), l<p<0o can be identified with analytic functions f(z) on the
upper half plane satisfying SUpy>o If(x + iY)lPdx < 0O. This identification is obtained by
convolving the boundary function f with the complex kernel (iTrz) -1. For an arbitrary
C (or even a Lipschitz domain iff LP(o’) for p_->2) we can obtain the same type
of identification by applying the properties of the classical double layer potential to
the Cauchy integral of the boundary data. (See Fabes, Jodeit, and Riviere [9], Fabes
and Kenig [10], or Verchota [13] for more details.)

An analogous kind of identification of compatible triples of boundary functions
with analytic functions of order two can be obtained from Burgatti’s formula (2.11).
(By compatible triples we mean the space p {-" ( g, h) LIP Lp LP(o[-)" fs
gxs + hys almost everywhere with respect to arclength}.) Forf (f, g, h) 3p we define
the complex potential

l___, f f(z___)_) dz
1 fo (g(z)+ih(z)) 5-,dz"(6.1) o w

2ri z- w 47r---- z w
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It follows from the article by Cohen and Gosselin on the Dirichlet problem for
the biharmonic equation [6] that if a//y Re qy and 0= (o//, (p),, (a//p)y), then there
exists an invertible operator T’pp such that the nontangential
limx_.p0 lr-lf(X)=f(P) almost everywhere. The map fqf then identifies the
boundary space p with a space of functions analytic of order two in 12.

We have seen in 3 and 4 that the solutions to the traction problem and stationary
Stokes problem can be obtained by solving a biharmonic problem and finding a
biharmonic conjugate. An examination of the matrix kernels (5.8) and (5.10) suggests
that we can obtain biharmonic conjugates to the solutions of (1.1) and (1.2) from a
Cauchy-type formula if we can find a biharmonic conjugate to the function if’.

But ff’(z) (-1/47r) Im {z log Z--1/2Z’-’1/2Z2} and 2{z log z-1/2z+1/2z}=O. If we let
F(z) Re (-1/4zr){z log z-1/2z +1/2z2}, then 2(F+ i)= 0= i-dz(ff"- iF). This implies
that -iF is analytic of order two, which suggests the following Cauchy-type
potentials.

DEFINITION 6.2. For g Cp define the complex modified multiple layer potential

(6.3) (Um+im)(g; X)= / g(Q)L(#- iF)(X Q) r ds( Q).

DEFINITION 6.4. Forq (Lq x Lq)o(O-) define the complex modified lower-order
potential

(6.5) (V,,+im)(q,X)= [ ()(#-iF),(P-X)+q,(P)(ff;-iF)(P-X) ds(P).

It then follows immediately that (u,, + im)((I + )-l(f2, --fl); X) gives the func-
tion analytio of order two, which solves the stationary Stokes problem and (I) + im)
((-I + *)-(-Y,, X,); X) solves the traction problem. That is, all dependent vari-

ables can be obtained from the real and imaginary parts of these complex potentials
.by differentiation. Furthermore, explicit integral representations of the stresses, dis-
placements, velocity components, and pressure can be obtained from taking the
appropriate derivatives of the matrix kernels.
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Abstract. This paper contains a generalization of the estimates obtained by Tartar [Estimation de

coefficients homogenisds, Lecture Notes in Mathematics 704, Springer-Verlag, Berlin, New York, 1977, pp.
364-377] for linear elasticity, without the symmetry condition Aok Akho" A problem of this type appears
when dealing with nonorthogonal coordinates. Moreover, the paper includes a comparison to similar
estimates obtained by Hashin and Rosen [3].
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Introduction. We consider an elastic medium and assume that the associated
coefficients A0kh are Y-periodic, Y being a parallelepiped in R n. An example of such
a medium may be given by the composite materials, i.e., a low-resistance matrix with
periodically inserted fibers of higher resistance.

Among the composite materials, we are mostly interested in those for which the
dimension of the periodicity cell Y is very small compared to that of the entire medium.
By introducing a suitable topology, we can obtain convergence of the initially periodic
and bounded coefficients, thus replacing the former problem with another one with
constant coefficients, which may be determined by solving it for a single cell.

In order to handle the one-cell problem with better results, it is very helpful to
have some a priori estimates for these constant coefficients (the so-called "homogen-
ized" or "effective" coefficients). Among the methods already proposed in this direction,
we refer in the following sections to variational methods, as well as to the homogeniz-
ation method (see [1], [5]).

Using variational principles in linear elasticity, Hashin and Shtrikman in 1963
obtained limits for effective moduli of quasi-homogeneous and quasi-isotropic com-
posite materials of arbitrary phase geometry [8].

In their 1964 paper, Hashin and Rosen studied a composite material with hexagonal
periodicity and nonisotropic components [3]. Their method is based on the minimum
principle for the potential energy, and they need an exact solution for the given
configuration.

Estimates for the effective thermic conductivity of a composite material with
general periodic configuration were obtained by Tartar in his 1976 paper [6], by using
the homogenization method along with his own and F. Murat’s method of compensated
compactness (see [4]).

Tartar’s results were generalized to the case of linear elasticity by Francfort and
Murat in 1986 [7]. They deal with symmetric matrices of elasticity, and the composite
materials have isotropic components. Their paper also includes a comparison of their
results with those from [8]. While the "bulk modulus" limits are the same in both
papers, the "shear modulus" limits are more accurate in [8].

Here we present a different type of generalization for Tartar’s results, namely, the
case of linear elasticity without the symmetry condition A0kh A0. Such a situation

* Received by the editors May 27, 1986; accepted for publication (in revised form) February 25, 1988.
t Department of Mathematics, The National Institute for Scientific and Technical Creation, Badul Pcii

220, 79622 Bucharest, Romania.
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may appear when applying Tartar’s method to a configuration for which periodicity
directions do not coincide with the coordinate axes, i.e., as in [3]. Moreover, we
consider a two-phase composite with nonisotropic elastic components and compare
our results with those obtained in [3]. We emphasize that instead of the symmetry
condition we introduce condition (*) (in 1), which allows for an estimation of the
upper bound limits for the matrix A (in the sense of Tartar). On the contrary, the
lower bound limit cannot be obtained unless we deal with a particular element, which,
in the configuration mentioned in [3], is of the "shear modulus" type. The second
section contains an example as well as a comparison between our results and the
estimations obtained by Hashin and Rosen [3]; their limits are more accurate, in
accordance with the result mentioned in [7].

1. Bounds for homogenized coefficients. As we have already mentioned in the
Introduction, the principal results of this section (contained in Proposition 2 and
Theorem 2) give an estimation of the homogenized coefficients appearing in linear
elasticity, obtained by using a generalization of Tartar’s method along with an idea of
McConnel [2].

The following definitions will be needed in the sequel.
DEFINITION 1. Let Aijkh Aijhk Akh be Y-periodic and strongly elliptic"

Akh(X) Aijkh(X/ e).
Let the equation

--o(Aijkhtgtlk/OXh)/oqX Fj in 12 c R

_u/a=o.

Using the result of the homogenization theory (Sanchez-Palencia [5], Benssoussan,
Lions, and Papanicolaou [1]) it is possible to prove the existence of Aijkh and_u such
that _u _u in the Weak topology of the Sobolev space H(f), when e 0, and

0 Ok/OXh)/OX F; in ll c R",--cA(AijkhO gl

_u/af =0.
0In this case, A)kh are H-convergent to

H
0Aih Ajh.

DEFINITION 2. Assume M and N are two "matrices" of coefficients such that

MOkh MOhk Mlikh. Then M <- N: Mc, c) <- (Nc, c) for all ci ci R x R3, being
the scalar product in R9.

Remark 1. If Aijkh I-I. 0Aijkh then Aijkh(Otlc/tgXh)(Otl/tgXj) 0A,,(au/axh) x
(Ou/Oxj) weakly in L2(f/) as a direct consequence of the convergence theorem. Notice
that in the local problem we use the transposed matrix of Ajkh.

’--P*ii weakly in L:(O) andPROPOSITION 1 Let pijHl() be such that pj

[lO(p)/OxillL(n)<--_const. Assume that _u HI(I) are such that _u-- u* weakly in
HI(yI). Then

au/ox;ck In pou* /ox;ck V c C(n).

Proof. Define

_h’ (PI, P,2, P,), l’)ei (all/aX atle/OX2 aUe/aXn)
Then we have Ildiv (b’)il(.)-<-const,

(rot _v,)sq O:Zu /OxsOXq O-u /OXqOX, O,
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and we may apply the compensated compactness-method for vectors, (cf. [1]; see also
[4]). I-!

Let us consider now the following assumption concerning the elastic coefficients:
(El) A coefficient with j kh (for example, A1313 such that
(*) ml3sq--Asql3.

First we shall prove a result that does not use the compensated compactness
method.

THEOREM 1. Let A n_ Q and A--- A, (A)-1-- (B) -1 weakly in L2(). Then
(a) Q<=A,
(b) Q1313>-- B1313.
Proof. (a) We consider cij cji R x R and start with

(1) (A(v-c),v-c)>=O,

where v is defined by

(2)
o(AhOu/Oxh )lOx, O,

H(fl).U k Ckh Xh

vh =ou/oxh,

Passing to the limit with e 0 in (1) and usi.ng v---- c we obtain

(Qc, c)-2. (Qc, c)+(Ac, c)>-O.

Consequently, Q =< A. Therefore, condition (.) was not necessary for the first part of
the theorem.

(b) In order to determine the lower bound we consider

(3) ((A)-I(Av + d), Av + d)>-O,

where v is given by (2) for C13 0 and % =0, sq 13, and d0 =--BijkhCkh. We have

(5)

(6)

(A) pq,,-’ A,tjO u Be,. 8qjOU,/Oxj. dpq (d, c),

A --1)pq,, dpq d,, (B-ld, d)

the convergences being in the weak topology of L2(I- ). Notice that only the symmetric
part of OuT/Oxj appeared in the above relations and that we have used the inversion
formula Aijkh(A) -1

khpq tip 8jq. A closer look at the three terms defined above shows
that no condition of symmetry for A was ever needed.

Let us consider, for any C(f),

pqstdtApqije
OXj

(A -’ c,j + (A) -’)pqstds,Apqij
Oxj a

=I1+I2.
Since the "vector" c and the "matrices" A, B, and (A)-1 are all bounded, it follows
that

I =< const. I. (ouT/ox
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Condition (,) together with cij 0 for ij # 13 imply

)pqstdstmpq13C13( tsltt3dstCl3( d13c13t"

Consequently, we have proved that

(7) (A -1pqs,d,,ApqijOu /Oxj d13c13
weakly in Lz(l). Using (3)-(7) we obtain

Q1313c123 + 2 d13c13 + -1B) pqstdpqdt >-- O.(8)

But

(B) -1 dpqd, (B) -1pqstdpq(-BstmnCmn)pqst

--1 dpq -d13613.-(B)pqstnstl3Cl3
Notice that any symmetry properties of A are inherited by B and A, since they are
obtained by averaging the coefficients of A. In the sample presented in 2 we will
prove the condition (,) for A. The last relation together with relation (8) implies

Q1313c23 + d13c13 > O, Q1313c23- B1313c3 -> O.

Therefore, condition (,) was needed only in the .last part of the theorem.
In [6] Tartar showed that the bounds obtained by using the above theorem are

not precise enough when A is not continuous and the values of A in the fiber tend
to zero or to infinity.

To obtain better limits, we define the following notion of convergence, which
generalizes that introduced by Tartar.

DEFINITION 3. A 13. A if and only if

1/A3,3--" 1/A1313, A3sq/A313 A13q/A1313,

Aseql3/A313 Asql3/A1313,

Asqkh Asql3A13kh/A1313 Asqkh Asql3A13kh/A1313,

where all convergences are in the weak topology of L2(f) and (sq), (kh)# (13).
First we prove a preliminary result.
PROPOSITION 2. Let A J.13. A and Ckh Chk E R x R3. Assume A3sq Asql3. Then

there exists Wh L2(f) such that we have the following:
1 wh Ckh weakly in L2(O).

(2) AkhWWh AijkhCoCkh weakly in L2(O).
Proof Define

pij AijkhWkh for (j) # (13),

P3=K (a constant that will be defined later),

W 13 variable,

For (sq) (13) we have

Wq Cq for (sq) (13).

A + A Csqg P13 1313W13 13sq

=K/A cq/A K/A -A13sqeq/A13W13 1313 A13sq 1313 1313 13

By replacing w3 we obtain, for (ij) and (sq)# (13)

p Cq(Ajq Aol3A3q/A1313) + K. Aj13/A1313.
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Using the last relation, we can compute the weak limit of the product p,wr,, since P3
and Wsq are constant for (sq) (13)"

ptwr K(K/A133-A13sqCq/A1313)

"4- cij{Aijl3g /A1313 + Csq(Aijsq Aij13A13sq/A1313)}

K2/A1313 g. ml3sqCsq/A1313-4- K. Aijl3Cij/A1313

--I- csqAijsqCij cijcsqAijl3ml3sq/ A1313
From the conditions A3sq--Asql3 and K c13A1313-4-A13sqCsq it follows that

P rtW rt A1313c3 -4- 2 cl3ml3sqCsq -I- csqcijmsqij.

Taking into account the choice of K, we obtain W3 C13o ["]

Now we define the following"
MA3 arithmetical mean with respect to Xl, x2, x4, ,
MA2 arithmetical mean with respect to Xl, x3, x4, , xn.
THEOREM 2. Let MA3 (A) 13. B, A n. Q, A3sq --Asql3. Then Q<-_ B.
Proof. We consider cj cj, R R3, wj the sequence defined in Proposition 2 for

MA3 (A) and cj, and Vh given by (2). Then we have the following convergence
relations in the weak sense of L_(f/):

Cij,l) kh Ckh W ij

MA3 (Aev e, v e) MA3 (Qc, c)= (Qc, c),

MA3 (A ve, w MA3 Qc, c) Qc, c),

MA3 (Aewe, we) (MA3 (Ae)w e, we) (Bc, c),

where we have used the fact that, for (ij)# (13), w are constant and w3 depends
only on x3; therefore

rot (0, 0, w3, 0,..., 0)= 0,

lidiv (pl, p, p3, P,)I1 .(-) --< const,
with p= AkhOU/OXh. Now we may use the compensated compactness method for

WMA3 (Aet2, ). Starting with

(10) MA3 (Ae(ve-we), ve- we) >-0,

we obtain, by using the above convergence relations,

(Qc, c)-2(Qc, c)+(Bc, c)>-O.

THEOREM 3. Let A satisfy the condition (.), MA2 [(Ae)-] 13. (E)_I, A /-/. Q.
Then Q1313 E133.

Proof. We consider Vh given by (2) with c130, Csq=O for (sq)(13), d=
--EijkhCkh and Wh the sequence given in Proposition 2 for MA2[(Ae)-1] and the
constants d. Considering

(11) MA2 ((Ae)-l(Aev + we),Aev / we)>=O,

we notice that w3 depends only on x2. Consequently,

div (w3, 0,. ., 0) =0, rot (Ou/OXl, Ou/Ox2,. ., Ou/ox,) =0,

div (0, 0, w3, 0,. ., 0) 0, rot (Ou/OXl, Ou/Ox2,. ., Ou/Ox,) O.
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Using the compensated compactness method for MA2(v, w), we obtain

In w3(Ou/Ox3 4r Ou/Ox)/2 dp - Ia c3d3, dp C(l).

Remark 1, together with condition (,), implies the following convergence relations, in
the weak sense of L(12):

MA2 ((A)-(Av), Av) Oc, c),
MA2((A)-(Av), w) d3c3,

MA2 ((A)-(w), w) (MA2 (A)-w, w) (E-d, d).

Taking into account condition (,) we obtain, by a proof similar to the second part of
Theorem 1, MA2 ((A)-w, Av) d13c13. The above convergence relations together
with relation (11) imply, as in Theorem 1, that Q1313 E1313 0. [-]

2. A particular configuration. The example given in this section is meant to
illustrate the above theoretical results. Hashin and Rosen studied in [3] a composite
material formed by cylindrical fibers of radii r, disposed in the vertex of a hexagonal
array, surrounded by a matrix. Their method is based on an exact solution in cylindrical
coordinates, and for this reason the interior of each hexagon is partially filled by the
matrix, which is formed of cylinders of radii 1/2 if the edge lengths of these hexagons
are equal to one. We consider the medium formed by periodic parallelograms (Fig. 1).

The stress-strain relation is written in the reduced form:

(12)

O-11 Cllel1-1- C12e22 d- C12e33,

0"22-- C12ell -i- C22e22-q- C23e33
0"33 C12ell q- C23e22 q- C22e33,

0"2 2C44e1, 0"3 2C44e13,

0"23 C22- C23) e23,

x3

FIG.
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where the usual six-by-six matrix notation has been used. Cll stands for allll C12
stands for a1122 and so on. The coeffidients have the usual symmetry properties and
depend only on x2 and x3; a1313--a1212.

The same type of isotropy is considered for the corresponding homogeneous
medium. In [6] the estimates are obtained in a coordinate system parallel to the
directions of a periodicity. We have to transform the original Cartesian form of the
equation

(13) Oq( a jkhOqU/OqXh / OqXj Fi
for the new system since this one has angles of 60 between the coordinate axes. If gk

and _fp are, respectively, the unit vectors of the Cartesian and oblique coordinates, we
have

g_k Olpk f_p,

t!o= 1

0

Then from (13) we obtain

=3;" _g,

-1/x/ /3= 0 1/2
2/x/] 0 0 x//2/

( : /ox, ,, FApqstOU ’)/OX’--

where denotes the components in the new system and

2 Apqst OpiflqS([3hatk + [3ksOth)aOkh.
Consequently, the stress-strain relations in the new system have the following form"

+ al e2 + aO’11 allllell 122 1133e33,

0-= (4aE2/3)el + (5a2222- a3322)/3 e,2 + (5a2233- a222)/3 ea-(4a2323/3)e_3,

0-3 (4a3311/3)el / (4a332/3)e2 / (4a3333/3)e3,
(14)

--(2a,3,3/a)e3,O’12 (4a1313/3)e12

0"13’ -(2a1313/3)e1 + (4a1313/3) e13,’

0"3 -(2a3311/3)el (2a22/3)e2 (2a_33/3)e3 + (4a323/3)e3,

therefore A1313--A1212-- 4a1313/3. Notice that the matrix Apqst satisfies the conditions
(*)" Aaq A,ql3

We note that

(A)l-lt (A)-] and (Ae)l--at (A) -1
stl3"

These are direct consequences of the fact that columns 12 and 13 become proportional
after we eliminate row 13, as well as rows 12 and 13, which become proportional after
we eliminate column 13. Therefore

(Ae)s-’13--0, (A)-I=0 (Ae)l-31sq--0, (A),-’=0
for sq # 13 and 12. The minors of the elements A312 and A213 are both equal to

A A A1331111 1122 0

-(2a313/3) A21 A222 A233 A323,
A311 A322 A323 0

and, consequently, we have (A) 1-3sq (A -ql13 (A -lq (A s-qll2"
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The element (A) 1--3113, obtained using the development of det (A) with respect to
the row A9_sq, is given by

(15) (Ae) 1--3113 1/a313.

We note that (A) 1--3113 is used to construct the sequence w defined in Theorem 3; it
is important to see that the homogenized coefficient corresponding to a 313 is estimated
in [3] using only the values of this coefficient; in the method presented here, the
estimates may generally depend on the other coefficients.

Following Definition 3, we must compute the 13-limit of the harmonical mean
with respect to x and the 13-limit of the arithmetical mean with respect to x of the
coefficient A313 thus obtaining upper and lower bounds for it:

lim MA3 (A313) B1313 lim MA2 [(Ae)-3113]-- E -1
1313"

13 e0 13 eo0

Finally we obtain El313 Q1313 B1313, where A H. Q. Using the method described
here, it is possible to obtain bounds for the effective coefficients in the case when the
space between the periodical fibers is completely filled by the matrix of low resistance.
We consider this situation in the sequel.

Now we analyze the geometry of the periodicity cell (Fig. 1). In the vertex of the
romb of edge lengths 1 and 60 in the origin are situated sectors of radii r and 60
(respectively, 120), filled by the fiber. The rest of the romb is filled by the matrix of
low resistance. We can see that AB CD. For simplicity we put x t, x s. We have
(see Fig. 2)

t= OM, OZ tx//2,

ZH (x/ar2 3 t2)/2, UH 2. ZH x/4r 3 2.

The maximum value of for which a parallel line to Os intersects the circle of radii
r is ON 2r/v/-. We consider the case when such a parallel may intersect only two
circles (the centers of which are situated on Os), then we consider r<x//4, which is
in accordance with the above hypothesis.

We let A1313-- h in the fiber, A1313-- 1 in the matrix.
For the upper bound we have- 3t2 + 1 -4r2- 3t2,

MA2 (A1313)--
1, (2r/x/, 1/2),

(O, 2r/x/),

T

FIG. 2
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and using the fact that the weak limit in L2(I)) of a periodic function of (x/e), for
e 0, is the mean value on a cell (see [5]), we obtain

A1313 2. [(h-1)x/4r2-3t2+l]-1 dt+l-4r/x/

The lower bound is given by
!r/x 1 t2(18) A-313=2 -1 x/4r2 3 +1 dt+l-4r/.

Hashin and Rosen [3] obtained the following bounds:

(19) G+
mgV, + v2),

(20) G-(vl/mg+v2)-1

where

mg=[h(l+b2)+l-b2]/[h(1-bE)+l+b2], b=2r,

Vl 0.918, v2 0.082 1 Vl.

In order to compare these two methods, we compute the expressions (17)-(20) for
different values of h and r. Considering, for example, r=0.2 and r-0.3, we obtain
the results in Tables 1 and 2. We can see that in general the estimates given in [3] are
more precise than those given by the method presented here.

TABLE
=0.2.

h A-313 G- G A1313

2 0.819 1.103 1.112 0.840
3 0.846 1.157 1.159 0.907
6 0.879 1.232 1.236 1.037
10 0.889 1.275 1.282 1.140
20 0.908 1.302 1.310 1.236
30 0.909 1.314 1.323 /.271
50 0.912 1.323 1.333 1.315
100 0.914 1.331 1.341 1.351

oo 0.17 1.339 1.349 1.393

TABLE 2
=0.3.

h A-313 G- G A1+313

5 1.086 1.551 1.579 1.341
15 1.198 1.785 1.844 1.846
35 1.236 1.872 1.945 2.116
65 1.250 1.905 1.984 2.249
115 1.258 1.922 2.005 2.326
195 1.262 1.931 2.016 2.371

1.268 1.945 2.032 2.z41
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We want to emphasize that only for A1313 is it possible to obtain both upper and
lower limits using the above theoretical results. Generally, only the upper limit may
be computed, since A verifies the condition (,) (see Definition 2).

Hashin and Rosen [3] also presented the bounds corresponding to the following
constants:

K23 (a::z2:z + a2233), G23 (a:z22:z a2233),

E1 allll- 2a1122/(a2222 + a2233).

If we consider h= A33 1, hi =0 for (ij) (22) and (33), then relations (14) and (12)
give us

AijkhhijAkh 8 (a2222 d- a2233)/3.

For A_3 1, Ai =0 if (ij) (23), we obtain

AkhAAkh 4" a2323/3 4(C2 C23)/3

4(aEZEZ- a2233)/3.

Therefore we can apply our method to obtain upper bounds for the constants K23 and
G23. Since in general the coefficients with ij kh cannot be directly estimated, it seems
that the method presented here is not applicable for E1 (which represents the longi-
tudinal Young modulus).
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SMOOTHING PROPERTIES OF LINEAR VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS*

W. DESCHt AND R. GRIMMER:

Abstract. Boundary value problems for hyperbolic linear partial differential integral equations of
convolution type on an interval are studied. A necessary and sufficient condition on the convolution kernel
is given such that discontinuities of the boundary data are smoothed in the interior of the interval. The
result is applied to consider dynamics of viscoelastic media.

Key words, integrodifferential equations, Rayleigh problem, viscoelastic material, propagation of
singularities
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1. Introduction. We study propagation of singularities by a linear first-order hyper-
bolic partial differential integral equation in one space variable, namely

ut(t,)=au(t,)+cu(t,)+ [d(t-s)u(s,)+’h(t-s)u(s,)]ds,
(1)

t->0, 6(1,2))

with initial boundary conditions

u(O, )=O, bu(t, .)= v(t) (j=l,2).

u is considered to be vector valued and a, c, d, h, bj are matrices. Thus the problem
includes the standard first-order transcription of

(2) Utt(t )= G(O)ut(t, )+ G’(t-s)ue(s, ) ds

with suitable initial and boundary conditions.
The latter equation describes the dynamics of a linearly viscoelastic homogeneous

medium (given sufficient symmetry to reduce the problem to one space dimension).
(See, e.g., [2], [3].) Considerable effort has been spent investigating how a discontinuity
in the initial or boundary data is propagated to the interior of the interval. A major
part of the literature, such as [1], [6]-[9], [12]-[15], [20a-c], treats the case that the
kernel d is sufficiently smooth (i.e., it admits at least two locally integrable derivatives).
Reference [5] considers a similar situation in a nonlinear setting. In this case, a jump
discontinuity in the boundary data gives rise to a jump discontinuity in the solution,
traveling back and forth between the boundaries. The presence of a memory term does
not affect the hyperbolic character of the equation, not even the wave speed of the
discontinuity; its only effect is exponential damping of the stepsize of the discontinuity.
However, in [19], Renardy has pointed out that the scene changes drastically as d is
allowed to be unbounded at 0. He shows that singular kernels may generate solutions
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that are infinitely often differentiable in the interior ofthe interval, though discontinuous
on the boundary. This fits very well to a result in [10], showing that unboundedness
of the kernel together with suitable monotonicity conditions implies that the resolvent
operator to the integrodifferential equation is compact; smoothing is likely to be
expected in this case.

A recent paper by Hrusa and Renardy [11] shows that the situation is even a bit
more complicated. When kernels with different types of singularities at =0 are
compared, they indicate that whether the solution is C across the characteristics at
any time > 0 or does not gain any differentiability at all depends on the boundedness
of G’(t)/ln (t) rather than G’(t). In the limiting case that G’ has a logarithmic
singularity, the solution gains smoothness gradually as time increases. (Dealing with
inhomogeneous boundary data rather than initial data, this means that the solution
becomes smoother and smoother as we proceed deeper into the space interval.)

While writing this paper, we became aware of a contemporaneous study by Priiss,
[17], which examines an integrated version of (2). The second derivative of u with
respect to : is replaced by the generator of a cosine family, while the scalar function
G(t) may be replaced by a Stieltjes measure of specified type that includes the case
G is completely monotone. We will compare our work with both 11] and 17] in the
last section of this paper.

While the work in 11] is done by explicit computation of various examples, this
paper means to give a general theorem characterizing the kernels d that lead to
smoothing of the solution of a first-order hyperbolic system. Moreover, we give a
formula for the space interval needed to gain one degree of differentiability in the
limiting case. Unfortunately, our results for the general case (1) are very technical. If
d (t) is a scalar multiple p(t)d of a constant matrix d, considerable simplifications can
be carried out. In particular, if p is convex decreasing, smoothing depends on
limt_o p(t)/ln (t), in accordance with 11 ].

In the last section of this paper, we apply our results to some nonscalar problems
in viscoelasticity where we encounter equations in which d(t) is not a scalar multiple
of a constant matrix, e.g., a Timoshenko beam. It will be seen that many such problems
can be treated with our techniques.

2. The main theorems. We consider the following equation:

ut(t,)=aut(t,)+cu(t,)+ [d(t-s)ut(s,)+h(t-s)u(s,)]ds,

(2.1)
bsu t, ) vs(t) (j 1, 2),

u(O, :) =o

for t_>0, ([1, sc2].

The solution u is supposed to be an R"-valued function on [0, ) x [sel, se2]. Our
hypotheses on the coefficients are the following.

Hypothesis 2.1. (a) a is a real n x n-matrix that has n distinct real eigenvalues
hl<’’’<h,, <0<Am+l<’" "<h,. By {ei: i= 1 n} we denote a system ofeigenvec-
tors of a corresponding to the eigenvalues hi, respectively. {f: i= 1 n} is a system
of eigenvectors of the transposed matrix a*, such that f*es 6o. r is the n x n-matrix
(fl’’ "f,)*; thus r-1--(el e,), and rar-=diag(hl An). We put :i=h-1, and
for i= 1... m, 6i =-1, while 6i 1 for i= m+l.., n.
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(b) Putting ml rn and m2 n-m, we assume for j 1, 2 that bj is a real mjx
n-matrix and that the matrices (blel ble,,) and (b2em+ b2e,) are invertible. (We
may assume without loss of generality that they are m x m unit matrices.)

(c) c is a real n x n-matrix.
(d) For some y->0, the function t+e-V’d(t) is a real nxn-matrix valued

integrable function on [0, o0) and te- d(t) is in W’I(o, o0).
(h) The function t- e-’h(t) is a real n x n-matrix valued integrable function on

[0, o).
(v) The functions toe-V’v(t), (j= 1,2) are in L2([0, oo), R).
(Hypothesis 2.1(a), (b), (c), (v) makes (2.1) without the convolution terms a

hyperbolic first-order initial boundary value problem that is well posed in
L2([:1, :2], Rn) Parts (d), (h) of the hypothesis are minimal boundedness assumptions
on the convolution kernels.)

Before we can state our second hypothesis, we need to introduce the Laplace
transform ^:

d(r) e- d(t) dt (which exists for Re r=> 3’).

Since limll_.,Re>_ d(r) =0, we may choose some 0 sufficiently large such that for
Re r>=O the matrix a+l(r) has n distinct eigenvalues Al(r)’" X,(r) (converging
to AI"’X, as Irlooo), and that sgnReXi(r)=sgnXi=Si#0. In particular,
(a + d(r))- exists with eigenvalues

Hypothesis 2.2. There exists a constant M such that for p => 0, r R, j 1... n,
8cr Im K(p + itr) -< M.

(A discussion of ways to verify this hypothesis will be given in 4.)
Taking Laplace transforms in (2.1), we obtain

rt(r, so) (a + d(r))t(r, ) + (c +/(r))t(r,
(2.2) bfi(r, )= @(r) (j= 1, 2)

for Re r sufficiently large and : [bl, b2].

It has been suggested by one of the referees that Hypothesis 2.2 may be equivalent
to the welloposedness of (2.1). It seems clear that this hypothesis is intimately related
to the well-posedness of (2.1) in L2((q, :2), I") with arbitrary boundary matrices bj
that are subject to Hypothesis 2.1; however, the proof of such a relation would seem
to be quite lengthy and technical. Being interested in propagation of singularities rather
than problems of well-posedness, we confine ourselves to the following existence result.

THEOREM 2.1. Suppose Hypotheses 2.1 and 2.2 are valid. Then there exists a unique
function u:[O, c)x [:1, :2]-> ", such that for sufficiently large 0 and each : [1, 2],
the function t+ e-tu(t, ) is in L([O, oo), [), and the Laplace transform (r) satisfies
(2.2).

To state our main result on smoothing we introduce the numbers

,(r)= max (-Im K(r)), fl2(r)= max (Im (r))
j=l...m j=m+l...n

for Re r -> 0, Im r -_> 0, and

ce lim sup -o’fl(0 + io’)/ln or, c- lim inf -trflj(0 + itr)/ln or.

(By Hypothesis 2.2, -trill(0 + itr) is bounded from below, thus c [0, oo].)
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THEOREM 2.2. Suppose Hypotheses 2.1 and 2.2 are valid and choose 0 sufficiently
large (according to the hypotheses of this section and Theorem 2.1). Let k > 0 be a real
number. If (- :l)a-f > k and (so2- )a > k, then for all boundary data v according to
(v) the solution t- e-tu(t, ) is in wk’2([0, ), R"). If (-l)a- <k or (:2-:)af < k,
then there exist boundary data Vl and v2 such that e-tu(t, ) is not contained in

w,([0, oo), -).
Thus, if a- a; as, then a,(a) may be viewed as the reciprocal of the distance

from the left (right) boundary needed to gain one degree of differentiability. If a; 0,
no differentiability is obtained unless the boundary data are sufficiently smooth them-
selves. On the other hand, if aj-= oo, all boundary data are immediately smoothed to
C. Notice also, that a; depends only on d and a, while c and h have no bearing on
the degree of smoothing.

Remark. The definitions of the a; are independent of 0 for sufficiently large 0.
This follows from the assumption that e-Vttd(t) wl’l(0, oo). This independence is,
in fact, the only reason for this smoothness assumption. To see this independence, we
note that because a has distinct nonzero eigenvalues, we can appeal to the differentiabil-
ity of (a + d(7-)) -1 to obtain ]/(j(T1)- Kj(7-)[ O([]d(’/’l)- d(’)ll) where 7"1-- 191 -- io" and
r 0 + itr. However, for 0 > 0,

/(,/.)_/(7.1 e_O,+,o.)t [e--’) 1]

0(-’),

as it is the transform of a W1’1 function. Hence,

td(t) dt

1--ff(gj(7"l)--gj(7")) ")0 as

3. Proof of Theorems 2.1 and 2.2. Throughout this section, let us assume that 0
is sufficiently large, and r =p + icr with p _-> 0 and cr > 0.

From (2.2) we obtain

(3.1) (r,)=r(a+(r))-I(I-r-l(c+f(r)))(r,)-: rl(r)t(r, ).

(I denotes the n x n unit matrix.)
As 0 is chosen sufficiently large and limll_.,Re_>v/(r)= a -1, the matrix l(r)

possesses n distinct eigenvalues/Xl (r) /x, (r) converging to K1 K.. In particular,
sgn Re I.ts(r)=as. Now, for Ir[-, oo, I[l(r)-(a+d(r))-lll- o(Ir-ll); thus also
(r)l O(Ir-l). This implies that Hypot.hesis 2.2 as well as the values for a; remain
the same if is replaced by /z and /3 is replaced by fll=maxs=l...,,-Im/zs(r),
/32 maxs=,,+l..., Im

Moreover, l(r) can be diagonalized by a matrix r(r) converging to r as
so that

r(r)l(r)r-’(r)=diag (/*l(r) /.(r)) k(r) + diag (/(1

We write r-l(r) in the form (el(r)’’’ e,(r)) where ej(r)-+ es.
Putting 5(r, so) r(r)a(r, ), we obtain from (3.1) and the boundary conditions

(3.2) te(r :)= rk(r)a(r, :), bsr-l(r)a(r, j)= s(’r).
Consequently, the ith coefficient t of 5 satisfies

t,( r, sc) exp "/’]./,i T)( 1))/i 7", 1) exp (- r/z, r)(sc2 :)) 5, r, s2).
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We put U(z)= (ffl(Z, :1) t,(z, SOl), ,+l(Z, 2) g(z, :))t and let U be the ith
coecient of U. So

g(z,)=exp(-8z(z)(-l))U(z) for i=l.., m, and
(3.3)

,(r, )=exp (-8,z,(r)(-))U(z) for i= m+ l n.

To estimate the solution, we use Hypothesis 2.2 and obtain

Re (,z,(z)) p, Re ,(z) , Im ,(z) 0, Re ,() M.

As Re (z) is bounded away from 0 (for large 0) and 0 may be chosen large, we can
achieve that Re(8z(z))>0 is arbitrarily large. In paicular, by (3.3), we have

The values of U(z) are determined by the boundary conditions: As the matrices
b(e e) and b(e+ e) are inveible, the matrices p() b(e() e(z))
and p(z) b2(e+(z) e(z)) are also (provided 0 is chosen large). We put ql(z)
bl(e+l(Z)’" e(z)) and q(z)= b(el(z).., e(z)). Then the boundary conditions
can be written in the form

al(T, 1) Um+I(T, 1)
+p’()ql() p?l()l(),

+p (z)q2(z) =p(z)2(z).
a.(, ) am(, )

Let Q(z) be the block matrix

0 p(z)q2(z) diag (e’((-)

;(z)q(z) diag (e-",((-)
i=m+l...n 0

Then we obtain from (3.3)

(3.4) U(r) + Q() U(r) [P;l(r)Bl(r)J[p,()o()
Choosing 0 suciently large, we can achieve that [[Q(r)]] < 1/4n, so that there exists
a unique solution U(r) to (3.4) with some bound U(r)[J N([]BI()JJ + [[B(r)[[).

If 0 y, the function @(0+ ia) is in L2(, C") by Plancherel’s theorem. Hence
for fixed Ce [1, ], (0+ i, )= r-(0 + i)ff(0 + i, ) is also in L(, C"). Inveging
the Laplace transform by a contour integral from 0- i to # + i, we obtain, again
by Plancherel’s theorem, that the function to e-’u(t, ) is contained in L(,).
This proves Theorem 2.1.

Let us now assume that a(- 1) > k and a(-) > & i.e., for suciently large
0,

-BI(# + i)(- 1)/ln > k and -B(0 + i)(- )/ln > k.

Consequently, for j 1 m, (-) Im (0+ i)/ln > & and for j m + 1 n,
-(2-) Im (0+ i)/ln > k. Thus for suciently large and j 1 m,

Re ((0+ i)(0 + i)(- )) 0 Re (0+ i)(- 1)- Im (0+
<-kln ,
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while for j m + 1 n,

Re ((0+ itr)lzj(O+ itr)(2-))> k In r.

By (3.3) we have for sufficiently large tr and j 1 m,

[tj(0 + itr, sc)l exp (Re ((0 + iw)s(0 + iw)(- 1)))] (0 + i)[

-[(0+ i)[.
Similarly for j m + 1 n,

[ffj(0 + i, )1 exp (-Re ((0 + i)j( 0 + i)(2 )))l(0 + i)[

-k] (0+ ig)[.

This implies that the function

g g(O + i, ) ggr-( O + ig)( O + i, )

is contained in L([0, ), C); thus by Plancherel’s theorem, the function e-tu(t, )
is in W’([0, ), ).

+Assume conversely, that (-)a < k or (2-- )af < k. Without loss ofgenerality,
we restrict our consideration to the first case; the second case is done similarly.

+We choose some small e >0, such that (--)a < k-2e, and a scalar function
w such that e-’w(t) L([0, ), ), but e-’w(t) W’([0, ), ). Our boundary
conditions are v(t) w(t) (1 1)’, v(t) 0. For sufficiently large [z}, we infer from
(3.4) and II ( )ll 1/4n the following:

LpE()B2() " IIu(  ll; thus

IIs(,)ll  " p(,)O(,)
and

]]U(z)-[pl(z)(z)]Lp(z)(z) " Lp(z)()A"

Moreover, as pl(Z)=b(el(z).., e(z)) bl(el" e)=I, we have for sufficiently
large [z] that

3 5
pl(Z)(l’" 1)=((z) m(Z))’ with<](z)[<-.4

Thus for j= 1 m

()-()()1 1/3n. I1()(1() (), 0... o)’11
< 51()1/12,

As (-) (k-2, we infer for suoiently large that -(-)(+
i)/ln (k-2; thus there exists at least one j(1.., m with (-) Im(+
i) ((k-2) In . Again Considering suiently large , we obtain

(-k) In .
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Thus

[a(O + itr, :)1 exp ((- 1) Re ((0+ io’)tz(O+ io-))). U(O +/r)

> O’-k (0 + icr)[/3.

Suppose now that the function e-’u(t, ) is in Wk’2([0, o), n).By Plancherel’s
theorem, this implies that the function cr crka(0 / io-, ); hence also crkS(0 + itr, ) is
in L2(R, C’). This implies cr(0+ kr) L2(, C), in contradiction to the assumption
that e-’w(t) : W’2([0, ), ).

4. Simplifications and examples. The verification of Hypothesis 2.2, as well as the
computation of the numbers af, will in general give rise to tedious calculations, if at
all possible. Therefore it seems worthwhile to point out some simplifications that may
be applied to certain special cases to obtain explicit results.

We have already noticed in 2, that the matrix c and the convolution kernel h
do not contribute to the degree of smoothing. We improve this result and also show
that bounded variation parts of the kernel d can be ignored.

PROPOSITION 4.1. Suppose Hypothesis 2.1 is verified with two different kernels d
and . Moreover, let the function t e-Vt(d(t) (t)) be of bounded variation and
.integrable on [0, ). Then Hypothesis 2.2 is valid with d if and only if it is valid with d,

+and the values of a (a l, a2, a) are the same for d and .
Proof. As a has distinct and nonzero eigenvalues, the eigenvalues and inverse

matrices depend continuously differentiably on matrices in a sufficiently small neighbor-
hood V of a. We pick 0 sufficiently large, such that for Re r > 0 both matrices, (a + d (r))
and (a+ d(r)), are contained in V. Thus the jth eigenvalue Kj(r) of (a+ d(r))-1 and

j(’r) of (a+ d(’r)) -1 satisf,y I()-;()1- o(lld()- d()ll). Since e-V’(d(t)-(t))
is of bounded variation, [[d(z)-d(r)[[ O([r[-1). Thus z(j(z)-gj(r))is bounded for
Re r> 0, implying that Hypothesis 2.2 is equivalent for the two cases. Moreover,
er(rj(0 + ier) j(0 + kr))/ln r converges to 0 as [r[-+ oo; thus we obtain the same values

+for a-(a, a l, a) in both cases.
As an immediate consequence of this proposition and Theorem 2.2 we obtain

Corollary 4.2.
COROLLARY 4.2. Let Hypothesis 2.1 be satisfied with d such that e-vt d(t) is

integrable and of bounded variation. Then Hypothesis 2.2 is satisfied, and L2 boundary
data are not smoothed inside the interval.

Proof. By Proposition 4.1 we may replace d by 0, so that j(r)=rj is real. This
implies Hypothesis 2.2 and aj O.

When we linearize the eigenvalues of a + r(r) at a, this leads to the following
lemma.

LEMMA 4.3. Suppose Hypothesis 2.1 holds. Then for {r[-+ oo,

Im (r)= -hf2 Im (f (r)e)+ o(lllm (r)[[) + o([Im (r)[).

In particular, if [[Im (r)[] O([Im (f* (r)e)[), then

Im (r)/Im (f (r)e)-->-hf2.

Proof. Im (*Kj(r)l)=(h}-lh}(z)[) Im Im h;’(r) o(lIm Kj(z)l)-
Im hj(r). Since the eigenvalues of a are pairwise distinct, the eigenvalues h(q) of a + q
depend continuously differentiably on q, provided that q is a sufficiently small complex
n x n-matrix. Moreover, the derivative VA(O) at q =0 is a linear map from the space
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of n x n-matrices into C given by (VAs(O))q=fqes. If It] is large, so that (r) is
sufficiently small, then

Im As(r)= Im (As(r)-As)

Im [iVAj(Re d(r)) Im d(r)+ o(llIm d(.)ll)]
Im [iVAs(0) Im d(r)+ i(VAs(Re d(r))-VAs(0)) Im (r)]

+ o(llIm d(r)ll)

=f* Im (r)e + o(llim

The hypothesis of this lemma again is technical enough; however, it is true if d
is a scalar multiple of a constant matrix. The rest of this section is devoted to this case.

PROPOSITION 4.4. Suppose that Hypothesis 2.1 is satisfied, and that d(t)=q(t)d
with a scalar-valued function q and a constant real matrix d. Moreover assume that for
allj 1 n,f de O. Then Hypothesis 2.2 is equivalent to thefollowing. Iftr Im q3 (p +
itr) is unboundedfrom above (below) for p >- O, tr >-_ O, thenfor eachj 1 n, 8sf des >
0 (<0). Moreover, in this case we have

01=+ lim sup [rllm u3(O + itr)l/ln tr]. min Af2lf del,

a-= lim inf[tr[Im q3(0+ itr)[/ln (r]- min Af2[f des[

+
a2 lim sup [rllm 3(0+ kr)l/ln r]. min A; IL* del,

j=m+l...n

af= lim inf[o’llm q3(0+itr)l/ln tr]. min Af2lf desl.o--oo j=m+l...n

Proof. Evidently, [llm d()ll IIm q()l" Ildll O(lIm ()f* de[)= O(lImf*
t(z)esl), so that the previous lemma applies and ImKs(O+io’)/Im(O+io’)-)
-hf:f des. Thus 8s Im Ks(0 + kr) is bounded from above if and only if either Im q(0 +
kr) is bounded, or Im q(0+ kr) is bounded from below, and -Sshf2f* de <0, or
Im q(0+ itr) is bounded from above, and -Sshf:f* de > O. Now assume that one of
these conditions is satisfied. Then

1(0"]- itr)= max (-Im Ks(O+ itr))
j=l...m

max [Afzf* de Im q3(O+ io’)]+ o(lIm q3(O+ kr)[).

+Employing the definition of a l, we obtain

+ lim sup [- max hf2f de Im q3(0 + icr)/ln o’],

which equals 0 if tr[Im 3(0 + itr)[ is bounded. If for some sequence trk , [trk Im q3(0 +
ir) o, then for large k, Im g3(0 + io’k) and f de have the opposite sign; thus

a lim sup [trlIm q3(0+ itr)l/ln tr]. min hf:lf del.

The formulae for the other af are proved similarly.
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Our last result shows how this is related to the singularity of the kernel q(t) at 0.
PROPOSITION 4.5. Suppose that d(t)-q(t) d with a constant n x n-matrix d and a

scalar, nonnegative, nonincreasing, convex function q(t) e-vt. Moreover, for each j-
1... n let 6jf dej < O. Then Hypothesis 2.2 is satisfied, and

liminf[-(t)/ln t]. min [f* de[. Af2

tO j=l...m

=<al- a+< 2 lim sup [-(t)/ln t]. min [f ael. x, and
tO j=l...m

liminf[-(t)/ln t]. min [f del.tO j=m+l

+<2 lim sup [-(t)/ln t]. min I del. .tO j=m+l...m

In particular, if has a singularity weaker than logarithmic at O, there are L2 boundary
data that never get smoothed in the interior of the interval. On the other hand, if has
a singularity stronger than logarithmic, all boundary data are smoothed immediately to C.

Proo As for 0> y, the function e-Vt(t) is again nonnegative, convex, and
nonincreasing; we may assume without loss of generality that itself is also, and put
0 0. Since is nonincreasing, we obtain for > 0, Im ff(i) o sin (t)(t) dt < O.
Thus Im (i) is bounded from above, and as f de < 0, Hypothesis 2.2 is satisfied.

To estimate the af, we sta out with

io- Im (i)= sin (t)(t) dt sin r dr

fo [ (,+2j)(,+(2j+l))]sin d.
j=O

Using the convexity of , we obtain

-Im(i)e sin 2 - p + d
j=O

sin d,
2

-Im(i)= sin -2 - dr
j=l

sin r dr- sin
j=l

d

Io sin d- sin d sin d.

Therefore,

lira inf (- Im (i)/ln ) > lira inf
1

sin p d= 21n

[ sin (ln
lim inf

2 In In (r/)
d

lim inf-(t)/ln since
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sin
-1 ascr-

7.(ln In 7")
21nor

Similarly,

[ sin (ln -ln r) -(/)
lim sup

In In (z/)
dr

2 lim sup -(t)/ln t.
t0

This and Proposition 4.4 yield the desired estimates.
Example 1. To give an example, let us show how our results apply to a shear flow

in a linearly viscoelastic fluid bordered by two parallel (infinite) plates. We assume
that the fluid is initially quiescent and that it is then peurbed by moving the plates
in a fixed, tangential direction. The resulting velocity field depends only on one space
variable ohogonal to the boundaries. The direction of the velocity vector is parallel
to the motion of the plates, so that the velocity field can be viewed as a scalar. Let
(t, ) denote the velocity, o(t, ) the shear stress, and p the density of the fluid. G(t)
is the stress relaxatiqn modulus. Then we have the constitutive equation

(,)= a(t-s)e(s,) s,

and the momentum equation

o,(, e(, .
The initial and boundary conditions are

(0, 0, (o, 0, (t, v(t, (t, ) v(

Combining the equations and putting u(t, )= ((t, ), (t, )), we obtain

ut(t, )
G(O) 0

ue(t, ) + G’(t s) ue(s ) ds

aue(t, ) + G’(t s) due(s, ) ds,

It is a matter of elementary linear algebra to compute

A1 A2--
\ p / p /

el _/a(O)o e-- a(O}p

1/2/G(O)p

6f de 1/2/G(O)p for j 1, 2.

From physical considerations it is reasonable to assume that G’ is negative,
nondecreasing, convex down, and integrable. Replacing d by -d and G’ by -G’, we
may apply Proposition 4.5 to see that Hypothesis 2.2 holds. Moreover, if G’ has no
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singularity or a singularity weaker than logarithmic at 0, no smoothing occurs. If
the singularity is stronger than logarithmic, the solutions are C with respect to time
for each fixed sc in the interior of the interval. In the limiting case that the singularity
is logarithmic, the solution gains differentiability gradually as we go away from the
boundary. The space interval needed to gain one degree of differentiability is a -1 with

ce x//2/G(0)3. lim [0- Im t’(icr)/ln

(provided that the limit exists, otherwise we must include the space interval between
(a+)-1 and (a-)-l). This also implies that step discontinuities are smoothed immedi-
ately to continuous functions, as a step function is contained in W1/2-’2 for any e > 0,
while W1/2+’2 is already embeddable in the space, of continuous functions.

Let us briefly compare how our work relates to the results in 11]. The equation
treated there is

tctt(t )=u(t, )+ [t (t-s)(u(t, )-u(s, )) ds.
d-

Putting u=, = p-l(G(O)-o G’(s) ds), on(t)=-p-lG’(t), this may be viewed as a
second-order transcription of our problem. While we treat inhomogeneous boundary
conditions on a finite interval, in 11 homogeneous boundary conditions and a nonzero
initial condition are treated.

If the kernel exhibits a singularity stronger than logarithmic, the boundary value
problem shows immediate smoothing to C. The same is true for the initial value
problem, as far as smoothness across the characteristics is concerned. The "vertical"
characteristic, showing always a singularity one degree weaker than the initial singular-
ity, of course does not appear if the discontinuity comes in from the boundary. If the
singularity of the kernel is weaker than logarithmic, no differentiability is gained in
both cases. The effect observed in [11], that initial data of bounded variation may be
smoothed to C 1, evidently requires more refined methods than the one developed in
our paper.

The example of a kernel with logarithmic singularity in [11] is re(t)=
2k=0 exp (--ekt). It is shown that differentiability is gained gradually. It is easy to
compute a by our formula"

a x/-/2x/G(0)3. lim [tr Im ’(io-)/ln

=1. + (s) ds lim [-tr Im (itr)/ln tr].

Now (itr)=k:o 1/(ek+itr); in particular,

(s) ds=(O)=e/(e-1),

-lim cr Im (itr)/ln o-= lim Y tr2/(e2k+ tr-) In tr
k=0

Y 1/(e2k/tr-+ 1)lim
in tr k=0

lim
1 f

/
’

1/(z+ 1)zdz
,- 2 In tr Jl/,2
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lim In (1 + o’2)/2 In o" 1.

Thus a 1/2(+ e/(e-l))3/2.
We will also use Example 1 to compare our work with that of Priiss 17]. We are

indebted to R. Wheeler for drawing our attention to this work. The equation examined
in 17] is the abstract integroditterential equation in a Banach space X"

u,(t) da(t-s)Au(s)

where a(t)--ao+ aot+to al(s) ds with ao_->0, a_->0 and al(t) completely monotone.
In addition, A is the generator of a cosine family in X. In order to make a reasonable
comparison, we consider the equation

ut( t) G( s)Au(s) ds

where G(t) aoo+ a(t).
It is shown in 17] that the resolvent operator associated with this equation becomes

C in time for any > 0 if

-In o" Im G(io’)
lim 0.
-, o" Re (io’)

If the expression above is finite but nonzero, the resolvent operator gains smoothness
as time goes on.

The abstract setting can be adapted to Example 1, if nonsmooth initial conditions
but homogeneous boundary conditions are considered.

In our setting we require that G(0) is finite; hence lim_ io’G(io’)--G(O). As

o" Im ’(io’) o.2 Re (io’) o.2 Re (io.)
In o. In o. In o" Re io’G(io’)

o" Re G(io’)
-G(O)

In o" Im 0(io’)’
our condition for infinite smoothing is the same as that of Pr/iss 17].

Example 2. Our methods work as well for a system of wave equations coupled
by boundary conditions. In [3], Chen, Coleman, and West have considered small
transversal vibrations in a cable consisting oftwo or more elastic strings, linked together
by a dashpot-like damping device at their ends. To find out how a step discontinuity
in stress or velocity is transmitted along the cable, we must take care of the internal
viscoelastic damping of the material. Assuming a linear Boltzmann constitutive law,
we obtain the following system:
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with the boundary conditions

9-(t, -/)= v-(t), v+(t, 1)= v+(t),
k[9+(t, O) 9-(t, 0)] =/0+(t, O) (k > 0),

Here 9 denotes (transversal) velocity in either string,/0 is stress, p+ is mass density,
and G+ is the stress relaxation modulus. For simplicity we have assumed both strings
to have the same length and normalized cross-section areas to one.

To fit these equations formally in our framework, we put

91( l, ) /)+( t, :), /01( t, S) =/0+( t, ),

92(t, S) v_(t, --), /0_(t, Sc) =/0_(t, --SO), => O, [0, l],

and obtain
-1 0"V" 0 p+

(t,)=
G+(o) o 0

0 0

]_ 0 0 -G_(O)

/01
(t, :)

0 0 0 0 91

G:(t- s) 0 0 0
+

0 0 0 0
(s, ) ds,

0 0 -G’(t-s) 0

with boundary conditions

91

0 1 0 -1 92

/02

91

0 0 1 0 92

/02

The same computations as in the previous example yield

0

0

1

Jp_G_(O)

1

jp+G+(O)
0

0
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Since

and

0 1 0
[e,, e2] -.,/p/G/(O) -.,/p_G_(O)

0 0 1 0 e3’ e4]--
1

are both invertible, the boundary conditions fit in Hypothesis 2.1(b).
The further analysis depends only on the eigenvalues of

0 p_l 0 0

zG+(’) 0 0 0a+(r)=
0 0 0 _p-1
0 o -&() 0

which is ofblock-diagonal form, each block corresponding to a viscoelastically damped
wave equation.

To each of the blocks the results of the previous example apply. We see again
that singularities in the boundary data v are smoothed to C in the interior of the
interval, if

r Im (’+(io-)
lira o

In r

for convex decreasing positive -G’., this means again that G’ has a singularity stronger
than logarithmic at 0.

If G’(0) is finite, no smoothing occurs and singularities travel from end to end.
It is only this case where the damping device linking the strings has influence on the
propagation of singularities. Reflection and transmission occur at the connection point.
The methods of [6, Ex. 3.2] show that reflection and transmission at the link are the
same as if the strings were purely elastic, while the viscoelastic nature of the material
leads to exponential damping of the stepsize, as waves propagate along the strings.

Example 3. Once the behavior of a single string is known, the results of the
example above are in fact obvious from physical intuition. It is more interesting,
however, that also a Timoshenko beam equation decouples in two wave equations, if
high frequency behavior such as propagation of singularities is considered.

Consider a viscoelastic beam pinned on both ends, such that one end can be
forced to move in a transversal direction at a given velocity. (Other boundary conditions
may be treated similarly.) We investigate how a discontinuity in the velocity forced
on the end of an initially quiescent beam is propagated along the beam. It is known
that for wave phenomena with high frequencies Timoshenko’s beam equation is
preferable to the Euler-Bernoulli equation [21], [22]. From [21, (11.9)-(11.11)] we take

pAytt [KA *G(y )],
pI4’. * *E,,Ie]e + KAG.,(ye q):

G and E* being complex elasticity moduli. We reset the problem in the form of
Boltzmann viscoelasticity, and subsequently put it in a first-order system"

[ Io’ ](4.) oAy.(t, )= Aao(ye-6)(t, )+ AG(t-s)(ye-6)(s, ) as
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(4.2)

pId/n(t, so) Eold/(t, )+ IE(t-s)d/:(s, ) ds

+ rAGo(y $)(t, ) + rAG(t- s)(y, $)(s, ) ds,

with boundary conditions

y,(t,O)=v(t), y,(t,l)=O,

b(t, 0) 0, 6(t, 1) 0.

Here y is the transverse displacement of the beam, 6 is the angle of rotation for a
cross-section element, when shear is neglected. Go and Eo are instantaneous elasticity
moduli, G and E are stress relaxation moduli. The meaning of the other constants is
as in [21].

To obtain a first-order system put

u t, :) with

U4( t, )

U Y:, //2 Y’, U3 I]/:, U4 I/t.
To take care of , in (4.2) we put Gl(t)= Go+o G(s) ds and perform an integration
by parts:

God/( t) + G( s)d/(s) as G( s)d/t(s) as.

(As the beam is initially quiescent, @(0) 0.) Now we can set up the first-order system:

0 1 0 0

u, (t, ) ’Go/p 0 0 0

0 0 0 1
u(t, sc)

0 0 Eo/p 0

0 0 0 0

0 0 -KGo/p
u(t, )+

0 0 0
oKAGo/Ip O 0

0 0 0 0

G(t-s)/p 0 0 0
+

0 0 0 0
ut(s, ) ds

0 0 E(t-s)/p 0

0 0 0

0 0 -G(t-s)/p
0 0 0

rAG( s)/ Ip 0 0

u(t, 0)
0 0 1 0 0

0 0 1 0
u(t’l)=

0

0

0

-AGl(t-s)/Ip

u(s, ) ds,
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As the smoothing properties depend only on the matrices a and d(t) appearing
with ue, we may ignore c and h(t) and obtain two uncoupled viscoelastically damped
wave equations exhibiting the same behavior:

UI (t, :)
0 Ul (t, :) +

U2 rGo/p u2 e rG(t-s)/p U2 e

u2( t, O) v( t), u2( t, l) O,

/’/4/’/3 t(t’:)= Eo/O U4 E(t-s)/o 0 U4

u3( t, 0) u3( t, l) 0.

Now the computations of Example 1 show that singularities in boundary data are
smoothed to C in the interior of the interval if G and E are positive, decreasing,
convex with singularities stronger than logarithmic at 0.

If G and E are bounded and sufficiently smooth at 0, again the methods of
[6] can be applied to show that a discontinuity in boundary data for Yt and x gives
rise to two waves, one carrying a discontinuity in y, at speed x/KGo/p, the other
propagating a discontinuity in $x at speed v/Eo/p. The stepsizes are subject to exponen-
tial damping, due to the memory of the material.

Acknowledgment. W. Desch thanks Southern Illinois University for their kind
hospitality.
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ANALYSIS OF A CONVECTIVE
REACTION-DIFFUSION EQUATION II*

S.h. LEVINEt$, L. n. PAYNEf, P. n. SACKSiS, AND e. STRAUGHAN

Abstract. We study the large time behavior of positive solutions of the semilinear parabolic
equation ut Uxx + e(g(u))x + f(u), 0 < x < L, e E R, subject to u(O,t) u(i,t) 0. The
model problem in which the results apply is g(u) u and f(u) up 1 < m < p. The steady state
problem is analyzed in some detail, and results about finite time blow up are proved.

Key words. Nonlinear parabolic equations, asymptotic behavior

AMS(MOS) subject classifications. 35K

Introduction. In this paper, we continue our study, begun in [1], of the longtime
behavior of nonnegative solutions of

(1.1(e’)) ut uxz + (g(u))x+f(u), 0 < x < L, t > 0

(1.2) u(0, t) u(L, t) 0, t > 0

(1.3) u(x, O) so(x), 0 < x < L,
where is a constant (_>_ 0 without loss of generality) and f, g are given point functions
of u. We will be primarily concerned with the power law cases f(u) up, g(u) urn,
rn, p > 1. In the earlier paper [1], we analyzed the case 1 < p < rn and proved some

general results for stationary solutions for any p, rn > 1. We will repeat the statements
of these results in the following sections. Also, in [1], we discussed some of the recent
literature concerning (1.1)-(1.3). We will not repeat that discussion here.

We might point out, however, where equations of form (1.1) occur in physical
situations or where (1.1) is a simplified model for a physical process. Cox and Mortell
[2] show how a variety of modified Burgers’ equations may be obtained by studying
the equations of gas dynamics in a tube, under various boundary conditions. Horgan
and Olrnstead [5] investigate a system which arises from Burgers’ original work and
their paper contains many other relevant references. Another area is non-Boussinesq
convection, where nonlinear density dependence on temperature leads to higher-order
temperature effects in the momentum equation, see e.g., Veronis [12], Payne and
Straughan [11].

The plan of the paper is as follows. In 2, we obtain some general propositions
concerning positive stationary solutions when p > m. These propositions are prelim-
inary to the main results concerning stationary solutions we obtain in 3. In that
section we analyze the cases 1 < m < p < 2m- 1 (Theorem 3.1), p- 2m- 1 (Theo-
rem 3.2) and finally, 1 < 2m- 1 < p (Theorem 3.3). In 4, we analyze the longtime
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behavior of solutions of (1.1)-(1.3). We show that when p > m, large data solutions
cannot be global in time. Finally, in the last section, we indicate how these results
may be generalized to nonlinearities that are not exact power laws.

Perhaps we should remark that when e 0, there is a close relationship between
problems of the form (1.1(0)) and those of the form (1.4(0)) where for arbitrary e,

(1.4(e)) +

(1.5) u(O,t) --0

(1.6) ux(L, t) f(u(L, t)).
However, when e 0, the sign of e becomes crucial for the analysis of (1.4(e)) and
the correspondence between the two problems is not so close. See [7] for a discussion
of (1.4(e)).

2. Preliminary results about steady state solutions. In this section and
the next, we state and prove results concerning the multiplicity of positive solutions
of the steady state problem

(2.1(e)) uxx + e(um)x + Up O, O < x < L

u(O) u(L) O,
u>0, 0<x<L

The case 1 < p _<_ m has been analyzed in [1], thus we are interested here in the case
p>m>=l.

The nature of the solution set may of course depend on the parameter e. Since a
solution of (2.1(e)) is uniquely identified by its L norm (by uniqueness of solution for
the initial value problem for an ordinary differential equation) we may conveniently
represent the solution of (2.1(e)), for fixed m and p as a set of points in the (e, [[Ul[LOO)
plane. Also, since the change of variable x - L- x takes e to -e we may restrict
attention to e >__ 0 only. Let

F {(e,M)’e >__ 0, M > 0 and (2.1(e)) has a solution u with IIllLoo M)

be the set of points corresponding to solutions of (2.1(e)) for some fixed values of m
and p.

We begin by recalling some results from [1].

PROPOSITION 2.1. Let p > 1, m >= 1.

(i)

(ii)

(iii)
(iv)

(v)
(vi)

[1, Thm. 2.2] There is a unique positive solution of (2.1(0)). Denote by flo its
L norm.
[1, Prop. 2.6] There exists Mo > 0 such that if u solves (2.1(e)) for some

>= o Ilull o Mo.
[1, Prop. 2.9] F is locally a simple curve.
[1, Cor. 2.51 In some neighborhood o/ O, M flo, F {(e, fl(e)} for a
continuous function , with fl(O) o.
[1, Prop. 2.7] The component off containing (0, flo) is not bounded.
[1, Lemma 2.1] ff ui,u2 are solutions of (2.1(e)), u u2 then ui < u2 or

U2 < Ul.
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Thus there is a curve of solutions emanating from the known 6 0 solution. This
curve may be continued indefinitely and along it either 6 oc or IlUlIL oc or
both. We will see that for m < p =< 2m- 1 we must have IlUllLO ---, oc along the
branch, while for p > 2m- 1 we must have

In the rest of this section we prove some results which are valid whenever p
m _>_ 1. We begin with some lemmas.

LEMMA 2.2. Let u be a solution of (2.1(6)) with p > m- 1.
O < xo < xl < L such that

Then there exi’sts

__> o, <_ o

(2.3) ux g O, Uxx 5 0 on (xo, Xl)

(2.4) Ux <- O, Uxx >-- 0 on (Xl,L)

Proof. Clearly uz can change sign exactly once (at some point xo say) and Uxx <= 0
on (0, x*) some x* > xo. Also since u(L) < 0 and p > m- 1 we must have Uxx > 0
near L, hence there exists xl E (xo, L) such that Uxx < 0 on (0, Xl) and Uxx(X) O.
If we set v -Ux 6(um)x d-up then we obtain the following differential inequality
for v;

(2.5) vx 6mu
m-Uxx d-6m(m 1)urn-2 2

Ux - pup- ux

--((m 1) x -1)6mu
m v + (p m + 1)up- Ux

(((m 1) x -1)6mu
m v X --x < L

Since v(x) 0 we conclude that v(x) <= 0 on [x, L).

LEMMA 2.a. Let u be a solution of (2.1(6)), p > m- 1. Define

Then

x

y(x) um-l(8)d8

hyy + 6mhy + mh(pTl-m)/m 0

L

(2.9) h(O) h(R) 0 R um-l(8)ds.

Furthermore if 6o > 0 there exists Ro > O, depending only on 60, p, m, and L such
that if 0 <= 6 <= 6o then R >= Ro.

Proof. The fact that (2.8) holds is a straightforward computation. To prove the
lower bound for R, we first claim that there exists so > 0, (depending on 60, p, m
and L) such that

(2.10) ux(L)
if u is a solution of (2.1(6)) with 6 __< 6o. Allowing this for the moment, there are
two possibilities. First if xl < L/2 (x from Lemma 2.1) then u(x) >__ o(L- x) for
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L/2 <_ x <= L which clearly implies a lower bound for f: um-l(s)ds. If, on the other
hand xl > L/2 then u is concave on (0, xl) hence is bounded below by the piecewise
linear function p(x) satisfying p(0) p(xl) O, p(xo) IlUllLOO. Since IlUllLoo is
bounded below by Proposition 2.1(ii) we again obtain a lower bound for R.

Finally, to prove (2.10) we see from the equation that

(2.11) (uz -- cum)x - 0 0 < x < L

so that

(2.12) Ux >= -um q- ux(L).
From this differential inequality we see that

II’IIL du < L
sum -ux(L)

so that, since m >= 1, IlUllLOO tends to zero as ux(L) tends to zero. Hence, by Propo-
sition 2.1(ii), ux(L) must be bounded away from zero.

Let us denote (x) sin ((r/L) x), i.e., is the first eigenfunction of d2/dx2
on (0, L) normalized in L (0, L).

LEMMA 2.4. Let p > m, o > O. There exists C1 depending only on o, P, m, and L
such that if u is a solution of (2.1(s)) with e <= o then

L

u)P/(P-m) dx < C1
L

uPS)p/(p-m) dx < C1

r multiply the equation by Cn and integrate fromProof. Letn= = ()2
0 to L. Simple integration by parts yields

(2.15) uPCndx+ n(n-1)uCn-2xdx An uCndx+en umcn--l)x dx.

Using HSlder’s and Young’s inequalities we find

z(2.16) uPCndz An uCndx + n uPn + C() dz

Choosing 1/2en, we get

[ uPn dx 2n/un dx + C(o, n, L).(2.17)

Now from Jensen’s inequality the left-hand side of (2.17) is bounded below by

(f udx)p

(2.18)
(f Cndx)P_

and the conclusion follows easily.

LEMMA 2.5. Let p > m, eo > 0 and 0 < a < b < L. There exists C2 depending
on eo,P, m, L,a, and b such that ff u is a solution of (2.1()) with o then

(2.19) ]]U]lL(a,b) C2
(:.20) 5
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Proof. We claim that there exists a constant C C(eo,p,m,L) and x2 E

ILl8, 7L/8] such that

+ c.
Assuming (2.21) for the moment, we have from (2.1(e)) the equation

(2.22) Ux(X) + eum(x) Ux(X2) + um(x2) + uP(s) ds.

By Lemma 2.4 u is bounded in Loc(0, L), uniformly in e for e __< Co. Hence from
(2.21) and (2.22), we see that ux + eum is bounded in Loc(0, L). Since rn < p, um

is bounded in Loc(0, L), again uniformly in e for e =< Co, and (2.20) follows. The
estimate (2.19) follows immediately from (2.20) and (2.21).

It remains to prove the claim (2.21). From (2.13) it follows that meas{un >__
k} < L/16 for large enough k k(eo,p, m,L). Suppose u achieves its maximum at
xo < L/2 (the argument is similar if xo > L/2 ). There must exist x* E (L/2, 5L/8)
such that u(x*)n(x*) <= k and u(x) < u(x*) for x >__ x*. By the mean value theorem
there must exist x2 (x*, 7L/8) such that

x,
8

kSince u(x2) <= u(x*) <= -(hL/S) the claim is proved. [--]

We now prove that for p > m there is exactly one solution of (2.1(e)) for e
sufficiently small. Let us denote by u_% the known solution given by Proposition 2.1
for e near 0.

PROPOSITION 2.6. Let p > m. There exists el > 0 such that (2.1(e)) has exactly
one solution for 0 < e < el.

Proof. Suppose the conclusion is false. Then there exists e. 0 and u., a

solution of (2.1ej), with u. # u_%.. Let f C’(0, L); we have

(2.24) u eju? +udx 0

By Proposition 2.5 {u. } is precompact in Loc (0, L). Hence (passing to a subsequence)
there exists u* Loc (0, L) such that

(2.25) jfo
L

[u*xx + (u*)P] dx O.

Since is arbitrary we conclude that (U*)xx <- 0 weakly, and hence strongly on (0, L).
Now let Xl be the inflection point for u.. We claim that xl L as j o.

Otherwise (for a further subsequence) there exists L1 < L such that uj is convex on
(L1, L). Then we must have (U*)xx >= 0 on (L1, L), a contradiction.

Hence for large enough j, uj is concave on (0, 3L/4).
We now consider two cases. If there is a subsequence jk oo such that Ilujk IILOO

oo, then using the fact that ujk is concave on (0, 3L/4) it follows that we must have

f: uj,n dx oo which contradicts Lemma 2.4. If, on the other hand, IlujllLO is
bounded independently of j, then one easily checks that u* must be a solution of
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(2.1(0)) or else u* 0. Now u* 0 is impossible because of Proposition 2.1(ii). Thus
u* must be the unique solution of (2.1(0)). This contradicts Proposition 2.1(iv) since

3. Description of the set of steady state solutions In this section we
complete our discussion of the steady state problem (2.1(e)) by proving results about
the multiplicity of solutions. As the exponents m and p are varied, there are at least
four distinct cases which arise. Solution diagrams for these cases may be found in [1,

THEOREM 3.1. Let 1 < m < p < 2m- 1. Then there exist e0,el such that
0 < el < eo < oc and such that

(i) (2.1(e)) has exactly one solution for 0 <= e < el;

(ii) (2.1(e)) ha8 no solution for e > Co;
(iii) ff p is close enough to m then there exists e such that (2.1(e)) has at least two

solutions, i.e. el < Co.

THEOREM 3.2. Let p 2m- 1, m > 1. Then

(i) (2.1(e)) has exactly one solution for 0 <= e < eo =-;
(ii) (2.1(e)) has no solution for e >= eo.

THEOREM 3.3. Let p > 2m- 1.
e_>0.

Then (2.1(e)) has exactly one solution for all

As one can see, the results are not complete for m < p < 2m- 1. We conjecture
that el < eo for all m, p in this range.

For the readers convenience we recall the result of [1] for the case p =< m.
THEOREM 3.4. Let 1 < p <= m. Then there exists eo > 0 such that

(i) (2.1(e)) has at least two solutions for 0 < e < Co;
(ii) (2.1(e)) has at least one solution for e co;
(iii) (2.1(e)) has no solution for e > Co.

We begin the proofs with the easiest case, p 2m 1. Note that this is exactly
the case in which equation (2.8) is linear.

Proof of Theorem 3.2. Define y, h, and R as in Lemma 2.3. If e >__ X/4X/ all
solutions of (2.8) are nonoscillatory, hence h(O) h(R) 0 cannot be satisfied for
any R > 0 except if h 0.

To show the existence of at least one solution for e < X/4X/4X/, then by Proposition
2.1 it is enough to obtain an a priori bound for solutions of (2.1(e)) when e < X//m.
Thus suppose u is a solution for such an e. We have by explicit calculation

(3.1) h(y) Ce-(em/)u sin m
4

y
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for some constant C. Since h > 0

(3.2) um-l(s) ds R

The constant C can be determined from
(3.3)

g2m2

(3.4) c(m-1)/m-- -L1 oR

Hence

e_,e((m-1)/2)Ydy

(3.5) IlullL __--< cm-1

4 Y

and C clearly remains bounded when e is bounded away from V//rn.
Finally, if for some there exists two solutions U u2 then the preceding

argument shows f: trt-i dx f: trt-i dx. However, by Proposition 2.1(vi) Ul < u2
or u2 < Ul, a contradiction.

Remark. The uniqueness of positive solutions of (2.1()) when p 2rn- 1 can
also be shown by a scaling argument as follows. The differential equation is invariant
under the transformation u(x) --, Al/(p-m)u(,kx) for any A > 0. Thus, if there existed
two distinct positive solutions of (2.1()) then we could find two functions ui i 1, 2
.with ti(0 t2(0 0, ]]’ttl]]L ]]t2]lL and both satisfying Uxx+(tm)x+tp O.
By uniqueness of solutions of the initial value problem for u, we may conclude that
Ul

For the proof of Theorem 3.3 we need the following.

LEMMA 3.4. Let p > 2m- 1. Fix >= 0 and let hi be positive solutions of (2.8),
(2.9) on [0, R/] for i= 1,2. If R2 > R1 then IIh2[ILOo < IlhlllLO.

Proof. If IIh211L IlhlllL then hi h2 by uniqueness of solutions of the initial
value problem and hence R1 R2. Now suppose IIh21]L > IlhlllL. By consideration
of the phase plane diagram for (2.8) we see that

(3.6) h(R2) < h(R1) < 0 < hl(O) < h2(O).
We first observe that it is not possible that h (y) => hi(y) for 0 __< y =< R1. Indeed,

otherwise
(p--mT1)/m hlh(2P-m+l)/m < 0(3.7) (hih2 h2h)’ -[- (hih2 h2hl) h2h

since p > 2m- 1, so that

(3.s) 5 h (0) i 0.

and in particular
-h2(Ri )hi (R1) <= O,

which is a contradiction.
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Thus there must exist Yl (0, R1) such that h2 > h on (0, y) and h2(y)
hi (yl). There are now two cases. First suppose h(yi) _-> 0.

Since (3.8) holds on (0, yi] it follows that h (yi) > h2(Yi). Denote by h-1 the
branches of the inverse function with values in [0, yl]. We see that h (h-.l(x))
h(hi(z)) must have a root in (0, hi(y2)), i.e., there exist points yu,y such that
hi(y2) h2(y) and hl(y2) h(y). Thus by uniqueness for the initial value
problem, h(y) h2(y+y-y2), and since hi(0) h2(0) 0 we must have hi -= h2,
a contradiction.

Finally suppose h(yl)
(yl, R1) such that h:(y) > hi(y) on (y2, R1) and h2(y2)= hi(y2). Also we must have

h (y) < 0 and h (y) < h(y) < 0. Using (3.6) we again have a contradiction as in
the previous case.

Proof of Theorem 3.3. First we prove uniqueness. Suppose u and u2 are both
solutions of (2.1(e)); by Proposition 2.1(vi) we may assume 0 < Ul < u. Let hi, Ri
i 1, 2 be as in Lemma 2.3, i 1, 2, so that R2 > R1. Then, from Lemma 3.4, it
follows that Ilul]i < IlUIIILo & contradiction.

We next show the existence of a solution for all e __> 0. By Proposition 2.1(v)
it is enough to show that if e0 > 0 there exists C C(eo,p, m, L) such that if u is
a solution of (2.1(e)) for e <= Co, then Ilulli <= C. Using Lemmas 3.4 and 2.3 it is
enough to prove the same statement for solutions of (2.8), (2.9) for a fixed R Ro > 0.

Let Ce(y), Ae > 0 satisfy

(3.10) Ce(0) (Ro) 0

R
(3.11) Ce(y) dy 1.

Multiplying (2.8) by Ce and integrating gives

(a.12) Ce(y)h(+l-m)/m(y) dy ---2-e e(y)h(y) dy.
m

Hence using Jensen’s inequality,

(a.la) be(y)h(+l-m)/m(y) dy C(o,p,m, L).

Now let Gs(, () be the Green’s function for

(a.14) " + em’ :1" 0 < < Ro

(3.15) (0) ’(Ro) 0

so that

(a.l) h() m a(, ()h(+-/(()d(.

It is a straightforward calculation to cheek that
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Hence, from (3.13) and (3.17), one obtains the required uniform estimate for h.

For the proof of Theorem 3.1 we begin with the nonexistence result.

PROPOSITION 3.5. Let 1 < m < p < 2m- 1. Then there exists eo > 0 such that
(2.1(e)) has no solution for e >= eo.

Proof. First we make the following claim. There exists ao > 0, e* > 0 such that
if u is a solution of (2.1(e)) for e > e* then there exists x2 > Xl (Xl from Lemma 2.2)
such that

(3.18) u(x2) _-> ao

(3.19) muz(x2) <__ --2up-m+a(x2)
To see this define

(3.20) u sup x muz(c) + -uV-m+(c) > 0

Since

and

1 Zp_m_t_+ >= o xgxx

1
mux(L) + -’ap-m+l(L) < O,

is well defined, and 2 E (Xl,L). Now recalling from Proposition 2.1(ii) that
u(xo) => Mo > 0 and integrating the differential inequality mux+(2/e)up-m+i(x) >= 0
on [xo,2], we find that u(2) >= Mo/2 for say e > e*. Choosing co Mo/4 we have
that the conditions (3.18) and (3.19) are satisfied by some x > 2.

Next define the function h(y) as in Lemma 2.3 and let (y) satisfy

(3.21) " + emf’ + mh(y2)(P+l-2m)/m 0

(3.22) (Y2) h(y2)

(3.23)
where y y(x2). The inequalities (3.18), (3.19) in terms of h are

(3.24) h(y2) _->

2 p-m+l
(3.25) h’(y2) <--h m (Y2)

Let > max(e.2, (4/m)c+-2m). We claim that S"(Y) _-< 0 for y _< y2. Accepting
this for the moment, we have (since p / 1 2m < 0)

(3.26) (h’ h’)’ "1- m(h’ h’) -mh (h(y2) (p+l-2m)/m h(p+l-2m)/m)
There is an interval [Y3, Y] on which h(y) >= h(y)- h(y3) and so

(3.27) [estay (h’ h’f)]’ < 0 on [Y3, y21
and in particular

(3.28) h(y)’(y) h’(y)(y) >= 0 Y3 <= Y <= Y.



142 H.A. LEVINE, L. E. PAYNE P. E. SACKS, AND B. STRAUGHAN

But the interval [Y3, Y2] contains the point y(xo), where the maximum of h is
achieved, and evaluating (3.28) at this point we obtain ’ (y(xo)) > 0, a contradiction.

It remains to verify that ’ (y) =< 0 for y =< Y2. This may be checked by writing out
explicitly the solution ’(y), and using (3.21)-(3.25). The computation can be made a
little less painful by arguing in the following way. First, the characteristic roots for the
equation are real, hence can have no more than one critical point. Since (y2) < 0,

if we check that (y) < 0 for large negative y we will be done. Now as y - it
is easy to check that (y) Very where r -(A + x/A2- 4B)/2, C (rh(y2)
h’(y2))/x/A2 -4B and A em, B mh(y2) (p+l-2m)/m. Thus to conclude we
need h(y2) < rh(y2), and because of (3.25) it is enough that 2/e h(p+l-2m)/m(y2)
A/2[1 X/1 4B/A2]. But the left side is 2B/A, and since 4B/A2 < 1 the conclusion
follows from the obvious inequality 1 x/1 < for 0 <

Proof of Theorem 3.1. We have already proved (i) in Proposition 2.6 and (ii)
in Proposition 3.5. For the proof of (iii) we will need to recall some results from
[1]. In that paper solutions of (2.1(e)) were found by looking for zeros of a function
H(, e) v(L), where v(x) satisfies

(3.29) vxx + e(vm)x + vp 0 x > 0

(3.30) v(0) 0

(3.31) vx(O) .
Let us fix m and regard H as a function of p also, H H(c,e, p). For p > 1 H is
C in all variables and by Proposition 2.9 of [1] either OH/Oa or OH/be is nonzero
at any root of H. Also by Proposition 2.4 of [1] OH/Oa(ao, 0) > 0, where so is the
initial slope for the unique solution of (2.1(0)). Thus it is not hard to check that there
exists > 0, > Co and > m such that for p E [m, ], (2.1(e)) has a solution for
all e E [0, ] with initial slope a a(e) <= -.

Now for p m it was shown in Proposition 3.5 of [1] that (2.1(e)) has at least
two solutions for all 0 < e < Co, and in particular there is a maximal solution
of (2.1(e)) with x(0) --*
yields a curve of roots of H in the form c a(e, p) or e e(a, p) containing the point
(ue2x(O), e2, m) and hence for p close enough to m there must be a second solution of
(2.1(e)) for some e near e2.

4. The time dependent problem. In this section we discuss the large time
behavior for the time dependent problem

(4.1(e)) ut uxx + e(um)x + up 0 < x < L t > 0

u(0, t) u(L, t) 0 t > 0

0) => 0 0<x<L

It is known (e.g., [11, [8]) that for any uo e L(O,L) there is a solution u(x, t) of
(4.1(e)) on some interval 0 =< t =< Tmax, for some Tmax (0, (x)], and if Tmax < o
then limt_,Tg Ilu(., t)IIL(O,L .

Our first result gives sufficient conditions that Tmax be finite, i.e. that the solution
of (4.1(e)) blow up in finite time. Recall we have defined (x) (r/2L)sin ((r/L)x)
and n p/(p m).



CONVECTIVE REACTION DIFFUSION EQUATION 143

PROPOSITION 4.1. Let p > m. Then there exists Co Co(e,p, m, L) < oo such
that ’f

(4.2) uo(x)n(x) dx > Co

then the solution of (4.1(e)) blows up in finite time.

Remark. The proof is a variation of the eigenfunction method (e.g., Kaplan [6],
Levine [14] and Payne [10]). The nature of the blow-up set has been studied by
Friedman and Lacey [4]. Recall from [1] that if e : 0 and p =< m then Tmax oc for
any uo E L(0, L). See Chipot and Weissler [3] for another recent result about blow-
up for an equation with nonlinear gradient dependence; previous work on blow-up has
generally only dealt with the reaction-diffusion case.

Proof. Set

(4.3) F(t) u(x, t)n(x) dx.

A short calculation shows that
L

cn(x)u(x t) dx en(4.4) F’(t) >= -(r2/L2) n

+ uP(x,t)n(x)dx.

Using Jensen’s inequality we see that

um (x, t)n-1(x)(x) dx

(4.5) en fo um(x,t)n-l(x)(x)dx <= A1 uP(x,t)n(x)dx

(4.6) -L-n u(x, t)n(x) dx <= A2 uP(x, t)n(x) dx

with

(4.7)

(4.8)

Therefore

AI enllxllLoo(O,L)L-m/p

r2 L

Cn (X) dxA --n

(/o )(4.9) F’ (t) >__ Q up (x, t)n (x) dx

with

(4.10) Q(s) 8 A18m/p A281/p.
if so is the largest positive root of Q, then Q(s), Q’(s) > 0 for s > so. If

(4.11) F(.O) > Co =-As/p,
then one sees easily that f: uP(x, t)n(x)dx > so for all t and so

(4.12) F’(t) > Q ( I’’-FP(t))n
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Since p > 1, F(t) must blow up in finite time.

We next recall some results from [1].

PROPOSITION 4.2. Let m >= 1, p > 1, e E R
(i)
(ii)

(iii)

u =_ 0 is an asymptotically stable steady state solution of (4.1(e)).
/f (4.1(e)) has any positive steady state then it has a minimal one, u_e, which
is unstable from below.
Let E {e u_e is stable from above}. Then E is nowhere dense and there
exists e2 > 0 such that E N (-e2, e2) .

Remark. In general the possibility that a steady state is stable from above and
unstable from below (i.e., is not hyperbolic) cannot be ruled out, such behavior being
necessary at the "turning points" of the solution curve F (defined at the beginning of
2), which may occur for 1 < p =< m.

Another important result concerning the asymptotic behavior of solutions of
(4.1(e)) follows from general theorems due to Zelenyak [13].

PROPOSITION 4.3. Let u(x, t) be a solution of (4.1(e)) such that Ilu(., t)IIL(O,L
is uniformly bounded for t > O. Then there exists a nonnegative steady state u* of
(4.1(e)) such that u(x,t) -- u*(x) uniformly as t ---, o.

Remark. We may conclude, for example, from Propositions 4.2(ii), 4.3 and the
maximum principle that if no(x) <= u_(x), no(x) u_u_(x) then the solution of (4.1(e))
tends to 0 as t

To conclude we summarize all that we can say about the asymptotic behavior
of solutions of (4.1(e)) under various conditions on m,p, and e. In what follows, the
numbers Co, el, and e2 have the meaning assigned to them in Theorems 3.1, 3.2, 3.3,
and Proposition 4.2.

Casel. m<p<2m-lande>eoorp-2m-lande=>eo. In this case the
only nonnegative steady state is u 0, which is asymptotically stable. If u(x, t) is the
solution of (4.1(e)) then either it converges to 0 as t o or it tends to infinity in
finite or infinite time. If uo is small enough (in L (0, L) say) then u must tend to zero,
while if uo is large enough so that 4.2 holds, then u must go to in finite time. We
mention that Matano has shown ([9]), for the case of a reaction-diffusion equation in
one space dimension, that blow up cannot occur if the maximal nonnegative solution is
stable from above. The present example shows that Matano’s result is false in general
if the equation has some first derivative terms.

Case 2. m<p<2m-lande<elorp=2m-lande<eoorp>2m-1. In
this case there is exactly one positive steady state u_ which is unstable from below.
For any uo the solution must either tend to 0 as t --. (x or tend to u_ as t o or
tend to infinity in finite or infinite time. If uo =< u_, uo u_ or if uo is sufficiently
small in L(0, L) then u 0 as t --, x. If uo is large enough so that (4.2) holds then
u tends to infinity in finite time.

Case 3. Same as Case 2 and also e E (in particular 0 < e < e2). In this case
we also have u_ unstable from above so we can assert in addition that if uo => u_u_,
uo u_u_, then u tends to infinity in finite or infinite time.
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Case 4. m < p < 2m- 1, el < e < o. In this case there are one or more positive
steady states. For any Uo, the solution u must tend to a nonnegative steady state or
tend to infinity in finite or infinite time. Again if uo =< u., uo u_% or if uo is small
enough in L(0, L) then u 0 as t oc while if 4.2 holds then u tends to infinity
in finite time. If E then there must exist another steady state solution
which is stable from below.

5. More general nonlinearities. In this section we describe briefly how the
results of 2-4 can be generalized to the case of nonpower-law nonlinearities. We will
write the steady state problem as

(5.1) uzx + (g(u))x + f(u) 0 0 < x < L

u(O) u(L) 0

u(x) > 0 0 < x < L.

Let us first list all of the hypotheses that may be used

(H1) f E C ([0, oc)), f(0) 0, f(u)/u is strictly increasing on R+

(H2)
(H3)
(H4)
(Hh)
(H6)
(H7)
(ns)

(Tr) 2 f(u)O< lim
f(u) < < lim

g e C ([0, )), g(0) 0, g’(u) > 0 for u > 0.
f(u)/g’(u) is nondecreasing on R+.
f(u)/g(u)g’(u) is strictly increasing on R+ with limu f(u)/g(u)g’(u) .
f(u)/g(u)g’(u) is strictly decreasing on R+ with limu f(u)/g(u)g’(u) O.
f(u)/g(u)g’(u) (a constant).
f(u) C1up -C2, u O, some C1,62 0.
g(u) C3um + C4, u 0, some C3, C4 0.

(ii)

(iii)

THEOREM 5.1. Let (H1}, (He} and (H3) hold

(i) Assume (Hh), (H7) and (H8) hold with p > m. Then there exists Eo,81 8ch
that 0 < el <= eo < oc and such that (5.1(e)) has exactly one solution for
0 <= e < el and no 8olution for e > Co.
Assume (H6). Then (5.1(e)) has exactly one solution for 0 <= e < v/ and
no 8olution for e >_ x/.
Assume (H4). Then (5.1(e)) ha8 exactly one 8olution for all e >= O.

Let us make some remarks about which hypotheses are necessary for the various
Lemmas and Propositions. Proposition 2.1 is true if the conditions p > 1 and m => 1
are replaced by (H1) and (H2), except possibly for part (iii) which is proved in [1]
only for the case that (HI) holds and g(u) um, m => 1. However, the fact that F is
locally a simple curve is not explicitly used in what follows. The conclusion of Lemma
2.2 is still true if we assume (HI), (H2), and (H3). In Lemma 2.3 we set

(5.3)
and in place of (2.8) we have

(5.4) huy + ehu + F(h) 0
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with

(5.5) F(h)- f(g-l(h))/g’(g-l(h)).

The lower bound for R f: g’(u(s))ds in Lemma 2.3 remains valid if we assume
(H1), (H2), and (H3). Lemmas 2.4 and 2.5 are true if we assume (H7) and (H8) with
p > m; in (2.14), we replace up by f(u). The conclusion of Proposition 2.6 still holds
if we assume (H1), (H2), (H3), (H7), and (H8) with p > m. In 3, Lemma 3.4 will be
true under hypotheses (H1), (H2), and (H4), and for Propositon 3.5 we assume (H1),
(n2), (H3), and (H5).

Concerning the time dependent problem

(5.6(e)) ut u + e(g(u)) x + f(u) 0 < x < L t > 0

u(O, t) u(L, t) 0

u(x,O) uo(x) >= 0 0 < x < L

an adequate existence, uniqueness, and continuation theory will be true, provided
(H1) and (H2) hold, and an analogue of the blow-up result Proposition 4.1 is proved
as before if we assume also H7 and H8 with p > m.

In Proposition 4.2, parts (i) and (ii) are true assuming (nl) and (H2). The set E
in part (iii) still cannot intersect an interval (-e2,e2) but the fact that it is nowhere
dense was proved in [1] assuming only that (nl) holds and g(u) um m >= 1. The
stabilization result, Proposition 4.2, is true under conditions (H1) and (H2), although
more regularity is assumed in [13]. We leave to the interested reader the formulation
of results about the asymptotic behavior analogous to those stated at the end of 4.
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Abstract. This paper deals with models for the space-time variation of the genetic composition of
populations. Both the standard reaction-diffusion equation and two nonlinear integral operator models are
discussed. A simple argument is presemed, explaining that nonconstant stationary solutions, so-called clines,
in a homogeneous space cannot be stable unless they are monotone.

In the integral operator case the proof uses differentiation along the orbits of the translation group and
the Perron-Frobenius Theorem for integral operators with nonnegative kernel. For the reaction-diffusion
equation stronger results are known, and only a heuristic argument is given.
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nonlinear integral operators
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1. Some models in population genetics and dynamics. Population genetics has given
rise to an abundance of mathematical models distinguished by various characteristic
properties" deterministic or stochastic models; continuous or discrete time; haploid or
diploid species; one locus or many loci, and, in the one-locus-case" two or more alleles;
one habitat, several discrete habitats, or a habitat that is a region in R for n 1, 2,
or 3. The mathematical problems considered in this paper correspond to deterministic
models for one locus with two alleles (denoted A and a) in a diploid population
distributed over all of R.

As the literature amply testifies, even the very simplest problem of a population
with one locus and two alleles in just one habitat has given rise to an impressive
number of different models, and for some of these the analysis of the dynamics is
quite complicated. Part of the reason for this complexity is the fact that the natural
state space is three-dimensional, the three natural variables being the population sizes
(u, v, w) of the genotypes AA, Aa, and aa. Two important additional variables are the
total population size N u + v+ w and the gene frequency (i.e., the fraction of the
gene A in the total gene pool) p (2u + v)/(2N). The latter, in particular, is the focus
of attention in population genetics, and models formulated only in terms of this one
variable are of special interest.

For a population with separate generations (and under the usual assumption of
random mating), the two variables N and p completely determine the state immediately
after the creation of a new generation, namely

(u, v, w) (Np2, 2Np(1 -p), N(1 -p)2).

Simple assumptions concerning the nature of the selection process lead to a
formula of the form

pl=go(p)

for the gene frequency of the next generation, where

Wlp + W2p(1 -p)
(1) go(P)- Wlp2+2W2p(1-p)+ W3(1 -p)2’

* Received by the editors April 13, 1987; accepted for publication (in revised form) March 7, 1988.

" Matematisk Institut, rhus Universitet, Ny Munkegade, Bygning 530, DK-8000 ,rhus C, Denmark.
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and the positive numbers W, 1, 2, 3 can be interpreted as "fitnesses" of the three
genotypes (they can arise in different ways in different models).

When the assumption is added that the population is distributed over a region in
space, models can be formulated in terms of variables u, v, w, and N with similar
interpretations as above, except that they are functions of space and time, and should
be thought of as spatial densities, p is also a function of space and time with values
that are real numbers between 0 and 1.

The papers by Felsenstein [9] and Weinberger [29] and the book by Fife [11]
give impressions of the many different deterministic models that have been proposed
for the description of the combined processes of selection, population size dynamics,
and migration, as well as of the mathematical results obtained.

Whether or not the dynamics of a spatially distributed population with separate
generations can be described in terms of the sole variable p depends on the assumptions
concerning the interplay between the processes of selection, population regulation,
and migration. If each generation is subject first to selection, then to population
regulation (in the form that population density is set to a global constant without
change in the local genotype proportions), and finally to migration, then the gene
frequency distribution Pn+l of the offspring generation is derived from the gene
frequency distribution pn of the parent generation by

(2) Pn+l= QPn,

where Q is a nonlinear integral operator of the form

(3) Qp(x) f k(x, y)g(p(y)) dy.

Here g denotes the function go given by (1), and the kernel k describes the
migration process (cf. Weinberger [29, formulae (2.1)-(2.4)]). If, on the other hand,
regulation acts first, followed by selection and migration, then the gene frequency
distribution P,+I is given by

(4)

where

(5)
k(x, y)g(p(y)) W(p(y)) dy

Rp(x) =’ I k(x, y) W(p(y)) dy

(6)

Here, again, g is the function given by (1), and W(p) is the denominator in (1):

W(p)= Wlp+2W.p(1-p)+ W3(1-p)2

(cf. Weinberger [29, formula (2.12)]). It seems that, roughly speaking, these two
situations are the only ones for which a model with one-dimensional state space is
appropriate.

In the derivation of (2) and (4), the assumption of nonoverlapping generations
is crucial. The standard model in the absence of this assumption is a differential
equations model of the type considered by Fisher 13] and by Kolmogorov, Petrovskii,
and Piskunov [19] in 1937:

a +f(p)(7)
Ot Ox

(or its equivalent in higher-dimensional space). This model can be justified if the
processes of selection and migration are slow when measured in terms of the life span
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of individuals (cf., for instance, Nagylaki [23] and Weinberger [28, 8]). The selection
process is slow if W1, W2, and W3 are of the same order of magnitude, say W. Then
W(p) W .for 0 <_- p -< 1, and go(P) P fo(P), where

(8)

with

fo(p) p(1 -p)(dlp d3(1 -p))

d, W,- W)l w, d= W- W:)l W.

Usually, the function f in (7) is assumed to be of the form (8) with (dl, d3)
proportional to (W- W2, W3- W). If the time scales of the processes of selection,
migration, and reproduction are comparable, it seems that much more complicated
models, such as models with age structure, are required.

2. Equilibrium distributions. Existence and stability. Known results. At the present
stage of the presentation we will not be very specific about properties of the functions
entering in the models (2), (4), and (7). As already indicated, we restrict ourselves to
the case n-- I. We denote by Q and R, the operator given by (3) and (5), respectively
where

p is a function from R to [0, 1];
g:[0, 1]- [0, 1] is continuously differentiable and monotone;
g(0) 0, g(1) 1;
W(p) is given by (6);
k is nonnegative and satisfies k(x, y) dy- 1 for all x.
Similarly, in order to talk conveniently about (7), we introduce the nonlinear

differential operator A defined by

A(p) xx a +f(p),

where
the function a:R- R is strictly positive;
f: [0, 1] - R is continuously differentiable; and
f(0) =f(1)=0.
Depending on the model considered, an equilibrium solution is a function p:R-

[0, 1] satisfying Qp p, Rp p, or Ap 0, respectively.
The constant functions p(x)- 0 and p(x)- 1 are trivial equilibria. Other obvious

equilibria are constant functions p(x)=/5, where/5 is such that g(/5)=/5, or f(/5)=0
respectively.

Less obvious, and mathematically and genetically more interesting, are noncon-
stant equilibrium solutions, so-called clines.

The existence of clines and their stability has been discussed by a large number
of authors. It is a typical feature of these papers that stability rests on an assumption
about spatial inhomogeneity (in this connection a subdivision of space into a finite or
infinite collection of separate habitats is an extreme case of spatial inhomogeneity).
See, e.g., Karlin and McGregor 16] for the case of several discrete habitats; Downham
and Shah [7], Diekmann [6], and Lui [20] for the discrete time model (2); and Slatkin
[27], Conley [4], Fleming [14], May, Endler, and McMurtrie [21], Nagylaki [23], Fife
and Peletier 12], and. Keller 18] for the diffusion equation model (7).

It is much less clear what to expect in homogeneous space, i.e., in the situation
where the region considered is all of R, and the operator Q, R, or A commutes with
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translations. For the operators Q and R, this assumption means that W1, W2, and W3
(and hence g) do not depend explicitly on x, and that k is of the form k(x, y) h(x-y).
For the operator A it means.that a is constant and f does not depend explicitly on x.

For (7) the situation is well understood. If f(p) is of the form (8), and if
W_=>min (W1, W3), then every equilibrium is constant. If W2<min (W1, W3) (the
heterozygote is inferior), then there exist nonconstant equilibria, and every nonconstant
equilibrium Po has one of the following properties"

(1) Po is periodic;
(2) Po has a single maximum, and po(x) --> 0 for Ixl --> c, i.e., Po represents a "pocket"

containing the (superior) gene A surrounded by a population in which the gene a is
predominant;

(3) Po has a single minimum, and po(x) --> 1 for Ixl- o, i.e., po represents a "pocket"
confaining the (inferior) gene a surrounded by a population in which the gene A is
predominant;

(4) Po is a monotone cline, and po(x)->O for x-->-o, po(x)--> 1 for x-->c or
conversely.

For a given set of W’s, exactly one of the cases (2)-(4) occurs, depending on
whether W1 > W3, W < W3, or W W3. Furthermore, a nonconstant equilibrium is
unstable unless it is monotone. See, for instance, McKean [22], Bazykin [3], Fife [10],
Fife [11, 4.3], Razevaikin [24], Rosen [25], and Hagan [15].

Much less is known about the time evolution given by (2) or (4). It can be deduced
from Theorem 6.5 in Weinberger [29] that if g(p) is of the form (1), and if W2>=
min (W1, W3), then every equilibrium is constant. In a forthcoming paper we will
prove that if the heterozygote is inferior, then there exist nonconstant equilibria. It is
not known, however, whether in the inferior heterozygote case, every nonconstant
equilibrium has one of the properties (1)-(4), but we conjecture that this is the case.
The purpose of the present paper is to prove an instability result analogous to the one
mentioned above, viz. that a nonconstant equilibrium for (2) or (4) is unstable unless
it is monotone. Since we must assume that the equilibrium considered has one of the
properties (1)-(3), we do not quite succeed in this purpose.

3. The role of spatial homogeneity. Heuristics. A number of the assertions in this
section should be taken with a grain of salt, for in order to bring out the basic ideas
we will not worry about specifying precise conditions under which all steps are valid.

We consider the case of homogeneous space and assume that Po is an equilibrium
solution to (2). For r R we let Pr denote the translate of Po defined by

(9) pr(x)=po(x+r).

Then, by the assumption of homogeneity, p is also an equilibrium solution, i.e.,

(10) Qp p for all real r.

Consequently, if we work in a space F of functions having a differentiable
structure, say F is a Banach space or a Banach manifold, and if the curve rpr in F
is differentiable at 0, and if Q is differentiable at po, then it follows by differentiation
in (10) that

(11) Q’p’--p’.

Here Q’ denotes the derivative of Q at po and p’ denotes the derivative of Pr at
the point r=0. Now, with p defined by (9), it is true in "most" function spaces F
that if the derivative p’ exists, it is equal to the usual derivative p of Po with respect
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to x (for this to be true it is sufficient that the natural injection of F into the space 9’
of distributions is continuous and that p is taken in the distribution sense). Also, in
"most" function spaces it is true that if the derivative Q’ exists at p, it is given by the
linear integral operator

Q’(po)u(x) h(x-y)g’(po(y))u(y) dy.

Since g is monotone, g’ is nonnegative, so Q’(po) is an integral operator with
nonnegative kernel, and by (11) the function p is an eigenfunction corresponding to
the eigenvalue 1. Finally we note that "a lot of" integral operators with nonnegative
kernal have the "Perron-Frobenius property," i.e., there exists a nonnegative eigenfunc-
tion, and its corresponding eigenvalue is simple and numerically maximal, i.e., it is
equal to the spectral radius of the operator.

Clearly, if the preceding results apply, then an equilibrium solution Po to (2) that
is not monotone must be unstable. This is true because p is an eigenfunction for
Q’(po), and the Perron-Frobenius property implies that the corresponding eigenvalue,
which is 1, is not the largest eigenvalue of Q’(po) since the eigenfunction p takes both
positive and negative values. But if Q’(po) has an eigenvalue larger than 1, then Po is
an unstable equilibrium.

Next, consider an equilibrium solution of (4), i.e.,

Mpo
Po Rpo-

Npo

where

(12)

(13)

Mp(x) f h(x- y)g(p(y)) W(p(y)) dy,

Np(x) f h(x- y) W(p(y)) dy.

As above, it follows from the assumption of spatial homogeneity that p is an
eigenfunction of the derivative R’(po) corresponding to the eigenvalue 1, and, as above,
under mild regularity assumptions, the operator R’(po) is a linear integral operator
with kernel

K(x, y) h(x- y)[Npo(x)]-2[Npo(x)(gW)’(po(y)) Mpo(x) W’(po(y))]
(14)

h(x-y)[Npo(x)]-l[(gW)’(po(y))-po(x) W’(po(y))].

Since 0<_-po(x)--< 1 for all x, the kernel K is nonnegative if

(15) (gW)’(p)>=max (0, W’(p)) on[0, 1].

Precisely as above we see that if R’(po) has the Perron-Frobenius property, then
Po cannot be stable unless it is monotone.

Finally, if Po is an equilibrium solution of

o_p= Ap,(16)
Ot

then it follows from the translation invariance of the equation that the derivative p
is a solution to the linear differential equation

d2u
a--x2 +f’(po(x))u =0.



NONMONOTONE CLINES ARE UNSTABLE 153

For "a lot of" second-order differential operators of the form

d2u
Lu a-x + qu

with positive a there is a positivity result related to the Sturm oscillation theorems
that, in this connection, can replace the Perron-Frobenius property. The result in
question states that if the upper part of the spectrum of L is discrete, then L has a
positive eigenfunction, and the corresponding eigenvalue is simple and is the largest
point in the spectrum of L.

Again, if the preceding results apply, then an equilibrium solution Po to (16) that
is not monotone must be unstable. To see this, observe that since p is an eigenfunction
for L, and since it takes both positive and negative values, by the above-mentioned
positivity result the corresponding eigenvalue, which is zero, is not the largest eigenvalue
of L. But if L has an eigenvalue larger than zero, then Po is unstable. See Remark 2
below for a strengthening of this statement.

4. Formulation of assumptions and theorems.
Assumptions A. The function g [0, 1] [0, 1 satisfies the following:
(i) g(O) O, g(1) 1;
(ii) g is diiterentiable with H61der continuous derivative;
(iii) g’(p) > 0 on ]0, 1[;
(iv) g’(O) < 1.
Assumptions B. The function h" R- R satisfies the following:
(i) h(x) >- 0 on R;
(ii) h is continuously differentiable;
(iii) h(x) dx 1;
(iv) Ih’(x)ldx <;
(v) the closed additive subsemigroup of R generated by supp (h) is all of R.
Assumptions C. The function W: [0, 1] R satisfies the following:
(i) W(p) > 0 on [0, 1];
(ii) W is differentiable with H61der continuous derivative;
(iii) (gW)’(p) >= max (0, W’(p)) for p ]0, 1[.
DEFINITION. By P we denote the subset of L defined by

P={pL:O<-_p(x)<=l a.e.}.
THEOREM 1. Let Assumptions A and B be satisfied, and let Q be defined by (cf. (3))

(17) Qp(x) f h(x- y)g(p(y)) dy.

Let Po be a solution to the equation Qp p, assume that Po is not constant, and that
either

po(x) O for lxl - , or

Po is periodic.

Then Po is an unstable equilibrium for (2) considered as a discrete dynamical system
in P.

THEOREM 2. Let Assumptions A, B, and C be satisfied, and let R be defined by
(cf. (5))

h(x-y)g(p(y))W(p(y)) dy
(18) Rp(x) =’

h(x- y) W(p(y)) dy
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Let Po be a solution to the equation Rp p, assume that Po is not constant, and that
either

po(x) O for lxIoO, or

Po is periodic.

Then Po is an unstable equilibrium for (4) considered as a discrete dynamical system
in P.

Remark 1. For the sake of wider applicability, the results have been given a
formulation independent ofpopulation genetics. Let us briefly describe their application
to the models of population genetics.

If g is given by (1), then Assumptions A(i)-(iii) hold for all positive W1, W2,
W3, and Assumption A(iv) holds if and only if the heterozygote is inferior. If W is
given by (6), then Assumptions C(i)-(ii) hold for all positive W1, W2, W3, and
Assumption C(iii) holds if and only if W2 =< 2 min W1, W3). Thus, if the heterozygote
is inferior, Assumptions A and C hold. In this case it is also true that g’(1)< 1, and
then the conclusions of Theorems 1 and 2 hold also for equilibria Po that satisfy
po(x) 1 for Ix[- .

Let us also note that (as mentioned above) if the heterozygote is not inferior, then
all equilibria are constant.

Remark 2. As mentioned in 2, it is known that nonmonotone equilibrium
solutions of the nonlinear diffusion equation (16) are unstable. Actually, they have the
so-called "hair-trigger" instability property (cf. Aronson and Weinberger [1], [2]),
which is much stronger than that which can be proved along the lines considered in
this paper. Instability results of hair-trigger type have also been proved for the unstable
constant equilibria of (2) and (4) (cf. Weinberger [29]), and although we have not
been able to prove it, we conjecture that similar results are valid for nonmonotone clines.

5. Proofs of the theorems.

Proof of Theorem 1. The proof is divided into several steps.
(i) po does not assume the values 0 or 1.
Let us prove that Po does not assume the value 0. That it does not assume the

value 1 follows by means of the transformation p- 1-p and Assumption B(iii).
Since Po is not constant, it is not identically 0, and g(Po) is different from 0 where

Po is. Since both h and g(Po) are nonnegative, it follows from (17) that the support
of Po contains the set supp (Po)+ supp (h).

But then we first deduce from Assumption B(v) that supp (Po) is all of R, and,
next, that po(x)> 0 for all x.

(ii) Po is twice continuously differentiable.
Since Po Qpo, it follows from Assumptions B(iv) and A(ii) that Po is differentiable

with

p’o(X) f h’(x- y)g(po(y)) dy

f h(x-y)g’(po(y))p’o(y) dy.

(19)

Here, h can again be differentiated, and the claim follows.
(iii) Q is differentiable.
In fact, Q is differentiable at any p P with

Q’(p)u(x) I h(x-y)g’(p(y))u(y) dy.
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It is clear that the linear map given by (19) is bounded in L. To see that it is
the derivative of Q note that

Q(p+u)-Q(p)= f h(x-y)[g(p(y)+u(y))-g(p(y))] dy

y h(x-yg’(f(y+tu(yu(y,

and use the uniform continuity of g’. See also the remark following the proof.
(iv) Q’ is H61der continuous.
This is an immediate consequence of the H61der continuity of g’. We note in

passing that it is essential that the topology in P be derived from the L-norm and
not from an L-norm with r <

In the rest of the proof we consider separately the case po(x)--, 0 at oo ((v)-(viii)
below) and the case of periodic Po ((x) below).

First we discuss the case po(x)
(v) The linear map K Q’(po) has the Perron-Frobenius property.
More precisely, the spectral radius r of K is an eigenvalue of multiplicity 1, and

it has a nonnegative eigenvector.
We will deduce this from the following result (cf. Schaefer [26, Thin. 3.2, p. 270]).
Let E be a Banach lattice and K an irreducible positive continuous linear mapping

in E with spectral radius r. If r is a pole of the resolvent of K, then r has algebraic
multiplicity 1, and’there exists a nonnegative eigenvector.

The positivity of K follows from Assumption A(iv) and its irreducibility from
Assumption B(v), so in order to establish (v) it remains to prove that r is a pole of
the resolvent. As we shall see in (vii) below, this statement follows from step (vi).

(vi) There exist operators K1 and K2 in L such that K K1 + K2, [IKII[ < 1, K2
is compact.

To prove this, we note that by Assumption A(iv) and the assumption that Po 0
at , there exist real numbers c < 1 and C such that

(20) g’(Po(Y)) <- c for lyl > c.

Then define the operators K1 and K2 by

Kau(x) f h(x- y)g’(po(y))u(y) dy,
yI>C

K2 u(x) f h(x- y)g’(po(y))u(y) dy.
yl<=C

It is clear that K K + K2, and from Assumption B(iii) and (20) it follows that
IIgll-<c<l.

Let hy denote the function he(x)= h(x-y). Since h is uniformly continuous, the
function y--hy from R to L is continuous, and hence the set H= {hy :lyl--< c) is a
compact subset of L.

By a theorem of Mazur (cf. Dunford and Schwartz [8, p. 416]), the closed convex
hull H of H w (-H) is also compact, and for any u in L we have K2 u E 2CMllulll?l,
where M denotes the maximum of g’.

The compactness of K2 follows.
(vii) The spectral radius r of K is a pole of the resolvent of K.
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Let ere(K) denote the essential spectrum of the linear operator K, i.e., the set of
complex numbers A such that AI-K is not a semi-Fredholm operator (cf. Kato [17,
p. 243]).

Then ere(K1) is contained in the spectrum of K1, and hence in the closed disc of
radius IIKII. Since K2 is compact, it follows from the Stability Theorem 5.35 in Kato
[17, p. 244] that ere(K) is contained in the same disc. Since K is bounded, it follows
from Kato 17, p. 243] that, except for a discrete set of eigenvalues of finite algebraic
multiplicity, the complement of this disc belongs to the resolvent set of K.

Now observe that 1 is an eigenvalue of K (with the eigenvector p), and that,
consequently, r_>- 1 > K II.

It is well known (cf., for instance, Schaefer [26, p. 264]), that r is a point in the
spectrum of K, and the facts collected above show that it is an isolated eigenvalue of
finite algebraic multiplicity. Thus (cf., for instance, Kato [17, III.6.5]), it is a pole of
the resolvent of K.

(viii) Po is unstable.
By (v), r has multiplicity 1, and there exists a positive eigenvector corresponding

to r. Since p takes both positive and negative values, it cannot be an eigenvector
corresponding to the eigenvalue r. On the other hand, p is an eigenvector for K
corresponding to the eigenvalue 1, and it follows that r > 1.

The instability of Po is now a consequence of (ix) below. The required regularity
of 0 was established in (iv). Also see the remark following the proof.

(ix) A discrete instability theorem.
Let U be a neighborhood of 0 in a Banach space F, let f: U- F be of class .C+

for some a with 0 < a < 1, and assume that 0 is a fixed point off. If the spectral radius
r of the differential K df off at 0 satisfies r > 1, then 0 is an unstable equilibrium off
considered as a discrete dynamical system in U.

This result is a straightforward adaptation to the discrete time situation of
Theorem 2.3 in Daleckii and Krein [5, Chap. VIII.

(x) The case of periodic Po.
Let denote the period of Po, define Lpe tO be the subspace of L consisting of

functions of period l, and put Pper"- P Lper. Then it is clear that Pper is invariant
under O, and in order to prove that Po is unstable in P it is sufficient to prove that it
is unstable in Pper.

Define

hper(X h(x-nl),

then hper is periodic with period 1, and it follows from Assumptions B that
hper(X) 0 for x R;
’o hpr(X) dx 1;
hper is absolutely continuous; and

10 [her(X)l dx < oo.
Clearly, the restriction of Q to Pper is given by

Qp(x) hpr(X- y)g(p(y)) dy,

and, similarly, the restriction of the differential K Q’(po) to Lpr is given by

(21) Ku(x) hper(X- y)g’(po(y))u(y) dy.
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The proof now proceeds as above, but it is simplified by the fact that the operator
K defined on Lpe by (21) is compact.

Remark. Strictly speaking, the statements about differentiability of Q and the use
of the instability theorem (ix) require P to be an open subset of L, and this is clearly
not the case. This difficulty is most easily overcome by extending g to an open interval
containing [0, 1].

To prove instability of Po inside P we must restrict ourselves to the consideration
of initial values in P. The initial values which, in the proof of (ix), are used to prove
the instability, are of the form eu, where u is an eigenvector for K corresponding to
the eigenvalue r. In the application to the present situation u is nonnegative, so that,
fortunately, Po/ eu P for e small and positive.

Proof of Theorem 2. The proof is quite similar to the proof of Theorem 1, and
many details will be omitted.

Note that W(p) is bounded away from 0 for all p P in view of Assumption C(i),
and hence, so is the denominator in (18).

Define the operators M and N as in (12) and (13).
(i) First, we prove that Po does not assume the values 0 and 1, and that it is twice

continuously differentiable.
Also, R is differentiable,

g’(po)u(x) f K(x, y)u(y) dy,

where the kernel K is given by (14), and, consequently, R’ is H61der continuous.
It follows from Assumptions C(i), (iii) that K is nonnegative. The proof of the

irreducibility of R’(po) uses the strict inequalities in Assumption C(iii), the fact that

P0 does not assume the values 0 and 1, and Assumption B(v). In the periodic case
R’(po) is compact, just as Q’(po) was, so only the case po->0 at c requires further
consideration.

(ii) As in (v) in the proof of Theorem 1 we will show that there exist operators
K1 and K2 in L such that R’(po)= KI + K2, [[KI[[< 1, K2 is compact.

First note that W(po(y)) -> W(O) for]y[-> o, and hence, by dominated convergence,

Npo(x)= I h(y)W(po(x-y))dy->fh(y)W(O)dy= W(O) for[x[->o.

Now define

Hi(x, y)= h(x- y)[Npo(x)]- W(po(y))g’(po(y)),

H2(x, y)= h(x- y)[Npo(x)]-lg(po(y)) W’(po(y)),

Ha(x, y)---h(x-y)[Npo(x)]-po(x) W’(po(y)).

If we choose c such that g’(0)< c < 1 (cf. Assumption A(iv)), then there exists a
real number C such that

(22) Ixl> C and]y[> C [Npo(x)]-lW(po(y))g’(po(y))<-_c.

Let X denote the characteristic function of the interval [-C, C], define

Hl(X, y)= Hi(x, y)(1- X(x))(1-X(Y)),

H12(x, y)= H(x, y)(1 -X(x))x(y),

n13(. y)= H(x, y)x(x),
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and note that the kernel K can be written

K HI + H12 4- H13 + H2+ H3.
It follows from (22) that the integral operator Kll with kernel Hll has operator

norm at most equal to c, and, as in (vi) in the proof of Theorem 1, that the integral
operator K2 with kernel H12 is compact.

Since g(po(y))-O at oo, the operator K2 with kernel H2 is the uniform limit of
the compact operators K2n defined by

i_’K2,,u(x) H2(x, y)u(y) dy,

and consequently K2 is compact.
The operators K3 and K with kernels H13 (respectively Ha), are the adjoints in

L of integral operators in L with kernels that are the transposes of H13, (respectively
Ha). The proofs of the compactness of these L1-operators are identical with the proofs
of the compactness of K2 and K2. But when the L1-operators are compact, then so
are their adjoints Kin and K3.

We have now shown that

R’(po) Kll + K12 4- Kin 4- K2+ K3
with Klll --< c < 1 and K12, K13, KE, and K3 compact, and from here the proofproceeds
as for Theorem 1.
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Abstract. Given n points in Rd, find an acceptable interpolating curve. This problem is addressed in
this paper. Analogues of the natural spline interpolators are examined, and the nonlinear problem that
arises when the interpolation abscissae are treated as variables in the minimum seminorm problem is
discussed in detail.
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1. Introduction. The following problem is addressed. Given vectors Zl,... Z E

Rd, the d-dimensional Euclidean space, and given points

(1) t: a=tl<t2<" .<t/1=b,

we introduce the class

(2) Uk,t({Zi}il):={f(t)=(fl(t), ",fd(t))’fELk(a,b),f(ti)=zi, l<--i<--n}

where LkE(a, b) is the space of functions with k-1 absolutely continuous derivatives
and kth derivative in LE(a, b). Hence Uk, is the class of all smooth curves in Rd which
pass through the points zid at the time ti, 1_-< i_-< n. Then we look for a best
interpolating curve in the sense that

(3) I inf inf {lllf()lll: f(g):= (fg),..., f(f)), f Uk,t({zi} in= 1)}

is attained, where

(4) IIIflll :- If/(t)[ 2 dt.
i=1

We are interested in existence and uniqueness of solutions of (3), in particular in
determining optimal knots t-{tl," ", t/l}. If we work with fixed knots, i.e., we take
in (3) the infimum only with respect to Uk,t({Z}’=I), the problem reduces to the classical
spline problem. The geometric motivation for (3) comes from the fact that curves may
be parametrized differently, which influences the choice ofthe t. An interesting physical
interpretation in case k 2 is that a solution of (3) presents a trajectory with the least
kinetic energy through prescribed points in d (see, e.g., T/Spfer [3], Marin [2]). In
the latter paper, existence and uniqueness of a solution of (3) has been shown in case
k=2, d=l.

2. Existence. We assume from now on that n > k, since otherwise (3) would have
a trivial solution in rk, the class of curves with component functions being polynomials
of degree <k. Next we introduce the following subclass of Uk, (for dhta {w}’_-i with
W --’0):

(5) 0Uk,t((Wi}i=2) := {gE Uk,t({Wi}i=l)" g()(a)=0, 1 _<- 9 -< k- 1, g(a)--Wl =0)}.

With the help of this notion the problem can be reformulated.

* Received by the editors March 31, 1986; accepted for publication (in revised form) March 14, 1988.

" Institut fiir Angewandte Mathematik der Universit/it Bonn, Bonn, West Germany.
IMSL, 2500 Park West Tower One, 2500 City West Boulevard, Houston, Texas 77042-3020.
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(6)

LEMMA 1. The following relation holds"

I inf {inf It.p: p(a) Zl}
p

where for fixed t satisfying (1)

(7) It,p :’-- inf {lllg()lll: g u,t({z p(ti)}=2)}.

Furthermore, to any solution t*, f* of (3) there corresponds a solution t*, g*, and p* of
the right-hand side of (6) and conversely. In this case p* is the Taylor polynomial 7r*k
of f* at the point a.

Proof For each f Uk, we write

k-1

(8) f(t)= ’. f()(a)(t-a)/v!+g(t)=--pf(t)+g(t).

Then we have f(k) gk), py rk with pf(a) --z and g UOk.t({zi--pf(ti)}in=2) SO that for
any fixed set t (tl,. , t,) it follows that

inf f Uk,t({Zi}in=l)} >- It,p inf {inf It,p: p(a) Zl}.
p

Taking the inf with respect to t, we obtain "_>-" in (6). On the other hand, for any
fixed p 7/"k we have trivially

I _-< inf inf {lllg()[[I g u,,({z,- p( t,)} ,"---2) }, g(t,) + p(t,) z,, p(a) Zl},

which proves equality in (6) after taking the inf with respect to p. Now if there were
a solution t*, f* with f* attaining/, it could be decomposed as in (8) with I
so that g*, p*, t* would form a solution triple of the right-hand side of (6). On
the other hand, such a solution triple yields via f* := g*+p* a solution pair t*, f*
attaining I. l-1

Now we investigate the infimum problem (7).
LEMMA 2. For each fixed p 7rk and t (tl, tn) satisfying (1) the infimum It.p

is uniquely attained by a function g* U.t({zi p( ti)} i"-- 2) of the form

(9) g*(k)(t)-" Otiqgi(t), qgi(t):’-(ti--t)k+-l/(k--1)!.
i=2

The vectors oti ffd are uniquely determined via the system

(10) et,G,j zj p(tj), 2<-_j<=n
i=2

where Ot--( Gij) is the Gramian matrix

(11) Gj := (pi, p)= p,(t)p(t) dt, 2<-i,j<-_n.

The value of the infimum It,p is given by

(12) It2, (Gtt, t)= (Gi-l(z-pt), z-pt).

Here the scalar product is to be understood as a sum of n scalar products in Rd namely
between the n components z-pt and G-l)(z-pt) where z= {zi}il, pt {p(ti)}=l and
G- denote the inverse of Gt above. (The scalar products are formed with respect to the
subsequences of z-pt, which arise by taking in zi, p( ti) their gd-components.)
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0Proof. The principal observation is that for g Uk,t({wj}j=2) the point functional
g(t,), 2 _-< _<- n, can be written as

(13) g(t,) p,(t)gk)(t) dt.

This follows easily by repeated partial integration yielding

Ia (tj-- t) k-1 Ia’ (tj-- t)k-+ g<k)(t) dt= + gk-1)(t) dt
(k-l)! (k-2)!

(tj-t)+g’(t) dt= g’(t) dt=g(t,)=w,.

After choosing a function go U.t({wj}=2), we can now write

U 0I-inf([llg)+g<o)lll:g .,(( ==)

=inf II1(+o111

Hence we conclude, in the standard manner for Hilbe spaces, tat the solution g*(k)
must be in the Ne-valued span of {}. This gives (9) and conditions g*(t)=-(t), 2NjNn, determine g* uniquely via (10) in view of (13). Finally, (12) is
obtained by direct calculation.

Remark. The procedure of Lemma 2 is well known for the classical spline problem,
where a relation oftype (13) is usually employed with divided differences and B-splines.
The point hereto be used lateris that the right-hand side of (10) has a much simpler
form than would be the case for the classical spline approach. Information about the
size of the eigenvalues of the matrix G gives the following.

LMMa 3. For a sequence satisfying (1) set

(14) := rain (t+ t).

en for any sequence {}L, e N there holds

(15)
i=2 =2i,j =2

where C is an absolute constant.

Proof. We have by definition

Gofl,fl fl,q, (t)
i,j=2 i=2 dt</=2 lflil2 I ,=2

I’’(t)l="

From this the inequality from above in (15) follows immediately in view of the (rough)
estimate [,(t)l2 <= (b a)2k-2 for [a, b].

For the converse inequality we construct functions , L(a, b) with

(16) ,50= pj(t)@k)(t) dt, 2<-i, j<-n.

Relation (13) says that this is equivalent to

0 ’,(t).
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Hence the choice 0(t)= h((t-t)/,) where h is a fixed function L(-, o) with

Esupport (0, 1) will achieve this. It follows from (16) that (setting s

I/ ,1=- s( t)tpk)( t) <-- Ig,  )l = Isl =<-_ C(ti+l- ti-,) -2k Isl =.
Summing over yields the other inequality in (15).

Remark. The lower bound quantitatively exhibits the ill conditioning of the
truncated power basis.

In the next step we settle the question of the dependence of It,p of p.
LEMMA 4. For each t satisfying (1) there is a unique P*t satisfying

(17) It=inf lt,p=/(G-(i(z-p*t ),z-p*t )=/(G;lz, z)-(G-p*t,p* ).
P

Proof. Since Gt is symmetric and positive definite, so is G-1. Hence we can define
the inner product

(18) (u, V)G 1"- (Gilu, )
for vectors u, v with n- 1 components in Ra. Then (17) reduces to a problem of best
approximation with respect to the norm induced by (18), where z is approximated by
the linear space V--{{p(tj)}j=2 p=polynomial curve of degree <k}. Thus (17) has a
unique solution characterized by the relation

(G-l(z-pt*), q)=0, q V

from which the second inequality in (17) follows.
We now turn to the question of existence. We observe that

(19) I inf {It: t satisfies (1)}.
Indeed we obviously have It.p => It and so by Lemma 1

I => inf inf It inf It.
!

On the other hand, (6) of Lemma 1 yields for any t satisfying (1)
I =< inf It,, It

so that (19) must hold.
Next we introduce a definition.
DEFINITION. The data {z}% are called asymptotically polynomial of order k if

there is a sequence of polynomial curves lv(t) 7rk and a sequence of nodes {tN}"__
satisfying (1) such that

(20) z, lim pN(tlN)), 1 _-< =< n.
No

THEOREM. If the data {zi} 5"=1 are not asymptotically polynomial of order k and if
the data are "rough," i.e.,

(21) zi+ zi, 1 -< _-< n 1,

there exists a solution of (3), i.e., a sequence t*-{t*}i= ofsimple knots (satisfying (1))
and a polynomial curve p* 71"k such that I It*,p* and It*,p* has a unique solution g*
according to Lemma 2. The solution f* of (3) is then obtained as described in Lemma 1.

Proof. According to (19) we can assume
I= lim It(N)

N->oo

for a sequence t(v) of knot sequences satisfying (1). Let p* be the corresponding
"best" polynomials in the sense of (17) in Lemma 4. We then show that the values of
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these polynomial curves at t(N) remain uniformly bounded with the respect to N, i.e.,
for the Euclidean norm in Ra

(22) sup [[p*N(tN))[[<=M, N+oo.

To this end, note that in view of the fact that the smallest eigenvalue of G- is the
reciprocal, of the largest eigenvalue of Gt, relation (15) allows us to conclude that
(with notation GN for Gt and PN, for {pN(tN))}in=l)

212>=
(23)

>= n-’(b a)’-2klz-pv,,12 >= n-l(b a)’-2k[[pN, Izl]’-
where notes the Euclidean norm on R("-l)d. From this (22) follows.

We cannot conclude at this point that the polynomials themselves are bounded
(but see (30)). However, we can assume (eventually passing to a subsequence) that

(24) lim p*( tJ re)) q/ Rd, 2 -<j -<_ n.
N-+oo

Now suppose (by way of contradiction) that

(25) lim .,t(iv) t/* [a, b]
N+oo

and that there are only r < k distinct values among the t*; thus

(26) a t* t < t/*= <... < t t,* b.

Next we observe that (10) can be written as

(27) z-p*(, )= (g)(t), pj,(t))=
i=2

where ,.(t) := (t- t)-/(k 1)t and g(t):= E,2 a},.(t) satisfies

(28) Illg)[ll=: G,<), ()(t)) I=, N+m.

Subtraction of equations (27) for j,j’ with i <j, j’ i+ gives

Ilz -z,-p( tJ) + p(t5)) II(g), :, :’,)

IIIg )lll (t) ’.N (t) dt

Passing to the limit we obtain, in view of (24), (28),

(29) z- z,-,, i<j’i+l.

Now let ff be the polynomial cue in r interpolating the values {z-q}:=l at
the points {t}. Then consider the polynomials

(t) := p( t) ff( t)

and the data

In view of

wiN) := N(tN)

w(r) p,(t))_(qj zj)+(t:,. )_(tN))j

and (24), (29), this implies

lim w,-.() zj, 1 =<j < n,
N-+oo



BEST PARAMETRIC INTERPOLATION 165

which is by (20) a contradiction to our assumption on the data. Therefore, we must
have r > k in (26) Then we can use Newton’s formula with the knots il "i

for the representation of the polynomials p*(t). In view of (24) and (26) we have (for
a subsequence)

lim p*(t) p*(t)(30)

uniformly in for some polynomial curve p*(t). But then (24) and (29) imply that all
knots are simple since otherwise we would have a contradiction to (21). Therefore,
the matrices G;v Gv tend to a nonsingular Gramian matrix (G*)-1 where G*=
(G)"

Gi (p/*, p)), q*i(t):=(t*i-t)+-/(k-1)!.
Hence passing to limit N-> oo in (27), we see that there exist ,x* e

z,-p*(t) ( t*p*,p =: (g*(), q).
i=2 /

Therefore, the spline curve g* satisfies g*(t)=z-p*(t) and is determined by the
condition in (5). In addition it follows from (28) that Illg*lll I. Hence g* +p* is a
solution of (3).

The motivation for working in the above theorem with the additional hypothesis
of nonasymptotic-polynomial data came from the fact that a simple sufficient condition
for this would be that I-= I(z) is continuous with respect to the data z= {zi}i and
that I(z) > 0. Namely, the continuity implies I(z) 0 in case the data are asymptotically
polynomial (of order k). We can show that I(z) is always upper semicontinuous, but
unfortunately there exist asymptotically polynomial data for which I(z) > 0. A simple
example is given for k 3 by the data (in 2)
(31) Zl=(-1,1), z2=(-1,0), z3=(1,0), z4=(1,1).
Then we easily check that the parabola (x(t), y(t)) given by

x.( t) t, y(t) 1 + N-Nt2

passes through z,z4 for t=-I and t= 1, respectively, and (+x/l+ 1/N, 0) for t=
+/1 / 1/N. Hence it approximates the data (31) arbitrarily close as N

We note that here the nodes coalesce in the limit, which is exactly what is avoided
in the theorem by our additional hypotheses. In fact, we can see from subsequent
considerations that we have continuity with respect to the data if they allow a solution
in the sense of the theorem.

In order to show that I(z) > 0 for the data (31) we use the classical approach via
divided differences and B-splines mentioned above. According to it (cf. de Boor [ 1])
the solution for It with t satisfying (1) can be written as

n-k

(32) f,(k)= y ,Mi.k.2
i=1

where the M.k.2 are the B-splines normalized via M.k,2(X)=[(ti+k--t)/v/2/t,,,(x)
and M,k 1, and I s Rd are determined by

n-k

(33) Y ,(M,k,2, M,k,2)= Z [(tj+k tj)/k]l/2[t,’’’, b+k]Z k!.
i=1

From this we derive the formula
n-k

12 , K) Z
i,j=



166 K. SCHERER AND P. W. SMITH

where the Kij are elements of the inverse of the Gramian {(Mi,k.2 Mj,k,2)} n-k.j-- 1. According
to the well-known Isomorphism Theorem of de Boor 1 ], we know there is a constant

Dk depending only on k such that

(34) D-2 . la, 2 <= Y., a,M,,k.E(X) dx <= E, I,1=

for arbitrary knot sequences t. Hence we can conclude similarly, as in the proof of
the theorem, that for any t

n-k n-k

(35) IIz, 2-< It2 -< D IIz, =.
i=1 i=1

With the help of (35) we can show now that I(z)>0 for the data (31). Namely, we
can easily check that in this case

Zl--%/[ tl, t2, t3, t4]z

X/[(Z4- Z3)/h3- (z3- zE)/h2_ (z3- z2)/hE-(z2- Zl)/hi]h3 -I- hE h2 + h

where hi ti+l- ti and -1 tl < t2 < t3 < t4-- 1. For the data (31) the first component
is given by

--x
h2(h3 + h2

b
h2(h2 d- hi)

< -x/ < 0.

We therefore have inft IIZllI2> 0 so that by (35) it follows that I(z)>0.
By the nature of our example (31) we wonder whether this phenomenon can occur

in the case of one-dimensional data. Instead of investigating this question further we
show here existence on the basis of the approach (32)-(34). To this end, we assume
first that the data are "rough" in the sense that

(36) (Zi+ Zi)(Z Zi_l) < O, 2 <---- <-- n 1.

Visually this means the data oscillate as much as possible. In this case the divided
differences in (33) have, by introducing wi=(Zi+l-Zi)/(ti+l-ti), the form

j+k-1 /t,’’’, tj+k]Z Its,’’’, tj+k_l]W-- E Wi I-I (ti- h).
i=j / !#

Since both the wi (by (36)) and the factors I-Iii (t- h) alternate in sign we can write

j+k-1 /(37) IZi [(tj+k-- tj)/k] 1/E E Iw, I It,-
i=j !

Now let t be, as in the proof of the theorem, a sequence of knot sequences such that

It -->/, N -> . By (35) we then see that the IZ[ formed with respect to t are uniformly
bounded in N. Then (37) implies that mini (t<v)- tv)) must be uniformly bounded
from below with respect to N. Hence the {tN)}i"__l tend to a limiting sequence
with simple knots, and existence follows as in theorem.

The case of nonrough data can be reduced to the case (36) as follows. If (36) is
violated for just io + 1, , il, say, then the data z,. , zi+l are strictly monotone
increasing or decreasing. We then consider a new problem (3) for the data sequence
where the z,/l,’’-, zi are eliminated. These data then satisfy (36), and the reduced
problem has a solution, which is a continuous spline function g assuming the values

t inz and zi,+l at some knots t and ti,/l. Hence we can find values *tio+l<" .<
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(t,*o, t+l) such that (t*)= z, for i= io+ 1,..-, il. Since the value for I in problem ()
is a priori smaller than or equal to that of the original problem (3), we have found a
solution for this latter problem also. Finally, we see that the case when (36) is violated
for several strings of indices can be handled similarly.

We mention further that existence can also be proved without the additional
assumption of nonasymptotic polynomial data when k 2. Indeed, in this case the
conclusion r-> 2 required in the proof of the theorem for any distribution of t/*’s as
in (26) is trivial.

3. Additional remarks. Further questions concerning the minimization problem
(3) are the characterization and uniqueness of the solution.

The first question can be treated conveniently by variations analysis, which has
been done in case k 2 in [3]. It can be easily extended to all k as follows. With the
help of Lagrange multipliers, problem (3) is equivalent to minimizing the functional

(38) b(t, k,f):=Jjlf()l[12+ (f(ti)--Zi)" ]ki, ]kieRd.
i=1

Necessary conditions for this are obtained by differentiating

(39) 0 =dp k, f’(t,) 2<i<n-1

(40) O=’i f( ti) --Zi,

(41) 0:-(h) 2 f)(x)" h(k)(x) dx + i" h(ti).
i=l

Here and in (38) all products are to be understood as scalar products in Ra. Equation
(41) is obtained by taking the Gateaux derivative in the sense that

[(t, , f+ h) (t, , f)]/ 0, 0.

Now condition (40) is just the interpolating condition in (3). Choosing the variational
curves (41) as elements of U.t({0}) (of. (2)), we show that f<) lies (componentwise)
in the ohogonal complement of this space, and hence is a spline curve of degree < k.

Next we choose h 0 in C with h(t)=e where the ei are the standard unit
vectors in a and suppoff in (tj- , tj + ) with << 1. This yields

2 f()h +X.e=0.
tj_

Integrating by pas k-1 times leads to

2(-1)-’+ f(-’) h,+X,. e,=0.
t-

Thus one more integration by pas yields

2(-1)[f(2-)] fi+t_+k 0.

Solving for h and inseing into (39), we obtain

(42) f’(tj) (f(2-)(tj+)-f(2-)(tj-O))=0, 2k n 1.

In the scalar case d 1 these equations imply that f is either one polynomial of degree
2k- 1 on (t_, t+l) or else f’(t) =0. We can interpret this as an additional smoothness
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property resulting from minimizing with respect to the knots. In the case k 2 this
can be used for a uniqueness proof, which will not be produced here in view of the
proof in [2].

Another approach for determining an optimal set of knots could be based on
formula (17) obtained for It by minimizing this functional with respect to t. However,
there is the alternative formulation (34) made possible by using B-splines. On the basis
of this, successful algorithms have been developed by Marin [2].

We conclude with some remarks concerning the uniqueness of a solution of (3).
There is an easy counterexample showing that there will be no positive answer to this
without additional assumptions. Suppose that the data Zl,’",zn are points of a
polynomial curve p q/’[k/2] on the interval [0, 1]. Then the infimum in (3) is trivially
equal to zero and attained by p(t) as well as by the function p(t2) E k" But the latter
function also interpolates the data, namely at points t/* where p(ti) zi. Therefore
we make the following conjecture.

CONJECt3RE. If there is at most one polynomial curve in 7rk interpolating the
data {z}’-i at some point sequence t {t}’=l of form (1), the solution of (3) is unique
(we assume (5)).

By definition this condition is necessary for uniqueness. In the special case k 2
of cubic spline curves, it would imply that there is always a unique solution since 7rk
then consists of straight lines. This is in agreement with the numerical expei’ience
gained in this case.
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REPEATED INTEGRALS AND DERIVATIVES OF K BESSEL FUNCTIONS*
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Abstract. Repeated integrals of Bessel functions K,,(x) on 0<x <c, denoted by Ki,,,,(x), are con-
sidered. Series are derived in terms of exponential integrals that are direct extensions of known results for
the Bickley functions Ki,,(x). The basic result for n =0 can also be extended to n < 0 by repeated differenti-
ation. For u a nonnegative integer, it is also shown that Ki,.,,(x) can be represented as a finite sum of
Bickley functions of which Ki,,o(X) K,.(x) is a special case.

Key words. K Bessel functions, modified Bessel functions, Bickley functions, derivatives of Bessel
functions, exponential integrals
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1. Introduction. The Bickley functions are defined as repeated integrals of the Ko
Bessel function 1]"

(1.1) Kio(x)=Ko(x), Ki,(x)= Ki,_(t) dt, n>=l, x>O.

These functions have application in heat convection problems, neutron transport, and
nuclear reactor codes [4]. Reference [1, Chap. 11] gives a formula for Kil(x) in terms
of modified Struve functions, asymptotic approximations for large and small x > 0,
and citations to several tables for Ki,,(x). Reference [4] summarizes the classical
formulae and presents a number of highly accurate rational Chebyshev approximations
designed to cover the range n 1 through n 10 and all x > 0. The results of [3] give
some basic inequalities and asymptotic expansions satisfied by the Bickley functions,
as well as a computational technique to sum slowly convergent series of exponential
integrals Ek(X), k _-> O. In particular, for x > O,

(1.2a) Ko(x)= Y’. AkEzk+I(X), Ki,,(x)= E AkE2k+,,+,(X), n>=O,
k=0 k =0

are considered and implemented in Algorithm 609 [3] where

(1.2b)
Ao= 1, Ak-- k!

k>- 1,

(a)o=l, (a)=a(a+l)...(a+k-1), k>-l,

and Ek(X) is defined in (2.1). Equation (1.2) also holds for n < 0 since

d d
Ki_,_l(X) =---ax Ki_,(x), _n_l(X)"----XX JE-n(X)’ n>=O.

These relations express the fact that Ki_,,(x) and E_,,(x) are, except for sign, repeated
derivatives of Ko(x) and Eo(x), respectively. Notice that only a finite number of

* Received by the editors August 31, 1987" accepted for publication March 1, 1988. This work was

supported by the U.S. Department of Energy under contract DE-AC04-76DP00789.
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negative indices occurs on the exponential integrals in (1.2) when n < 0. Functions of
negative indices are conveniently generated by the following recurrences"

(1.3) Eo(x)=e-’/x, Ek_l(X)=[e-X-(k-1)Ek(X)]/x, k<=O,

(1.4) Kik_3(x)= Kik_l(X)+[(k- 1)Kik(x)-(k-2)Kik_2(x)]/x, k<=2,

starting with values Ki2(x), Kil(X), and Kio(x) in (1.4). Stability with numerical
recurrence is achieved by forward or backward recurrence away from the index k [x]
where [x] denotes the integer part of x [4], [6].

It is apparent from (2.3) and (3.1) that

(1.5) Ki_,(x)=(-1)"Ko")(x), n=0, 1,2,....

That this result is consistent with (1.4) can be verified directly in the cases k- 1 and
2, and by repeated differentiation of the differential equation

xK’(x) -Ka(x) + xKo(x)
for other values of k.

The main results presented below extend (1.1) and (1.2) to repeated integrals of
K(x) defined by

(1.6) Ki,o(X) K(x), Ki,.(x) Ki,._(t) dt, n >= 1, x > 0, u -> 0.

Luke defines these integrals in [8] and cites a variety of formulas in [8]-[10]. We use
the notation Ki,.(x) in keeping with the notation for the Bickley functions Kio,.(x)
Ki.(x), although [3] and [8]-[10] use K..(x) for these functions.

In 2, we derive a relation reciprocal to (1.2) and introduce some notation and
formulae required in later sections. In 3, we use the similarity between integral
representations of E.(x) and Ki(x) to derive series for Ki,.(x) when v is not an
integer. The extension of these series to make v an integer is carried out in 4. In 5,
we derive bounds on the coefficients of the series and show asymptotic rates of
convergence. While only real values of order and argument are considered in this
paper, most of the results can be extended to complex orders and arguments.

2. Exponential integrals in terms of Bickey functions. We now derive a relation
reciprocal to that in (1.2). Write the exponential integral E(x) in the form

f e-X’ fo’ e- CSh sinh O
(2.i) E(x)=- dt= dO, u>0,7 coshV 0

and substitute

(2.2)

1
’. Bk

1
sinh O-cosh 0 1

cosh2 0 k=O cosh2k-1 0

(--1/2)k
Bo 1, Bk , k ->_- 1

k!

into (2.1). Then, using an integral representation for Ki,(x) [1, p. 483],
cosh 0

(2.3) Ki,, (x)
cosh 0

dO, x >= O, v >= O, x + v > O,

we have exponential integrals in terms of Bickley functions

(2.4) E(x)= Z BkKi2k+,,,-l(X).
k=O
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We can also see from the integral forms (2.1) and (2.3) that (1.2) and (2.4) are valid
if we do repeated differentiation (v a negative integer) on the case v O.

3. Generalizations of (1.2). In this section we exploit (2.1) and (2.3) to derive
series representations for K,,(x) and Ki,,,(x). We start with a well-known integral
representation for K(x) [1, p. 376]:

(3.1) K(z) e- cosh o cosh vO dO, z > O,

and write K(z) in the form K(z) U(z) + L(z) where

1
e-Z cosh O-vO1 e- cosh 0+ v0 dO, L(z) - dO.(3.2) U(z) =-

In order to carry out the derivation, we need the following relations [5, p. 101]:

v l+v 1sinh0
F lq ,l+v; 0<0<c,(3.3) e ,o

2 cosh’+ 0 2 2 cosh O

-,,o__ 1 FlY ,l+v’,l ], 0<=0<,(3)._.4. e
2 cosh 0 2 2 cosh2 0

for the exponential terms in U,,(z) and L,,(z) where F is the Gauss hypergeometric
function. Equations (3.3) and (3.4) are related by the Kummer transformation [1, eq.
(15.3.3) ]. These relations can be derived from equations 15.1.1 ), (15.3.23), and (15.3.3)
of [1]. Notice that the parameterization of F(a, b; c; z) in these cases has a relation
a b + 1/2 0 that makes [ 1, eq. (15.3.23)] reduce to

v l+v 2
Izl<l(3.5) F

2’ 2
’l+v;z l+x/l=z

The Kummer relation (5.2) 1, eq. (15.3.3)] applied to this result gives

(3.6) F 1 +2 1 + v; z
+ 7.-,- [zl.< 1

and with z 1/cosh2 0 we get (3.3) and (3.4). Notice that the series form of (3.3) is
correct as 0-->, but does not converge at 0 =0, making (3.3) indeterminant there.
The proper form near the origin is given by the power series form of (3.4) (see 5 for
rates of convergence).

To derive series expansions for (3.1) we expand the right-hand side of (3.3) in a
power series using the definition

(3.7) F(a, b; c" z)= k.,o
(a)k(b)k
(C)kk! zk’ IZ[ <1’

and substitute the result in the second form of (3.2). With the help of (2.1) we have

o e- cosh 0 sinh 0
(3.8) L(z) Ak(P) 0-k7+’’ -0 dO Ak(v)E2k+v+l(2).

k=0 k =o

Similarly, if we use (3.4) in place of (3.3), we obtain, using (2.3),

(3.9) L(z)= Bk(v)Ki2k+,,(z)
k=0
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where Ak(V) and Bk(V) are defined by (3.3) and (3.4):

Ao(v) 2-, Bo(v) 2-,
(3.10)

/Ak(V)= 1+ 2 !(l + V)k, Bk(V)=
k k k\--"]k 2k!(l+V)k’ k>-l"

Notice that Ak(O) is the Ak of (1.2), but Bk(O) is not the Bk of (2.2). To compute the
dominant or upper piece of (3.2) we need e. Formally, we write (3.3) and (3.4) with
v replaced by -v and consider noninteger values for v. Then,

3.11) eo cosh,- 0 sinh 0 5" Ck(/
eo cosh 0 5" Dk(v)

=0 cosh2k 0’ k=0 cosh2k 0’

where

(3.12)

Ck(U)=2"(1--) k (’)k/k’ (1 U)k, Dk(U) 2(-) k (2-)k/k’(1--U)k.
Here u is considered nonintegral because the terms of (3.12) become indeterminant
for k_-> u when u is an integer. We shall resolve this indeterminacy in 4. The reciprocals
can be taken because the dosed forms obtained from (3.5) and (3.6),

(3.13) y Bk(b,)zk__ 1 . Ak(l)zk 1 1

k=O 1+ k=0 x/i "Z 1+

show a radius of convergence Izl < 1 and neither has any zeros in Izl < 1. Thus, applying
(3.11) to the dominant or upper part of (3.1) yields

(3.14) U(z)= Y Ck(u)E2k-,+(Z) and U(z)= Dk(u)Ki2k_,,(Z),
k=0 k=0

after using the integral representations of E(z) and Ki(z) from 2.
To summarize the derivation, (3.1) reduces to

E
1

k=O 2 k=O Ak(ulE2k+’+(z)’
(3.15) K(z)

1 +1 Bk(u)Ki2k+,.(Z).- =o Dk(u)Ki2k-’(z)
2 =o

Since E,,(z) satisfies an integral recurrence such as (1.1), we get, with repeated
integrations (n -> 0) or repeated differentiations (n < 0) on (3.15),

1
Ck(’)E2k-,,+n+(z)++/- Ak(/,’)E2k++n+l(Z),

(3.16) Ki,,(z)=
2 =o 2 =o

1 k__0 Bk(k=o
Dk ’ Ki2k-,+,, Z +- u Ki2k+,+n Z ).

It is apparent from repeated integrations of (3.1) that Ki,.,,,(z) has an integral rep-
resentation

e-Z
cosh 0 cosh u0

(3.17) Ki., (z)
cosh" 0

dO, Re z> 0, u -> 0,
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which generalizes (2.3). Repeated differentiation of this relation for n=O produces

(3.18)
d d n+l

Ki,-,-l(z)=--z Ki,-,(z)=(-1)"+1

-i K(z).

4. Identification of Ck(V) and Dk(V) for v =m a nonnegative integer. We noted in
3 that v had to be nonintegral in order to make sense of (3.15) because the coefficients

of the hypergeometric relation become indeterminant for k => v when v is a nonnegative
integer. Thus, for v not an integer, we write Ck(V) in terms of gamma functions

(4.1)
c()=2r 1 --+k r(k+l)r(1- v+k)

1--F(1-V)/F (1 -) F(--),
with similar manipulations for Dk(V). The duplication relation for F(2z) [1, p. 256]
applied to F(1-v) resolves the indeterminacy. At this point v can be considered an
integer m and the substitution k=m+s, s=0, 1,... gives

(4.2)

Cm+s(m)-(F(I++s) F(l+m )/ )+s F(l+m+s)F(l+s) =As(m)
2

s=>O.

Similar manipulations on Dk(V) for k -> v give Dm+s(m)=-Bs(m), s>=O. To summarize,
we have

{Bs(-m), s<m,As(-m), s<m,
Ds(m)(4.3) Cs(m)=

As_,(m), s>=m, -ns-m(m), s>-m.

Thus, (3.16) reduces to

(4.4a)

(4.4b)

Ak(--m)E2k-m+,,+(Z)+ Ak(m)E2k+,,,+,,+l(z),
k=0 k=0

Kim,n(z)=

E Bk(--m)Ki2k-+.(Z),
k=0

m_>l.

If we specialize m or n, we get the following special cases:

Kil,.(z)=Ki._l(z), Ki,,l(Z)= Kio(z)= Ko(z),

(4.5) Kil,o(Z) Ki-I(Z) KI(Z’),

Bk(--m)Ki2k-m(Z).Kim,o(Z gm g
k=0

Equation (4.4b) shows that Ki,n(z) can be computed as a finite sum of Bickley functions
when u is a nonnegative integer. Reference [3] provides a Bickley function code for
nonnegative indices while (1.4) extends these results to negative indices.

In (4.4a), the upper limit m-1 is actually (m/2)-I if m is even and (m-l)/2 if
m is odd because the succeeding coefficients are zero. The corresponding upper limit
in (4.4b) is (m/2) if m is even and (m-l)/2 if m is odd. This can be seen from (3.10)
by replacing v by -m. There is an index k such that one of the terms (as well as
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succeeding terms) will be zero. For this index, Ak(--m) and Bk(--m) from (3.11)
terminate with one of the following factors"

m even rn odd

m 1-m
Ak(--m)" 1---+k-1 =0 or +k-1 =0,

2 2

m 1-m
Bk(--m)" ---+k-l=0 or +k-l=0.

2 2

Since these values of k yield the first zero term, the index of the last nonzero term is
one less. This shows that the sum for Kin(z) in (4.5) and its derivatives (n<0) in (4.4b)
contain only Bickley functions of nonpositive indices which, according to (1.5), means
only derivatives of Ko(z) are involved.

5. Bounds and asymptotic estimates for Ak(v) and B(v), v_>0, k_->0. The relation

(5.1) Bn()’) Ak(’)B,-k, n>--_O, ),>--_0
k=O

is derived from (3.7) by substituting the power series (3.7) into the Kummer relation

(5.2) F
2’ 2

1+,’, z =(1-z)/F 1+-2,;2 1+,; ,_->0,

and equating like powers of z. Multiplication of (5.2) by (l-z)- and equating like
powers of again gives

(5.3) Bk()’) Ak()’)An-k(O), neO.
k=0 k =0

On the other hand, multiplication of (5.2) by (l--z) -1/2 gives

(5.4) Bk(,)A,,_k(O)-A,(,), n>--O,
k=O

and with Ak(0)N1, k->0, we get

Ak( ’) <- Bk(V), n>--0.
k=O

Now, (2.2) shows that Bo=l and Bk<O for k>_-l. Therefore, (5.1) shows that

(5.5) Bn()<=An(,). n-O.

Equation (3.13) for z= 1 gives

(5.6) B(,)< 2 B(,)= , ,->0, n_-_0,
k =0 k =0

and combining (5.3)-(5.6) we get

(5.7) B.()-<A.()--< Bk() Ak(’)An-k(O)<l, ,>--0, neO.
k=0 k=0

In order to estimate the rate ofconvergence ofthe series in (4.4) we need asymptotic
estimates of the coefficients. The asymptotic estimate 1, p. 257]

(5.8)
r(z+a) ..Z,_b, Z,
r(z+b)
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applied to Ak(v) and Bk(v) gives

(5.9)
1 -1/2Ak(v)--- k O(k-1/2), 1 k_3/2 O(k-3/2B v - as k->m.

Equation (5.9) and the estimates [1, p. 229]

<Ek(Z)<- k=l 2," z>O,
z+k z+k-l’

on the terms of (4.4a) give an order relation O(k-3/2) as k->oo. Consequently, the
series after summing N terms has a truncation error O(N-1/2) as N-->oo. Reference
[3] deals with the numerical problems of summing slowly convergent series of exponen-
tial integrals. These results can be applied directly to that part of (4.4a) where
2k+m+n+ 1>0 provided that the truncation error bound in [3] uses An(m)< 1 from
(5.7). The corresponding changes for Algorithm 609 [3] would be trivial.
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A POSITIVE TRIGONOMETRIC SUM*
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Abstract. The positivity of

,A)k(A)n-k sin (k+ 1)0

on [7r/3, 7r) when 3<A _-<4 is established.

Key words. Fejer’s inequality, ultraspherical polynomials
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1. Introduction. Let (A)o 1 and (A), A (A + 1) (A + n 1), n 1, 2, . The
trigonometric inequality

(1.1)
(A)k (A),-k sin(k+l)0>0 0<0<Tr, n=0,1 2,...

k=0 k! (n-k)! k+ 1

is known to hold for 0_-<A _-<3 [1]-[3]. When A >3, it is known that (1.1) fails for
infinitely many values of n 1]. In this note we will prove that if 3 < A _-< 4, then (1.1)
holds in 7r/3 _-< 0 < 7r and that when A 4 the 7r/3 is best possible. When A 1, then
(1.1) reduces to Fejer’s classic inequality

sin (k+ 1)0> 0, 0< 0< 7r.
k=O k+l

Let P(x) denote the ultraspherical polynomial defined by

(1 2xz + z2)- , PX.(x)z",
n=O

and set

T.(0, A)=..kL (A)k (A).-k sin(k+l)0
=o kt

Write x cos 0/2 and set

A.(x. A sin [(n + 1)0/2] xP,.+l(x)-sin [(n + 2)O/2]P(x).

It has been proved in [3] that

a.(x, ;)
0<x<l,T,(0, A)

2(A 1)x’

and, consequently, if A > 1 positivity of T,(0, A) follows from positivity of A,(x, A).
In [3] it was also proved that the generating function for P(x) implies (recall

* Received by the editors November 18, 1985; accepted for publication (in revised form) March 7, 1988.
? Department of Mathematics, Arizona State University, Tempe, Arizona 85287.
$ Department of Mathematics, University of South Florida, Tampa, Florida 33620.
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x cos 0/2)

(1.2) Y An(x,A)t"+l=(1-t)- Im (l-re’)-+1.
n=0

By applying Darboux’s method [4] to (1.2), we find that

(1.3) n!A"-l(x’A)= 2sin sin (I-1)
--0

(A), 2
+O 0<0<.

It follows from (1.3) that if A > 3 and (A-3/A-1)0 , then T(0, A) is positive
for large n. We conjecture that T. 0, A > 0 for n 0, 1, 2, if A > 3, (A 3/A 1)
0 < . The lower limit (A-3/A- 1) is clearly best possible for large n because of
(1.3) (in paicular at A 4, /3 is best possible).

2. The case k =4. In this section we will prove the following theorem.
THEOREM 1.

(4)k (4).-k sin(k+l)0>0
k=0 k! (n-k)! k+ 1

--=< 0< 7r, n=0,1,2,....
3

Hence, the coefficients Ai in (2.1) are given by

A1 -10 e3i(ei- 1) -6, A2 -6 e2(e- 1)-5,
A3 -3 e io (eo 1)-4, A4 -(e’ 1)-3.

Expand (1- t) -4 about e-i to get

(4). eiO--n--4( ,ot).-3"(1 t)-4(1 ei)-3 e4i0 _, -. (1 1 e
n=0

Hence, the coefficients B in (2.1) are given by

B1 10 e4(1-e)-6, B2=4 e4(1-e)-5, B3 e4i (1 e io )-4.
From (1.2) and (2.1), we have

4 (k),
(2.2) A,_I(X, 4)= Y Im Ak + Im Bk e’".

k=l /1! k=l /I!

Write/3 2 sin 0/2 for notational convenience. Then the imaginary parts in (2.2) are
given by

0
Im A1 0, Im A2 6f1-5 cos

2’
3O

Im A 3f1-4 sin 0, Im A4 _-3 cos
2

ImB1 ei"=-lOfl-6 sin (n+ l)O, Im B2 e=4fl-S cos (n+)O,
Im n e" -4 sin (n + 2)0.

A2 A3 A4 B11 A1 + )2 + )3 +
eiO(1-t)4(1-te)3-1-t (1-t (1-t +(l-t)4 1---S-

(2.1)
B2 B3+ +

(1-tei)2 (1-tei)3"

Expand (1- ei)-3 in a Taylor series about 1 to get

(1--tei)-3=(1--ei)-3 _, -. ei0 (l-t)".
.=o 1

Proof Set h 4 in (1.2). Then by partial fractions
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Replace these imaginary parts in (2.2) and do some minor simplification to get

96 sin A,,_(x, 4)=-2(n+3)(n+2)(n+l) sin cos
2

(2.3) +9(n+2)(n+ 1) sin sin 0+9(n+ 1) sin 0

-15sin(n+l)O+12(n+l)sin-cos n+ 0

+3(n+2)(n+ 1) sin sin (n+2)0.

The proof now consists of showing that the trigonometric polynomial on the right-hand
side of (2.3) is positive in [/3, ) for n 1, 2, 3,..-. The interval [/3, ) will be
broken into the three subintervals: [/3, /2], (/2, 2/3], (2/3, ). For notational
convenience, write D 96(sin O/2)n_l(X, 4) and denote the six terms on the right-
hand side of (2.3) by a, a, a3, a4, as, a in the order in which they appear. Thus,
(2.3) is rewritten as

D, al + a+ a + a4+ a5 + a6.

First consider the interval [/3, /2]. In this interval a0, and thus D,
a2+a3+a4+as+a6. Clearly la4[ 15, [a[ 12(n + 1)sin 0/2, and [a61
3(n + 2)(n + 1)(sin 0/22). Hence,

(2.4) D3(n+l)(n+2)(3sinO-1)sin+6(n+l.) 3cos -2 sin 15.

For 0e[/3, /2], 3(3 sin 0-1) sin 0/2> 1.19 and 6(3 cos 0/2-2) sin 0/2
9-6> 0.51. Replacing these lower bounds in (2.4), we obtain

De(1.19)(n+2)(n+l)+(O.51)(n+l)-15>O, n=2,3,....

The case n 1 is trivial.
Next consider the interval /2 < 0N2/3. In this interval, the first two terms on

the right-hand side of (2.3), a and a, are increasing. Hence, a+a
(n+3)(n+2)(n+ 1)+9/2(n+2)(n+ 1). Also, sin 0/2 in this interval, and hence
a39/2 (n+ 1). Clearly, a4-15. Since sin 0/2N/2, we have as-6(n+ 1)
and a-9/4(n+2)(n+ 1). Putting these estimates together, we have

4De2(n+3)(n+2)(n+l)+9(n+2)(n+l)-6(n+l)-15>O, n=l,2,....

The final subinterval (2/3, ) requires a preliminary lemma.
LMMA 1. If 2/3 N 0 N m then

sin (n +2)0 sin 20 cos (n +3/2)0 cos 3/20
and

n+2 2 n+3/2 3/2
forn=0,1,2,....

Proo Set f(O)=sin(n+2)O/(n+2)-sin20/2. Since sin(n+2) 2/3 assumes
the values 0, /2, -/2 and since sin 4/3 =-/2, we see that f(2/3) 0. Also
f() 0. Nowf’( 0 cos n + 2) 0 cos 20 2 sin n + 4) 0/2 sin nO/2, so that f’(0)
0 when sin (n +4)0/2 =0 and when sin nO =0. That is, at the points 0 2k/(n +4)
and O=2k/n where 0, 0e(2/3,). We have f(O)=-(n+4)/2(n+2)
sin 4k/(n +4)> 0 because 4k/(n +4) must be a third or rough quadrant angle

since 2k/(n+4)e (2/3, ). Similarly, f(O)=-n/2(n+2) sin 4k/n>O because
2k/n e (2/3, ). This proves the first inequality.
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To prove the second inequality, set g(0)=cos(n+3/2)0/(n+3/2)-
(cos 30/2)(3/2). Clearly, g(27r/3) _->- 1/(n + 3/2) _-> 0 for n 1, 2,..., also g(,r) 0.
Now g’(O)--Ecos(n+3)O/EsinnO/2 and so g’(0)=0 at the points Ok
(Ek+ 1)Tr/(n+3) and O’k=4k’n’/n. We consider only those values of k for which Ok,
0 (27r/3, 7r). We havef(Ok)--(4n+3)(6n+9) cos (6k+3)(2n +6)r. Thenf(Ok)>O
since (6k / 3)(2n + 6)7r is a third quadrant angle. Similarly, f(0)
-4n/(6n + 9) cos 6k’,r/n and f(0,) > 0 since 6kTr/n is a third quadrant angle. This
proves the lemma.

Now we turn to the interval (27r/3, 7r). First, by the identity sin 0/2 cos 30/2
sin 0(cos 0-1/2) we rewrite al as al =-2(n+3)(n+2)(n+ 1)(cos 0-1/2) sin 0 sinE 0/2.
Then dividing through (2.3) by sin 0 we have

On
sin 0

2(n+3)(n+2)(n+1) cos0- sinE+9(n+2)(n+l)sinE+9(n+l)

(2.5) -15
sin (n+ 1)0

sin 0
+12(n+ 1)(n+)sin 0/2 cos(n+3/2)O

sin 0 n + 3/2

sin2 0/2 sin (n + 2) 0
+3(n +2)2(n + 1)

sin 0 n + 2

Next, replacing the last two terms in (2.5) in accordance with the lemma and
using ]sin (n + 1)0/sin 0] _-< n + 1 in the fourth term, we have

Dn 0
(n + 3)(n + 2)(n + 1)(1-2 cos 0) sin2+9(n + 2)(n + 1) sin2

sin 0- z 2

(2.6) +9(n+l)-15(n+l)+8(n+ 1)(n +)sin 0/2.COSsn0 30/2

0
+3(n +2)2(n + 1) sin2 cos O.

In the fifth term in (2.6) again write sin 0/2 cos 30/2=sin 0(cos 0-1/2) and divide
through by n + 1 to get

Dn -> (n + 3)(n + 2)(1-2 cos 0) sin2 --0+ 9(n + 2) sin2
0

(n+l) sin 0- 2 2
(2.7)

+8 n + cos 0- + 3(n + 2)2 sin2 cos 0-6.

Multiplying out the factors involving n in (2.7) and collecting terms gives

>_ (l+cosO)sin2 n+ 6sin20+4cosO+2sin2cosO(2.8)
(n + 1) sin 0 2

n.

The trigonometric polynomial in the second term in (2.8) can be rewritten as
(3-cos 0)(1 +cos 0).

Replacing this in (2.8) and dividing by n(1 + cos 0) gives

(2.9) D.
n sin2

0

n(n+ 1)(1 +cos 0) sin 0- +3-cos 0>0.

This completes the proof of Theorem 1.
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(3.1)

3. The ease 3< k < 4. In this section we will prove the following positivity result.
THEOREM 2. Tn(O,A)>Ofor r/3--< 0< 7r, 3<A <4, n=0, 1, 2,. ..
Proof. The inequality proved in Theorem 1 is equivalent to

O<x<
2

n=O, 1,2,...p(x)p4.+l(x) -P,,+l(X)p4.(x)>O,

and the inequality in Theorem 2 is equivalent to

O<x__<
2

3<A<4, n=O, 1,2,....(3.2) P(x)P+(x)- P+(x)P(x) > O,

To prove (3.2) we will use Theorem 2.4 of [2], which states that the inequality

(3.3) P(x)P+l(x)- P+l(X)P(x) > 0

holds for 0 < x < 1 if 1/2 < a </3 _-< a + 2.
It follows from the expansion

t"x./2] (--1)k(A).-kP(x) (2x)"-2kk=O" k !( n 2k)

that if n is odd then

P(x)P/l(X)- P,,/l(X)PX,(x) A,,(A )x3 +...

where A(A)> 0 for A > 1. Similarly, if n is even then

Pl,,(x)P,/l(X P/l(X)PX,(x) B,,(A )x +...

where B(A)> 0 for A > 1. Consequently, (3.2) holds in a right-hand neighborhood of
0, and if (3.2) is not true in (0, x//2], then there exist n, x, A with 0 < x =< x//2, 3 < A < 4
such that

(3.4) Pl,(x)P,/l(X) Pl,,/,(x)P,(x) O.

By (3.3) we have, for n >= 0 and 0 < x < 1"

(i) P(x) ’ ’Pn+l(X) P.+(x)pa.(x) > O, if 2 < A < 4,

(ii) pa.(x) AP,,+,(x) ,(x)P,,P.+ (x)>O for3<X<5,

(iii) Pn(x) 3P,+(x)- P,+(x)pa(x) > O.

And by Theorem 1,

(iv) Pl,(x)p4,+(x)-P(x)P,+(x)>O for n_->0, 0<x-<x//2.
Now (3.4) implies that (for some n->_0, x and A with 0<x-_<c/2 and 3<A <4),

(v) (x)P(x)"P,,(x)P,,+,(x)=P,,+,

It follows from (v) that (for the same n, A, x)

(vi) Pl,,+l(X)[P*(x)P,,(x)- P,+(x)P(x)]
p.+(x)[pl,(x)P,+(x) P,,+(x)P. (x)]

for N 3 and for N 4. But for N 3 the quantities in square brackets on either side
of (vi) have opposite signs, by (ii) and (iii); for N =4 they have the same sign, by (i)
and (iv).
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It follows that if (v) holds, then (for the same n, x, A) we have

P+,(x)=P,+(x)=O.
But then, because of (i)-(iv), we would have simultaneously

P,(x) 4P.+(x) > O, P.(x)p4.+I(X) > O,

P(x)p3,,+(x) < O, P(x) 3P,,+(x)>O,

which is impossible. Therefore (v) cannot occur.
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STURM SEQUENCES FOR NONLINEAR EIGENVALUE PROBLEMS*

LEON GREENBERG’t

Abstract. An axiomatic treatment of Sturm sequences is presented, and applied to nonlinear eigenvalue
problems of the form det[A(A)] 0. Here, A(A is a symmetric, tridiagonal matrix, whose coefficients a0(A)
satisfy certain monotonicity conditions. This is applied to a finite difference scheme for a Sturm-Liouville
problem of the form

hlu=O for a<=x<=b,

ao(A)u(a)+ flo(A)u (a)=0,

al(A)u(b)+ fll(A)u’(b)=0.

The coefficients of this problem are required to satisfy the same kind of monotonicity conditions as those
that occur in the Sturm oscillation theorem and that guarantee the existence of eigenvalues.

Key words Sturm sequence, eigenvalue, nonlinear, symmetric tridiagonal matrix, Sturm-Liouville
problem

AMS(MOS) subject classifications. 65H15, 65L15

1. Introduction. Sturm sequences provide a standard method for finding eigen-
values of symmetric matrices, especially tridiagonal matrices. The case of tridiagonal
matrices is of special interest because they arise in the discretization of Sturm-Liouville
equations. Also, the Sturm sequence can be calculated recursively in this case. In this
paper, we will show that Sturm sequences work for certain kinds ofnonlinear eigenvalue
problems. The method can then be applied to certain Sturm-Liouville equations in
which the eigenvalue occurs nonlinearly. As we will see, this includes cases where the
eigenvalue occurs in the boundary conditions.

We recall the main facts about Sturm sequences (see Weber 15, Chap. 8], Givens
[3]). Consider a symmetric, tridiagonal matrix:

(1.1) A=

hi
a2 b2
b2 a3 b3

bn -2 an-1 bn-1
bn-1 an

in which bi 0 (1 =< i-< n- 1). For a fixed choice of Ao, let Si(Ao) be the ith principal

b2

bi_2 ai_l A0 bi_l

bi-1 ai Ao

minor of A- AoL Thus, for 1 -_< _-< n,

al-AO bl
bl aE-AO

(1.2) Si(io)

We also define So(Ao) 1. The (finite) sequence So(Ao), Sl(/o), , Sn(lo) is the Sturm
sequence for the matrix A at Ao. Let C(Ao) be the number of sign changes in the Sturm

* Received by the editors March 30, 1987; accepted for publication (in revised form) April 6, 1988.
f Mathematics Department, University of Maryland, College Park, Maryland 20742.
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sequence (i.e., the number of indices i, such that Si-l(Ao)Si(Ao)<0). If some of the
Si(Ao) are zero, then all zeros are omitted from the sequence, and C(Ao) is the number
of sign changes in the remaining sequence. The following three theorems are the main
facts about Sturm sequences.

THEOREM A (Eigenvalue count). C(Ao) equals the number of eigenvalues ofA that
are less than Ao.

THEOREM B (Interlacing theorem). For 1 <= <= n, the zeros of S(A) and S_I(A)
are interlaced (i.e., each function has a unique zero between two consecutive zeros of the
other function).

THEOREM C (Simple eigenvalues). Sn(A) has exactly n different zeros.
We also will need to refer to the following weak form of Theorem A.
THEOREM A (Weak form). IfA < A ", then the number ofeigenvalues in the interval

[A’, A") is c(A")- c(A’).
Perhaps the most important of these theorems is Theorem A, because it provides

a method for calculating eigenvalues. If the eigenvalues of A are A1 < A2 <’’’ < A,
we can approximate the kth eigenvalue A by using the bisection method with Theorem
A. By bisection, we find a nested sequence of intervals [A’, A"] such that c(A’)= k- 1
and c(A")= k. Theorem A guarantees that A’_-< Ak < A".
We will show that, under certain conditions, Theorems A, B, and C remain true

when A- A1 is replaced by a more general (symmetric, tridiagonal) matrix A(A ), whose
coefficients a(A) may be nonlinear functions of A. (Here, an eigenvalue is a zero of
det [A(A)].) In 2, Sturm sequences are considered from a general, axiomatic point
of view. Versions of Theorems A, B, and C are proved in this context. In 3, the results
of 2 are applied to nonlinear eigenvalue problems for tridiagonal matrices. In 4,
we consider a discretization of a Sturm-Liouville problem. Both the continuous and
discrete problems are nonlinear eigenvalue problems. It is shown that Sturm sequences
may be applied to the discrete problem, if the coefficients of the continuous problem
satisfy the monotonicity conditions in the Sturm oscillation theorem.

Historical note. Sturm sequences first made their appearance in 1829, when Sturm
announced his results in [12] and [13]. The announcement [12] was followed by a
memoir [14] in 1835, where Sturm proves his well-known theorem relating the number
of zeros of a polynomial in an interval to the number of sign changes in a Sturm
sequence. The connection of Sturm sequences to eigenvalue problems first appeared
in Sturm’s announcement [13]. Here, Sturm states versions of Theorems A and B for
a matrix of the form A(A)= K +AG, where K and G are symmetric matrices (not
necessarily tridiagonal), and G is positive definite. Unfortunately, this was not followed
by published proofs. The first proof of Theorem A seems to be due to Jacobi [7], in
1857. Here, Jacobi proves the formula

aijxix 4r
i,j= 11 Sk-1k=2 Sk’

where Yk is a linear, homogeneous function of Xk, Xk+,’" ", Xn, and Sk is the kth
principal minor of the symmetric matrix A (ao). This formula implies that the number
of negative eigenvalues of A is equal to the number of sign changes in the sequence
1, S1, $2," ", Sn. Theorem A follows from this fact. The algebra book 10], published
by Salmon in 1859, includes a proof of Theorem A, using Sturm sequences. (The proof
can be found in 156 of the first edition. It occurs in 46 of the fifth edition, which
has been published as a Chelsea reprint.) An extensive discussion of Sturm sequences
can be found in Chapter 8 of Weber’s algebra book (1895) [15], including proofs of
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Theorems A and B, and further developments by Hurwitz and Kronecker. B6cher
(1912) [1] has written an excellent review of Sturm’s work, in which he discusses
Sturm’s motivation from problems in mechanics and heat flow.

2. Sturm sequences. In this section, we give an axiomatic development of Sturm
sequences. Similar axiomatic treatments can be found in Weber [15], Isaacson and
Keller [6], and Stoer and Bulirsch [11], where the weak form of Theorem A (in 1)
is proved within the axiomatic framework. We will develop the properties needed to
yield analogues of Theorems A, B, and C. In 3, this will be applied to nonlinear
eigenvalue problems for symmetric, tridiagonal matrices.

DEFINITION 2.1. Let So(A), Sl()t)," , S,()t) be continuous functions on an inter-
val A1 <)t < A2. (The possibilities A =-, A2=o are included.) We say that the
(finite) sequence So()t ), S ()t),. , Sn ()t) has the Sturm property if:

(a) So()t) has no zeros in (A, A2).
(b) For 1-<i=< n, the set of zeros of S()t) is discrete (i.e., the set of zeros has no

limit point in (A, A2); equivalently, each function S()t) has only isolated zeros).
(c) For 1 _-< _-< n 1, if S()to) 0, then Si_l()to)Si+()to) < 0.
(d) If S,()to)=0, then for sufficiently small el,e>0, Sn-l()to)[Sn()to+e2)-

s(o- )] < 0.
Remarks. (1) Conditions (c) and (d) imply that for each )to in (A,A), the

sequence ofnumbers So()to), S()to), ", S, ()to) does not contain two consecutive zeros.
(2) Condition (d) implies that if S,()to)=0, then S()t) changes sign as )t passes

through )to. This need not be true for Si()t)(i <n). For example, the sequence 1,
)t 1 has the Sturm property, but S()t) -)t does not change sign as )t passes through
0.

(3) Condition (d) is equivalent to two. other conditions: If S,()to)=0, then for
sufficiently small e > 0,

(dl) S,,()to-e)Sn()to+e)<O, and
(d2) S,_,()to)[S,()to+ e)- S,()to- e)] < 0.
(4) In case Sn()t) is differentiable, condition (d) follows from the following

condition: If Sn ()to) 0, then S,_()to)S’,()to)< 0.
(5) Condition (d) implies that if S,()to)=0, then for sufficiently small e >0,

S,_()to- e)S,()to- e) > 0 and S,_()to+ e)S,()to+ e) < 0. Thus, a sign change is gener-
ated between Sn_()t) and Sn()t), when )t passes through )to from left to right.

DEFINITION 2.2. Let ao, al,’’’,an be a sequence of (real) numbers.
C(ao, a,..., an) denotes the number of sign changes in ao, aa,..., a, after the
zero terms have been omitted. Corresponding to a sequence of functions
So()t), S()t),. ., S,()t), the number of sign changes c(So()to), S()to)," ", S,()to)) will
usually be denoted simply by

The following theorem is analogous to the weak form of Theorem A in 1.
THEOREM 2.1. Suppose that the sequence So()t), S()t),..., S,()t), has the Sturm

property on (A,A2). Let )t’<)t" be numbers in (A,A2). Then Sn()t) has exactly
c()t")- c()t’) different zeros in the interval

Proof Consider what happens to c()t) as )t increases from )t’ to )t". The interval
[)t’, ,"] contains only a finite number of zeros (perhaps none) of any of the functions
S()t ), =< =< n. (Recall that So()t has no zeros.) c()t does not change in any subinterval
that contains no zeros of S()t), 1 =< =< n.

Suppose that )to is a zero of Si()t ), where < n. By condition (c) in Definition 2.1,
S_()t) and S+()t) have opposite signs in an interval ()to-e,)to+ e). We suppose that
e is small enough so that the functions Sj()t), 1 <=j =< n, have no zeros other than )to in
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(ho-e, ho+e). The subsequence Si_I(A), Si(A), Si+l(h )" has exactly one sign change,
for all h in this interval. (For h ho, Si(ho) is omitted from the subsequence.) The
same is true for any other j, 1 =<j=< n-1, if Sj(ho)=0. Therefore, if S,(ho) 0, then
c(h) does not change in the interval (ho-e, )to+ e).

Now suppose that ho is a zero of S,(A). As we mentioned before (Remark (5)),
condition (d) in Definition 2.1 implies that, for small e > 0, S,-l(ho- e)S,(ho- e) > 0
and S,_(ho+e)S,(ho+e)<O. We suppose that ho is the only zero of S,(A) in (ho-
e, Ao+ e), and Sn-l(A) has no zeros in this interval. Then Sn_(A)Sn(A)> 0 for ho-e =<
A < Ao, and Sn_(A)Sn(A) < 0 for Ao < A -<_ Ao+ e. Therefore e(A) C(Ao) for Ao- e =< A <
Ao, and c(A)= C(Ao)+ 1 for Ao < A <-Ao+ e. In other words, c(A) increases by 1 as
passes through Ao from left to right.

Now consider the interval [A’, A"] again. If A’ is a zero of S, (A), then for small
e, c(A’ + e) c(A’) + 1. Thus c(A) "counts" A’. Similarly, e(A) counts the zeros of S,
in the interior of [A’, A"]. If A" is a zero of S(A), then for small e, c(A"-e)= c(A"),
so c(A) does not count

COROLLARY 2.1. If the sequence So(A), SI(A),’’ ", S,(A) has the Sturm property
on (A1, A2), then Sn(A) has at most n different zeros in (A1, A2).

Proofi For any A in (A1, A2), c(A) --<_ n.
We now mention a theorem analogous to the strong form of Theorem A in 1.
THEOREM 2.2. Let So(A), Sl(A),""", Sn(A) have the Sturm property on (A1, A2),

and suppose that So(A)> 0 on (A, A2). The following are equivalent:
(1) There is a number A+ in (A, A2), such that S(A+) => 0, for 1 <= <= n.
(2) For any Ao in (A1, A2), C(Ao) equals the number ofzeros ofS(A in the interval

(A1, Ao).
Proof. Suppose (1) is true. Then c(A+)=0. Note that Theorem 2.1 implies that

c(A) is a nondecreasing function. Therefore c(A) 0 for A1 < A <= A+. The theorem also
implies that Sn(A) has no zeros in (A, A+).

If AI<Ao--<A+, then the number of zeros of S,(A) in (A1,)to) is 0= C(Ao). If
A+ < Ao < A2, then the zeros of S(A) in (A1, Ao) lie in the subinterval [A+, Ao). Thus
the number of zeros in (A, Ao) equals the number of zeros in [A+, Ao), which equals
C(Ao)-c(A+) C(Ao). This proves (2).

Now suppose that (2) is true. By Corollary 2.1, S(A) has only a finite number
of zeros in (A, A2). Let A+ be a number in (A, A2), which lies to the left of all zeros
of S,(A). By (2), c(A+)= 0. Therefore the sequence So(A+), Sl(A+),""", Sn(A+) has no
sign changes. Therefore S(A+) _-> 0, for 1 =< =< n. (Necessarily, S,(A+) > 0.) This proves
(1).

Remark. We have seen that the Sturm property implies the weak form of Theorem
A. However, it does not imply Theorem B. For example, the sequence So(A)= 1,
S(A) 1 A 2, S2(A) A 2 has the Sturm property, but the zeros of S and $2 are not
interlaced. In the following definition, we consider an additional property, which will
imply Theorem B.

DEFINITION 2.3. A Sturm sequence is a sequence of functions
So(A),SI(A),’",S(A), such that for l=<i-<n, the initial subsequence
So(A), SI(A),’’’, S(A) has the Sturm property. In other words, a Sturm sequence
satisfies all conditions in Definition 2.1, except that condition (d) is replaced by the
stronger condition"

(d’) For 1 -< <_- n, if S(Ao) O, then for sufficiently small el, e2 > O, Si_l(lo)[Si(iO--
E2) Si(IO-- E1)] < O.

Remark. Condition (d’) implies that for 1 -< -< n, if Si(Ao) 0, then S(A) changes
sign as A passes through )to.
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THEOREM 2.3. Suppose that So(A), SI(A),’’ ", Sn(A) is a Sturm sequence. Then,
for 1 <-_ <- n, the zeros of Si(A and Si-1 (A are interlaced.

Proofi We use induction on i. The statement is true for i- 1, since So(A) has no
zeros, and by Corollary 2.1, SI(A) has at most one zero. Suppose the statement is true
for i_< k. We will prove it for i= k / 1.

Let A1 < A2 be consecutive zeros of Sk+I(A). We will show that Sk(A) has a zero
between A1 and A2. (Sk(A) cannot have more than one zero in (A1, AE), because we
will later show that Sk+I(A) has a zero between two zeros of Sk(A).) Condition (d’) in
Definition 2.3 implies that for sufficiently small e > 0, and forj 1, 2, Sk(Aj- e)Sk+I(Aj
e)>0 and Sk(Aj/E)Sk+I(Aj/E)<O. Thus, Sk(Al/e and Sk+l(Al/e) have opposite
signs, while Sk (A2-- e) and Sk+I(A2 e) have the same sign. Since A and A2 .are
consecutive zeros, Sk+I(A) does not change sign in the interval (A1, A2). Therefore, for
small e > 0, Sk (A + e and Sk(A2 e have opposite signs, so Sk(A) has a zero in (A 1, A2).

Now let A1 <A2 be consecutive zeros of Sk(A). We will show that Sk+I(A) has a
zero between A1 and A2. (As before, this zero must be unique.) By condition (c) in
Definition 2.1, Sk_I(Ag)Sk+I(Aj) < 0, for j 1, 2. By inductive hypothesis, Sk-I(A) has
a unique zero Ao between A1 and A2. Sk-I(A) changes sign at any zero, so Sk_I(A) and
Sk-(A2) have opposite signs. Since Sk-I(Ag)Sk+I(Ag)<O, for j= 1,2, it follows that
Sk+I(A1) and Sk+(A2) have opposite signs. Therefore Sk+I(A) has a zero between
and A2"

Remark. If So(A), S(A),. ., S,(A) is a Sturm sequence on (A1, A2), S,(A) need
not have n zeros in (A1, A2), since we may have omitted some of the zeros by taking
the interval too small. Even if the interval is (-c, ), S,(A) may not have n zeros.
An example of this is So(A) 1, SI(A) -A 1, S(A) A 1. The following theorem
(analogous to Theorem C in 1) gives necessary and sufficient conditions for S,(A)
to have n zeros.

THEOREM 2.4. Suppose that the sequence So(A), SI(A),’", S,(A) is a Sturm
sequence on (A, A2), and that So(A) > 0, for A1 < A < A:z. Then S,(A) has exactly n

different zeros in (A1, A2) ifand only if there are numbers A+ < A_ in (A1, A2), such that,
for l <-i<-_n,

(1) Si(A+)->0, and
(2) the sign of S, (A_) is (- 1 )’.
If these conditions are satisfied, then Si(A) has exactly different zeros in (A, A2),

for l <-i<-n.

Proof First suppose that S,(A) has n different zeros in (A1, A2). Since the zeros
of S,_I(A) and S,(A) are interlaced, S,_I(A) has n- 1 zeros in (A, A2). Similarly, by
induction, we can show that Si(A) has zeros in (A1, A2). Let c(A) denote the number
of sign changes in the sequence So(A), SI(A), , Si(A), after the zero terms have been
omitted. Let A+ < A_ be numbers in (A1, A), such that A+ lies to the left of all zeros
of all S(A), and A_ lies to the right of these zeros. Then the number of zeros of S(A)
in (A1,Az) is i=c(A_)-c(A+). Since 0-<_c(A)_-<i, this implies that ci(A+)=0 and
c(A_) i. Therefore, S(A+)>_-0 and S(A_) has sign (-1) . This proves (1) and (2).

Now suppose conditions (1) and (2) are satisfied. Then c(A+)=0 and c(A_)- i.

By Theorem 2.1, S(A) has ci(A_) c(A+) zeros in the interval [A+, A_). By Corollary
2.1, S(A) has at most zeros. Therefore it has exactly zeros in (A, A2).

3. Tridiagonal matrices. We will apply the results of 2 to symmetric, tridiagonal
matrices A(A). In each case, the eigenvalues are the zeros of det [A(A)], S(A) (for
1 <_- <_- n) is the ith principal minor of A(A ), and So(A 1. We will begin with matrices
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of the form

(3.1) A(A)=

(bo+_bbf a) -b,
(bl + b2- a2) -b

--bE (bE + b a3) -b

"..
-bn_ (bn_E+bn_t-a._) -b._

-b._ (b._+b.-a.

where the ai ai(A) and b b(A) are continuous functions on an interval (A1, A2).
(The possibilities A1 =-oo, A2 oo are included.)

The following is a well-known recursion relation for the Si(A).
LEMMA 3.1. S+I (b + b+l a+)Si b2Si_l, for 1 <= <= n 1.

Proof This is the cofactor expansion of the determinant

Si+

(b + b a2)
-b

--bE
(b + b3 a3) -b3

b_ + bi ai) -bi
-b b d- hi+ ai+)

by the last row. I]

Remark. If bi(h) has no zeros (for 1 <- <- n 1), then Lemma 3.1 implies that two
consecutive functions S, S+1 cannot have a common zero. If Si(ho)=0 $i+l(hO),
then the recursion relation implies that S-l(hO) 0. This in turn implies 0 S_l(ho)
S_2(ho) S-3(ho) So(ho), which contradicts So(A)= 1. The recursion relation
also implies that if S(ho) 0, then S+(ho)S_(ho) 0. Since two consecutive functions
have no common zero, S+l(ho)S_(ho)< 0. This is condition (c) in Definition 2.1.

LEMMA 3.2. Suppose that
(1) a(h) is strictly increasing, for 1 n;
(2) b(h is nonincreasing, for 0 j n;
(3) b(h has no zeros, for 1 n 1.

en,
(a) S(A) has only isolated zeros, for 1 n;
(b) b-b(S_/S) is a strictly decreasing function on any interval containing no

zeros ofS(h ), for 1 n 1.

Proof We will prove (a) and (b) simultaneously by induction on i. Note that n
is permitted in (a), while n- 1 in (b). The reason for the restriction in (b) is that
b,(h) is allowed to have zeros or even to be identically zero.

For 1, S bo+ b- a is strictly decreasing, so it can have at most one zero.
We must show that b-b(So/S) is strictly decreasing on any interval that contains
no zeros of S. We first consider an interval that has no zeros of S or bo-a"

So b b(bo-a)
bl-b=b bo+bl_a,=bl+(bo_al).

This shows that b-b(So/S) has no zeros in the given interval, and

bo- a b
Since bo-a is strictly decreasing and b is nonincreasing, this shows that [b-
b2(So/S)]- is strictly increasing, so b-b2(So/S) is strictly decreasing in the given
interval.
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Since bo- a, is strictly decreasing, it has at most one zero Ao. Suppose that (a,/3)
is an interval that contains Ao, but no zeros of $1. By the previous paragraph,
bl-b,(So/S,) is strictly decreasing in (a, Ao) and (Ao,/3). By continuity, it is strictly
decreasing in (a,/3). This concludes the inductive step i= 1.

Now suppose that statements (a) and (b) are true for i_-< k; we will prove them
for i= k / 1. First we consider (a). By Lemma 3.1,

&+l (bk / bk+l- ak+,)Sk b2kSk-1, or

(3.2)

As we mentioned in the remark following Lemma 3.1, Sk/X and Sk cannot have
a common zero. By induction, the set of zeros of Sk is discrete, and bk-- bk(Sk-x/Sk) is
strictly decreasing in any interval that contains no zeros of Sk. Therefore the function
(bk+--ak+l)/(bk--b2k(Sk_l/Sk)) is strictly decreasing between any two consecutive
zeros of Sk. Equation (3.2) shows that Sk+ can have at most one zero between any
two consecutive zeros of Sk. This proves statement (a) for i- k / 1.

Now we consider statement (b). Here we assume that k / 1 _-< n- 1. Consequently,
bk+l(A) has no zeros. From the recursion relation

Sk+, bk + bk+, ak+,)Sk b2kSk-,

we obtain

+l bk + bk+,-- ak+l)-- b2 S_,St,

& 1

Sk+, (bk+bk+l--ak+l)--b2k(Sk-,/Sk)

S
bk+l- b2k+lb+’-b2k+’

Sk+l (b +b+,-a+,)-b2(S_l/S)

and finally

(3.3) bk+l-- bk+ Sk
Sk+l

Sk ,] ak+l]
Taking reciprocals in (3.3), we obtain

1 1 1
(3.4) bk+l_b2k+x(Sk/Sk+l (bk_b2k(Sk_,/Sk))_ak+l bk+l

Let I be an interval that contains no zeros of &+l, & or (bk--b(Sk-1/Sk))- ak+,.

Equation (3.3) shows that I has no zeros of bk+,--b2k+x(Sk/Sk+a). Since (bk--
b2k(Sk_X/Sk))--ak+ is strictly decreasing in /, and bk/l is nonincreasing, (3.4) shows
that bk/l--b2k/x(Sk/Sk/l) is strictly decreasing in/. Now let J be an interval that has
no zeros of Sk+. The zeros of Sk and (bk--b2k(Sk_,/Sk))--ak+l form a discrete set Z
in J, and bk/l--b2k/x(Sk/Sk/l) is strictly decreasing in any interval contained in J-Z.
By continuity, bk+l--b2k+l(Sk/Sk+l) is strictly decreasing in J.
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Remark. Conclusion (b) in Lemma 3.2 will be vital to the proof of Theorem 3.1
and all the theorems in this section that follow from it. This crucial fact was found by
studying the finite difference matrices arising from Sturm-Liouville problems of type
(4.1), in 4. If the Sturm sequence Si is compared to the finite difference solution ui
of (4.1), then it turns out that bi- b2(&_l/&) hpi+l/2(u+l/u+l). Under the conditions
indicated in Theorem D of 4, one of the Sturm comparison theorems states that
p(x, A)(u’(x, A )/u(x, A)) is a decreasing function of A. This fact suggested conclusion
(b) in Lemma 3.2. The relationship between the Sturm sequence and the finite difference
solution will be treated by Greenberg and Babuka in [4].

THEOREM 3.1. Suppose that
(1) a(A is strictly increasing, for 1 <-_ <= n;
(2) bj (A) is nonincreasing, for 0 <-j <- n;
(3) bj(A has no zeros, for 1 <-j <-_ n 1.
Thetl the sequence So(A ), $1 A ), ., S, A is a Sturm sequence in the sense of 2).
Proof. By Definition 2.3, we must verify (a)-(c) in Definition 2.1 and (d’) in

Definition 2.3. Condition (a) is obvious, since So(A)- 1. Condition (b) was proved in
Lemma 3.2(a). Condition (c) follows from the remark after Lemma 3.1. It remains to
verify the condition:

(d’) For 1 _-< _<- n, if &(Ao) 0, then for sufficiently small el, e2 0,

s,_,(Xo)[S,(Xo+ ,)- s,(o- ,)] < 0.

To verify the ith statement (d’), we will need the (i-1)st statement in Lemma 3.2(b),
which is valid for 1 _<- i- 1 =< n- 1. Because of this, we need a separate calculation for
i= 1 in (d’):

So(,o)[Sl(,o- 2)- Sl(,o i)] < O.

This inequality follows from the fact that So(A 1, and Sl(/ bo(A + bl(A al(A
is a strictly decreasing function.

Now consider (d’) for 2 _-< _-< n.
By Lemma 3.1,

2Si (b-i + b a)&-i hi-1&-2, or

(3.5) &=&-i b,-1-bi-1 &_l/+(b-a,)
Choose el, e2 > 0 small enough so that the interval [Ao- el, )to + e2] contains no zeros
of &-I(A). Thus &-i does not change sign in this interval. &/&-l=
(b_l-b2,-l(&-2/S,-1))+(b- ai) is a strictly decreasing function in [ao- el, ao+
(by Lemma 3.2(b) and hypotheses (1) and (2) of this theorem). Therefore
changes sign from (+) to (-) as passes through Ao from left to right. The same must
be true for &_&= S2i_l(Si/Si_l). Thus

s,_,(ao- el)S,(Xo- e,) > o> S,_l(xO+ e2)s,(ao + e).

Since &_,(a) does not change sign in [ao-el, ao+ e2], it follows that

&_I(/0)S/(a0--E1)>0> &_I(a0)Si(/0- e2) or

s,_,(;o)[S,(ao + ,_)- s,(ao- ,)] < o.

This proves condition (d’). rq
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The following theorem is a weak version ofTheorem A (in 1) for the matrix A(A ).
THEOREM 3.2. Let A(A) be a matrix of type (3.1), and suppose that
(1) ai(A) is strictly increasing, for 1 <- n;
(2) bj (h) is nonincreasing, for 0 <-j <- n;
(3) bj (A has no zeros, for 1 <-j <- n 1.
Let A’<A" be numbers in (A1,A2). Then det[A(A)] has exactly c(h")-c(h’)

different zeros in the interval [A ’, A").
Proof. This follows from Theorems 2.1 and 3.1.
LEMMA 3.3. Let A be a matrix of the form (3.1), where the ai(l<-i<-n) and

b(0 <=j <= n) are constants. Suppose that
(1) b>-O, for O<-_j<-n,
(2) ai<=O, for l<=i<-_n.

Then det [A] => 0.

Proof. A is the matrix of the quadratic form Q(x)=xAxT, where x=
(Xl, X2, Xn):

n-1

Q(x) (b,_, + b,- a,)x- 2 2 b;x;xj+,
i=1 j=l

n--1
2 2box+ b.x a,x2 + . b(x 2xx+l + Xj+l)

i=1 j=l

+ E
i=1 j=l

Thus Q(x) is positive semidefinite, and therefore det [A]=
The following theorem is a strong version of Theorem A for the matrix A(A).
THEOREM 3.3. Let A(A) be a matrix of type (3.1), and suppose that
(1) a(A) is strictly increasing, for 1 <- <= n;
(2) b(A) is nonincreasing, for 0 <=j <- n;
(3) b(A > O, for l_--<j_<-n-1;
(4) There is a number A+ in (A1, A2), such that bo(A+) >- 0, b,(A+) >- 0 and a(A+) =< 0

for l <=i<-n.
Then for any Ao in (A1,A2), det[A(A)] has exactly C(Ao) different zeros in the

interval (A1, Ao).
Proof. Lemma 3.3 implies that S(A/)-> 0, for 0 <- -< n. The theorem now follows

from Theorems 2.2 and 3.1.
The following theorem is analogous to Theorem B (in 1).
THEOREM 3.4. Let A(A) be a matrix of type (3.1), and suppose that
(1) a(A) is strictly increasing, for 1 <- <= n;
(2) b; (A) is nonincreasing, for 0 <-j <- n;
(3) b;(A) has no zeros, for 1 <=j <- n 1.
Then for 1 <- <= n the zeros ofS(A and S_ (A are interlaced.
Proof. This follows from Theorems 2.3 and 3.1.
LEMMA 3.4. Suppose that
(1) bj (A) is nonincreasing, for 0 <=j <-_ n;
(2) There is a number K, so that b(A)=> K, for 0 <-j <-n;
(3) limx-.A2 ai(A) c, for 1 <= <-- n.
Then lim_A2 Si(A)=(-1)’o, for l <=i<--n.

Proof. Let Ao be in (A1, A2). Conditions (1) and (2) imply that K =< b;(A) <= b;(Ao),
for Ao < A < A2, 0 =<j _-< n. Thus the b;(A are bounded (above and below) in the interval
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(ho, A2). The determinant Si(h) can be expanded in the form:

Si( (-1)’ala2. ai A- Ai-1 A- Ai_2 +" + A1 -t- Ao,

where

jl <J2 <Jk <=

and Bj,j2...jk is a sum of products of the bj(A). The last term Ao is also a sum of products
of the b(A ). Since the b(A are bounded in the interval (Ao, A2), so are the coefficients
Bj,2...k and Ao. Therefore,

a,%. %Ak
B,j... 0 as A A2.

ala2" ai l<=jl<=J2<...<jki ala2 ai

Consequently,

lim S(A)= lim ala’’" a[(-1)+AA AA

Ai_l

ala2 ai

A 1+’’ "+ (-1)c.
ala2" ai

The following theorem is analogous to Theorem C (in 1).
THEOREM 3.5. Let A(A) be a matrix of type (3.1), and suppose that
(1) ai (A) is strictly increasing, for 1 <- <-_ n;
(2) b(A) is nonincreasing, for 0 <=j <-_ n;
(3) b(A)>O, for l<=j<=n-1, bo(A)=>0, b,(A)=>0;
(4) There is a number A+ in (A1, A2), such that a(A+)=<0, for 1 <=i<= n;
(5) lim-A2 ai(A) c, for 1 <= <= n.
Then det [A(A)] has exactly n different zeros in the interval (A, A2).
Proof. Lemma 3.4 implies that limx_,A S(A) (-1), for l<=i<=n. Lemma 3.3

implies that S(A/)>=0, for 0-< i_-< n. The theorem now follows from Theorems 2.4 and
3.1. U

Remark. Theorems 3.1-3.5 remain valid if the matrix A(A) in (3.1) is replaced by

(3.6) A(A)=

bo+bl-a) b
b (b + b a2) b

b (b d- b a3) b

bn_ (bn_ d- bn_ an_l) bn_

b.-i (b._l+b.-a.)

or

(3.7)

bo+b-a) eb
eb (b d- b a2) e2b

A(A)=
e2b2 (b2+b3-a3) e3b3

"’.

an
en_Ebn_ (bn_E+bn-l-an-l) e._lb._

e._b._ (b._+b.-

where e + 1, for 1 _-< =< n 1. This is true because all of these matrices have the same
principal minors S(A), S2(A ),. ., S, (A).
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We will now consider a symmetric tridiagonal matrix of general form:

(3.8) A(A)

"al(A)
b,(A)

bl(A)
a2(a)
b2(A)

b2(A)
a3(a) b3(a)

b,,_2(a) a,,_l(a) bn_l(A)
b._l(a) a,,(a)

where the functions ai(h), 1 =< <= n, and bj(h), 1 _-<j_-< n 1, are continuous on an
interval (A1, A2). The above matrix can be transformed to a matrix of the form (3.1),
which has the same principal minors $1(h), S2(A ), , S, (h). To see this, first multiply
the nondiagonal terms bj(h) by (-1) to obtain

(3.9)

al -bl
-b a2 -b2

b2 a3 -b3

an-1 -bn-1
-bn-1 a,

Next, for 1 -< -< n, define ti b_l + bi ai, where bo 0 b,. Then a bi-1
so the matrix (3.9) has the form

(3.10) ,(;t)=

b- til) -bl
-b (b + b t2) -b

-bz (b d- b t3) -b

-bn_ bn_E + bn_l (tn_l) -bn_
-b,,_

A(A) has the form (3.1), with bo=0 b,. Therefore Theorems 3.1-3.5 apply, and we
immediately obtain analogous results for the matrix A(A) in (3.8). We will state these
results by referring to the following list of conditions. (When any statement involves
bo or b,, it will be understood that bo 0 b,.)

Condition List 3.1.
(1) bi_l(h)+ b(h) a(h) is strictly increasing, for 1 =< =< n.
(2) b(h) is nonincreasing, for 1 =<j =< n 1.
(3) b(h) has no zeros, for 1 _-<j =< n 1.
(4) b(h)>0, for l<=j<=n-1.
(5) There is a number A+ in (A1, A2), such that bi_l(A+)+ bi(A+)-ai(h+)=<0, for

l<=i<-n.
(6) limx+A2[b,_(A)+b,(A)-a,(A)]=, for l <-i<=n.
We continue to use our standard notation: &(A) is the ith principal minor of the

matrix A(A) in (3.8); So(A)= 1; c(A) is the number of sign changes in the sequence
So(A ), S(A), , $, (A) after the zero terms have been omitted.

THEOREM 3.6. Let A(A) be a matrix of type (3.8), which satisfies conditions (1),
(2), and (3) in Condition List 3.1. Let A’< A" be numbers in (A1, A2). Then det [A(A)]
has exactly c(A")- c(A’) different zeros in the interval [A’, A").
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THEOREM 3.7. Let A(A) be a matrix of type (3.8), which satisfies conditions (1),
(2), (4), and (5) in Condition List 3.1. Then for any Ao in (A1,A2), det[A(A)] has
exactly C(Ao) different zeros in the interval (A1, Ao).

THEOREM 3.8. Let A(A) be a matrix of type (3.8), which satisfies conditions (1),
(2), and (3) in Condition List 3.1. Then for 1 <-_ <= n, the zeros of Si (A and Si_I (A are
interlaced.

THEOREM 3.9. Let A(A) be a matrix of type (3.8), which satisfies conditions (1),
(2), (4), (5), and (6) in Condition List 3.1. Then det [A(A)] has exactly n different zeros

in the interval (A1, A2).
We mention a special case of (3.8), in which the functions bj(A) are constant,

l<=j<-_n-1.
THEOREM 3.10. Let A(A) be a matrix of type (3.8) in which the functions bj(A) ae

nonzero constants for 1 <-j <- n 1. Suppose that, for 1 <-_ <- n,
(i) ai (A is strictly decreasing;
(ii) limx_A, a(A)
(iii) limx-.A2 a,(A)
Then,
(a) For any Ao in (A1, A2), det [A(A )] has exactly C(Ao) different zeros in the interval

(A1, ao);
(b) The zeros of S(A) and Si_(h) are interlaced, for 1 <- <- n;
(c) det [A(A)] has exactly n different zeros in (A, A2).
Proof. (a) By Theorem 3.7, it suffices to verify conditions (1), (2), (4), (5) in

Condition List 3.1. Condition (1) follows from (i). Condition (2) is true because the
b(h) are constants. Condition (5) follows from (ii). Condition (4) requires that b > 0.
Although this might not be true, the principal minors of A(A) are not changed if b is
replaced by -b. Therefore, we may assume that bj > 0.

(b) By Theorem 3.8, we need to verify conditions (1), (2), and (3) in Condition
List 3.1. We have already verified (1) and (2). Since the b are assumed to be nonzero,
(3) is also true.

(c) By Theorem 3.9, (c) follows from conditions (1), (2), (4)-(6) in Condition
List 3.1. The first four of these conditions were verified in the proof of (a). Condition
(6) follows from (iii).

Remarks. We can obtain results similar to Theorems 3.2-3.5 for the matrix (3.1),
if the a(h) are strictly decreasing, and the b(h) are nondecreasing. These results
follow immediately from the previous theorems by considering the functions a(h)=
a(-h), which are strictly increasing, and b(h)= b(-h), which are nonincreasing on
the interval (-A2,-A1). For example, the following is a weak version of Theorem A,
analogous to Theorem 3.2.

THEOREM 3.2’. Let A(A) be a matrix of type (3.1), and suppose that
(1) a(A) is strictly decreasing, for 1 <- <-_ n;
(2) bj (A) is nondecreasing, for 0 <-_j <-_ n;
(3) b(A has no zeros, for 1 <-j <-_ n 1.
Let A’ < A" be numbers in (A1, A2). Then det [A(A)] has exactly c(A’)- c(A")

different zeros in the interval (A’, A"].
Similarly, we can obtain results analogous to Theorems 3.6-3.10 for the matrix

(3.8). For example, Theorem 3.10 has the following analogue.
THEOREM 3.10’. Let A(A) be a matrix of type (3.8) in which thefunctions b(A are

nonzero constants for 1 <-_ j <-_ n 1. Suppose that, for 1 <= <-_ n,
(i) ai (A is strictly increasing;
(ii) lim,A, a(h) --;
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(iii) lim_A a(A) .
Then,
(a) For any Ao in (A,, A2), det [A(A )] has exactly C(Ao) different zero in the imerval

(Ao, h);
(b) e zeros of S(A and S_(A are interlaced, for 1 n;
(c) det [A(A)] has exactly n different zeros in (A, A2).
To illustrate the previous theorem, let m, m,..., m, be odd, positive integers,

let a, a,..., a, be arbitrary real numbers, and let fl,fl2,""" ,fl,- be arbitrary,
nonzero real numbers. Then the matrix

A(A)= 3

satisfies Theorem 3.10’. In particular, p(A)=det[A(A)] has exactly n different real
zeros. For example,

p(A (A ,7_ 1)(/25 2)_/2

has exactly two different real zeros, if/3 O, and

p(A (A ’s 1)(/ 29_ 2)(/ 53 3) (15 1) 21(/ 53
13

has exactly three real zeros, if 1/2 0.

4. Sturm-Liouville equations. We will apply the results of 3 to a Sturm-Liouville
eigenvalue problem of the form

(p(x, A )u’)’ + q(x, A )u O fora<=x<-b,

(4.1) ao(A)u(a) + flo(A)u’(a) O,

a,(A)u(b)+/3,(A)u’(b) =0,

where we assume the following:
(i) p(x, A), (O/Ox)p(x, A) and q(x, A) are continuous functions on [a, b] x

(A1, A2);
(ii) p(x,A)>=k>O, for a<=x<-b, Al <A <A2;
(iii) ao(A), flo(A), a,(A),/3,(A), are continuous on (A,, A2);
(iv) ai(A)2+/3i(A)20, for i=0,1 and A,<A <A2;
(v) For 0, 1, either/3i(A) -= 0 or/3i(A) > 0, for A, < A < A2.

We will use the following notation:

p*(A) max p(x, A), p.(A) min p(x, A)
a<_x<=b a<_x<_b

(4.2)
q*(A) max q(x, A) q,(A) min q(x, A).

a<__x<=b

The following theorem (with somewhat different notation) can be found in B6cher
[2, Chap. 3] and Ince [5, Chap. 10].
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THEOREM D (Sturm Oscillation Theorem). Suppose that
(1) For each x, q(x, h is a strictly increasing function of A;
(2) For each x, p(x, h is a nonincreasing function of )t

(3) If flo(h O, then p(a, h)ao(A)/flo(h) is nondecreasing;
(4) Ifill(A) O, then p(b, A)al(A)/fll(A) is nonincreasing;
(5) limx-.A2 q.(A)/p*(A) .
Then the eigenvalues of (4.1) form an infinite, increasing sequence Am < hm+l <

h,n+2 <" ", which tends to A2. The eigenfunction pi(x), corresponding to Ai, has exactly
zeros in the interval (a, b). Furthermore, suppose that (4.1) satisfies either

(6) lim_A, q*(h)/p.(h) -o, or
(7) There is a number A+ in (A, A2), so that ao(A+)flo(A+) --< 0, al(A+)fl(A+)_-> 0,

and q*(A+)-<0. (If the coefficient functions in (4.1) can be extended continuously to
A A, we may take A+ A1.)

Then the sequence of eigenvalues begins with Ao, whose eigenfunction Oo(X) has no
zeros in a, b ).

We will discretize the boundary value problem (4.1) by finite elements, thereby
generating a finite difference scheme. Our goal will then be to show that Sturm sequences
may be applied to the finite difference matrix, under the kind of assumptions made in
Theorem D.

Recall that the energy inner product for (4.1) is

(4.3)
n(u,v)-

ao(X,)
flo(A)

p(a, A )u(a)v(a)

01(’ f-)p(b,)u(b)v(b)+ (-pu’v’+quv) dx.

A weak solution of (4.1) is a function u in the Sobolev space Hi[a, b], such that

(4.4) B(u, v)=O forall v6Hl[a, b].

If (4.4) admits a nontrivial solution Uo(X) for a particular value h ho, then ho is an
eigenvalue, and Uo(X) is a corresponding eigenfunction. (If flo(A)=0, then ao/flo is
set equal to 0 in (4.3), and H[a, b] is replaced bythe subspace offunctions v Hi[a, b],
such that v(a)=0. The case /3(h)--0 is treated similarly. We will carry out the
calculations in the generic case/3o(h) 0,/3(h 0.)

The problem will be discretized using piecewise linear functions, with uniform
mesh h-(b-a)/n. Consider the partition Xo<X <. .<x of the interval [a, b] by
the nodes x a + ih. The finite element space Sh is the space of continuous functions
on [a, b] that are linear on each interval [x_, x]. The inner product (4.3) will now
be restricted to Sh, and the integrals in (4.3) will be approximated by quadrature
formulas. We will use the midpoint rule for the integral b pU’V’ dx, and the trapezoid
rule for the integral jb qUV dx. This defines an inner product Bh(U, v) on Sh. The finite
element solution is a function u Sh, such that

(4.5) nh (u, v) 0 for all v Sh.

A basis Vo, v,. ., v, for Sh can be obtained as follows:

(4.6a) Vo(X) {(x- x)/ h + l for Xo_-< x -<_ x,
elsewhere;



196 L. GREENBERG

(4.6b)

for l=<i--<n-1;

((-xi)/h
+ 1

v,(x) x-x,)/h+l
for Xi_ < X <<- Xi,
for xi <= x <= xi+l
elsewhere,

(4.6c) v"(x)={ -x")/h+ l frx"-l<-X<=Xn’elsewhere.
This basis is uniquely determined by the property:

(1) v,(xj)=6ij (O<-_i,j<-n).
It also satisfies the property:

(2) The support of vi(x) is contained in the one or two intervals that contain xi.
A function u Sh can be expressed in the form u(x)= Y=o uv(x), where u u(xi).
Equation (4.5) is now equivalent to the system of equations

(4.7) U,Bh (v,, vj) O, j O, 1,’’’, n.
i=0

Because ofproperty (2) above, Bh(Vi, tj) 0 ifli-Jl > 1. A simple calculation shows that

Bh Vo, Vo) -o PO +- qo,

a P -1..__._._ +
h

Bh(V.,V.)=--p. h q"’
(4.8)

1
Bh(Vi, vi)=-(Pi_l/2WPi+l/2)Whqi, 1NiNn-1,

Bh(1)i, /)i+1) Pi+l/2 0< < n 1.
h

Here, pj p(A denotes p(a +jh, A ), where j is an integer or half-integer, and similarly
for q b(A ). Multiplying the equations (4.7) by -h, we obtain a system of equations:

(4.9) A(A)u =0,

whereu=(uo Ul,’",u,) T and A(A) is the matrix

(bo ao)
b

(4.10) A(A)

-b

(bo+b-a)
-b (b + b a2)

The matrix coefficients here are

(4.11)

--bE

(bn_2+bn_-a._)
bn_

h2 hao(Aao(A -- qo(A +
/3o(A

Po(A ),

h 2 hal(A
a,,(h) =-- q,,(A)- -(i p,,(h),

a,(A) hEq,(A) for 1 _-< _-< n 1,

b,(A) p,+l/2(A) for 0_--< _--< n 1.
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Recall that we have assumed (for i=0, 1) that either fli(h)=0, or/3i(h) >0. If
/3o(h) 0, then Uo 0 and the zeroth row and column in A(A) are omitted. If ill(A) 0,
then u, =0 and the nth row and column are omitted. Thus A(A) is an m x m matrix,
where m can be n- 1, n or n + 1. We will continue to confine our calculations to the
generic case/3i(h)>0, for i=0, 1. In this case, A(A) is an (n+l)x(n+l) matrix of
the form (3.1), where the first row and column are indexed by =0 instead of 1.
The term bo in (3.1) corresponds to a term b_l in (4.10), and b_l b, =0 in (4.10).

The assumptions after (4.1) imply that the ai(h and bj(h are continuous functions,
and bj(h > 0. If the assumptions (1)-(4) in Theorem D are satisfied, then the functions
ai(h) are strictly increasing and the bg(h) are nonincreasing. Therefore we may apply
Theorems 3.1, 3.2, and 3.4 to A(A). We will now verify that assumptions (6) or (7) in
Theorem D enable us to apply Theorem 3.3, and if we also assume condition (5) in
Theorem D, then we may apply Theorem 3.5.

LEMMA 4.1. Suppose that
(1) p(a, A)ao(A)/flo(h) is a nondecreasingfunction of A;
(2) p b, h a h / [31 (1 is a nonincreasing function of A.

Furthermore, assume that either
(3) lima_,A, q*(h)/p,(h) -o; or
(4) There is a number A+ in (A1, A2), such that ao(h+)flo(h+) <- 0, al(h+)fll(A+) 0,

and q*(h+) =< O.
Then there is a number h + such that a(h+)_<-O, for 0<- i<-n. (If (4) applies, then

X+=+.)
Proof. Suppose that condition (3) applies. Then limx-.A, q*(A)/p.(h)=-, and

by condition (ii) after (4.1), p.(A)=> k> 0. This implies that limx_A, q*(h)=--. For
1 --< <-- n 1, ai(h) h2q(h .h2q*(h ). Therefore a(h < 0, for h near A1,1 =< -< n 1.
Concerning

h2 hao(A
Po(3, ),ao(h - qo(h +

flo(h

we see condition (1) implies that, for A < A < ho,

h 2

ao(A) -<-- qo(A) + hco(Ao) h E hao(Ao)
flo(ho)

Po(ho) <-- q*(A)+ flo(ho------- Po(ho).

Since limx_.A, q*(A)=--c, it follows that ao(A)< 0, for A near A. Similarly, for

conditions (2) and (3) imply that a, (A)< 0, for A near A.
Now suppose that condition (4) applies. Then, for 1 =< <- n 1, a(A+) h2q(A+) -<_

h2q*(A+) <= 0. Since ao(A+)/3o(A+) =< 0 and po(A) > 0,

h2

ao(A+)=-qo(A+)+
hao(A+) h2 h2

flo(h+)
P(h+) <=- q(h+) <=- q*(h+) <=0"

Similarly,

h2

a., (A+) -- q. (A+)
hal(A+) h2

fl,(A+) P"(A+)--<--- q*(A+) =<0"
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LEMMA 4.2. Assume conditions (1), (2) in Lemma 4.1 and

(3) lim q.(A)/p*(A) .
AA

Then limx-A2 ai(A)=c, for O<-- i<--_n.

Proof. Since p*(A _-> k > 0, condition (3) implies that limx_A2 q.(A c. For 1 _--<

=< n 1, ai(A h2qi(A >= h2q,(A ). Therefore lim_.A a(A , for 1 --< _<-- n 1. Next,
consider

h2 hao(A
ao(A - qo(A +

flo(A
Po(A ).

Because of condition (1),
h2 hao(Ao)

ao(h ->_ -- qo(A + /3o(ho-- Po(,o), for ho < h < A2.

Therefore lima_A ao(h o. Similarly, condition (2) implies that lim
_

a, (h)

We can now use Theorems 3.1-3.5 to show that Sturm sequences can be applied
to the finite difference matrix A(A) in (4.10), for the Sturm-Liouville problem (4.1).
We will use our usual notation: S(A) is the ith principal minor of A(A); So(h)= 1;
c(h) is the number of sign changes in the sequence So(A), S1(, )," ", Sn+l(/) after
the. zero terms have been omitted.

THEOREM 4.1. Let A(A) be the finite difference matrix in (4.10). Suppose that
conditions (1)-(4) in Theorem D are satisfied. Then

(a) For any numbers h’ < h" in (A1, A2), det [A(A)] has exactly c(h") c(A’)
different zeros in the interval [h’, h");

(b) The zeros of Si(h and Si_(h are interlaced, for 1 <- <- n + 1.

If (4.1) also satisfies either (6) or (7) in Theorem D, then
(c) For any ho in (A1, A2), det [A(A )] has exactly C(ho) different zeros in the interval

(A, Xo).
If (4.1) satisfies conditions (1)-(5) and either (6) or (7) in Theorem D, then

(d) det [A(A)] has exactly n + 1 different zeros in (A1, A_).
Remarks. (1) Theorem 4.1 has been stated for the generic case, where/3o()t) > 0,

/3(h)>0, and A(A) has size (n+l)x(n+l). It is also valid in case one or both
functions flo(A), /3(A) are identically zero. In these cases, A(A) has size n x n or
(n- 1) x (n- 1).

(2) Theorem 4.1 allows us to use the bisection method with Sturm sequences to
find the kth eigenvalue of the finite difference matrix A(A). This in turn provides a
method for approximating the kth eigenvalue of the Sturm-Liouville problem (4.1).

(3) If we interchange the words "increasing" and "decreasing" in Theorem D,
we can prove another version of Theorem 4.1 (analogous to Theorem 3.2’ in 3). This
kind of Sturm-Liouville problem occurs in physical applications. For example, the
equation

(o u(x)) +
c(x)2 (w_O(x))2 u 0 for0<x=<d,

(4.12)
u(O)=O=u’(d)

occurs in acoustic problems (see Porter and Reiss [8], [9]).
Acknowledgments. I am grateful to Ivo Babuka for his encouragement, and for

many helpful conversations. I would also like to thank the referee, whose comments
led to a simplification of Theorem 4.1.
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ON THE CONDITIONING OF MULTIPOINT AND
INTEGRAL BOUNDARY VALUE PROBLEMS*

F. R. DE HOOG" AND R. M. M. MATTHEIJ:

Abstract. Linear multipoint boundary value problems are investigated from the point of view of the
condition number and properties of the fundamental solution. It is found that when the condition number
is not large, the solution space is polychotomic. On the other hand, if the solution space is polychotomic
then there exist boundary conditions such that the associated boundary value problem is well conditioned.

Key words, boundary value problem, conditioning, Green function, integral conditions

AMS(MOS) subject classifications. 34B10, 65L10

1. Introduction. Consider a system of first-order ordinary differential equations

(1.1) y := y’-Ay =f, O< < 1

where A LT"(0, 1) and f6 L’(0, 1). We are interested in the solution of (1.1) that
satisfies the multipoint boundary condition (BC)

N

(1.2) Y := E niy(ti) b.
i=1

Here, 0 tl <" < tN 1 and the matrices B nn, k 1, , N, have been scaled
so that, for instance,

N

(1.3) BiBf L
i=1

The restriction tl 0, tN 1 has been introduced for notational convenience and
is not restrictive provided we allow for the possibility that B0 0 and Bu 0.

One of the simplest examples of a multipoint boundary value problem is that of
a dynamical system with n states which are observed at different times. Further examples
and a description of numerical schemes for the solution of such equations may be
found in [12], [1], and [11].

From the theory of boundary value problems, (1.1), (1.2) has a unique solution
if Y is nonsingular for any fundamental solution Y of (see, for example, Keller
[8]). In the sequel we assume this is the case. Then, given any fundamental solution
Y of (1.1), we may write the solution of (1.1), (1.2) as

(1.4) y(t)=(t)b+ G(t, s)f(s) ds, 0<= t<= 1

where

(1.Sa) (t) := Y(t)( y)-i

Received by the editors February 27, 1987; accepted for publication (in revised form) May 3, 1988.
t CSIRO, Division of Mathematics and Statistics, P.O. Box 1965, Canberra ACT 2601, Australia.
$ Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box

513, 5600 MB Eindhoven, the Netherlands.
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and

(1.5b)

k

t) E BidP( tj)dp-l(S), tk < S < tk+l, > s,
i=l

G(t, s)=
dP(t) BidP(t)dP-(s), tk<S<tk+l, t<s.

i=k+l

The function G is the Green function associated with (1.1), (1.2).
We can now use (1.4) to examine the conditioning of (1.1), (1.2). Let l" [denote

the usual Euclidean norm in R and define

Ilull:=suplu(t)l, u [t(0, 1)3

Ilu[I,- lu(t)l dt, ue[L,(O, 1)1".

Then it follows from (1.3) that

(1.6)
where

(1.7a)

and

(1.7b)

:- sup la(t, s)l
tS

/3 := sup I(t)l.

The quantities a, /3 defined by (1.7) serve quite well as condition numbers for the
boundary value problem in the sense that they give a measure for the sensitivity of
(1.1), (1.2) to changes in the data. Consequently, if a or/3 is large, we may expect to
have difficulties in obtaining an accurate numerical approximation to the solution of
(1.1), (1.2).

If a is of moderate size, the solution space of (1.1) has properties that can (and
should) be used in the construction of algorithms for calculating an approximate
solution of (1.1), (1.2). For the two-point case (i.e., N 2), de Hoog and Mattheij [5],
[6] have shown that the solution space is dichotomic when a is not too large. A
dichotomic solution space (see 4 for a more detailed discussion of dichotomy)
essentially means that nonincreasing modes of the solution space can be controlled
by boundary conditions imposed on the left while nondecreasing modes can be
controlled by boundary conditions imposed on the right. This concept is the basis for
algorithms using decoupling ideas (see, for example, [10], [11]). The aim of this paper
is to generalize the results of [5], [6] to (1.1), (1.2) with N_-> 2. In this case the notion
of dichotomy has to be generalized, and it turns out that, for well-conditioned problems,
the solution space consists of modes that can be controlled at one of the points
t,..., tN (see 4). This has allowed us to generalize the ideas of decoupling to
multipoint problems, but that is discussed elsewhere [7].

In general we may say that if N> n there is a redundancy in the number of
conditions involved. It is therefore crucial to pick precisely n appropriate points from
which modes are actually controlled by suitable conditions. It is quite natural to
consider then a limit case of multipoint BC, viz., an integral condition (which
incidentally generalizes two and multipoint conditions in an obvious way), so

(1.8) y := B(r)y(r) dr= b.
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Such BC arise directly when Lp norms are used to scale the solution (possibly after
linearization) as in eigenvalue problems.

We may treat the (discrete) multipoint case separately from (1.8). However, as it
turns out, it is possible to construct a general mechanism that handles the integral BC
as well. The price to be paid for this is that our proofs will be based on functional
analytic arguments and thus are less constructive than could be given for the discrete
case. The reward though is that we have been able to get sharp bounds in our estimates,
sharpening even the bounds given for the two-point case in [6].

2. Notation and assumptions. In this section we review some basic results that we
need later in our analysis. For some general references regarding Green functions we
may consult, e.g., [2] and [9].

2.1. Boundary conditions and their normalization. Consider the general boundary
condition (BC):

(2.1) gy b

where 3 is a bounded linear operator from L’,I(0, 1) to R". Note that this includes
the BC of type (1.2) and (1.8) as well. By L]’,(0, 1) we mean those functions the first
derivative of which is in L]’(0, 1). We introduce the norm

Ilull: max lu(t)l, u t’,l(0, 1)
o<=t<_l

where

2

i=1

For any a e N", a rN is a linear functional from L’,[O, 1] to N. We define

Ilall:: sup laul
[lull 

p():= max

p,():= min
a

LZMMa 2.1. Let 0<p()<. en, there exists a matrix C such that

1

and

let

p,,(C)>-_
p’(E)

VE "’.
pl(E)

Proof If p,()= O, then the result is trivial. We therefore assume p,()> 0 and

={E t""Ip,(E)= I}.
Since p,(E) is continuous in E and is closed and bounded, it follows that there
is a matrix C such that

This is equivalent to the statement of the lemma.
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This now gives us the possibility of scaling the BC, cf. (1.3), in a meaningful way.
Assumption 2.1. In the sequel, we shall assume that the BC (2.1) has been scaled

so that

(2.2a) p J 1

and

(2.2b) pn()>pn(E)/p(E) VEa.
In addition to Assumption 2.1 we have the following assumption.
Assumption 2.2. Let (1.1), (2.1) have a solution for everyf L’(0, 1) and bRn.

n (0, 1) is the solution ofThen, JY R is nonsingular, where Y --,1,1

(2.3a) Y 0, Y(0) F

and F n is nonsingular.
On defining

(2.3b) (t) := Y(t)(Y)-,
we can write any function y L’.I(0, 1) as

y= y+(I-)y= y/ (y),(2.4)

where

(2.5a) y := (y),

(2.5b) cf:= (t, s)f(s) ds,

and is the Green function defined by

(2.6a)

with

f L’(O, 1)

(t, s) (t){n(t, s) (/-/( , s))}-(s)

I, t> s,
(2.6b) H(t, s)

0, < s

(cf. the special case (1.4), where is given by (1.2)).
Remark 2.1. The operator J in the term J(H(., s)) above should be interpreted

as an extension of J to an operator from Lo(0, 1) to Rn. Note however that a sensible
extension of to Lo(0, 1) is assured by the Hahn-Banach theorem.

Remark 2.2. is a projection from L’,(0, 1) onto the solution space { Yala }.
Given such a projection , we can define a linear operator

=Cy-

where C "" is a scaling matrix chosen so that (1.1), (2.2a), and (2.2b) hold. Lemma
2.1 ensures the existence of such a matrix.

Remark 2.3. It is easy to verify that the Green function has the form

(2.7) (t, sl={Y(t)(I-E(sl)y-l(s), t>s,
-Y(t)(E(s))Y-(s), t<s

where E L""(0, 1). Conversely, given a function of the form (2.7), we have

(., s)f(s) ds =f, fe L’i(O, 1).
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In addition, if we define

(y)(t):=y(t)- g(t, s)(y)(s) ds,

then

(y)(t)= y(t)- Y(t) y-l(s)(..Ty)(s) ds+ Y(t) E(s) Y-(s)(..Ty)(s) as

Y(t) Y-l(0)y(0)+ E(s)y-l(s)(Ty)(s) as

We can easily verify that is a projection. Thus, 3 defined by

y:- c g-(0y(0l+ (s g-(s((sll s

where C e N is a scaling matrix chosen so that (2.2a), (2.2b) holds, gives a bounded
linear operator for which is the associated Green function... ee’le. Let be a normed linear space of dimension k with norm
denoted by . and let * be the space of all linear functionals from N.

Define a norm on * by

y*(x
(2.8) Ily*ll* sup, y* e *.

Ilxll
DEFIXO 2.1. A bounda of is any set___

{y* 7/’* IIIY* * --< 1 }

where

Hence, on taking norms

u I(t, )1.

such that

Ilxll sup y*(x) x r.
y*e

LEaMA 2.2 (for Auerbach’s lemma see [4, Lemma 4]). If is a closed boundary
of V" then there exist y* , yj 7/’; i, j 1,. , k such that

y*,(y) ,, Ily,*ll*-- 1, Ilyll-" 1, i,j 1,’’’, k.

Since {y* V’* Ily*ll*--< 1} is a closed boundary, Corollary 2.1 follows, immediately.
COROLLAIV 2.1. There exist y* V’*, y ; i, j 1,. , k such that

y*(y) a,, Ily,*ll* 1, Ily 1, i,j 1,..., k.

3. Conditioning of differential equations. In this section we consider the relation
between a and/3 and the effect of the normalization of the BC as in Assumption 2.1.
Recall that for y e L’.(0, 1) (cf. (2.4))

y(t)=.(t)dy+ c(t, s)(.Ty)(s) as.
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In addition to a and/3, it is also useful to consider. :- y(3y)-l..

Proof. The result follows immediately from the definition of pl() and
p.().

LEMMA 3.2. Let be a linear operator from L,I(0 1) to R", and let be the
constant associated with and the differential equation (1.1). en,

(1 + II ll ) , wher Y= Y(Y)-
oofi Let

Y(Y)- and f:= (.,s)f(s) ds,

where is defined similarly to in (2.6a), i.e., replaced by . Clearly, Y(Y)-
and consequently . That is, f (I-) and hence

us, (1 + I1 11 ) .
It is clear that the result of Lemmas 3.1 and 3.2 can be combined to give

& (1 +pl())a.
Since it has been assumed that (2.2a), (2.2b) hold, we obtain the estimate

(3.1) k (l+)a.
Note, however, that a and [[[[ are independent of the scaling (2.2a), (2.2b) but that
p(), p,(), and fl are not. Therefore we examine some of the ramifications of
Assumption 2.1.

LEMMA 3.3. p,() n-.
oof Let

={ala"}.
That is, are the linear functionals of the form a r. Since I, dim ()= n. For, define

Ilell sup
’y

o//. equipped with the norm I1" is an n-dimensional normed space. From Auerbach’s
theorem (Corollary 2.1), there exist ’ o//.., ’i e off.; i,j 1,. , n such that

ej" (i) ij, Ile;’ll*-Ile, ll- 1, i,j 1,..., n.

Clearly, for some E E R"",

Furthermore,

a rEJ aii
i=l

Va=(al,." ",a,)rER".
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Thus, p,(E) >- 1//-ff. In addition,

<--
i=1

Thus, o(EN)Nn/, and hence from (2.2b)

p,()P’(E)n-"
p(E)

For boundary conditions of the form (1.2) we can obtain somewhat sharper estimates.
LMMA 3.4. For given by (1.2) and satisfying (1.1), (2.1), we have

o()

where N1 is the number of nontrivial matrices B in (1.2).
Proo Without loss of generality, we take N N

N

llaTEI Z IBEral
i=1

i=1

N 1/2

N1/ E BiBfE T lal.
i=1

N BBErl/ On the other hand,

IlaEll Z ]BEal
i=1

e aTE E B,BEra la E Z B,BET
i=1 i=1

Thus, p.(EN) 1/(E E, B,BEr)-’I’/. Now if we take E (E,, B,B)-’/, then,
from (.b,

For an impoant class ofboundary conditions, the bound in Lemma 3.4 is attained.
LMMa 3.5. Let be given by (1.2),

N

2 rank (B)= n
i=1

and N be the number of nontrivial matrices B in (1.2). en,
()

< N;/.

In addition, (2.2a), (2.2b) hold if and only if
N

i=1

oo Let us assume without loss of generality that N

BBii 2
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and

W 1, wk =sign TIk Bk wiBi’oi k 2,..., N.
i=l

Now,

p,() max

E wiBiTli E "rl B Bii i
i=1 i=1 i=1

This result holds for all singular values , and we may therefore take [B[. Then
pl() (Ei=

In addition, for # O,

O(N) min
al k min

Ckn E,=, aTB,
laTBwI

Note that the last equality is not valid ifE rank (B) > n. Nor is it valid for an arbitrary
vector k. Thus,

k

P,()- (E,=, IBil)’/= N-’/’

which proves the first pa of the lemma.
Now let (2.2a), (2.2b) hold. From Lemma 3.4 and the result above

k N-l/2 IB,
i=1

Since, is an arbitrary singular value, all the singular values are equal, and using
(2.2a) we obtain that

N BBy N-t Then, as previously,Finally, let E=

o()e 1 and 0(N)N N/ BB 1.
i=1 i=1

Thus, O(N)= 1. In addition, as in Lemma 3.4,

(i=, BiBTi ) -1 1/2

N-l2

and since this is the best possible, (2.2b) holds.
We now have the tools to assess the condition numbers a,/3. Let us consider in

particular (1.1) and the multipoint BC (1.2),
N

Y Z B,y( t,),
i=1

for which we have the following useful properties"

(3.2) (t)B, G+( t, t,) G-(t, t,), i=1,...,N,
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where

(3.3a) G/(t, ti)= lim G(t, s), i= 1,..., N- 1,

(3.3b) G-(t, ti) lim G(t, s), 2,..., N,

(3.3c) G+(t, 1)=G-(t,O)=O.

THEOREM 3.1. For given by (2.1) and satisfying (2.2a), (2.2b), we have

2Nla
fl <--2Nice min (n, N1/2)

p.()-
N rank (Bi)= n,where N1 is the number ofnontrivial matrices B in (3.2). If, in addition

then <- 2Nla.
Proof Without loss of generality, we take N N. From (3.2), (3.3)

and hence
N

12) 1/2

I*(t)l --< E I*(t)B,
i=1

BiB

<=2aN/ BiB
i=1

1/2

The first result now follows from the inequality

pn J <: N1/2/ E BiBTi
i-=1

--1 1/2

1/2

and Lemmas 3.3 and 3.4.
N BiBTi)_I[1/2_N rank (Bi) n, it follows from Lemma 3.5 that }(Ei=IHowever, if Y i=

GN1/2 and this establishes the second part of the theorem. Iq

Thus, when is given by (2.1) and N is not too large, the single parameter a is
a suitable measure of the conditioning of the problem. However, as N c we cannot
bound/3 in terms of a using the results of Theorem 3.1, which suggests that in general
it is not possible to obtain such bounds. This is confirmed by the following example.

Example 3.1. Consider the problem

y y’ + ay,

;oNy= y(s) ds,

a>0.

for which c 1,/3 a(1 e-a) and pl() 1. Clearly,/3 becomes unbounded as a
Thus, in general both a and need to be addressed in a discussion of stability.

4. Polychotomy. For two-point boundary value problems (i.e., N-2) it has
become almost traditional to assume that the solution space

( t) {O( t)c c O"}
can be separated into a space

(t)= {O(t)Pclc"}, p2__ p

of nondecreasing solutions and a space

(t) {O(t)(I P)c c ff"}
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of nonincreasing solutions. In addition, if neither 5(t) nor @(t) is trivial (i.e., P 0, I),
it is usually assumed that the angle 0< r/(t) < r/2 between 5(t) and (t), defined by

ly(yl
cos r/(t) max

Yl’(t)’y2(t) lyl
is not too small. This has led to the following definition.

DEFINITION 4.1. The solution space is dichotomic if there exists a projector P and
a constant K such that

(4.1a) I(t)P-(s)l < , > s,

(4.1b) [dP(t)(I-P)dP-l(s)[<t, <s;
t is called the dichotomy constant.

Although a projector always exists such that (4.1) is valid for some constant
we are primarily interested in the case when is of moderate size. In fact a more
precise definition would involve the size of t as well; we do not dwell on this, however.
It turns out that dichotomy is intimately connected with the conditioning of two-point
boundary value problems. Specifically, de Hoog and Mattheij l-5], [6] have shown the
following.

THEOREM 4.1. When N 2, there exists a projector P such that (4.1) holds with
t cr +4or. Alternatively, if (4.1) holds, then there exist matrices B1, B such
that cr <-

Thus, if N 2 and a is of moderate size, the solution space is dichotomic (i.e.,
is also of moderate size). Conversely, if the solution space is dichotomic, there is a

two-point boundary value problem for which the condition number is not too large.
However, a well-conditioned multipoint problem does not necessarily have a

dichotomic solution space as can be seen from Example 4.1.
Example 4.1. Consider the problem

For this example,

and hence

y’+2A(t-1/2)y:f
y(1/2) 1.

A>O,

CI)(t) exp (-A (t 1/2)2),

y( t) di)( t) + (P( t)-l(s)f(s) as,
1/2

a=l (for allA).

Thus the problem is well conditioned but the fundamental solution now increases on
the interval 0< <1/2 and decreases on 1/2< < 1. Such behavior is quite common in
multipoint problems. Indeed, the results of de Hoog and Mattheij [5], [6] can be used
to show that there exist projectors , i= 1,. ., N-1 such that

IdP( t)i-l(s)l < , ti < s < < ti+,,

I(t)(I-i)op-l(s)l<,, ti<t<s<ti+l,

where t is of moderate size if cr is not large. Thus, on each interval t < <
1,. ., N-1 the solution space is dichotomic.
However, the examination of a number of well-conditioned multipoint problems

has suggested that additional structure is present in the solution space. This leads to
the following generalization of dichotomy.
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DEFINITION 4.2. The solution space 6e(t) is polychotomic if, for some M e N, and
0= Xl--<x2 --<’’" --<x4 1, there exist projectors Pk, k= 1,’’’, M and a constant
such that

M

E Pk I, P,P PP,
k=l

k

(4.2a) (t) Y P-l(s) < K, Xk < S < Xk/I, > S,
j=l

M

(4.2b) (t) P-I(s) <, Xk<S<Xk+, t<s.
j=k+l

In 5 we show that the concept of polychotomy is closely related to the condition-
ing of multipoint boundary value problems in the sense that will be of moderate
size when a is not too large. It turns out that this relationship can be exploited in the
construction of efficient numerical schemes for the solution of (1.1), (1.2); this is
discussed in detail in [7].

5. Bounds for polychotomy. In this section we show how the condition number
can be used to obtain bounds for K. Initially we consider separable boundary conditions.

5.1. Separable boundary conditions.
DEFINITION 5.1. The boundary condition (1.2) is called separable if

N

Y rank (Bi)= n.
i=1

Thus for separable boundary conditions, the solution space consists of a number of
modes each ofwhich is controlled by a condition at one ofthe points when rank (Bi) 0.

We shall see that when the boundary condition (1.2) is separable, the solution
space is polychotomic with constant . Before we can show this, however, some
preliminary results are required.

LEMMA 5.1. If Ck R xn, k 1, , N
N N

Ck=I and rank(Ck) =n,
k=l k=l

then Ck, k- 1,..., N are projectors (i.e., CiC CCi 6ijC).
Proof The result follows from the arguments used in [6, Thm. 3.2].
LEMMA 5.2. For Ek R"", k= 1,’’’, N, let

N N

Ek I, Y rank (Ek)= n,
k=l k=l

and define

Y(t) kEkY-(s), t<s<ti+, t>s,

G(t,s)=
N

-Y(t) k=i+l EkY I(S)’ ti<s<ti+l, t<s,

where Y is a fundamental solution of (1.1). Then there exists a boundary condition

N

(5.1) Y:= 2 By(ti)
i=1
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satisfying rank (/i) rank (Ei) and

N

E iJTi N-1I
i=1

such that G is the Green function associated with (1.1), (5.1) and NI is the number of
nontrivial matrices

Proof Consider the LQT" decomposition

[El Y-I(t)IE2 Y-l(t2)]""" IENY-(tN)] LQr

where LR"n is lower triangular and nonsingular and QRN+I).. is orthogonal
(i.e., QrQ I). Now define B, Rn., k 1,..., N by

If we define

(t) := Y(t)(Y)-1,
we see that (t)= Y(t)L. Then it is easy to verify that t is the Green function
associated with (1.1), (5.1), viz.,

G(t,s)=

K

P(t) E ido(ti)do-l(s), > S,
i=1

N

--(t) E JiO(ti)o-l(s), t<S
i=k+l

can be identified with (t, s). El
The relationship between polychotomy and the condition number for separable

boundary conditions is now straightforward. Specifically we have the following
theorem.

THEOREM 5.1. If the boundary condition (1.2), is separable, then the solution space
is polychotomic with K <- t.

Conversely, if the solution space of (1.1) is polychotomic with constant , then there
exists a separable boundary condition (1.2), satisfying Assumption 2.1, such that a <-.

Proof If the boundary condition (1.2) is separable

and

Thus

and from Lemma 5.1,

N

E rank (Bi) n
i--1

N

E B,O(t,)= I (cf. (2.3b)).
i=1

N

E rank (BidO (ti)) n
i=1

Pi Bi( ti), i= 1," ", N

are projectors. On substituting for Pi in the Green function (1.5) and comparing the
resulting expression with the definition of polychotomy (see Definition 5.1), we find
that (4.2) holds with r a, M N and x ts.
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If on the other hand the solution is polychotomic, then

where

and

Y(t) PY-(s),

G(t,s)=l i=1M
l-Y(t),/P,Y-(s),

Xk S < Xk+1,

Xk S Xk+

M

E P, I, P,P PP, ,P.
i=1

t> s,

t<s

with

S= { Ya a a"}

Ily Ily +, y 5.

Clearly, 5 equipped with the norm I1" is a normed space of dimension n. In addition,

={y*6e*ly*(y)=cTy(t), I+1=1, 0_-<t_-<l

is a closed boundary for . Hence, from Auerbach’s lemma (Lemma 2.2) there exist

Y e , Yi e ; i,j 1,. ., n such that

Y]’(Y,) ,j, Ilyll*- 1, IlY, llo- 1, i,j= 1,’’’, n.

That is, there exist cjR’, Ic[=l, points t with 0<-t-<l, j=l,...,n and yi5,
i= 1,. ., n such that

(5.2) cy, (tj) o,
Furthermore,

and hence

(5.3)
Let

Thus,

c y t

cSc=0 ifi#jand t=tj.

y)( t) := y,( t)c y(
i=1

i=1

5.2. General boundary condition. We again turn to the general BC (2.1) and show
how we can select appropriate separable BC from them; this is based on the theory
given in 2.

Let

But from Lemmas 5.2 and 3.5 there exists a separable boundary condition of the form
(1.2) which satisfies Assumption 2.1 and is such that G is the Green function associated
with (1.1), (1.2) when N M and t x. [-!
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Hence

and, as in Lemma 3.2, we find that

In addition, we have

where

=< (n+ 1)c.

(5.4)
N

Y:= E Jy(t,),
i=1

(5.5)

IlB N-/ C - kth position,
0

and N is the number of distinct points in the set {t}. From (5.2), (5.3)

k=l

and hence from Lemma 3.5, the boundary ondition B defined by (5.5), which is dearl
separable, satisfies (2.2a), (2.2b). Finally from (5.2), (5.5)

I( t)[ Nll/2n 1/2.

Thus, we have shown the following theorem.
THEOREM 5.2. For a general BC (2.1) we can construct a separable BC of the

form y :i= iy(ti), with ti [0, 1], such that satisfies (2.2a) and (2.2b) and for
which (cf. (1.7))

: sup [(t)l n, :supl(s,t)[(nl).,
COROLLARY 5.1. If the BVP (1.1), (2.1) has a condition number a, then the solution

space is polychotomic with

(n+l).

Note that the result of this corollary is somewhat different from Theorem 3.16 of
[6], where bounds are derived for the two-point case. For large a we may therefore
say that this more general result is sharper, though not constructive.
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THE BOHL TRANSFORMATION AND
OSCILLATION OF LINEAR DIFFERENTIAL SYSTEMS*

STUART GOFF’ AND DONALD F. ST. MARY:

Abstract. The Bohl transformation is a nonlinear transformation that, like the Riccati transformation,
relates linear and nonlinear differential equations. Recently, we have extended that transformation to
differential systems. In this paper the utility of the transformation for extending scalar oscillation results to
linear differential systems is demonstrated.

Key words, oscillation, linear differential systems, nonlinear transformation

AMS(MOS) subject classification. 34C10, 34C20

1. Introduction. The use of transformations in studying qualitative properties of
linear differential systems has proven most effective. Probably the best-known such
transformation is the Riccati transformation, which has been used in numerous ways.
Another example is the Priifer or generalized polar coordinate transformation, which
has been employed most successfully in the study of eigenvalue problems and is used
in the current development. In [6], [7], the authors were successful in extending the
Bohl transformation to systems of differential equations. In this paper we shall demon-
strate the use of the Bohl transformation in establishing oscillation criteria for the
self-adjoint differential system

(1) X"+P(t)X=O.

In general the Bohl transformation can be described as follows: for Xl(t) and X2(t)
solutions of (1) on [a, oo) satisfying the initial conditions XI(a)=X(a)=E and
X(a) X2(a) =0, E the n x n identity matrix, set V(t)=[X(t)+ X(t)]/2, then V(t)
is the Bohl transformation of the pair Xl(t), X2(t) and satisfies

(2) V"+ P(t) V V-3

on [a, oo). Equation (2) is the Bohl differential system corresponding to (1).
In [7] it is established that, under appropriate hypotheses on P, system (2) has a

positive definite Hermitian solution on a, oo) satisfying V(a)= E, V’(a)= 0. Further-
more, it is shown that if V(t) is a positive definite Hermitian solution of (2) on [a,
satisfying V(a)= E, V’(a) =0, then Xl(t) V(t)C(t; a, V-2(t)), X2(t)
V(t)S(t; a, V-2(t)) are conjoined solutions of (1) on [a, oo) whose Wronskian is E
where C(t; a, Q(t)) and S(t; a, Q(t)) are the matrix analogues of the sine and cosine
functions, respectively. These matrix trigonometric functions have been developed in
the context of studying the generalized polar coordinate transformation. See, e.g., 1 ],
[3], and [12].

The Bohl transformation is established in [7] under the assumption that P(t) is
an n x n functionally commutative Hermitian matrix the elements of which are con-
tinuous complex-valued functions of a real variable [a, oo). To say P(t) is functionally
commutative on [a, oo) means that P(s)P(t)=P(t)P(s), for all s, t[a, oo).

* Received by the editors October 1, 1986; accepted for publication (in revised form) April 26, 1988.
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For our purposes a solution of (1) is an n x n matrix function, the elements of
which are twice continuously ditterentiable, which satisfies (1) on [a, o). For the
discussion of the oscillatory behavior of solutions of (1), it is necessary to restrict our
attention to the class of solutions called conjoined. A solution X of (1) defined on an
interval ! is said to be conjoined if X is not identically singular on any subinterval of
I and X satisfies

X*( t)X’( t) X’*( t)X( t)
on /. The system (1) is said to be oscillatory on [a, ) if there exists a conjoined
solution X(t) for which there is a sequence {tj}, tj, such that det X(tj)=0,
j= 1,2,.... It follows from the Sturm-type separation theorem [9] that if (1) is
oscillatory then every conjoined solution is singular on some sequence { t}, j o. Thus,
(1) is nonoscillatory if there exists a conjoined solution X(t) for which det X(t) 0
for > to > a, for some to.

2. Oscillation via the Bohl transformation. In [7], with P(t) as described above,
we have established an oscillation theorem that is one of the central elements to be
used in the further development of the theory. For purposes of convenience we state
it as a lemma.

LZMMA 1. Let V(t) be a positive definite Hermitian solution of (2) on [a, oo) for
which V(a)= E, V’(a) =0. Then (1) is oscillatory if and only if tr [V-2(t)] dt=o.

To continue our discussion of oscillation we further require that P(t) is analytic
on [a, ). When we say a matrix M(t) is analytic on an interval/, we mean that for
every to /, each element of M(t) (and thus M(t) itself) can be represented as a Taylor
series centered at to converging in some neighborhood of to.

Some properties of analytic Hermitian matrices follow. A proof of Lemma 2 may
be found in [14, pp. 36-45].

LEMMA 2. Let M( t) be an n n analytic Hermitian matrix function on L Then for
1,. , n eigenvalues Ai(t) (perhaps repeated), and an orthonormal set ofeigenvectors

zi(t) and eigenprojections Gi(t) (perhaps repeated) for M(t) can be chosen such that
A (t), zi (t), and Gi (t) are analytic on I.

LEMMA 3. If M(t) is an analytic, Hermitian, functionally commutative matrix on
I, then M(t)M’(t)= M’(t)M(t) on I.

Proof M(s)M(t)= M(t)M(s) and so M(s)M’(t)= M’(t)M(s) for all s, L
Thus, when we let s t, the result follows. I]

If A(t) and A(t) are analytic eigenvalues of M(t) on /, then we say that Ai(t)
and A(t) are distinct if A(t) Aj(t) on L Because A(t) and Aj(t) are analytic, it is
clear that if they are distinct on I, then they must also be distinct on every subinterval
of/. We do allow for the possibility that A(t)= A(t) for some /, but this will be
true only on a set of isolated points.

The next lemma is an immediate consequence of the Spectral Representation
Theorem (see, e.g., [10, p. 175]), the previous two lemmas, and a result in [5, p. 38]
which establishes that the eigenprojections are constant.

LEMMA 4. Let M( t) be an analytic, Hermitian, functionally commutative matrix on
I, and let r be the number of distinct analytic eigenvalues of M(t). Then, M(t)=
"i=1 A(t)Gi, where the analytic eigenprojections G are constant Hermitian matrices for
which G G, GG O if j and ,= G, E.

LEMMA 5. If M(t) is an analytic, Hermitian, fuhctionally commutative matrix on
I, then M(t) may be diagonalized by a constant unitary matrix.

Proof. By Lemma 3, M(t) commutes with its derivative and thus [5, p. 37] each
of the eigenspaces of the analytic eigenvalues of M(t) has a constant basis. Hence,
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an orthonormal set of constant eigenvectors for M(t) may be found. Let the matrix
H be such that its columns are these constant eigenvectors. Then H*M(t)H Q(t)
is a diagonal matrix consisting of the analytic eigenvalues of M(t). By construction,
H is a constant unitary matrix. [3

Our first oscillation theorem for systems will use this matrix H along with the
transformation described in the following lemma. A proof of this lemma may be found
in [15, pp. 393-394].

LEMMA 6. For R(t) and P(t) continuous Hermitian matrix functions, let H(t) be
an n x n matrix function such that H and RH’ are absolutely continuous on [a, o) and
RH’)*H H*(RH’) on a, c). Put t) H*RHand(t) H*[ RH’)’ + PH]. Then
H*[(R U’)’ + PU] (X’)’+X where U HX. Furthermore, if H is nonsingular on
a, o) then the system (RU’)’+ PU -0 is oscillatory on a, c) if and only if the system
gtX’)’ +X 0 is oscillatory on a, o).

THEOREM 7. Let P(t) be analytic, Hermitian, and functionally commutative on
[a, c). Let H be a constant unitary matrix which diagonalizes P(t) and put Q(t)=
H*P(t)H. Then (1) is oscillatory on [a, o) if and only ifX"+ Q(t)X=O is oscillatory
on [a, ).

Proof. H exists as described because of Lemma 5. Moreover, H trivially satisfies
the hypotheses of Lemma 6. In the notation of that lemma, R(t)= E and thus

H*H E since H is unitary, and H*PH Q since H’= 0. The result follows
by applying the second conclusion of Lemma 6. l-]

COROLLARY 8. Let P(t) be analytic, Hermitian, and functionally commutative on
a, o). Then, the system (1) is oscillatory on [a, o) if and only if the scalar equation
x"+ h(t)x =0 is oscillatory on [a, oo) for at least one of the analytic eigenvalues h(t) of
P(t).

Proof. Because of Lcmma 5, Theorem 7 is applicable. Since Q(t)=
diag (A(t),. ., A,(t)) where {A(t) li 1,. ., n) arc the (perhaps repeated) analytic
igcnvalues of P(t), it is easy to scc that the system X"+ Q(t)X- 0 is oscillatory on
[a, c) if and only if x"+h(t)x=O is oscillatory on [a, ) for at least one of these
eigenvalues. The result now follows from Theorem 7. [3

In Theorem 2.1 of [2] a similar result is obtained in which P(t) is assumed to be
continuous, symmetric, functionally commutative, and implicitly conservative on a, o)
(see Theorem 8 and the general conservative hypothesis on p. 108 of [4]). It is easy to
demonstrate matrices P(t) that are conservative but not analytic and vice versa, while
still satisfying the other hypotheses.

We will next concern ourselves with the extension to systems of M. Rib’s so-called
"Haupsatz" (sic) [11, p. 339]:

Let p(t) be continuous on [a, c). The scalar differential equation x"+p(t)x =0 is

oscillatory on [a, oo) if and only if there exists a C function g(t) >0 which satisfies

exp -2 gZ(s) [(g’(t) -p(t)g2(t)]dt+k ds dx=c

for every constant k.
Our integral condition will involve the solution of a certain differential system;

in the scalar case, this solution will result in the above exponential function. To this
end, define the matrix function

Q(t; g, A) gE(t) A + [(g’(s))2E g2(s)P(s)] as

where g(t)>0 is C on [a, ) and A is a constant Hermitian matrix. In addition, let
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Yg,A(t’, T) denote the solution on [a, oo) of the initial value problem

(3) Y’-Q(t;g,A)Y, Y(T)=E.

In the next lemma we list, in the context of (3), some standard properties of linear
differential systems we shall need.

LEMMA 9. For all s, t, T [a, oo) and with Yg,A as defined above:
(a) Yg,A(t; s) Yg.A(S; T) Yg,A(t; T),
(b) Yg, t) Yg,A(t; s),
(C) d/at Yg,A(S; t)] Yg.A(S; t)Q(t; g, A).
Before proceeding with the extension of the Hauptsatz to systems, let us note

some additional properties of the solutions of (1) resulting from the analyticity of
P(t). The next lemma follows from standard existence theorems (see, e.g., [8, p. 70]).

LEMMA 10. Let P(t) be analytic on [a, oo). Then every solution of (1) is analytic
on [a, oo).

In [5, p. 38] it has been shown that a Hermitian analytic matrix function that
commutes with its derivative is functionally commutative. In [7], the existence on
[a, oo) of Hermitian conjoined solutions of (1) that satisfy X’X XX’ is established.
Thus, in view of these results and the previous lemma we have the following result.

LEMMA 11. Let P( t) be analytic, Hermitian, andfunctionally commutative on a, oo).
Then, the Hermitian conjoined solutions of (1) are functionally commutative on [a, ).

LEMMA 12. If X(t) is a functionally commutative solution of (1) on [a, ), then
P(s)X(t)-X(t)P(s) for all s, te[a, o).

Proof. X(s)X(t) =X(t)X(s) leads to X"(s)X(t)=X(t)X"(s), resulting in
P(s)X(s)X(t)=X(t)P(s)X(s), and so P(s)X(t)X(s)=X(t)P(s)X(s). Since the
singularities of X(s) are isolated, the result follows.

We are now prepared to extend Rib’s Hauptsatz to systems.
THEOREM 13. Let P(t) be analytic, Hermitian, and functionally commutative on

[a, o). Then, the system (1) is oscillatory on [a, ) if and only if there exists a C
function g(t) > 0 that satisfies

(4) I tr {[ Yg,a( t; r) Y*,A( t; )]-1} dt

for some c, - [a, c) and for every n x n constant Hermitian matrix A that is a linear
combination of the eigenprojections of P(t).

Proof. Let (4) hold for c, r, A and g(t) as described and assume that (1) is
nonoscillatory on [a, c). In view of the remarks preceding Lemma 11 along with
Lemmas 10 and 11, there exists a pair Xl(t) and X(t) of functionally commutative,
analytic Hermitian conjoined solutions of (1) whose Wronskian is E, both of which
are nonsingular on some interval [to, oo). Letting X(t) denote either Xl(t) or X2(t);
we have by the Riccati transformation [13, p. 101] that (X’X-1)’+(X’X-1)2+p=o.
Multiplying this equation by g-(t), integrating from to to followed by an integration
by parts, and then completing the square, we obtain

g(t)X’(t)X-l(t) g(to)X’(to)X-l(to) [g(s)X’(s)X-l(s)-g’(s)E] ds
to

+ [(g’(s -g(se(s] s.
o

Since X is conjoined, gX’X-1 g’E is Hermitian and so its square must be nonnegative
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definite. Thus we have

(5) g2(t)X’(t)x-l(t) <- g2(to)X’(to)X-l(to)+ [(g’(s))2E-g2(s)P(s)] ds.

Let Ao be the maximum of the absolute values of the eigenvalues of the matrices
X(to)XC,l(to) for i= 1,2. Then we have g2(to)X’(to)X-l(to)<-Aog2(to)E. Now when
we let

A Aog2(to)E [(g’(s))2E g2(s)P(s)] as,

(5) yields

(6) X’(t)x-l(t) <- A + [(g’(s))2E gE(s)P(s)] ds Q( t; g, A)gE(t)
for all _-> to. In view of Lemma 4, A is a linear combination of the eigenprojections
of P. Since P is Hermitian, it is clear that A and thus Q are Hermitian. Moreover, X
is Hermitian and conjoined and so Q-X’X-1 is also Hermitian. By Lemma 12,
P(s)X(t)=X(t)P(s) and so A and thus Q also commutes with X(t). Since X and
X’ commute, it is clear that Q-X’X-1 will commute with X2. Therefore for => to,
(6) yields X’X <= QX2.

Recalling that X represents either X1 or X and defining U X2+ X22, we have
that U’= 2(XXI+X’2X)<=2QU. Since Q commutes with X and thus also X2, we
have that Q and U commute. So,
(7) U’( t) <= Q( t; g, A) U( t) / U( t)Q( t; g, A).
Multiplying (7) on the left by Yg,A(S, t), on the right by Y*g,A(S; t), rearranging the
terms, .and making use of (3) and Lemma 9(c), we obtain (d/dt)
"[Yg,a(S; t) U( t) Y*g,a(S; t)]-<_0. Therefore for any fixed T>-to and for all t>-_ T>-to
and for every s [a, ), integrating this last result from T to yields

(8) rg,A(S’, t) U(t) r*g,A(S; t) <= rg,A(S’, T) U(T) r*g,A(S’, T).
Multiplying (8) on the left by Yg,a(t; S), on the right by Y*g,a(t; S), and using Lemma
9(a) and (b), we obtain U(t) <= Y,A(t; T) U(T) Y*g,a(t’, T) and thus tr U-l(t)] =>
1//3 tr {[ Y,a(t; T) Y*g,a( t; T)]-I}, where/3 > 0 is the maximum eigenvalue of U(T) > 0.
Hence, for any b T, oo),

(9) tr U-(t)] dt

With r as described in the statement of the theorem, Lemma 9(a) yields

Yg,a(t’, 7")Y*g,a(t’, 7")= Yg,a(t’, T)Yg,a( T; 7")Y*g,a( T; 7")Y*g,a(t’, T)
>- t Yg,A( t; T) Y*g,A( t; T)

where c > 0 is the minimum eigenvalue of Yg,A(T; 7") *Yg,A(T; 7") > 0. So, (9) leads to

tr U-l(t)] dt >- - tr {[ Y,a(t; 7") Y*,(

and thus with c as defined in the statement of the theorem, we have

tr U-l(t)] dt _-> tr {[ Y,a(t; 7") Y*,A(t, 7")]-1} dt

+ tr {[ Yg,A(t; 7") Y*g,A(t; 7")]--1} dt
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Because of the hypothesis (4), we have that b tr [ U-l(t)] dt . Since U(t) as defined
is simply V2(t), where V(t) is a positive definite Hermitian solution of (2), we may
conclude from Lemma 1 that (1) is in fact oscillatory on [a, o).

To prove the converse, suppose the contrary; then for any choice of a C function
g(t) > 0 and c, z [a, ) there exist scalar constants kl,- , kr with A i=1 kiG such
that

(10) tr {[ Yg,A( t; 7") Y*g,A( t, 7")]-1} at < o.

Because of Lemma 4, A is a Hermitian constant matrix and also Q(t; g, A) may
be written as Q(t; g, A) =1 qi(t; g, A)G where

qi(t; g,A)=g2(t) k,+ [(g’(s))2-A,(s)g2(s)] as

Hence, the solution, to (3) is expressible as gg,a(t’, T)-i=1GiYi,g,A(t; T) where
Y,g,a(t; T) is the solution to the initial value problem

(11) Y q,( t; g, A) Y, Y(T) E.

But for each 1,. ., r the solution to (11) is easily seen to be

Y/,g,A(t; T)=exp (f q(u; g,a) du)E,
and so

(I )(12) Yg,A(t; T)= Gi exp q,(u; g, A) du
i=1 T

Because of the properties of Gi specified in Lemma 4, using (12) we get

and thus

(I )Yg,A(t; T) Y*g,A(t; T)]-’ G, exp -2 q,(u; g, A) du
i=1 T

( I )tr[Yg,A(t; T)Y*g,A(t; T)]-= Tiexp -2 qi(u;g,A) du
i=1 T

where % tr Gi. Now % > 0 since G is idempotent, and hence from (10) we conclude
that

exp -2 q(u; g, A) du dt < c
T

for 1,. ., r. Now using Rfib’s Hauptsatz we have that x"+ A(t)x =0 is nonoscilla-
tory on [a, oo) for all 1,..., r, and so from Corollary 8 it follows that (1) is
nonoscillatory on [a, o).

It is appropriate at this juncture to look at a somewhat similar result in 16]. With
much less restrictive assumptions on P, we can obtain from the main theorem in 16]
the following.

If is some number in the interval (0, 2] and if X"+-IPX 0 is nonoscillatory
on [a,), then tr{[YB(t; 7")Y*(t; 7")]-l}dt=o, where YB(t; 7") satisfies Y’=
[B-tP(s) ds]Y, Y(7")=E and B is the specific constant matrix
(t-a)-’ Its I P(u) duds.
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If in fact P in this result is assumed to have the same properties as in Theorem
13, we note that B is Hermitian and can be written as a linear combination of the
eigenprojections of P. Now the contrapositive of the sufficiency portion of Theorem
13 yields the following corollary.

COROLLARY 14. Let P(t) be analytic, Hermitian, andfunctionally commutative on

[a, o). If (1) is nonoscillatory on [a, ), then there exists a Hermitian constant matrix
A, which is a linear combination of the eigenprojections of P such that

tr {[ YA(t; r) Y*A(t; r)]-} < DOdt

where YA(t; r) satisfies Y’=[A-ta P(s) ds]Y, Y(r)=E.
A comparison of this corollary with the result stated above from 16] when fl 1,

indicates that the corollary is not true for all such A.
For our final result, let us consider the maximum eigenvalue of P(t). For each t,

let ’max(t) maxi ,i(t) where we recall that {hi(t) li 1,. ., r} is the set of distinct
analytic eigenvalues for the analytic, Hermitian, functionally commutative matrix P(t).
We note that, in general, ’max(t) will not be one of these analytic eigenvalues.

THEOREM 15. Let P(t) be analytic, Hermitian, and functionally commutative on
[a, o). If (1) is oscillatory on [a, ), then the scalar equation X"+Amax(t)x--O is
oscillatory on [a, o).

Proof. By Corollary 8, x"+A(t)x=O is oscillatory on [a, oo) for at least one of
the analytic eigenvalues A (t) of P(t). Since A (t)=< A max(t), the result follows from the
Sturm comparison theorem. D

A similar result is attained in [15, p. 398].
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BOUNDARY LOCAL TIME AND SMALL PARAMETER
EXIT PROBLEMS WITH CHARACTERISTIC BOUNDARIES*

MARTIN V. DAY

Abstract. The exit problem for an asymptotically small random perturbation of a stable dy-
namical system x(t) in a region D is considered. The connection between the distribution of the
position of first exit and the equilibrium density of the perturbed system subject to reflection from
the boundary of D is developed. Earlier work treated the case in which x(t) enters D nontangentially.
Here the case in which x(t) is everywhere tangent to the boundary is examined. The "small-noise"
asymptotics of the boundary local time turn out to be of primary importance.

Key words, exit problem, small noise, reflecting diffusion, local time
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1. Introduction. In this paper we will extend the results of [3], which are
central to our treatment [2] of the small parameter exit problem for diffusions, to
cases in which the classical assumption (1.5) fails. Our specific assumptions are given
in 2. This introduction provides an overview.

Let D c_ ]Rd be a bounded open domain. The "exit problem" is to determine the
(weak) limit (or limit points)

lim #o (dy) --?,

where #o is the exit distribution

(1.1) #xo (dy) Pzo xe (TOD) dy]

for a diffusion x (t) whose generator in D is given by a (nondegenerate) second-order
operator

d d

(1.2) .’u(x) - E a,j(X)Ux,x q-E bi(x)ux,,
i,j--1

and where

(1.3) TOO inf(t > O" z(t)eOD}
is the first exit time from D. The cases of particular interest to us are those in which
the limiting deterministic flow

(1.4) (t) b(x(t)), x(0) xo
is in some way stable in D, with points xo near cOD being repelled deeper into the
interior of D as t increases.

In the most familiar version of this problem (1.4) is assumed to cross OD nontan-
gentially into D:

(1.5) (b(y), n(y)) < 0 Vy e OD.
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The work began while the author was visiting the Institute for Mathematics and Its Applications,
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Virginia 24061-0123.
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(Here and throughout n(y) is the unit outward normal vector at y OD.) This is
the famous problem discussed by Wentzell and Freidlin [6]. Culminating in [2], our
approach to this problem reduced it to the asymptotic evaluation of a Laplace integral
over OD. That reduction was based on an asymptotic connection [3] between the exit
measures and the equilibrium density p’(x) for x’(t). The approach was inspired by
the asymptotic calculations of Matkowsky and Schuss [12], although as noted in [2],
the connection with the equilibrium density was observed in earlier work of Y. I. Kifer.

In this paper we will develop the connection between the equilibrium density and
the exit problem in cases for which

(b(y), n(y)l 0 Vy e OD.

(See (2.9) for an additional hypothesis.) In [11] and [131 the Matkowsky and Schuss
approach is developed for two-dimensional examples of this type. Our probabilistic
development is again strongly motivated by their work.

The treatment of this paper is incomplete in that we do not include a study of
the asymptotics of pe itself. We leave that for the future. As we will see, this means
we must leave our conclusions for the exit problem in a somewhat awkward form; see
(6.2). We will, however, venture a conjecture which, if true, renders a considerable
simplification (6.4) of our conclusions.

We pointed out in [2] that the relationship between the exit measure and equilib-
rium density involved the expected "local time" of x’(t) on OD. Because it is in fact
at the heart of that relationship, we have chosen to include it explicitly in our char-
acterization of x’(t) by taking x’(t) to be the diffusion with generator ’ in D and
instantaneous conormal reflection off OD. The boundary local time occurs explicitly
as the continuous, nondecreasing process l(t) in the stochastic differential equation
characterization of the reflecting diffusion x’(t), (2.13) below. Of course, given xo D
,the presence of the reflection does not effect the exit measures #o" It does, however,
make x’(t) a process with compact state space D, so that its equilibrium density p’(x)
will exist without the modifications on Dc that were needed in [2] and [3].

The reason for the choice of conormal as the reflection direction is perhaps not
apparent in the analysis below. Indeed the results below can be generalized to any non-
tangential reflection direction. However, there are reasons for choosing the conormal
which will become apparent in subsequent work. One is that the boundary conditions
satisfied by p’(x) on OD are simpler in the conormal case, so that future study of
p(x) will be more convenient in that context. Secondly, large deviations results for
the reflected process xe(t) are simpler in the conormal case.

Section 2 presents our technical assumptions and notation. Sections 3-6 contain
the main arguments relating to the exit problem, with the more distracting technical
arguments and proofs deferred to 7-9. In 3 we will derive the "fundamental equation"
(3.7) that connects the exit measures #’ with the equilibrium density p’ via an operator
B on C(OD). In 4 we will see that the asymptotic behavior of B is given by
B e-1/B, where B is another operator on C(OD). To deduce the limit points
of #’ we need to invert B in the limiting form of the fundamental equation. Explicit
formulas for B and B- are obtained in 5.

In 6 we will exhibit the resulting formula for the limit points of #’ and conclusions
for the exit problem. Also in 6 is the conjecture regarding asymptotic behavior of p’
mentioned above. Section 7 contains some estimates that will be used in the proof of
Theorem 2.1 given in 8 and the proof of Theorem 4.1 given in 9.
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2. Assumptions and preliminaries. Here we will outline our technical as-
sumptions. First, regarding regularity of the coefficient functions and OD, we assume
the following. The ]Rd valued function b(.) is in C1, (). The dx d matrix valued func-
tion a(x) is C2’() and nonsingular everywhere in ; a(x) a(x)a(x)T. D C_ IRd
is bounded, open, connected with OD being C3. (The notation Cn,() refers to
functions which, together with all partials of order _< n, are HSlder continuous with
exponent 0 < A _< 1.)

One consequence of the above is that

(2.1) p(x) dist(x, OD)

is then C3 in a narrow (closed) strip G adjoining OD:

C {xeD" 0 <_ p(x) <_ ho}.
Several additional restrictions on ho will be imposed below to insure various properties
of G used throughout the paper. For instance, provided ho is sufficiently small, for
x G we can write

(2.2) Vp(x) -n(y(x))

where x ---, y(x) is a C mapping of G to OD with y(x) x for x OD, and n(y) is
the unit outward normal to D at y OD. Thus

(2.3) n(x) -Vp(x)

provides a C2 extension of the normal vector field from OD to G. The conormal vector
field

is thereby defined on G also.
Define the positive C(G) function a(.) by

(2.4) a(x)2 (n(x), a(x)n(x)) (n(x), ?(x)).
The following bounds will appear in our analysis:

1
(2.5) Ao -if

i,j

(2.6) A1 sup (z,a(x)z),

(2.7) a if a(x) > O.

Note that

(2.8) supc(x)2 _< A1.
G

The solution of (1.4) with x(0) xo will be denoted x(t), or x(t;xo) when
we want the dependence on the initial condition to be explicit. As indicated in the
introduction, we assume that

(b(y), n(y)) 0 V y OD.

This means that OD is an invariant set for (1.4); i.e., x(t; y) OD whenever y OD.
Our analysis depends heavily on the assumption that OD is repelling for (1.4) with
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xo in D. Specifically, we assume that there exists a positive function bl E C (OD) so
that

(2.9) lim
-1

(b(x) n(x)) bl (y)
x----y-uniformly over y OD. Using the projection y(x) G -- OD as above, we can extend

b to a strictly positive CI(G) function by

bl (x) bl (y(x)).

We can express (2.9) as

(2.10) b(x) -f(X)bl (x)n(x) q- bo(x) q- o(p(x)), as p(x) O,

where bo(x) is C(G) with (bo(x), n(x)) 0, for all x G. Provided ho is sufficiently
small,

(2.11) K inf
-(b(x), n(x))

;(z)
will be a positive constant. In particular

(2.12) (n, b) _< 0 everywhere in G.

We take (fI,-,P) to be a complete probability space with a right continuous
nondecreasing family {t}t>o of complete sub a-algebras of-. w(t) is a d-dimensional

t adapted Brownian motion.. For a given xo we take x(t) and l(t) to be the
continuous t adapted processes with l(.) [0, oo) nondecreasing and x(.) D
which satisfy

(2.13) dxe(t) b(xe(t))dt - el/2a(xe(t))dw(t) 7(xe(t))dle(t), xe(O) xo

dle(t) XOD(X(t))dl(t), l(O) O.

The existence of a unique solution pair (x (.), (.)) is demonstrated in [1] or [10]. As
is typical, we will let Pxo denote the distribution of the solution (x(.),/(.)), i.e., the
induced probability measure on

c([0, oo); c([0, [0,
The uniqueness of solutions to (2.13) implies the strong Markov property.

The exit time TOD and exit measures #o (dy) on OD are defined as in (1.3) and
(1.1) above. In addition F will denote the "inne" boundary of G and, for xoeG, vr its
hitting time:

F {xeD: p(x)= ho},
vr inf{t > 0: xe(t)eF}.

With regard to stability of (1.4) in D, the only feature that we will actually use
is the following "leveling" property, which we therefore assume:

for any compact KC_D and fEC(OD)

(2.14) sup fo f(z)#x(dz)-fo f(z)#;(dz)40 as e0.
x,yEK D D

This holds for instance if D is a domain of attraction for an isolated exponentially
stable critical point of (1.4); see [4]. Equation (2.14) will also hold for some other
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types of stability. Essentially it says that the set of (weak) limit points of tt: as e 0
is independent of xeD.

Next we want to indicate briefly how the existence of a continuous stationary
density follows from our assumptions. The results of Sato and Ueno [14] imply the
existence of a transition density pe (x; t, y) which is continuous on (0, oc) D D. The
nondegeneracy of the diffusion matrix a(.) and compactness of D imply that x’(t) is
positive recurrent, satisfying the condition (B) of Hasminskii [7, p. 118]. Theorems
4.1 and 5.1 of [7] imply that x’(t) has a unique stationary distribution, 7r’(dx). It
follows then that 7re(dx) has a continuous density p’(x) on D given by

pe(x) =/_ffp’(z; 1, x)Tre(dz).

The following properties of the nondecreasing process l’(t) can be deduced from
the fact that x(t) E D for all t _> 0 and standard features of the Brownian term in
(2.13)"

l’(t)+ a.s. ast+;

ifxoEOD, thenl’(t)>0 a.s.V t>0.

Moreover, for any T < c
T

(2.15) XOD(X(t))dt 0 a.s.

(See [1].)
(t) is called the"local time on OD" since it is a sort of spatial density for the time

spent by xe(t) on cOD, roughly analogous to the classical Brownian local time. The
following theorem tailors a statement of this fact that to our needs below. Certainly a
stronger statement is true. In particular we expect the convergence to be almost sure
since it is in the purely Brownian case; see Hsu [8]. We defer the proof to 8.

THEOREM 2.1. Let x(O) G be given any initial distribution, independent of
w(.). For any f C(OD)

limE
h0

X[O,h](p(x’(t))f(x’(t))dt E f(z’(t))dl’(t)

3. The fundamental equation for the exit measure. We will now derive
(3.7), which describes the connection between the exit measures #:(dy) and the sta-
tionary density p(x). The derivation is much the same as in [3]. Assumption (2.9)
is not used at all here, but (2.14) is fundamental. At the end of the section we will
indicate a second way to understand the equation in terms of the "boundary process"
associated with the reflecting diffusion.

The starting point is the following construction of Hasminskii [7] for the stationary
distribution 7r (dx) p(x)dx. Define a double sequence of stopping times by

TD O

and recursively for n > 1,

r inf{t > rD "x’(t) r}
r3D inf{t > r-I x’(t) e OD}.
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The nondegeneracy of a(.) implies that all of these are almost surely finite. The
Xe(TD) form a Markov chain on OD for which there is a unique stationary distri-
bution #e(dy). The stationary distribution p(x)dx is expressed in terms of # as a
(normalized) expected path integral over one "cycle" of the chain from OD at t rD
to r at t r and back to OD at t rD+1, i.e., over t e (rD, T+D 1]. Specifically in
terms of n 0,

(3.1) g(x)pe(x)dx ceE g(xe(s))ds

for any bounded measurable g on . The normalizing constant is c Eg[TD]-.
(Eg[.] means f Ex[.]#(dx).) For our purposes it is advantageous to break the cycle
into its two halves: [VD v] U ITS, TD+l]. Define the measure ,V (dz) on F by

Ae(A) P [x(Vr) E A], A c_ F measurable.

It follows that for measurable A C OD

I(A) E[Xe(TOD) e A] r #z(A)A(dz)"

The leveling assumption (2.14) implies that convergence as e 0 of u is the same as
for any #o"

LEMMA 3.1. The weak limit points, as e O, of # and #xo agree and are
independent of xo D.

Proof. If {en} is a sequence decreasing to 0, then for any xo D and f
C(OD),

fd#e fOP fd#

which converges to 0 by (2.14).
Our goal then is to identify the limit points of #e in terms of p as e $ 0. Using

the two halves of the cycle, we can rewrite (3.1) as

(3.2) /Dg(x)p(x)dx c (Eu [forr g(x(s))ds] + Ex [forD g(xe(s))ds])
Now we perform a sort of spatial differentiation in (3.2). To be precise, let f C(OD).
Extend f to f C(G), and for 0 < h < ho define

f(h)(x) h-lX[o,h](p(x))f(x).
Use this in (3.2) and pass to the limit as h 0. By virtue of the continuity of pe we
get a surface integral on the left:

(3.3) limLlhO X[O,h](p(x))f(x)ff (x)dx I(y)pe(y)dy.
D

According to Corollary 1 of [3], the second term on the right vanishes:

(3.4) limE f(h)(x())ds 0
h0
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(The notation here is slightly different from [3]; the Ae and TOD used here were denoted
by e and TD there.) The convergence of the first term on the right in (3.2) is given by
Theorem 2.1 above. We find then that for all feC(OD) the following equation holds:

(3.5) IOD f(y)pe (y)dy Ce /oD EV [fO
rr f(ze(t))dle(t)] #e(dy).

Define the "local time operator" B on C(OD) by

f(ze(t))dl’(t)]
Also define the measure on OD by

(3.6) (dy) cep (y)dy,

where c is a new normalizing constant to make e a probability measure. (We will
use c as a generic e-dependent normalizing constant; its actual value may vary from
one equation to the next.) Equation (3.5) may now be written

(3.7) fo/:, f(y)pe(dy) c" OD Be[f](y)#’(dy) VfeC(OD).

We will call (3.7) the "fundamental equation" for the exit measure because it describes
precisely the connection between #’ and p’. It is true that both #e and B are
dependent on the choice of G through the hitting times T. However, in the limit as
e 0 this dependence vanishes. (For # this is a consequence of the leveling property;
for B it follows from the asymptotic formula of the next section.) The goal of the
subsequent sections is to invert B in the limit as e 0 so that the limit points of #e
can be determined from those of ’.

There is a second way to understand our fundamental equation, based on what
is called the boundary process y’(l) associated with x’(t). Since none of our proofs
will be based on this interpretation, we will limit ourselves to a summary discussion.
(See [14] and [15] for more on the boundary process.)

The boundary process can be obtained from xe(t) by making a random time
change so that le(t) becomes the independent time parameter, rather than the
"real" time t. This is done by defining the right continuous inverse t+(/)of (t)-

+(1) sup {t > O’le(t) < l}
The boundary process is given by

(t)).
This turns out to be a right continuous strong Markov process on OD, moving only
by discontinuous jumps. Also,

form a sequence of stopping times for ye(1) (using the a-algebras t(t)) and

As before, #e is the stationary distribution for this Markov chain. We can now con-
struct a stationary distribution for y(1) analogously to (3.1):

(3.8) f(y)Pe(dy) ceEt,, f(ye(1))dl
D
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However we may check that

[/o ] ]E f(y’(1))dl Ey f(x’(t))dl’(t)

E [for Y(xe(t))dl’(t)]
B’ [/]

Thus (3.8) becomes

Yf E C(OD).

We recognize this as our fundamental equation (3.7). What we learn is that v defined
by (3.6) is in fact a stationary distribution D for ye(l), and that (3.7) can be thought
of as its construction in terms of the embedded Markov chain. We should point out
that this connection between the stationary density of a reflected diffusion and the
stationary distribution of its boundary process has been noted before by Freidlin [6,
p. 174].

4. Asymptotic evaluation of B We now consider the behavior of the bound-
ary local time operator B as e 0. The asymptotic behavior is revealed by considering
the one-dimensional process e (t) defined for 0 _< t _< Tr by

(4.1) re(t) e-1/2p(xe (t) ).
The asymptotic properties of fie(t) give a "boundary layer" description of xe(t) which
is roughly analogous to the boundary layer calculations in [12], [13]. Note that

rr inf{t > 0" xe(t) e F}
inf{t > O’p(ze(t)) ho}

(4.2)
inf{t > 0" ’e(t) (-1/2ho}
’l_12ho

where in general for el/2’e(0) p(ze(O)) < r < ho we will write

(4.3) r/ inf{t > 0" s’e(t) r}.
Using the fact that (Vp(y), r/(y)) -a(y)2 on OD, It6’s formula (see [9, p. 66]) gives

(4.4) de(t) e-1/..ep(xe(t))dt + (aTVp(xe(t)), dw(t)l + el/2a(xe(t))dle(t),
with (t) increasing only when .e (t) 0.

Now if [0, oo) and x G are variables related by " e-/2p(x), then (2.10)
implies that

(4.5)

the o(1) being uniform for ff in compact sets, as e $ 0.
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Using c(.) as in (2.4), the second term of (4.4) is of the form

(4.6) (aT (x(t))n(x(t)), dw(t)} a(x(t))d(t),
where (t) is a one-dimensional Brownian motion adapted to the t. To be precise,
given e > 0, (4.6) defines an ott adapted process (t). (To extend the definition to
t > Tr, replace xe(t) by xe(t A Tr) on both sides.) It is simple to check that (t) is
a Brownian motion using IlaTnll a and a martingale characterization, such as [9,
Thm. II-6.1]. (Although this definition of is e-dependent, we ignore this dependence
in our present heuristic discussion. For our purposes this can be justified because we
are only concerned with the distributions of e(.) and (.) below. See the paragraph
preceding Lemma 9.2 for more on this point.)

As e 0, x(.) --. x(.). (We will prove this in 9 below). Thus if x(O) y OD,
we would expect that f(t) converges in distribution to the one-dimensional reflecting
diffusion g’(t) on [0, oo) described by

1 o(4.7) d(t) b (x(t))(t)dt + a(x(t))d(t) + -a(x (t))dl(t), (0) o

(4.8) dl(t) X{o} ((t))dl(t), l(O) 0

(4.9) gc (t) b(x (t)), x (0) y,

with o ’(0) 0. As usual, this is to be solved simultaneously for the pair of
continuous processes ((t),l(t)) under the restrictions that l(t) is nondecreasing and
(t) > 0. Probabilities and expectations with respect to (4.7), (4.8), and (4.9) will be
indicated using Po,u and Eo,

Comparing the local time terms in (4.4) and (4.7), we would also expect that
e1/21"(t) converges to l(t). Moreover, (4.2) suggests that rr -, + almost surely as
e 0. Thus we anticipate that

B[f](y) E [orf(x(t))dl(t)]
e-/E I(z(t))d(e/l(t))

e-1/2Eo,y [ f(x(t))dl(t)]
Define the operator B on C(OD) by

e[II( )

Note that OD determines the solution z(t) of (4.9), which is a deterministic
trNeeto on OD. This path then determines the time dependent eoeNeients in the
equation for (t), from which we get l(t), which in turn provides a weighting of points
on o(.). Thus B[f]() is a certain integral of the values of f along the solution of
(4.9) with z(0)= .

he above considerations suggest the following result.

on OD.
A fair amount of technical work is needed to make the above discussion into a

proof of this theorem. We therefore postpone the proof until 9, so as not to interrupt
the eontinuiW of our consideration of the exit problem itself.
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5. A canonical time scale and calculation of B[f]. We will now see that a
change of variables uncouples the equations (4.7) and (4.9) and allows the derivation
of explicit formulas for B[f] and B-l If]. The idea is to select a positive function
"(.) E C(OD) and change from , t to new variables , s according to

(s) 7(x(t))(t), s a(x(u))27(x(u))2du.

In these variables (4.7) becomes

d(s) a(x(t))-2"l(x(t)) -2 [b(x(t)) + q(xo(t))_ -d /(xo(t))] (s)ds
(5.1)

1 o+d(s) + -/(x (t))a(x(t))2dl(t),

where (s) f a/(x(u))d(u) is a Brownian motion on the s time scale. We want
to choose -/(.) > 0 so that

(5.2) ’(x) 1 everywhere on OD,

or
d o (t)) +

LEMMA 5.1. There exists a unique positive function " C(OD), differentiable
along every trajectory of c b(x) on OD, satisfying (5.2).

By "differentiable along every trajectory" we mean that for every y x(0)
OD, "l(x(t)) is differentiable in t. This is weaker than saying simply that (.) is
differentiable, which may in fact be false.

Proof. Note that the change of variable Z(y) q(y)-2 makes (5.2) linear:

1 d Z(xO + bl (xO)Z(xO) o(xO) 2

2 dt

A simple integrating factor calculation shows that, for any such Z(.) and any solution
x(t) of ko b(xo) on cOD,

[/o ]/o I/oZ(x(O)) Z(x(T))exp -2 bl(X(t))dt +2 o(x(t)) 2 exp -2 bl (x(u))du dt

for all T > 0. Since b > 0 on OD, the first term vanishes as T cx, showing that Z
is given uniquely by

z(u) [/o ]exp -2 51(X(u))du dt,

where x(0) y OD. This is easily argued to be positive, continuous on OD, and
differentiable along any trajectory x(t), r

This choice of /(.) simplifies (5.1) to

1 o )2d(s) (s)ds + d(s) + -’l(x (t))c(x(t) dl(t)

It is natural to complete this new system of variables by defining a rescaled local time,

(s) "l(x(u))a(x(u))2dl(u).
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Equation (4.9) can be recast in terms of s as

(.) o() (o()),

where b is defined in cOD by
(u)(u) ,(y)u(y).

Thus in the new variables (4.7), (4.8), and (4.9) become

(5.4)

with the usual nonnegativity and nondecreasing requirements for (.) and l(.), respec-
tively.

This change of variables has accomplished two things. One is that the and x
equations are uncoupled, and the other is that the ( equation is linear with constant
coefficients. In fact, a solution is given by (t) -[z(t)[, where z(t) is the unreflected
diffusion in lR with generator 1/2 (z) 2

4- z, an (unstable) Ornstein-Uhlenbeck pro-
cess. This allows us to carry out some explicit calculations for (t). In particular the
transition density for (.) is given by

q(o; , ) [o()]-/[-(’+’)/() + -(’-’)/()],
where

0(8)--(e2s 1) 1/2.
This may be checked for instance by verifying that q is the fundamental solution of
the backward PDE associated with (.). We leave the details to the reader. We may
also cheek that (t) is nonexploding, and so is defined for all 0 _< t <

We are now in a position to derive an explicit formula for the operator B. The
first step is to express it in the new variables.

[/o ]B[f](y) Eo,y f(x(t))dl(t)

Eo - (0) y
0

where

[/o ][gl(y) Eo g(x(s; y))d(s)

(The notation x(s; y) indicates the solution of (5.3) with x(0) y). Now if y E OD
and g C(OD), then g(x(s; y)) is a bounded continuous function of s e [0, oo). We
can describe B in terms of the following operator on Cb[0, oo):

[/o ][](s) Eo ( + v)di()
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That [o] ( Cb[O, oo) follows from the explicit formula of the next lemma. is
reconstructed from ’ according to

[g](x(s; y)) [o](s), where o(.) g(x(.; y)).
LEMMA 5.2. For any E Cb[0, oo),

2 (e2V 1)_l/2dv.

Proof. The key is to calculate Eo[/(s)]. By virtue of (5.4), for (0) 0 we have

(5.5)

and so

Eo[i(s)] 2Eo [(s) foS (v)dv]
2{Eo[(s)]- Eo[(v)ldv}.

Using the density (5.5),

fo __2 fo -zl2(s) -#(s)Eo[(s)] zq(0; s, z)dz - O-e dz

Using this in (5.6), we find

2

Now one easily cheeks that O’ () 0()+ 1/0(), with 0(0) O, so that the preceding
can be rewritten as

This implies that

(5.7) Eo o(v)dl(v) - o(v)O(v)-dv

for o piecewise constant with compact support. Since o E Cb[O, oo) can be uni-
formly approximated on compacts by piecewise constant functions, and.since O(v)-1
n[0, ), (5.7) follows for all e Cb[O, ). The lemma is just (5.7) applied to a trans-
lation of .

The next lemma tells us how to invert .
LEMMA 5.3. is 1-1 on Cb[O, ). If C[0, ), then [] where
Cb [0, ) is given by

1 _/(5.8) (s) {(s) + (s + v)[1 (1 e- ]dv}.

Proof. This is essentially calculation, the principal part of which we eibit at
the outset: for all v > 0

(5.9) -Tan-l((e2(v-s) 1) 1/2) -[Sin- 0

Tan-l((e2v 1)/2) 2"
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Suppose then that e C[0, oc) and define by (5.8). Cb[0,) since

[1 (1 e-v)/] e L[0, oc). Now a change of variable and interchange of order of
integration show that

oo

’(8 + v + u)[1 (1 e-2u)-l/2ldu (e2v 1)-l/dv
2

’(s + v) (e2(v-u) 1)-1/211 (1 e-u)-l/2]dudv(.10)

e’( + v)[r-((e )/)

by the identity (g.9). Integrating by parts, this becomes

After rearrangement this reduces to -[].
All that remains is to show that is 1-1. irst suppose only Cb[0, ), and

let []. Since grows at most linearly and v. (e 1)-1/ [0, ), it
follows that ’ C[0, ) and

(e -/

Therefore

)[ (’( e-U)-l/]d+

’( + + )(" 1)-/d, [1 (1 -)]-l/d.

Calculating as in (5.10), we see that

+ )[1(1 []()’(s e-2u)-l/2]du ()

() ().
That is, if ’ e Cb[0, ) then (5.8) recovers from []. In particular, is
1-1 on { e C[0, )’’ e Cb[O, )}. To see that it must be 1-1 on all of Cb[O, ),
argue as follows. If e Cb[O, ) and [] 0, then consider

’(t) (t) e Cb[0, ) and by (S.ll)

or [] c, some constant. By what we just proved, is recovered by using c
in

1

therefore (t) ’(t) 0.
Now we can collect the implications Nr .
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THEOREM 5.1. i8 a 1-1 mapping of C(OD) into itself. If h [g] then

2 o (e2S(5.12) h(y) - g(x(s; y)) 1)-/:ds.

If h C (on) the h [g], where g C(OD) i8 given by

1 { h(xO(8;y)).[i_(i e_2s)_i/2]d8 }
In particular the range of B i8 dense in C(OD).

Proof. If g C(OD), then h [g] if and only if, for eve y on, [@],
where (s) h(x(s; y)) and (s) g(x(s; y)). Equation (5.12) follows from Lemma
5.2. Ifh 0 then 0, so by the same lemma 0, i.e., g 0 along eve
trajecto x(8) on on. Therefore g 0. That h C(OD) follows from (5.12) and
dominated convergence.

If h CI(0D) then h(x(8; y)) is bounded and continuous. Dominated conver-
gence implies that g defined by (5.13) is in fact in C(OD). That h [g] is Lemma
5.3 applied along every trajectory x(8). The final assertion follows immediately since
ca(0n) is dense in C(OD).

6. Inversion of the fundamental equation and a coecture. We can now
return to the consideration of our fundamental equation (3.7). Suppose {en} is a
sequence decreasing to 0 and that along this sequence ue- u and pe- p (weakly).
Passing to the limit in (3.7) using Theorem 4.1, we obtain, for some constant c,

This is equivalent to

(6.1) a2du CD[g]d Vg C(OD).

Since the range of B is dense in C(OD), this equation determines p uniquely in terms
of u. To be explicit, using (5.13) in (6.1) we have that for all h CI(OD),

d

(6.2) Dhd c {Dhdu+ (Dh(xO(s; y))(y)(y)d)
[1 (1

where again c is the appropriate normalizing constant. It might be natural to write

d
dh(x(s; y)) (Vh(x), (x)), where x x(s; y),

although technically since h is only defined in OD, only the tangential components
of Vh are defined. The point is simply that (d/ds)h(x) is a first-order differential
operator applied to h evaluated at x(s) OD.

Our conclusions for the exit problem are collected in the following theorem.
THEOREM 6.1. Let ue(dy) be the probability measures on OD defined by

u (dy) cep (y)dy.
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For any x E D and sequence {en} decreasing to O, the exit measures #x (dy) converge
(weakly) to a measure #(dy) if and only if en(dy) converges (weakly) to a measure
,(dy), in which case #(dy) is uniquely determined by ,(dy) according to (6.1) or (6.2).

Proof. Everything has already been argued except the "if and only if" assertion.
If #e- converges to a probability measure #, and f C(OD) then we know from (3.7)
that

(6.3) fobfdve CefoDBe[f]d#e "----1/2Ce Del/2Be[f]d#e

and

ODel/2Be[f]d#

-, foDB[f]d#.
First consider f 1. Since the left side in (6.3) is 1, we conclude that e-I/2c converges
to the constant c which satisfies

1 cf B[l]d#.
D

Thus for an arbitrary f C(OD) we have

DfdVe"

The right side of this defines a probability measure on OD. This proves the "only
if" assertion.

Suppose e- converges to . Since OD is compact, the set of probability measures
on OD is precompact. All convergent subsequences of {p-} must have the same limit, uniquely determined from by p. Thus (" } converges. This proves the "if".

Perhaps it is disheartening that the "inversion formula" (6.2) is not more simple
(compare (6.6) of [2] for the case of (1.5)). However (6.2) is the best that can be
said without more information about . (It is tempting to integrate by parts in (6.2),
however (d/ds)[1- (1-e-2S) -1/2] L1.) As indicated in the introduction, we are not
going to pursue the asymptotic analysis of pe and implications for p here. However,
we will make the following conjecture:

CONJECTURE. If e weakly as e O, then ff(y)a(y)2v(dy) is necessarily an
invariant measure for the boundary flow x(s) with respect to the variable s" (s)
(x(s)). That is

D

for all s O, f C(OD).
This conjecture agrees with the formal calculations of [11]. The following theorem

allows an equivalent formulation of the conjecture in terms of g lim pe.
THEOREM 6.2. Let and be the respective limits of sequences{} and{},

as in Theorem 6.1. The measure (y)a(y)2(dy) is invariant for x(s; y) ff and only
if p(dy) is also, in which case

(6.4) ,(dy) cff(y)a(y)2(dy),
with the appropriate normalizing constant c.

Proof. If ff(y)a(y)2(dy) is invariant as claimed, then for h e CI(OD) for all
s0,

dh(x(s;Y))q(Y)a(Y)p(dY)0=d D
h(x(s; Y))ff(Y)a(Y)U(dY)

D
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With this fact (6.2) reduces to (6.4) and of course # is therefore x(s) invariant.
Conversely, suppose # is x(s) invariant. Then using (6.1) and (5.12),

g(X(S; y))/(y)a(y)2u(dy) cOD-[g(xO(s; .))]#(dy)
D

O0 2 (e2V l)--l/2 [O g(x(s + v; y))#(dy)] ds--C
D

c 1)
D

g(xO(s; y)),(dy) ds

CD[g](dy

This establishes the invarianee of 2()()u(d).
To dose this section consider the ease studied in [11]: d 2 and OD consisting of

a single periodic orbit of (1.4), Ib() > 0 everywhere on OD. There is then a unique
(up to a scalar) z() invariant measure on OD given by

dy
dy.

Thus, supposing our conjecture above to be true, there is only one possible limit of
as e 0. Therefore if #(dy), converges, then its limit must be the measure

#(dy) c

This agrees with (2.46) of [11] since Z(y) /(y)-2 and c(y) 1 (they assumed

7. Some estimates. The remainder of this paper is technical, leading to proofs
of Theorems 2.1 and 4.1. In this section we will derive upper bounds for several
quantities associated with the processes e(t) and (t), as defined in 4. In each case
the idea is the same: calculate the analogous quantity explicitly for a one-dimensional
diffusion in [0, oc] with generator

(z) -i (z) + (z)’(z)

and instantaneous reflection at 0. Then use ItS’s lemma to show that this quantity
bounds the desired quantity for and . The key to success is a careful choice of the
drift coefficient k(z).

We will take
(2

k(z) . Kz- 1,
A1

where K is the positive constant of (2.11). Note then that for any x G, with
--e.-1/2p(X),

e-I/2.p(x) -/2 (-n(x), b(x)) + E aijpx,,x
i,j

>_ K e-/p(x) + e/Ao
_> K" l/2lAol
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where Ao is as in (2.5). Using (2.6) and (2.7) we have that

o0 0 /0 1/2
,(z) -/_.() _> ,() K- ()

2

(7.1) >_ -K0/2
_> 11K" 1

(),
provided el/21Aol _< 1. Define eo IAo1-1/2, or eo 1 if Ao 0. Then (7.1) holds for
all 0 < e _< eo. This value of eo will remain unchanged in all that follows. Note also
that (2.11) implies that bl(y) _> K everywhere on OD. Therefore for all y E OD, >_ 0

ao 11K > k().(’2) -(v) bl(V) >

The following lemma contains our basic comparison argument. The stopping
times ? were defined in (4.3). Their analogues for (t) are

, inf{t > 0" ()
defined for 0 < (0) < r.

LEMMA 7.1. Suppose 0 < r < oc and u C2([0, r]) is nonincreasing. Suppose
that for some constant c >_ 0

Gu(z) + c=O V O <_ z <_ r.

Then for any stopping time T <_ 7, all 0 < <_ o and xo G with e(O) < r <_-1/2 ho, the following holds:

lgu’(O)Exo[el/21e(7.3) Eo [u((r))] + cEo Iv]- ()] _< u((0)) _< u(0)

Likewise, in the case of (t), for any stopping time v <_ r, 0 <_ (0) < r, x(0) y
OD, the following holds

1 2(7.4) S(o),y[U((v)); T < X)] / cS(o),u[v]- "Cou(O)E(o),u[I(T)] <_ u(’(0)) _< u(0).

We also allow r oc, v <_ oc in the case of (t), provided u is bounded.
Proof. We will give the argument for e (t), the case of ’(t) is analogous. Applying

ItS’s formula,

1/
u’(o).( ()d(V()) (t)dt + .((t))’((t))dZ() + (t),

where
1 2u,,( [e_ 1/2.ze u’(t) o( (t)) (t)) + ,((t))]. (-(t))

g a(xe(t)) 2 [1 2 ]o"() + k()’() -c.

The first inequality follows from (7.1) and the hypothesis that u 0; the second
follows from (2.7) and c 0. Thus for any finite T,

(7.5) E[u(e(T A ))]- u( (0)) -cElT A ] + u’(O)aE[el/2le(T A )].
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Rearranging (7.5), and using the monotonicity of u,

E[u(g(T A r))] + cE[T A r] gu’(O)E[el/2l(T A r)] _< u(g(0)) _< u(0)

Letting T --, oo yields (7.3). [::i

We now exhibit the particular choices of u that yield the esimates we want. Define

() og k()ds for z >_ O.

It follows from K > 0 that e-(") is integrable. Take

2 e-(S)ds for all z > O,u (z) a-o
t2(Z) I(Z)

u(0)’
and, for any specified r > 0,

U3,r(Z) 2a2 e(U)-(S)duds for 0 _< z _< r.

Each of these is C2 and nonincreasing.
In the case of u we have

2

LEMMA 7.2. For all 0 < e _< eo, xo E G with (0) < e-I/2ho, y OD and
’0 > O,

Eo[/l(vr)] <_ u (0)
Eo,y[l(oc)] <_ 1 (0).

Proof. The first follows by using r e-/2ho in Lemma 7.1, noting that r/ Tr,
and using ul(r) _> 0. The second uses r oc and Ul (oc) 0.

Considering u: yields the next estimate.
LEMMA 7.3. For all 0 < <_ eo, xo G with (0) < e-1/2ho, y OD and

o>0,

Po[O. < Cr] < u(V(0))
Po,[vo < ] < u(o)

Proof. Again Gu2 O. For the case of f let r e-/2ho and T TOD A,?’I
TO0 A yr. Since u(0) _< 0, u2(0) 1, and u2(r) _> 0

Pxo[VOD < Vr] E=o[U2((7)); T ’OD]
<_ Exo[U2(q(v))]
_< (V(o)).

The argument is similar for , using r oc and T r/o.
Using u3,r, we obtain the following.
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LEMMA 7.4. For all 0 < e <_ eo,xo E G with (0) < r <_ (-1/2ho, y OD and

Proof. This time we have

o<r

Exo Iraqi _< u3,r (0)
Ezzo,y[Yr] g u3,r(0).

Gu3,r -1; u3,r(0) 0, u3,r(r) 0.

Simply apply Lemma 7.1 using v r (or rr in the case of (t)) and observe that
0 <_ E[u(e(v))].

COROLLARY 7.1. For all 0 < e <_ eo, Xo G with (0) < r g el/2ho, y
OD, o < r and T < oc,

1
Pxo[rr > T] _< u3,r(0)

1
Po,u[r/r > T] _< u3,r(0)

Proof. The proof is Chebyshev’s inequality. D

8. Proof of Theorem 2.1. Take any fixed e > 0. To prove Theorem 2.1
consider the process r(t) -p(xe(t)) defined on [0, rr]. According to Ith’s formula

dr(t) .p(x(t))dt + e1/2 (aTVp(x(t)), dw(t)) + -(x(t))2dl(t),
since (Vp(y), r/(y)) -c(y) for y OD. For each h > 0 define a C1, piecewise C2

function Ch" [0, oc) IR by

(u) -h- 1X[0,h] (), )(0) 1, Ch (0) 0.

It is elementary to check that

1-u/h O<_u <_h
(8.1) (u)

0 h<_u

and

1
(8.2) 0 _< Ch(U)_< h.
We want to apply It6’s formula to Ch(r(t))" f(xe(t)), so assume that f C2(G).
(Although Ch is not C2, we can use a sequence of smooth approximants to justify the
following.)

(
.f,j,IId[h(r(t))f(xe(t))] [f ep+ h(Vp, aVp)ldt

+ Ch" efdt + Ch" el/2 (aTvf, dw)
e

h(Vf n)dl
n

+
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By construction, on OD we know that 1 and ChIVf, r/ 0. Because dl is
supported on {t’xe(t) E OD}, we can express the above as

Here (I), i 1,..., 4 are bounded continuous functions on G (depending on f and e)
evaluated at x (t).

It follows from Lemma 7.4 that for e > 0 fixed, Eo [rr] is uniformly bounded over

xo E G. This together with (8.2) implies that all the terms in (8.3) with a factor of
Ch converge to 0 in the mean, as h 0. From (8.1) it follows that the terms involving

converge in the mean to
r

X{o} (r(t))Odt

and

,jo
rr

(r(t))(O4,X{o}

But these are both 0 almost surely, by virtue of (2.15). This proves Theorem 1 for

f e C2(G). The general f e C(G) can be uniformly approximated by C2(G) functions
to yield Theorem 1 in its stated generality.

9. Proof of Theorem 4.1. Our proof of Theorem 4.1 will use the fact that,
on bounded time intervals, xe(t) converges to x(t) uniformly in t, and uniformly over
all xe(0) x(0) y OD. This follows from large deviations results, such as in
[1]. However, it is not necessary to appeal to such deep results. We will give an
independent proof, suited to our particular context.

Two special notations will be useful. First, for ’[0, T] IRd (or IR1), define

[]t= sup
0<u<t

Secondly, for functions f" 0D IR define

Ilflloo- sup
yOD

At several stages below we will have a one-dimensional Skorohod equation of the form

(9.1) (t) (t) + re(t); (t) > 0,

where all 3 functions are continuous and re(t) is nondecreasing and obeys

din(t) X(o((t))dm(t).
We will use the fact that the solution is determined uniquely from (.) by the formula

(9.2) re(t) inf ((u) A 0);
0<u<t

see [9, Lemma 4.2, p. 119].
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LEMMA 9.1. [x xO]T -- 0 in probability, uniformly over xe(O) x(0) y E
OD; i.e., given any T, > 0

sup Pu[[x xOiT > ] -* 0 as e O.
yD

Proof. It suffices to consider 0 < 5 < ho. Since x(0) y OD we know that
x (t) OD, for all t _> 0. Thus

Therefore

{rr < T} C_ {Ix x0lrr^T > 6}.

where

{Ix xO]T > 6} C_ {Ix xO]T > 5;rr _> T} tJ {Vr < T}

c_ {[ o]^ > }.

Now applying ItS’s formula, we have, for 0 t g vr,

;(()) () +( ())r(0, ;(z()) 0

l(t) X(oi(p(x(t))dl(t),

(t) ep(xe(s))ds + 1/2 (TVp(ze(8)), dw(s)).

This is a one-dimensional Skorohod equation (9.1), so that by (9.2) we have (almost
surely)

21eal (t) < a(x (t)) (t) inf( (t) A 0)
2 [o,t]

Now by (2.5) and (2.12),

e(t) aijp,(xe(s)) + (b(xe(s)), Vp(xe(s)))ds

+ (1/2 (TVp(xe(8)), dw(s))

eAot 1/2 (ffTvp, dw(s))

Thus for all 0 g t vr A T,

agl(t) < elAolt + 1/2 (ffTvfl(X((8)) dw(s))2 TArt

But a standard application of Gronwall’s inequality applied to (2.13) tells us that

[ ],r Wr / a()

e e1/ dw +C[1]rrr
rrAT
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where M is a Lipschitz constant for b(.), and C is a bound on Ir/(y)l over OD. Therefore

(9.3)

By a standard estimation argument (e.g. [15, (2.1), p. 87]),

(9.4)

Py (aVp(xe(s)),dw(s)) > A

_
2exp

2A1TTArt

where A1 is as in (2.6). Using these estimates in (9.3) implies the lemma.
Next we want to establish convergence of Ce(.), defined by (4.1), to (.) of (4.7),

and el/2le(.) to l(.). Defining the one-dimensional Brownian motion fl(.) by (4.6),
(4.4) becomes

el/2dlede(t) el/.ep(xe(t)) + (xe(t))d(t) + - (t)

We noted previously that the/(.) here is e-dependent and distinct from the (.) in
(4.7), so we should talk about weak or distributional convergence of e(.) to (.).
However, the distribution of (.) is the same regardless of the choice of/(.) in (4.7).
So, for each e, we can take the/(.) of (4.7) to be that defined by (4.6), with a suitable
extension to t > Tr. Now .e(.) and (.) are defined on a common (but e-dependent)
probability space so we can make pathwise comparisons. We do, however, need to
limit xe(0) x(0) y to points y e OD and (0) e(0) 0, since (4.7) is only well
defined for x(.) E OD. Under these conventions, the expectation Eo,y (associated
with (.)) coincides with Eu (associated with xe(.) and e(.)); i.e., both symbols refer
to integrals with respect to the same probability measure on the same probability
space. With this understanding we have the following result.

LEMMA 9.2. [e_ ]TAv/ and [ele- 1]TAI converge to 0 in L2, uniformly
over y xe(0) x(0) E OD; i.e., given any T, 5, r > O,

sup o,
yEOD

and
sup Ey[[el/21e -/]’A/] --* O,
yEOD

ase.O.
Proof. Let us abbreviate (4.4) and (4.7) as

(9.5)
e(t) e(t) + Me(t), Me(t) X{o}(e(s))dMe(s)

(t) (t) + M(t), M(t) X{o} ((s))dM(s).

where

il=.’ fote(t) e p(xe(s))ds + a(xe(s))d(s),
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and

From (9.2) we have

(t) bl(X(S))(s)d8 + a(x(s))d(8),

el/2 0Me(t)

(t) g (())e(/.

Therefore for t _< Tr

(9.6) [M M]t <_ [e ]t,

and, by subracting the two equations in (9.5),

(9.7) [e ]t^v -< 2[e ]t^..
Now we also know that

(t) (t) bl (xe(s))qe(s) b (x(s))q(s) + o(1)ds

+ (() (o())e(),

and so

Recall that the o(1) is uniform so long as g stays in a compact set. Since g()l N r
for N , we can write

(. [ 1 [( le+; +5 + o()

where

N- sup
y60D

D T r [bl (xe) bl (xO)]T

D a(xe(s)) a(x(s))d

Putting (9.7) and (9.9) together, we can apply Gronwall’s lemma to conclude that

[.e ’]r^n -< 2[o(1) + D + D}]e.
We want to argue that IIDNII and 11 converge to 0 as e 0, uniformly over

OD. or D this follows from Lemma 9.1 and the continuity of b on G. For D,
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we can use boob’s martingale inequality to estimate

e[IDbl _> ,1 _< -2E a(xe(s))- a(x(8))dfl(s)

]a-2E I(x(s)) (x(s))12ds

which converges to 0, uniformly over y OD, by virtue of Lemma 9.1 and the con-
tinuity of a. Thus D 0 in probability, uniformly over 0D. Next since llDllp is

bounded in y, any 2 < p < (by virtue of an estimate similar to (9.4)), IDOl 2 is
uniformly integrable over e > 0 and y OD. These two facts together imply that

llDl12 0 as claimed.
We have now shown that [ff’ -ff]Tn and, by (9.9), [’- ]Tn both 0 in

L2. It follows from (9.5) that [M’ M]TAn 0 in L as well. To finish, write

2 fot 2el/21(t) l(t) c(x(s))2
dM

It follows from this that

[l/g gl^ -< IIll[Mc Mlr^ + (z(o))
We know that the first term on the right --, 0 in .

,(o())

,(z’(.))
For the second, one argues

uniform integrability of M.^u and then applies Lemma 9.1, using the continuity of
2

As an immediate corollary we have the following.
COROLLARY 9.1. For any r,T > O,{i/2le(T A r/) are uniformly integrable over

all 0 < { < {o with el/2r < ho and y E OD.
At last we are ready to undertake a proof of Theorem 4.1. First, by virtue of

Lemma 7.2, for all 0 < e _< eo,

and
liB[f] B[g]lloD <_ u (0)Ill glloD.

It therefore suffices to prove Theorem 4.1 for f in a dense subset of C(OD). We will
assume that f C (OD). The idea is to estimate the individual terms in the following
inequality, for given r, T <
(9.10) leX/2Be[f](y) B[f](y)l < I + II +III + IV
where

f(x’(t)){l/2dl"]
If(x’(t))- y(x(t))lel/Zdl’]

JO

If(x(t))ldl]
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First consider I. Define

TD inf{t _> T A rl x(t) OD}.
By the strong Markov property and Lemma 7.2

(9.11) u(O)Pu[TD < Vr].
Now on {y T} the event {TD < Vr } requires that e(t) return from r to 0 before
yr. Using Lemma 7.3, it follows that

p[;. < ;, g T] g ().
Thus

Pu[VD < vr] <_ uu(r) + Pu[7 > T]
1< ()+ ,(o),

where we have appealed to Corollary 7.1. Using this in (9.11), we see that

(9.12) I <_ IlfllODUl(O) uu(r) + U3,r(0)
Now consider II. If we extend f continuously from OD to all of D, then we can

write
II <_ Ey [[:(xe(.) f(Xo(’))]T (l/21e(T A ,re)].

It follows from Lemma 9.1 that [f(x) f(xO)]T ---) 0 in probability, uniformly
over y 60D. This and Corollary 9.1 imply that

(9.13) II --+ 0 as e 0, uniformly over y OD.

Next consider III. Since f C(OD), f(x(t)) is continuously differentiable. Let
99(t) d/dt f(x(t)). We can integrate by parts to write

T^,:
f(zO(t))e/dl f(zO(T )) e/l(T ;) (t)e/l(t)dr,

0 0

and likewise for the second integral in III. Therefore

III I[I((r n;)). (/r(r n) -(r
TA;

+ IS[ (t)[{i/t{(t) -(t)ldt]l
J0

(ll/llo. + IIll)S[[{/r -t],].
Now Lemma 9.2 tells us that

(9.14) III 0 as 0, uniformly over y OD.

Finally consider IV. Define

8 in{t T A ;" (t) 0}.
Then just as in (9.11),
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and

(9.16) Po,y[rff) < sol _< Po,y[rff) < so; r/ _< T] + Po,[r/ > T].
From Corollary 7.1,

1
(9.17) Po,y[Y > T] _< u3,,(0).
Now for any 0 < 6 < r if ["- ]T^, < 6 and rt < T, then (rt) > (r/) r- 6 so
that r/r-s _< r/r _< T. Therefore

(9.18) Po,y[rff); r/ _< T] _< Po,y[rff}; r/r-5 _< T A rt] + Pu[[g e]TAI > ].
The second term on the right converges to 0 as e 0, uniformly over y E OD. The
first requires that g’(t) return from r- 6 to 0 in finite time. Therefore, appealing to
Lemma 7.3 again

(9.19) Po,y[rl < oo; ?r- < T A ] < u(r ).
Putting (9.15)-(9.19) together, we conclude that

1
(9.20) limlo sup IV <_ IlflloD "I (0)(2(r () - ?3,r(0)].yeD

When we put (9.12)-(9.14) and (9.20) back into (9.10) we see that, for any r, T <
and 0 < 6 <r,

lim+ollel/2B[f] B[fllIOD <_ IlflloDUl(O) u2(r) + u2(r- ) + u3,r(0)
Finally since u(r) 0 as r oc, the right side can be made arbitrarily small by
choosing 6 1 and r, T sufficiently large. This proves Theorem 4.1.
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A DIFFERENTIAL-DELAY EQUATION ARISING IN OPTICS
AND PHYSIOLOGY*

JOHN MALLET-PARETf AND ROGER D. NUSSBAUM*

Abstract. In recent papers the authors have studied differential-delay equations E of the form e(t)
-x(t) +f(x(t- 1)). For functions like f(x) =/t +/z2 sin (/3x +/4), such equations arise in optics, while for
choices like f(x)=/xx e and f(x)=/zx(1 +x)- and for x_>0, the equation has been suggested in
physiological models. Under varying hypotheses on f (labeled (I), (II), and (III) below), previous work
has given theorems concerning existence and asymptotic properties as e--> 0 of periodic solutions of E,
which oscillate about a value a such that f(a) a. However, verifying (I), (II), or (III) for specific examples
can be difficult. This paper gives general principles that help in verifying (I), (II), or (III), and then applies
these results to specific classes of functions of interest.

Key words, singularly perturbed differential-delay equation, slowly oscillating periodic solution,
Schwarzian derivative

AMS(MOS) subject classifications. 26A18, 34K15, 34K25

1. Introduction. The singularly perturbed differential-delay equation

(1.1) eYe(t) -x(t)+f(x(t- 1)),

which arises in various models in optics, biology, and physiology, has been studied
by many authors. See, for example, [2], [4], [5], [7]-[14], [17]-[22], [24], [25], and
the references in [20]-[22]. Recently, Mallet-Paret and Nussbaum [20]-[22] have
explored the relation between (1.1) and the discrete system

,(1.2) x,, f(x,,_,)

obtained by formally setting e-0 in (1.1). Some of the main results of [20], [21]
concern the existence and asymptotic behavior of square-wavelike periodic solutions
of (1.1) for small e. However, these results require that f satisfy various hypotheses,
which will be given in 2 below and which may be nontrivial to verify. Typical
nonlinearities of interest are

(1.3) f(x) p,, +/x2 sin (/x3x +/x4),

which arise in optics, and

(1.4) f(x) tzx" e-‘, x >= O,

(1.5) f(x) l.tx’( l + x’ -1, x >= O,

which arise in biological and physiological models. See, for example, 16], where the
function in (1.5) is used in (1.1) (for v 0 or v 1, h > 0 and/z > 0) to model blood
diseases. (Note that various constants appear in the equations in [16], but that by
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change of variables the equations (4a) and (4b) in [16] are subsumed by our equation
(1.1) with f as in (1.5).)

Unfortunately, verifying the hypotheses of 2 even for the above simple-looking
functions is not trivial and was not carried out in [21 (primarily for reasons of space).
For example, one of our hypotheses involves global conditions expressed as qualitative
properties ofthe dynamical system (1.2) and may be hard to check. It seems a significant
body of theory is needed, even for the functions in (1.3)-(1.5), to determine exactly
when our hypotheses are satisfied; routine calculations are insufficient. Our purpose
here is to develop such a theory and then to apply it to determine parameter values
for which the above nonlinearities satisfy various hypotheses. Although we have not
given actual numerical ranges, of parameters where our hypotheses are satisfied, we
can, with a simple computer program easily obtain most of them from our results.
Thus, this paper may be viewed as a companion to [21], for here we show how to
apply the general results of [21] to specific systems of scientific interest.

Our interest naturally extends beyond the nonlinearities in (1.3)-(1.5); however,
because so many of the basic difficulties are already apparent for these nonlinearities,
we will view them as models and work out their theory in as much detail as possible.
Even so, we will leave open questions for these examples.

2. Hypotheses on f and their implications. The following hypotheses were shown
in [20], [21] to imply various results about the differential equation (1.1). Note that
these hypotheses are arranged in increasing order of strength, and that all assume the
condition f(0)=0. This assumption is merely a normalization; more generally the
functions of interest will have a nonzero fixed point f(xo) Xo, and it will be necessary
to translate this point to the origin before analyzing the function.

We say a function f is monotone decreasing in an interval I in case f(x)--f(x2)
whenever X < X2 and X1, X2 E I. We say f is strictly decreasing in I in case f(x) >f(x2)
for all such Xl and x2. We make analogous definitions of monotone increasing and
strictly increasing.

We let fn :_ denote the n-fold composition of the function f with itself.
We now present four hypotheses a function f can satisfy. These were introduced

in [20], [21].
(0) The function f:-E is continuous, satisfies f(0)-0, is differentiable at

x 0 satisfying f’(0)<-1, and is monotone decreasing in some neighbor-
hood of x 0.

(I) The function f satisfies hypothesis (0). In addition there exist numbers A > 0
and B > 0 such that

f([-B,A])[-B,A],

xf(x) < 0 if x E I-B, A]-{0}.
(II) There exist A and B such that (I) holds. In addition there exist positive

numbers a<-_A and b<-_B such that if Xo[-B,A]-{O} and xn is given by
(1.2), then

f"(x) x,, --> {-b, a} as n -->

(III) There exist A and B such that (I) holds. In additionf is monotone decreasing
in I-B, A] and (II) holds with a A and b B.

Note thatf(a)=-b andf(-b)= a must hold in hypothesis (II). Iff only satisfies
(I), then there still must exist a and b satisfyingf(a)=-b andf(-b)= a, respectively.
However, the orbit {-b, a} of (1.2) need not be stable and attract iterates x, and a
and b need not be unique.
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If (I) holds and f is monotone decreasing on [-B, A] and if f2 has a unique
positive fixed point a (0, A], then it is easy to show that (III) is satisfied. To see this,
first observe that f2 has a unique negative fixed point -be I-B, 0),-b=f(a). If-hi
and -b2 were negative fixed points of f2, then f(-bl) and f(-b2) would be positive
fixed points of f2, so

a =f(-bl) =f(-b2),

and we could conclude that

f(a) =f2(-b,) -b =f2(-b2) -b2.
Next, note that f2 is monotone increasing on [-B, A] (because f is monotone

decreasing) and that there exists e > 0 such that If2(x)] > x for 0 < Ix] < e (because f
is monotone decreasing and f’(0) < -1). It follows that rE(x) > X for 0 < x < a; other-
wise, the intermediate value theorem would imply that f2 has a positive fixed point
Xl, with 0 < Xl < a. If 0 < Yo < a and y, =fE"(yo) we conclude that

Yo <f2(Yo) Y <f2(a a,

and generally that

Y,,, < Yn+l < a In >-- 1.

It follows that y converges to a limit y, and since f2(y)= y, it must be true that y a.
A similar argument shows that if-b < Zo < 0, then

lim f:z"
Zo b.

Finally, we can deduce that if-b-< x =< a and x 0, then

lim f"(x)= {-b, a}.

In fact we can conclude slightly more. If A > a, the uniqueness of the positive
fixed point of f implies that fe(A) < A (we know f2(A) <_- A). Thus the intermediate
value theorem implies that if a < x <= A, f2(x)< x. Using this fact and the fact that f
is monotone increasing, we see that if a < yo =< A and y =f:(Yo), then

a < Yn+l < Y, for all n.

As before this implies y,- a. A similar argument shows that if-B-< Zo <-b, then

lim f" (Zo) b.

Finally, we can conclude that if-B =< x _-< A and x # 0, then

lim f"(x)= {-b, a}.

If, however, f is not monotone decreasing on [-B, A], then verifying (II) directly
may be quite difficult, as it involves examining all iterates x, =f"(xo) of an arbitrary
initial condition Xo. Furthermore, even if f’(x) < 0 for x [-B, A], a direct proof that
f- has exactly one fixed point in (0, A] may not be easy. Fortunately, our theorems
will eliminate the need for such an approach, at least in the cases of interest. Instead,
checking (II) will involve only local calculations, with no need to iterate f The main
property offthat allows for such a simplification is that it possess a negative Schwarzian
derivative. This property was first used in the study of interval maps by Allwright 1 ]
and Singer [27]. Iff’(x)< 0 for -B < x < A and f has negative Schwarzian derivative
on (-B, A), the results of 7 will imply f has a unique fixed point in (0, A].
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In [21], we showed that (I), (II), and (III) each imply results about solutions of
(1.1). The solutions of interest are slowly oscillating periodic solutions, or SOP-solutions.
A solution x(t) of (1) is. called an SOP-solution if there exist quantities

such that

q>l and t>q+l

x(O)= x(q)= x((l)=O,

x(t)>0 in(0, q),

x(t)<0 in (q, t),

x(t+(1)=x(t lt.

For the functions of interest it will always be the case that xf(x)< 0 whenever x 0
is in the range of such a solution. In particular this will imply that the zeros of x(t)
are all simple.

An SOP solution x(t) is called an S-solution if it satisfies

x(t+q)=-x(t) Vt,

in addition to the above conditions. Necessarily f is an odd function throughout the
range of an S-solution. Also, c 2q for any S-solution.

The following results, which are proved in [21], describe the existence and
asymptotic properties for small e of SOP-solutions and S-solutions when (I), (II), or
(III) holds.

THEOREM 2.1. Assume f satisfies (I). Then there exists Co>0 such that for each
positive e < eo (1) possesses an SOP-solution satisfying

(2.1) x(t) (-B, A)

In addition, there exist positive numbers e, 2’, K, K2, r, and r2 such that ifx(t) is any
SOP-solution of (1.1) satisfying (2.1), and if 0 < e < el, then

x(t) > / forK2e<-t<-q-K2e,

x(t)<-y for q + KEe <- <-_ (t K2e,

1 + er <-- q <--_ 1 + er2,

1 + er <--_ 1- q <- 1 + er2.

THeOReM 2.2. Assumefsatisfies (II). Then given > 0 there exist e > 0 and K2 > 0
such that if x(t) is any SOP-solution of (1) satisfying (2.1), and if 0< e < e, then

Ix(t)-sqw(t)l<-_ in [eK2, q-eK2]t.J[q+eK2, (t-eK2]

where sqw t) is the two-periodic square-wavefunction defined by

a in[O, 1),
sqw(t)=

-b in[l,2),

sqw(t+2)=sqw(t) Wt.

THEOREM 2.3. Assumefsatisfies (III). Letx( t) be any SOP-solution of (1) satisfying
(2.1) for some e > 0 (with a A and b B), and let p (0, q) and p (q, (t) be such that

x(p) max x(t) and x(p) min x(t).
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Then x( t) is monotone increasing in (0, p), monotone decreasing in (p,/), and monotone
increasing in (if, 1).

THEOREM 2.4. Assumefsatisfies (I) and that in addition A B andf(-x)= -f(x)
for all x[-A,A]. Then there exists Co>0 such that for each positive e<eo, (2.1)
possesses an S-solution satisfying

x(t) (-A, A) lt.

In the case of Theorem 2.2 we easily see that

x(t)->sqw (t) as e->0

uniformly on compact subsets of -7/, for SOP-solutions x(t). Also, when f is odd
the S-solutions obtained in Theorem 2.4 are of course SOP-solutions, and hence satisfy
the conclusions of Theorems 2.1, 2.2, and 2.3 when the appropriate hypotheses hold.

3. Some specific functions f. We consider fk-’-->, for 1 _-< k_-<5, defined as
follows:

f,(x) l.t x,
f2(x) x3- txx,

f3(x) -/z[sin (x + 0)-sin 0],

f4(x) tzx e-, x >= O,

/xx"
x>0.fs(X)-xX+l,

The values of f4 and f5 for x < 0 are immaterial, so for definiteness we set

fk(X) =fk(0) if X < 0 and k =4 or 5,

always assuming v-> 0 and A => 0. The functions fl and f2 give model problems with
the simplest possible nonlinearities; in particular fl is the much-studied quadratic map
of the interval [6], [15]. The function f2 is an odd function, so by Theorem 2.4 there
is the possibility of obtaining S-solutions of (1.1). The function f3 seems at first to be
a special case of the general trigonometric nonlinearity (1.3) arising in optical models;
we will show, however, that f3 can always be obtained from (1.3) by means of a linear
transformation of the differential equation (1.1). The function f4 occurs in biological
and physiological models as noted earlier, as does f5 when v 1 or v 0.

Our object is to determine ranges of the parameters/x, 0, v, and A for which the
hypotheses (0), (I), (II), and (III) hold for a suitable translate of each fk. By "suitable
translate" we mean that a transformation taking a fixed point Xo of fk to the origin
must generally be made before verifying the hypothesis in question. Indeed, for f4 and
f5 it is not the fixed point x 0 that is of interest, but rather some nontrivial fixed
point Xo> 0 about which we do our analysis. If f: R R possesses a fixed point Xo,
then letting y x Xo in (1) yields

(3.1) e(t) -y(t)+ g(y(t- 1))

where

(3.2) g(y) f(y + Xo) f(xo)

satisfies g(0)=0. When we say a hypothesis (such as (0), (I), (II), or (III)) holds for
a function fat a fixed point Xo, we mean that the hypothesis holds for the transformed
function g as stated.
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We complete this section by showing how the function f in (1.3) can be reduced
to the normal form f3. In fact, we will show that the parameters/z and 0 can always
be chosen to satisfy

(3.3) /x=>O and 0<_-0_-<Tr.

First note that the function f in (1.3) is bounded and so must have at least one fixed
point, and possibly more than one. Let Xo denote such a point. Then the function g
in (3.2) has the same form as in (1.3) but possibly with a different value of/z4; we
continue to denote the new value by 4. The fact that g(0)= 0 implies from the form
(1.3) that =-/x2 sin/x4, and so

g(y) [sin (z3y +/x4) sin 4].

Now assuming/z2 0 and 3 0 (otherwise g is identically zero), we set

(3.4) z +/z3y

with the sign + to be determined later. The differential equation (3.1) now becomes

e.(t) -z(t)+ h(z(t- 1))

where

Upon setting

h(z) =/x_/x3[sin (z + [-/,4)-sin (-1"}[/4) ].

I.1,

+/x4(mod 27r) if/x2/z3 < 0,
0

-I-]./,4 "- 7r(mod 27r) if Z2z3 > 0,

we see that the function h has precisely the form of f3. In addition, an appropriate
choice of sign in (3.4) ensures that/x and 0 satisfy (3.3).

In our subsequent analysis we will usually assume that the function f(x) in (1.3)
has been written in the normal form"

(3.5) f3(x) -/x[sin (x + 0)-sin 0]

with z > 0 and 0<= 0-< 7r. However, the reader should remember that writing the
function in normal form conceals certain difficulties. First, as previously noted, the
function f in (1.3) may have several fixed points. For each such fixed point of f,
different parameters /z and 0 in the normal form f3 will, in general, be obtained.
Second, we usually want to know for what ranges of the original parameters/x,/z2,
x3, and /-1’4 in (1.3) does the function f(x) satisfy hypotheses (0), (I), (II), or (III).
The parameters in the normal form are written in terms of a fixed point off in (1.3),
and this fixed point is typically not explicitly known. Thus transferring information
about the normal form back to the original function may present some nontrivial
calculus problems.

4. The local condition (0). Here we discuss the existence of a fixed point of fk at
which condition (0) holds; clearly this is the case at a fixed point Xo if and only if
f’(Xo) <-1. For each function fk, with parameters 0, u, and )t in appropriate ranges,
we will show that a critical value/Zo of the parameter/x exists such that (0) holds at
an appropriate fixed point Xo if and only if/x >/Zo.
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We begin with the model functions fl and f2. If Ix >-1/4 then fl has two fixed
points; the larger one,

-1 + x/4ix + 1
X0

interests us here. We see that f(xo) 1 x/4ix + 1, and a short calculation reveals that
(0) holds there if and only if Ix > Ixo =. For the nonlinearity f2, with the fixed point
Xo 0, we have f(0) -ix; thus (0) holds there if and only if Ix > Ixo 1.

At the fixed point Xo=0 of f3, we have f(0)=-ix cos 0, so a necessary and
sufficient condition for (0) to hold here is that Ix cos 0 > 1. In particular this condition
and the restrictions (3.3) imply that/x >0 and 0=< 0 < 7r/2. Thus we obtain Ixo 1/cos 0.

Before discussing the functions f4 andf5 it is convenient to prove a simple theorem.
THEOREM 4.1. Let f" [0, oo)--> [0, oo) be a continuous function that is C on (0, oo).

Assume there exists 0 >= 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0 for x > O, and
there exists So>0 such that (d/dx)(xf(x)) is positive for 0<x <So and negative for
x> So. Then for tx >- O(f(O))-1, the equation Ixf(x)= x has a unique solution x= Xo(ix)
such that Xo(ix)>= 0 and Ixf satisfies (0) at Xo(ix) if and only if Ix> So(f(So)) -1.

Proof. The existence and uniqueness of Xo(ix) is trivial. Since s(f(s))- is strictly
increasing for s> 0, we can define Ix(s)= s(f(s))-1 and parameterize by s_-> 0, so
Ix(s)f(s) has fixed point s _-> 0. Thus the set of Ix such that Ixf’(xo(ix)) < -1 is the same
as {ix(s)" Ix(s)f’(s)<-l}. A calculation shows that Ix(s)f’(s)<-I if and only if
(d/ds)(sf(s))<O, i.e., if and only if s> So.

For the function fa(x) X e we easily compute that the conditions of Theorem
4.1 are satisfied for u _-> 0 and that So u + 1 and Ixf4(x) satisfies (0) at Xo if and only
if Ix > (u+ 1)(fa(u+l))-. For the function fs(x)=x(l+x)-, we easily compute
that the hypotheses of Theorem 4.1 are satisfied if u->0 and A > u+l and that
s =(u+ 1)(A- u-1)-1. Thus Ixfs(x) satisfies condition (0) at Xo if and only if Ix >
So(fs(So)) -1, where s (u+ 1)(A u- 1) -1.

Table 1 summarizes the previous results by giving the range of parameters for
which fk satisfies (0) at a fixed point Xo. Note again that in the case of f3 only the
point Xo- 0 is considered, even though there may be other fixed points at which (0)
holds.

TABLE
Fixed points Xo offk and critical parameter values Ixo. We have (0) holding at Xo if and only if Ix > Ixo,

provided the parameters O, u, and A satisfy the given restrictions.

k Xo Ixo Restrictions

-1 + x/4ix + 3

2 4

2 0

3 0
cos 0

4 unique fixed point Xo> v (v+ 1)1- e+1

5 unique fixed point log Ixo log A-(-) log (u+ 1)

Xo > \-_ /

0=<0<--
2

v_>O

u>=O, A>u+l
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When v= 1 in the function fs(x), we can explicitly compute Xo= (/z- 1)l/X,,and
the conditions on the parameters become A <2 and/z > A(A--2)-1. More generally, it
is of interest to locate the fixed points off4 and f5 more precisely. The following result
gives the asymptotic behavior of Xo(/Z) for large/z; we omit the proof because we will
not actually use the result here and because the proof involves only standard arguments
from asymptotic analysis. Note that we use the standard "big O" and "little o" notation:
If h(/z) and g(/z) are complex-valued functions defined for large positive /z and if
g(/z) is nonzero for large/z, then we write

h(,) O(g(,))
Ih()l

if and only if lim sup < oo,
,,_,+o Ig,)l

Ih()l
h(tz) o(g(Iz)) if and only if lim sups=0.

,,-,+o Ig(z)l
THEOgEM 4.2. For v>=O and A > v+ 1 define numbers 04 v and 0 v(A v) -1.

The functions f4(x) =/.tf4(x) andfs(x) tzfs(x) have (for sufficiently large tz) a unique
fixed point Xo(IZ) such that Xo(IZ) > Oj and Xo(IZ) satisfies

(log (log
Xo(/Z) log (/z) (1 v) log(log/.) + 0

\ igx for f4,

XO(/Z) =/Z(1/(X+l-’)) ( 1 )A + 1- v IJ((1--A)/(A+I--v))

-I- O(IUI<<I-2A>/<A+I-v>>) for fs,
where log denotes natural logarithm.

5. General results on piecewise monotone functions. We wish to determine when
a hypothesis (I), (II), or (III) holds for fk at a point Xo given in Table 1. As noted
earlier these three conditions are global, and verifying them for specific functions may
be difficult. To aid us in this task we will first obtain some general criteria for these
hypotheses to hold; we will then apply these criteria to the functions fk of interest.

To begin, we introduce condition (PM) (piecewise monotone) on a function f;
observe that eachfk satisfies (PM) at the fixed point Xo and parameter ranges ofTable 1:

(PM) Thefunction f: R satisfies hypothesis (0). In addition, there exist (possibly
infinite) quantities 0 < <= a <= oo and 0 < q <= fl <= oo such that
(i) f(-fl 0 if fl < co;
(ii) f is monotone increasing and strictly positive in (-fl, -q if q < oo;
(iii) f is monotone decreasing in (-q, ) but not in any larger open interval;
(iv) f is monotone increasing and strictly negative in (, a) if < oo;
(v) f(a)=0 if a <oo.
Furthermore, if =l oo (so f is monotone decreasing in all of ), then
If=(x)l < Ixl for some x.

Figure 1 depicts a function satisfying (PM). (Note that f(a)= 0 is not required
for this function as a c. That is, limx_.of(x) may either be zero or strictly negative.)
For any function satisfying (PM) we have xf(x) < 0 if Ix 0 is sufficiently small, since
f(0) 0 and f’(0) < -1 by (0). A first question we consider for such a function is when
it also satisfies (I).

Suppose both (PM) and (I) hold for fi Then the quantities A and B in (I) clearly
satisfy

(5.1) A<a and B<fl.
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FIG.

On the other hand, if f satisfies (PM) and A and B are positive numbers satisfying
(5.1), then f also satisfies (I) if and only if

(5.2) f([-B,A])[-B,A].

Finally, if both (5.1) and (5.2) hold for a function satisfying (PM), then there exists
a minimal interval I-B,, A,] (-/3, a), with both A, and B, strictly positive, for
which (5.2) is an equality:

f([-B,, A,]) I-B,, A,].
This is so because f’(0)<-1.

Now assume f satisfies, (PM) and define a continuous monotone decreasing
function f,: R --> R by

(5.3)
ff(- r/) in (-3, r/] if r/<

f,(x) f(x) in (-r/, :),
[f(s) in s, c) if sr <

If A and B are positive numbers satisfying (5.1), then clearly

(5.4) f([-B, A]) [f,(A), f,(-B)],
so that the equality in (5.2) holds at A A, and B B, if and only if

f,(A,) =-B, and f,(-B,) A,.
Thus, (I) holds if and only if there exist two distinct points in the interval (-/3, a)
that are mapped into one another by f,. From this basic fact we conclude the following
result.

PROPOSITION 5.1. Assume f satisfies (PM), define the function f, by (5.3), and

define quantities

A, inf {A > 0 If(A) A},
(5.6)

B, inf {B > 0[f(-B) -B}.

Then A, and B, are well-defined positive numbers satisfying (5.5). Hypothesis (I) holds

forf if and only if
A,<a and B,<fl

And in such a case we can take A A, and B B, in the statement of (I). A sujcient
condition for (I) to hold is that both

(5.7) f(a)<c if a<, f(-)>-fl iffl<.
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Another sufficient condition for (I) to hold is that

(5.8) f,()>-, f()<, <,

while a third sufficient condition for (I) to hold is that

(5.9)

Proof. The existence and positivity of A. and B. follow from the fact that
If(x)l > Ixl for small Il 0 (since (f)’(o) > 1) and from the fact that If(x) < Ixl for
some x. The latter inequality holds because f is a bounded function if either
is finite; if sc r/= c, the inequality is assumed in the definition of (PM). The first part
of the proposition now follows easily from the monotonicity of f, and the discussion
above.

The assumptions onf imply thatf always has a positive fixed point and a negative
fixed point. If -/3 c,f satisfies (I) by what we have already proved. In all other
cases it suffices to prove thatf has a fixed point in (0, a) and a fixed point in (-/3, 0).
The reader can easily verify that (5.7), (5.8), or (5.9) are all sufficient to ensure this.
For example, if a < o and (5.8) is satisfied, f has a fixed point Xo in (0, a) because
f(a)< a and (f)’(0) > 1, and then f,(xo)is a fixed point off in (-/3,0) (because
f, is monotone and f,(a) > -/3).

The following related result tells when the monotonicity condition (III) holds for
a function that satisfies (PM).

PROPOSrrION 5.2. Assume f satisfies (PM), and let f,, A,, and B, be as in
Proposition 5.1. Then (III) holds forf if and only if

(5.10) A,<-_ and B,<=7.

As before, we have A A, and B B, in the statement of (III). A sufficient condition
for (5.10) to hold is that both

(5.11) f()<= if<c, f(-q)>=-rl if rl<

should hold.
Another sufficient condition for (5.10) to be satisfied is that

(5.12) f,()>---n, f()<--, <
while a third sufficient condition for (5.10) to hold is that

(5.13)

Proof. This follows the proof of Proposition 5.1 once we recall f is monotone in
(-r/, :), but in no larger open interval. Iq

Suppose the function f has exactly one fixed point in (0, c). Then an easy
argument implies that f has a unique fixed point in (-, 0). If A, < a and B, < o
(A, and B, as in (5.6)), we must have f(a)<a (if a <) and f(-fl)>-/3 (if
/3 < ): otherwise the intermediate value theorem would imply that f has a fixed
point in [c, ) or (-c, -/3 ], contradicting uniqueness. Thus iff has a unique positive
fixed point, the sufficient condition in (5.7) that f satisfy (I) is also necessary. Further-
more, a little additional thought shows that (5.7) is satisfied if and only if (5.8) is
satisfied, or (5.9) is satisfied, or a =/3 = (assuming f has a unique positive fixed
point).
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Similarly, if f is as in Proposition 5.2 and f has a unique positive fixed point,
then f satisfies (III) if and only iff satisfies (5.11). Also f satisfies (III) if and only
if f satisfies (5.12), or (5.13), or

Inequalities (5.7) and (5.11) are, in general, easier to verify than (5.6) and (5.10),
so it is useful to have theorems that ensure f has a unique positive fixed point.
Furthermore, we have already seen in the discussion in 2 the importance of knowing
that f2:[-B, A]--> I-B, A] (A and B as in 2) has a unique positive fixed point. For
example, if f is monotone decreasing and f([-B, A])c [-B, A], we saw in 2 that f
satisfies (III) on I-B, A] if f2 has a unique positive fixed point in I-B, A].

If the functionf were convex downward in (r,
for some real z, then f.2 would have a unique fixed point in (0, c). This type of
convexity assumption is clumsy to deal with, but a related concept, that of negative
Schwarzian derivative, is readily verifiable for many functions of interest and can be
used to prove a variety of results, including the uniqueness of the positive fixed point
off. Remarkably, each of the five functions fk has a negative Schwarzian derivative
for most of the parameter values of interest, so it will be natural for us to make the
assumption of negative Schwarzian derivative in most of our subsequent theorems.

6. The Schwarzian derivative. The Schwarzian derivative Sf of a function f: I -> R
in an interval I is defined to be the function

at those points x I where f is three times differentiable and f’(x) O. At all other
points of I we consider Sf to be undefined. The Schwarzian derivative originated in
the theory of conformal mappings and was first used in the study of interval maps by
Allwright [1] and Singer [27].

In this section we present several basic properties of Schwarzian derivatives and
of functions whose Schwarzian derivative is negative. An important sufficient condition
for the Schwarzian derivative of a function to be negative is given in Proposition 6.2.

Our first proposition collects some well-known results about the Schwarzian
derivative (see [6], [27]). Statement (v) in Proposition 6.1, although elementary, is
quite useful and does not appear to have been explicitly stated in the literature.

PROPOSITION 6.1. Let f: I -> R and y J --> I be functions defined on intervals I and
J. Then

(i) S(g f)(x)= Sf(x)+[f’(x)]2Sg(f(x)) and
(ii) S(g of)(x) < 0 if Sf(x) < 0 and Sg(f(x)) < 0

hoM whenever Sf is defined at x I and Sg is defined atf(x) .I. Also, if rn is the M6bius
transformation

then

m(x) ClX"" C2
C C4 C2 C O,

C3X -Jr- C4

(iii) Sm x 0 where defined, and hence

S(mof)(x)=Sf(x)

if Sf is defined at x I and c3f(x) + C4 O. Finally,
(iv) (d/dx)(If’(x)l-/-)>O if and only if Sf(x)<O, and
(v) if (d2/dx) log If’(x)l <0 then Sf(x)<O

hold whenever Sf is defined.
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Proof. These are straightforward but tedious calculations, which we omit. We do
note that (ii) and (iii) follow easily from (i). Also,

d2

h"(x) > 0 implies (eh(x)) > 0;

so with h(x)=-1/2 log If’(x)l we obtain (v) from (iv). [3

COROLLARY 6.1 [27, Prop. 2.4]. Letf: ! R be three times differentiable in an open
interval I, and assume

f’(x) O and Sf(x) < O for all x L

Then the function If’(x)l does not attain a minimum in L That is, there does not exist
w I such that If’(w)l <- If’(x)l for all x I.

Proof. This follows immediately from (iv) of Proposition 6.1. [3

LEMMA 6.1. Letf: I I be three times differentiable in an interval I (not necessarily
open), with range in I, and assume that Sf(x) < 0 at each x I for which f’(x) O.
Assume that for some w I (possibly an endpoint) we have

f(w) w and [f’(w)l-<- 1.

In addition, assume

f"(w)=0 iff’(w)= 1

at this fixed point w. Then there exists a relatively open neighborhood U
_

I, with w U,
such that

f(U) U,

fn(x)w asno, for eachxU.

Proof. In the case of a strict inequality If’(w)l < 1 it is an elementary exercise to
show that the set

U=(w-, w+)f)I

satisfies the conclusions of the lemma if > 0 is small enough. The same set also works
if f’(w)= 1: we have f"(w) =0 (by assumption) and f"’(w)<0 (since Sf(w)<O). It
follows that if g(x)=f(x)-x, gJ(w) =0 for 0=<j_-<2 and g(3)(W) <0. Thus Taylor’s
theorem implies that there exists > 0 such that f(x)<x for x (w, w+ 3) I and
f(x)>x for x(w-i,w) fqL Since f’(w)=l we also have f(x)>-w for x
(w, w+)fqI andf(x)<=wforx(w-, w)f’lL It follows that ifx (w- , w+)tqI,
x, =f"(x) is a monotonic sequence bounded above by w (if x_-< w) or below by w (if
w-< x). Thus the sequence (xn) converges to : and necessarilyf(:)= :. By construction
w is the only fixed point of f in (w 3, w + ) (q/, so : w and x, converges to :.

In the remaining case, when f’(w)=-1, we have f2(w)= w and (f2)’(w)= 1, and
a simple calculation (see [27, p. 261]) gives us that (f2)"( w) 0. By (ii) of Proposition
6.1 the Schwarzian derivative off2 satisfies Sf(x) < 0 whenever (f2)’(x) 0. Thus f2
satisfies the conditions on f already considered in the preceding paragraph, so there
exists Uo I satisfying.the conclusions of the lemma for the function f instead of f.
From this we see that the set U Uofqf(Uo) satisfies the conclusions of the lemma
for the function fi [3

The next result gives an easily verified condition for the Schwarzian derivative of
a function to be negative. Recall first that the order o of an entire function f: C C
is the infimum of all numbers > 0 such that If(z)] e-Izl is bounded on C. (If no such
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K exists then f is said to have infinite order.) Nontrivial entire functions of finite order
possess a product representation

f(z’=ea(Z’zk, (1---,)Et(,)
with at most countably many factors, where 12 is a polynomial of degree at most [to
(the greatest integer less than or equal to the order), k >-0 is the multiplicity of z 0
as a root of f, the numbers z, are the other roots off listed according to multiplicity,
Et is the function

with Eo() 1, and M 0 is an integer satisfying M N NM+ 1. In addition, it is the
case that

1
(6.1)

and the infinite product converges uniformly on compact subsets of C. We also recall
that the order of the derivative f’ equals the order of

PROPOSXO 6.2. Let f be an entire function of order <2 such that f(x)
whenever x , and such that all zeros of the derivative f’ are real en either

Sf(x) < 0 whenever f’(x) 0 and x ,
orf is a linear function f(x) CoX + c.
oo We note that M =0 or 1 in the infinite product representation for the

derivative f’. Denoting the zeros of f’ by x, we have for this function either

(6.2) f’(x) ea(x 1- or

eX/X.,

where we restrict our attention to real values x of the argument. In either case (6.2)
or (6.3) we have "(x)=0 for all x, and

1
(6.4) <.

Now assume that f’ does possess a root; otherwise f’(x)= e"( and the result is
easily checked. In the first case, (6.2), we have

log If’(x)l a(x) + k log Ixl +Z log
X

so term-by-term differentiation (justified by (6.1)) gives

d 2 k 1
(6.5) dx----i log If’(x)l =-5-2. (x_x.)<0
for x # x, and x 0 if k > 0. In the second case, (6.3), the same formula, (6.5), holds.
In either case the result Sf(x)< 0 follows from (v) of Proposition 6.1. l-1
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7. Verifying (I), (II), and (III). The following hypotheses are strengthened versions
of (PM) involving a negative Schwarzian derivative condition. Under these conditions,
verifying (I), (II), and (III) reduces to essentially local calculations.

(NS1)

(NS2)

The function f:R- satisfies hypothesis (PM). In addition f is three times

differentiable in (- rl, ) and satisfies f’(x) < 0 and Sf(x) < 0 in (- q, ).
Thefunction f: R satisfies (PM). In addition, f is three times differentiable
in (-fl, a and satisfies f’(x) 0 and Sf(x) < 0 ifx (-fl, a and x , l.

Under hypothesis (NS1), Theorem 7.1 gives necessary and sufficient condition for
(I) and (III) to hold, thereby extending Propositions 5.1 and 5.2. Under hypothesis
(NS2), Theorem 7.3 gives an easily verified necessary and sufficient condition for (II)
to hold provided (I) also holds. Theorem 7.2 will be useful in verifying (I), (II), and
(III) for specific functions.

THEOREM 7.1. Assume f satisfies (NS1) and define f, by (5.3) as before. Then f
satisfies (I) if and only if
(7.1) f(a)<a ifa<o, f(fl)>-fl iffl>.
Also, f satisfies (I) if and only if at least one of the following three conditions holds:

(1) a=fl=; or (2) a<c and f,(a)>-fl and f(a)<a; or (3) fl< and
f,(-) < a andf(-) > -.

The function f satisfies (III) if and only if
(7.2) f()<__. if <oo, f(-rl)>=-,1 if ?<oo.
Also, fsatisfies (III) ifand only ifat least one ofthefollowing three conditions is satisfied:

(1) =q=c; or (2) sc<c and f,()>=-rl and f(sc)_-<:; or (3) r/<c and
f,(-rl) <- andf(-,1) >- -rl.

Recall that we have

(7.3) f(a)=f() and f(-fl)=f(-rt)
for the quantities in Theorem 7.1.

THEOREM 7.2. Assume f satisfies (NS1), except that

f’(0) -k, O<k_-<l,

holds instead off’(O) < 1. If 0 < k < 1, assume that f"(O) >- O. Then with f,(x) given
by (5.3) we have

]f(x)l < Ix] Vx 0.

Note that (7.1) and (7.2) hold under the hypotheses of Theorem 7.2.
THEOREM 7.3. Assume f satisfies both (NS2) and (I). Then f satisfies (II) if and

only if both
(i) I(f)’(x)l _-< 1, and
(ii) (f2)"(x) 0 if (f2)’(x) 1

hold whenever

(7.4) f)-(x)=x, x e (0, a), f(x) e (-/3, 0).

Equivalently, f satisfies (II) if and only if both (i) and (ii) hold whenever

(7.5) fZ(x) x, x 6 (-fl, 0), f(x) e (0, a).

LEMMA 7.1. Assume f satisfies (NS1), and define f,, A,, and B, by (5.3) and
(5.6). Then A, and -B, are the unique nonzero fixed points off. Moreover, f(x)-x
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changes sign at these points, with tf(x)l> Ixl in (-B,, A,)-{0}, and If(x)l <lxl in
(-oo, -B,) (.J (A,, o).

Proof. First observe that a (possibly infinite) quantity :,> 0 exists such that

(f)’(x) > 0 in [0, :,),

f(x) =f(s,) in [:,, c) if

This follows easily from the definition off,, and we see that :,= s iff,(sc) >--r/ and
so, =f,l(-r/)< sc if f,(s0) <-r/ (these formulas hold even if : or r/ is infinite). Also,

Sf(x) < 0 in [0,

by (ii) of Proposition 6.1. By assumption, we have

(7.6) (f)’(0) > 1.

Now A, is the smallest positive fixed point off in (0, ). If A, => :,, then clearly
A, is the only such fixed point; so suppose that A, < :,. Because A, is the smallest
positive fixed point off, we have f(x)> x for 0< x < A,, which implies

(7.7) (f)’(a,) <= 1.

By Lemma 6.1 the derivative (f)’ does not attain a minimum in any open subinterval
of (0, :,). Using this and the fact that (f)’(0)> 1, we conclude from (7.7) that

(7.8) (f)’(x) < 1 for A, < x <

Integrating (7.8) from A, to u for A, < u =< :,, we obtain

(7.9) f(u) 2 2-f,(a,) =f,(u)-a, < 1 dx= u-a,,
A,

and (7.9) implies f(x)< x for A, <x=< so,, and hence for all x > A,.
The analysis for -B, is similar and is left to the reader, l-1

Proof of Theorem 7.1. As was noted in 5, the sufficient conditions (5.7) and
(5.11) in Propositions 5.1 and 5.2 are also necessary iff has a unique positive fixed
point. Lemma 7.1 shows that f has a unique positive fixed point.

Proof of Theorem 7.2. Obviously f2 andf agree on [0, s,]. A simple calculation
(see [27, p. 261]) shows that

(7.10) (f)"(O) =f"(O)[k2- k].

Since we assume that f"(O) => 0 if O<k < 1, (7.10) implies

(7.11) (f)"(O) =< 0

for 0 < k-< 1. If strict inequality holds in (7.11), the mean value theorem implies that
there exists 6 > 0 such that

(7.12) 0 < (f)’(x) < (f)’(O) k2 for 0 < x < 6.

If (f)"(O)= O, the negative Schwarzian condition implies

(f)’"(0) < 0,

and by using Taylor’s formula we again see that there exists 6 > 0 such that (7.12) is
satisfied. Lemma 6.1 now implies

(7.13) (f)’(x) < k2 for 0 < x < ,,
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for if (7.13) failed for some x, (f)’ would achieve its minimum at an interior point
of (0, x). By integrating inequality (7.13) from zero to x for x=<., we easily obtain

f(x)<x for 0<x-<:.,
and hence

(7.14) f(x)<x for 0<x.

Inequality (7.14) implies thatf has no negative fixed points y (otherwise f,(y) would
be a positive fixed point off), and since f(x) > x for small negative x, we conclude
that f(x) > x for all x < 0.

LEMMA 7.2. Assume f satisfies both (NS1) and (I). If a (-fl, a) is such that
f(a)(-, a) andf2(a)=a, then we have in fact a,f(a)[-B, A] (-fl, a) where A
and B are as in (I).

Proof. Assume without loss of generality that a > 0. The monotonicity of f. and
the fact that If(x)l--< If,(x)l in (-/3, a) imply

a =f2(a) <-f.(f(a)) <=f(a),
and from this we have

(7.15) a<-A.
by Lemma 7.1. On the other hand, the inclusion f2([-B, A])c I-B, A] (which follows
from (I)) and (5.3) imply that f(A)<-A, so

(7.16) A,<-_A
by Lemma 7.1. From (7.15) and (7.16) we have a [-B, A]. The proof that f(a)
[-B, A] is analogous.

LEMMA 7.3. Assumefsatisfies both (PM) and (I), and is differentiable in (-fl,
with f’(x) 0 there, except at x and x q (this is true in particular iff satisfies
(NS_) and (I)). Then with A as in (I), the following hold:

(i) The critical points off in (0, A) are isolated, and (f)’ changes sign at each
such point.

(ii) If a point w in the open interval (0, A) is a local maximum off2, then it is a
global maximum in [0, A

(7.17) f2(w) maxfE(x).
[0,A]

(iii) Iff possesses a critical point in the closed interval [0, A] and ifw in the closed
interval [0, A] is as in (7.17), then w is a critical point:

(f)’(w) =0.

Proof. This lemma follows directly from several elementary observations based
on the shape of the graph of f as in (PM), and the fact that f maps the interval
I-B, A]

___
(-/3, a) into itself.

At a critical point x (0, A) of f2 we have

(f2)’(x) f’(f(x))f’(x) 0

and so either x : or f(x)=-r/. As f(x)=-r/ for at most two points in (0, a), we
conclude that f2 has at most three critical points in (0, A). Of course, these points are
isolated. If either A=< : or f(:) >=-7, then f2 has at most one critical point in (0, A),
and this point, if it exists, is a local maximum. In this case (i), (ii), and (iii) clearly
hold, so the lemma is proved.
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On the other hand, suppose A> : and f(:) < -r/. Then we see that x is a local
minimum of f2, that f(x)=-r/ has either one or two solutions " in (0, A] and that
they are local maxima for f2 with the (common, if there are two solutions ’) value

(7.18) f2() =f(_/)= max f(x)= maxf2(x).
I-B,0] [0,A]

In particular, (i) and (ii) hold. To prove (iii), we note that if w [0, A] satisfies (7.17),
then from (7.18) we have f2(w)=f(-7), and hence f(w)=-r/. Thus (f2)’(w)=
f’(-r/)f’(w) 0 as claimed. 1-1

LEMMA 7.4. Assume f satisfies the hypotheses of Lemma 7.3. Suppose there exists
an interval J r, s with 0 <-_ r < s <-_ A such that

(7.19) f2(J) J, f2(OJ) OJ, where OJ { r, s}, and J- OJ contains a critical point of
f.

Furthermore, assume that it is not true thatf2(r)= s =f2(s). Then there exists v 6 J-OJ
such that fE(v) s. Also, if w6OJ is such that fE(w)= s, then (fE)’(w) 0.

Proof Our assumptions imply that (a) f2(r)= s and fE(s)= r, or (b) fE(r)= r and
f(s) s, or (c) f2(r) r -f2(s). In case (a), let v sup {x < s: (f2)’(x) 0}. By using
(i) of Lemma 7.3, the fact that f2 achieves its minimum on J at s and the assumption
that f2 has a critical point in (r, s), we see that r < v < s, and (fE)’(x) < 0 for v < x < s.
Lemma 7.3 implies that (fE)’(X) changes sign at v, so f2 has a local maximum at v. A
similar argument applies in cases (b) and (c) and shows that f2 always has a critical
point v in (r, s) at which f has a local maximum. Note, however, that this argument
fails iffE(r)= s-f(s).

Because fE(j)c J, we have fE(t)=< S; but part (ii) of Lemma 7.3 implies

(7.20) f2(v)=maxf2(x)>--_s,
[0,A]

so we conclude that

(7.21) f2(v) s maxf2(x).
[0,A]

If there exists wOJ such that f2(w) s, (7.21) and part (iii) of Lemma 7.3 imply that
(f2)’(w) =0. [3

Proof of Theorem 7.3. We establish the last statement of the theorem first, by
showing (i) and (ii) both hold for all fixed points of f2 satisfying (7.4) if and only if
they hold for all fixed points off2 satisfying (7.5). Indeed, this is an easy consequence
of the following two observations. First, if f2(x)= x then f(y)=y, where y =f(x),
and we have (f2)’(x)= (f2),(y). Second, if (f2)’(x)= 1 for this point, then (f:)"(x)=
(f2),,(y). Thus, we need only consider fixed points of f2 satisfying (7.5).

By Lemma 7.2 we may further restrict our attention to fixed points x (0, A] (with
f(x) [-B, 0) holding automatically), where A and B are as in (I). We will therefore
prove that for f to satisfy (II) it is necessary and sufficient that each fixed point off2
in (0, A] should satisfy both (i) and (ii).

Necessity. Assume that f satisfies (II) for some a and b, but that either (i) or (ii)
fails for x a. From (II) we see that x a is the only fixed point of both f2 and of
f4 in (0, A], and so we have

(7.22)
f"(x) > x in (0, a),

f"(x)<x in(a,A] if a<A
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for n 2 and 4, because (fn)’(0)> 1 and fn(A)<-A. Observing that f2(a)= a implies
(fa)’(a) [(f2)’(a)]2-> 0, we conclude from (7.22) that (f4)’(a) =< 1; hence [(f-)’(a)[ _-<

1. Thus (i) holds for x a.
We therefore assume that (ii) fails for x a, and so

(7.23) (f)’(a) 1 and (f-)"(a) O.

We now see that in order for (7.22) to hold with n 2 it is necessary that

(7.24) (f2),(a) > 0.

Furthermore, the fixed point a must be located at the endpoint A of the interval, that
is,

f2(A)=A asa=A.

Now observe that the interval (0, A) contains a critical point off. Indeed if this were
not so, then (f2), would attain a positive minimum in (0, A) because of (7.23) and the
fact that (f2)’(0)> 1; however, this would contradict Corollary 6.1.

Thus we see that the interval J =[0, A] satisfies the hypotheses of Lemma 7.4.
But then we conclude from this result, with w A, that (f)’(A)=0. This contradicts
(7.23), completing the proof of necessity.

Sufficiency. Assume that f satisfies (NS2) and (I) for some A and B, and that (i)
and (ii) in the statement of the theorem hold at each fixed point off2 in (0, A]. First
note that f has at least one fixed point in (0, A]; this follows from the inclusion
f2([ 3, A])

___
3, A], which istrue for sufficiently small > 0 because (f)’(0) > 1. Choose

any such fixed point a, that is,

f2(a)=a(O,a],
and consider its domain of attraction W in [0, A] defined by

W={x[O,A][f2(x)a as n-c}.

Clearly a W and 0 W. By using Lemma 6.1 with f2 in place of f we see that the
set W is relatively open in [0, A]. Let I

___
W denote the maximal connected component

of W containing x a; thus I is an interval of the form

!=(r,s), or else I=(r,A]

where in either case the quantities r and s satisfy

O<=r<a, a<s<-_A ifa<A.

Because f(W) W, f(I) is a connected subset of W containing a, the maximality of
the connected component implies

(7.25) f(I) L

Continuity implies that f2([)c [. However, if I (r, s), we must have that

(7.26) f2(r), f2(s) {r, s};

otherwise r or s would be in L If I (r, A], the same reasoning implies

(7.27) f2(r) r.

Now observe that neither the point r nor s (if I (r, s)) can be a nonzero fixed
point off. By Lemma 6.1 we know that each fixed point off2 in (0, A] attracts iterates
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f2n(X) of all nearby points x. However, we know that those points x I near r or s
satisfy f2n(X) a instead. Therefore, if I (r, s), we must have

f2(s)=r,
and we must have f2(r)= s unless r =0. If I (r, A], we must have f2(r)=r, and we
have just seen that this implies r 0. Thus, if I (r, Al, the domain of attraction of
the fixed point a off2 is the entire interval (0, A], so condition (II) holds. Therefore
for the remainder of the proof we assume I (r, s).

Because f2(s)= r and s > 0 we have r > 0, so the previous remarks imply that
f2(r) s. Define g __f4, SO g maps It, s] into itself, g has negative Schwarzian derivative
on [r, s], and r, a, and s are fixed points of g. Note that

(7.28) f’(x) (f)’(f2(x))(f2)’(x),
SO

(7.29) 0 < g’(a) ((f2)’(a))2 <= 1.

Lemma 2.6 of [27] proves that if g is any continuous function on an interval Jr, s] and
if g(r)=r, g(s)= s, g is C on (r, s) and g’(x)# 0 and (Sg)(x)<0 for x e (r, s), then
g’(a) < 1 if a e (r, s) and g(a) a. (Note that the proof of Lemma 2.6 in [27] requires
only that g’ not vanish on (r, s), although the result is stated slightly less generally.)
Thus by Lemma 2.6 of [27] and (7.29) we obtain a contradiction unless g’(xo)= 0 for
some Xo (r, s). Because f2(I)c I, (7.28) implies f2 has a critical point in L Lemma
7.4 now implies there exists v I such that f2(1))= S. Since lim,,_oof2"(x)=a for any
x I and f2n(1))--r or s, we have a contradiction, and the proof is complete, l-1

If g(x, O) is defined for (x, 0) near (0, 0.), and if g(0, 0) =0 and Og(O, O.)/Ox -1,
it is natural to ask whether the map x g(x, O) satisfies (III) at zero for some interval
(0.- 6, 0.) or (0., 0. + 6), 6 > 0. This question was answered by Allwright in 1]. He
’assumed that x g(x, O) has negative Schwarzian derivative for all x, but his proof
only requires that x g(x, O) have negative Schwarzian derivative for x near zero and
0 near 0.. Thus we obtain the following result, which may also be obtained as a simple
consequence of Theorem 7.2.

COROLLARY 7.1 (see Allwright [1]). Assume g(x, O) is defined and continuous for
Ix] < 61 and 0-0.1 < 62. In addition suppose g is C in the x-variable and g has a
negative Schwarzian derivative (with respect to the x-variable) at x =0 and 0 0..
Assume g(O, O) 0 for [0 o,I < 62 and g’(O, 0,) Og(O, O,)/Ox -1. Finally, assume
02g/OOOx is defined and continuous on the domain of g and 02g(O, O,)/O00x O. Then
there exists 6 > 0 such that the map x g(x, O) satisfies (III) for O, < 0 < O, + 6 if
02g(O, O,)/O00x < O, while the map x- g(x, O) satisfies (III) for O,- 6 < 0 < O, if
O2g(O, O,)/O00x > O.

Of course what Allwright really shows is that fixed points of period 2 of the map
x g(x, O) are bifurcating at 0= 0. from the trivial fixed point x=0. The negative
Schwarzian condition at x 0 ensures that the bifurcation is such that (III) is satisfied.
In fact, the negative Schwarzian condition is also essentially necessary for (III) to be
satisfied locally. The following proposition indicates the sense in which necessity is
meant. Since the proposition follows by standard arguments in local bifurcation theory,
the proof is omitted.

PROPOSITION 7.1. Assume g(x, O) is a C4function defined on an open neighborhood
of (0, 0,). Assume g(O, 0)-0 for (0, 0) in the domain of g, Og(O, O,)/Ox=-l, and
02g(0, O,)/O00X 7q 0. Suppose the Schwarzian derivative of g (with respect to the
x-variable) at x- 0 and 0 O, is nonzero and denote this Schwarzian derivative by q2.
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Then there exist positive numbers e and and continuousfunctions :+(0) and _( 0) that
are defined for O. <-_ 0 <-_ O. + i if .11.12 > 0 and for O, <-- 0 <-- O, if ’11.12 0 and that
have the following properties:

(1) g(+(O), 0)= _(0) and g(_(O), 0)-+(0),
(2) +(0,)=0=_(0,) and the range of C+ is in [0, e] and the range of C_ is in

[-e, 0], and
(3) ifg(g(x, 0), O)=xforsome (x, 0) with 0<[xl<e and 10-0,1-_< then 0 must

be in the domain of+ and x +(0) or x _(0).
Note that if the Schwarzian derivative is positive, the map x-g(x, O) takes

[:_(0), :+(0)] into itself, but Og(O, O)/Ox>-1 for 0 in the domain of :+.
We need one more theorem for our applications in 9. Roughly speaking, our

next result asserts that for functions with negative Schwarzian derivative, (II) fails
before (I).

THEOREM 7.4. Assume f satisfies (PM) and a or fl is finite (a, fl, , and .1 are as
in the definition of (PM)). Suppose f is C on [-fl, ce], f’(x) 0 for x -.1 and x ,
and the Schwarzian derivative Sf(x) is negative on (-/3, a) for x -’1, . Iff([-fl, a ]) c
[-fl, a] andf(a) a orf(-fl) -fl (f. as in (5.3)), then there exists 3" (-fl, a), 3"
O, such that (f2)(3’) 3" and (f2)’(3")<-1.

Proof. Assume for definiteness that f(a)= a. We assume that the theorem is
false, so (f2),(3’)_>-1 for every nonzero 3’ [-/3, a] such that f2(3’)=3, and we try
to obtain a contradiction. Recall that Lemma 6.1 implies that if f2(3’)- 3’ and -1 _-<

(f2),(3") 1, then 3’ is a "locally stable fixed point off2,, in the sense that there exists
B > 0 such that limn_ofEn(x) 3’ for all x such that Ix- 3’1 < 8.

There are two cases to consider, each corresponding to a different qualitative
appearance of rE.

Case 1. Assume that -.1 <f()=f.(a). In this case we have f(a)=f2() a,
and we can easily verify that (fE)’(x) > 0 for 0 _-< x -< : and (fE)’(x) < 0 for : < x < a.

For notational convenience, define :-2 in Case 1.
Case 2. Assume that f()=f.(a)<-_-*1. In this case we have f(a)=f(-*1)= a.

Furthermore, there exist a unique number :1,0 < :1--< sc and a unique number so2, -<
2 < a such that f(scl)=f(:)=-.1. Using this information, we can easily check that
(fa)’(x) > 0 for 0 _-< x < 1, (fE)’(x) < 0 for :1 < x < :, (fE)’(x) > 0 for : < x < SeE. and
(fE)’(x) < 0 for so2 < x < a.

It follows that (in Case 1 or Case 2), f2(:2)= a and (f2)’(x) <0 for :2 <x < a.

Becausef2(a a, the intermediate value theorem implies that there is a unique number
3’, 2 < 3’ < a, such that f(3’) 3’. Our assumptions imply

-1 -< (f2),(3’) _<--0,

so our previous remarks imply that 3’ is a locally stable fixed point off2.
Just as in the proof of Theorem 7.3, let U={x[O,a]:fEn(x)3"}, so U is an

open set, and let U1 be the maximal connected component of U containing 3’, so U1
is also an open set andf2(U1) C U1. (Note that 0 U and a U.) Since U is connected,
we can write U1 (r, s). If r < :2, we have 2 U1, so f4(:) 0 U, a contradiction.
Thus we must have so2 -< r. If s- a, we obtain 0=f2(c) U1 (because f2(
and this is impossible because r-> :2. Thus we must have s < a. Just as in the proof
of Theorem 7.3, we must have f2(r) {r, s} and fE(s) {r, s}.

There are several possibilities to consider. If fE(r)= r or f2(s)=s, we contradict
the fact that 3’ is the unique fixed point of f2 in the interval [2, a]. The only other
possibility is that rE(r)-s and fE(s)--r. If we write g=f4, we know that g has a
negative Schwarzian derivative on [r, s] and that r, s and 3’ are fixed points of g. If
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g’(x) 0 for r < x < s, Lemma 2.6 of [27] implies that g’(3,) > 1, which is a contradiction.
Thus there must exist Xo (r, s) such that g’(xo)=0. By using the chain rule we see that

Xo or f2(xo)= or f(xo)=-r/ or f3(xo)=

Because f2(xo) (r, s), Xo (r, s), and r- :2, the only possibility is that f(xo) -r/or
f3(Xo) r/. In particular, we must be in Case 2 and have f()-<-r/ and f(-r/)= a.
But then we again obtain a contradiction: either c =f2(xo) (r, s) or a =f4(Xo) (r, s).
Since we have obtained a contradiction in all cases, the theorem is proved.

Remark 7.1. Note that we have actually proved somewhat more than is claimed.

Iff is as in Theorem 7.4 andf(a) a and :2 is as defined in the proof, an examination
of the previous argument shows that there exists y with 2< 3’ < a such that f2(y) y
and (f2)’(y)<-1. An analogous statement is true iff(-fl)=-fl.

In fact, the same kinds of arguments used in Theorem 7.4 allow a much more
detailed picture of the fixed points of g =f2. Iff is as in Theorem 7.4 and f(a)= a,
and 1 and :2 are as in the proof of Theorem 7.4 (so that :1 so2 iff() => -r/), then
we can prove g has no nonzero fixed points on [0, sol]. If g(sc) -< :, then g has unique
fixed points yl in [:, :] and 3’2 in (, :2], and g’(y2)> 1. If g(:)> :, then g has no
fixed points in [:1, :] and g either has zero, 1, or 2 fixed points in [, 2]. If g has
exactly one fixed point yl in [:, :2], then g’(yl)= 1 and g"(yl)>0. If g has exactly
two fixed points yl < y2 in [, :2], then 0< g’(yl)< 1 and g’(y2) > 1. Because it is very
long, we omit the proof.

COROLLARY 7.2. Supposef is as in Theorem 7.4 andf, R -> , n >-_ 1, is a sequence
of C functions such that fn (x) ->f(x) andf’(x) ->f’(x) uniformly on compact intervals.
Assume fn satisfies condition (0) and positive numbers An and Bn exist such that

fn ([-Bn, An]) c [-Bn, An], xfn(x) < O for all x [-Bn, An] -{0}, and An -> a and
as n-> c (a and fl are as in the definition of (aM) for f). Iff(a)= a or f(fl)=
then there exists y (-fl, a) such that f2(y)=Y and (f2),(y)<-1, and there exists a
sequence (yn) --> Y, defined for n sufficiently large, such that Yn (-Bn, An), f2
and (fE)’(yn) < -1.

Proof This follows immediately from Theorem 7.4 and elementary calculus
arguments.

$. The Sehwarzian derivative of./. To apply the theory of 7 to the functions fk,
we must first show Sfk(X)<O for the appropriate ranges of x. As the Schwarzian
derivative is invariant under translation, it is sufficient to work directly with the functions
fk rather than with the corresponding normalized functions

(8.1) gk(X) =fk(X + X0) --fk (Xo)-
PROPOSITION 8.1. For the functions fk we have

(8.2) Sfk (x) < 0 wheneverf(x) 0

for the ranges ofparameters and values ofx in Table 2. Also, hypothesis (NS1) or (NS2)
holds at the fixed point Xo for all I > tZo as indicated in Table 2, where Xo and tZo are as
in Table 1.

The data of Table 2 are sufficient but not necessary for the Schwarzian derivative
of fk to be negative, or for (NS1) or (NS2) to hold. For example, we have not ruled
out the possibility that in at least part of the range 0 < , < 1 the condition (NS2) might
hold for f4 or fs, rather than the weaker condition (NS1).

Proof. Rather than prove this result by direct (but lengthy) calculation of the
Schwarzian derivatives, we use the results of 6 to simplify our work.
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TABLE 2
Ranges where the Schwarzian derivative off is negative (providedf[,(x) 0), and where

(NSI) or (NS2) hoMs at the fixed point Xo for all tz > tZo. The values OfXo and pro are as in

Table 1.

Range where the Schwarzian derivative
is negative (where (8.2) holds)

Hypothesis (NS1) or (NS2)
holding at x0 for all/x >/Zo

allxeR, /eR
2 all x e N when/ => 0
3 allxeN, /x, 0eN
4 x>0 when v_-

x> u when 0=< v<
5 x>0when u>_- and A > v+l

(..___v] /ax>\_v] when0-<v<l andA>v+l

(NS2)
(NS2)
(NS2) when 0 0 < r/2
(NS2) when , or v 0
(NS1) when 0 < v <
(NS2) when v and A > v + 1,

or when v-0andA>l

(NS) when 0< u < and
A>v+l

The cases k 1, 2, and 3 follow immediately from Proposition 6.2. (An easy
alternate proof in the case of f3 is to note that Sf3(x)<=f"(x)/f(x)=-I wherever
f(x) 0.) Essentially the same argument as in the proof of Proposition 6.2 also works
for f4, even though this is not an entire function when t, is not an integer. Assuming
/z 0, for x > 0 and x t, we have

d2 t,-1 1
(8.3)

dx
2log Ifg(x)l

x (x- v)2’

which is negative if t,>_-1. If 0< t, < 1 and x> t, then (8.3) is bounded above by
-(t,-1)/x2-1/x2= -v/x2, and hence is again negative. When t, =0, a direct calcula-
tion of the Schwarzian derivative shows that Sf4(x)=-1/2 for x > 0. The claims of the
proposition now follow directly. In particular, we see that (NS1) holds for f4 when
0< t, < and /z >/Zo, when we note that f4 achieves its maximum at x t, and this
critical point lies to the left of the fixed point Xo.

The calculations for f5 are somewhat more involved, but some simplification can
be achieved by considering the reciprocal of this function. Setting rn(x) tz/x where
/z 0, from (iii) of Proposition 6.1 we have that for x > 0 and f(x) 0

where

Further calculation yields

where

Sfs(x)=Sh(x)

h(x) m(fs(x)) x- + x-.

Sh(x)
Py+ Oy+ R

x2[(A t,)y

P 1/2(A t,))[(A t,)2-1],
Q= t,(A t,)[(A t,)2+ 3 t,(A t,)+ t,2+ 1],

R 1/2t,2(t,2-1),

y= xx, y.
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If v_->0 and A > v+l as in Table 1 then P>0 and Q>0. If in addition either v-> 1
or v =0, then R->0, and so Sfs(x)< 0 for x > 0. In this case f5 satisfies (NS2) when

>/-*0, as claimed. On the other hand, if A > v+ 1 but 0< v < 1, then a calculation
reveals py2+Qy+R>O at y= v/(A-v). Thus,

Py:Z+Qy+R>O fory_->

because P>0 and Q>0; hence Sfs(x)<O for x> (v/(A u)) 1/’. Again, as f5 achieves
its maximum at x (v/(A v)) 1/x and this point lies to the left of Xo when/z >/Zo, it
follows that f5 satisfies (NS), as claimed.

9. Applications of the general theory to the function f. We will now use the results
of 7 to determine ranges of parameters for which hypothesis (I), (II), or (III) holds
for fk at a fixed point Xo of Table 1. In this connection it will first be useful to make
a few general remarks.

Suppose that f(x) is a continuous function with fixed point Xo and assume that
the function g(x) defined by

f(x+xo)-Xo=g(x)

satisfies (PM). Recall that f satisfies (I), (II), or (III) at Xo if and only if g satisfies
the corresponding hypothesis at zero. If a,/3, , and r/ are the quantities in (PM) for
g, then define Xl Xo-/3, x2 Xo- r/, x3 Xo + :, and x4 Xo / a. We are considering
the function f(x) on the interval [x, x4], and f(x)> Xo for Xl <x <Xo, f(xl)= Xo if

Xl > -o0, f(x) < Xo for Xo < x < x4, and f(x4) Xo if x4 < o0. Furthermore, [x2, x3] is the
maximum interval containing Xo on whichf is monotone decreasing andf is monotone
increasing on [xa, x] and [x3, x4]. Upon defining the function f.:- by

If(x2) in (-oo, x2] if x_>-oo,
f.(x) f(x) in [x2, x3],

f(x3) in [x3, o0) if x3 < o0,

we see that (7.1) and (7.2) of Theorem 7.2 for g become

(9.1)
(f)(X4) < X4 if X4 < (30,

(f)(Xl) > Xl if xl > -,
and

f2(x3) < X if x3 <
(9.2)

f(x2) => x2 if x2 > -c.

Thus if g satisfies (PM) and f is C with negative Schwarzian derivative on (x2, x3),
then f satisfies hypothesis (I) at Xo if and only if the inequalities (9.1) hold, and f
satisfies (III) if and only if (9.2) holds.

Now suppose that f is a continuous function with fixed point Xo, that g satisfies
(PM), and x, x2, x3, and x4 are as defined above. Suppose that q is a C function
defined on an interval (y, Y4), that q’(y) > 0 for y < y < Y4, and that q(yl) x and
q(Y4)--X4. If x =-o, then assume for convenience that yl =-, and similarly if

x4 c, then assume Y4--. It is easy to check that f satisfies hypothesis (I), (II), or
(IiI) at Xo if and only if q-fq satisfies the corresponding hypothesis at Yo q-l(xo).
Furthermore, writing h q-lfq, we easily verify that

(9.3) h, qg-lf, go.
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Iffis C on [x2, x3] and Sf(x)<O for x2<x<x3, it follows from (9.1)-(9.3) and the
above remarks that h o-lfo satisfies (I) at yo if and only if

(9.4) (h)(y4) <y4 and (h2.)(yl) > y,
where yj b-(xj) for 0-j_-<4. Similarly, h satisfies (III) at Yo if and only if

(9.5) (h)(Y3) Y3 and (hE,)(y) >-y.
Note that h need not have negative Schwarzian derivative on (Y2, Y3).

The above observation sometimes simplifies calculations, since it may be easier
to work with h and h. than with f and f..

We now begin the analyses of the functions fk. Consider first the function fl. We
easily see that with Xo as in Table 1 and /z >/Xo= we have c +Xo :+Xo=O,
-/3 + Xo -Xo, and -r// Xo 0, so

/z in (-, 0],
fl.(X)

/x x2 in (0, ).

We have fiE.(--*/+ X0) ----> --r/+ X0 if and only if/z -/x
2 >_-- 0, and f.(-fl + Xo) >- -fl + Xo

if and only if/z-/d,2--XO, that is,

(9.6) 2/x2- 2/z + 1 < x/4/x / 1.

Inequality (9.6) is equivalent to

/ -2/xE+2/x -2 < 0,

as a short calculation shows; and this in turn is equivalent to

/x </z, 1.5437

where/,, is the unique real root of/z3-2/x2+ 2/z-2 =0. By Theorem 7.1 we conclude
from these calculations, and the data of Table 1, that (I) holds at Xo if and only if
3
a </x </x,, and that (III) holds if and only if </, =< 1.

To determine those values of/z between/x = and/x =/x, at which (II) holds,
we must consider points of period 2 for the map fl in the interval (-/3 + Xo, c + Xo)
(-Xo, oo). Assuming that </, </z,, we consider points xl and x2 satisfying

(9.7) f(x,) x2 and f(x2)= x
and lying on either side of Xo in the above interval"

(9.8) -Xo < X1 < X0 < X2

As noted earlier such points do exist; in fact, in the closed interval [-B + Xo, A+ Xo] c__

(-/3 + Xo, a + Xo). Writing out the equations in (9.7) gives, after some manipulation,
that xl + x2 1 and

/2, 1--X1X2.
Further, the derivative of f2 at either of these points is

(flE)’(Xl) (f2)’(x2) =f(xl)f(x2) 4XlX2 4(1 -/x).

In the range </z _-<-54 we therefore have -1 _-< (flE)’(Xl) < 1, so (II) holds by Theorem
7.3. Theorem 7.3 also implies the uniqueness of solutions of (9.7) and (9.8) for </z _-< .
Of course, since Xl / x2 1, we can also solve for Xl and x2 and directly obtain
uniqueness. If, on the other hand,-54</z </z., the same calculations show I(f)’(x)l > 1,
and (II) does not hold. Table 3 summarizes our results forf by indicating the parameter
ranges where (I), (II), or (III) holds.
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The situation for f2 is very similar to that for fl. In particular the same sort of
analysis as above yields intervals of the parameter/x in which various hypotheses hold.
Thus we easily find that f2 satisfies (I) for 1 </z <3v//2 and (III) for 1 </., <. If
f2(xl) x2 and f2(x2) Xl, where -x/-< x2 < 0 < Xl < v-, then xlf2(xl) x2f2(x2) O,
from which we derive/x x2 + x2, if x -x2, or x -x2. The equation

implies

f:(x,) x-f(x) + x, o

Xl + x,x+x 1,

so if Xl -x we have Xl
2 +x2 =/z and

(9.9) xlx2 -1.

Now if x =-x]-, a simple calculation shows that the defining equations for x2 and
xl are equivalent to the single equation

(9.10) x- Izx= -1.

The quadratic equation (9.10) has a real, positive solution ifand only if/x >= 2. Therefore,
if 1 < tz < 2, we must have x_ =-x. Since f is odd, the defining equations for x and
x2 reduce to the single equation

so we obtain

f2(Xl) X31 ltl,Xl --Xl

(9.11) x =//z-1 and XE=--x//Z--1.
Substituting (9.11) into the following equation, we obtain

(9.12)
(f)’(x) -f(x2)f.(x) (3x22-/x)(3Xlz -/x)

(2/z-3)2

Equation (9.12) implies that I(f)’(x)l < 1 if 1 </z < 2, so (II) holds for 1 </z < 2. On
the other hand, if/z > 2 and we take x2 =-xl, Theorem 7.3 and (9.12) imply that (II)
is not satisfied.

Finally, if/z 2, a direct calculation using the above information shows that xl 1
and x2 =-1 are the only nonzero fixed points of f22 and

(f 3)"(x,) =0,
so Theorem 7.3 again implies that (II) is satisfied. All of this information is summarized
in Table 3.

TABLE 3
fk(X) satisfies (I) at x ifand only ifixo < tx < Ix1 ,fk(X) satisfies (II) ifand only ifixo < Ix <_- Ix2,

and fk(X) satisfies (III) at x if and only if Ixo < Ix <- Ix3.

k Xo Ixo Ix1 Ix2 Ix3

a Ix_2Ix2 +2IX,_2 0(-1 +/4IX + 1)/2 4

Ix1 1.5437
2 0 3x//2
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For the map f3 with fixed point Xo=0 and parameter 0 chosen in the range
0=< 0< 7r/2 established earlier, we again find intervals of/x in which (I) and (III)
hold. The range where (II) holds, however, is still not clear. Recall the critical value
/Xo =/Zo(0) 1/cos 0 from Table 1.

THEOREM 9.1. There exist continuous functions

t93, ’3" [0, ) (0, )

satisfying

1
#o(O)=<p(o) <

cos 0

such that if 0-< 0=< 7r/2, then (I) holds for f3 at Xo=0 if and only if txo(O)< tx < ’3(0),
and (III) holds if and only if/Xo(0) </x <_- p3(0).

Motivated by the results for fl and f2, we might expect the existence of a third
function 0-3 satisfying t93(0)< 0-3(0)< ’3(0) and such that (II) holds if and only if
/Xo(0) </x -< 0-3(0). We believe this to be the case, but we have not pursued this question
here. However, we can easily prove by an implicit function theorem argument that
condition (II) holds for/Zo(0) </z </93(0) + 83(0) for some sufficiently small 83(19) > 0:
the period 2 points {xlx2} of f3 for/z t93(0) are "super-stable" (that is, (f)’(xl)=
(f)’(x) =0) and so must persist for/z slightly larger than p3(0). On the other hand,
Corollary 7.2 implies that there exists 84(19) > 0 such that for ’3(19) 84(19) </z < ’3(19)
the function f3 has a fixed point 3’ (in the relevant interval) such that (f32)’(3’) <-1,
and this implies (II) fails for r3(0)-84(0)</x < ’3(0). By using Remark 7.1 we can
also show that, for 19 near zero and/z near ’3(0), f has a second fixed point for
which (f32)’(/) > 1.

Proof of Theorem 9.1. Assuming /x >0 and 0=< 0< r/2, we note the following
values:

a=Tr-O<--fl=Tr+O’ :=2 0<r/= +0

for f3 in condition (PM). We also note the following formulas:

f3.(a) f3.(:) -/z (1 sin

f3*(-) =f3*(-r/)=/z(1 +sin 19).

In order to use Theorem 7.1 for determining when (I) or (III) holds, we must calculate
both (f23.)(a)=(f.)() and (f.)(-fl)=(f.)(-q), and examine (7.1) or (7.2). In
fact, we claim

(9.13)
f23.(a)<a implies f.(-fl)>-fl,
f32.(:) <- : implies f.(-r/) =>

Thus, we need only verify the inequality f32.(a)< a to conclude (I), and f.(:)<_-: to
conclude (III).

We prove only the first implication (9.13), as the proof of the other is similar.
Suppose

(9.14) f.(-fl <-_ -fl.
Then as f3* achieves its minimum at x :, we have

(9.15) f3.(:) <_- -fl
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from (9.14), and so

(9.16) f32-() f3-(-/3)

as f3* is constant to the left of -/3. Thus, from (9.14)-(9.16) we obtain

f.(a) f32.(s)=f3.(-/3)=/z(1 +sin 0)

=>/z(1 -sin 0) -f3.(sc) ->/3 >= a.

The required inequality f.(a)>= a, from which the implication (9.13) follows, is now
proved.

We now calculate the quantity

(9.17) (fa2.)(s) (f.)(a) =f3.(-g(1 -sin 0))

and compare it with either a or sc, as described above. Let ha(/X, O) denote (fa.)(a);
then we easily see

7r/2+ 0
/x [sin 0 sin (0 -/x (1 sin 0)) if/x -<

1 -sin O’
h3(/z 0)

7r/2 + 0
/x(l+sin0) if/x >

1 sin 0"

A simple calculation shows that 0h3(/x, 0)/0/z > 0 for all/z > 0 in the two ranges of/z
for which h is defined. Thus h3(/z, 0) is strictly increasing in /z, for each fixed
0 [0, 7r/2), and assumes every positive value exactly once for/x > 0. Thus there exist
continuous functions p3, r3" [0, 7r/2)- (0, ) satisfying

h3(p3(O), 0) cr 7r- 0, h3(7.3(0), 0) s= 7r/2- 0.

By Theorem 7.2 we also have

h3(1/cos, 0) < s,
since f(0)=-1 when/x I/cos 0. Thus,

1/cos 0 < 03(0) < 7"3(0

and the result follows immediately. IS]

As has already been noted in 3, if the function f3 is not in our normal form,
there may be some difficulties in determining the ranges of the original parameters for
which (I) or (III) is satisfied. To illustrate this point, we consider

(9.18) e(t) -x(t)+ /x(1 -sin (x(t- 1))),

which has been studied numerically by Chow and Green [4]. For each/z > 0, we can
easily see that

(9.19) /x(1 -sin x) x, 0<x< r/2,

has a unique fixed point 0= 0(/x) (0, 7r/2), and using the implicit function theorem
we can see that 0’(/z) > 0 for/z >0. The question is does/x(1-sin x) satisfy condition
(I) or (III) at x 0(/x).

PROPOSITION 9.1. For each Ix >0, the function tzf(x)=/x(1-sin x) has a unique
fixed point 0= 0(/x)(0, r/2). There exist numbers tZo (tZo is approximately equal to
1.1773) and tXl (txl is approximately equal to 2.3879) such that tzf(x) satisfies. (I) at
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0(1) ifand only ifoK l <1 and If(x) satisfies (III) at O(l) ifand only
r/2. The equation

0 cos 0 7r

1-sin0
1, 0<0<2

has a unique solution 0o (0, 7r/2) and/Xo 0o/(1-sin 0o). The equation

(o)0+ =r, 0<0<--
1 sin 0 2

has a unique solution 01 (0, r/2) and/Zl 01/(1-sin 01).
Proof. The idea of the proof is to parameterize by the fixed point 0 (0, r/2)

instead of by/z. If 0 (0, 7r/2) is the fixed point of Ixf(x), then

1 sin 0

Thus, for 0 < 0 < 7r/2, define g(x, O) go(x) by

g(x, O)=go(X)=
1-sinO

(1-sin(x+O))-O.

We can easily check that the map 0 (0/1 -sin 0)) is strictly increasing for 0 < 0 < 7r/2
and

{/x’/xf(x) satisfies (III) at 0(/z)}

{0/(1-sin 0)" 0< 0 < r/2 and go(x) satisfies (III) at zero},

with an analogous equation concerning (I). Ifthe numbers a a(0),/3 =/3(0), : so(0),
and r/= rt(0) are as in the definition of condition (PM) for go, then a 7r-20,
/3 7r + 20, s 7r/2- 0, and r/= 7r/2 + 0. The same argument as in Theorem 9.1 shows
that go satisfies (III) if and only if

(9.20) (g2o.) 0 <=- O,

0 COS 0 ) <-1(9.21) g(0)
1-sin 0

Since go.(r/2-0)=-0 >-r/, we easily compute that (9.20) holds if and only if

( 0 )7rlsin #
(9.22) _. -<_--.

2

Thus go, 0< 0 < 7r/2, satisfies (III) if and only if (9.21) and (9.22) hold. Similarly, we
see that go satisfies (I) if and only if (9.21) is valid and

(9.23)

0 )-0< 7r- 20,(g2*)(Tr-20)=
1-sin 0

1-sin 0
+ 0 < ’, 0< 0<.

that is,

It remains to study where (9.21)-(9.23) hold. Obviously the function (0/(1-
sin 0))+ 0= h(O) satisfies h(0)= 0, lim0_,/2 h(0) c and h’(0) > 0 for0< 0< r/2, so
there is a unique number 01 such that

h(01) r and h(0)< 7r if and only if 0< 01 < r.
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In order to study where k(O)=(O cos 0/(1-sin 0))> 1 for 0(0, r/2), first
observe that the mean value theorem gives

1 sin 0 0 cos (q), 0 < q <
2

If 7r/4 -< 0 /2, this implies

>1.k(O)=
/2-0 cos

On the other hand, if 0 < 0 < /4 we have

k’(O) [(cos 0-0 sin 0)(1-sin 0)+ 0 cos 0](1-sin 0)-.
Because we also have

cos0-0sin0> cos0-sin00 for0<0/4,

we conclude that k’(0) > 0 for 0 < 0 /4. From the above facts it follows that k(0) 1
has a unique solution 0o (0, /2), that 0< 0o< /4, and that k(0)> 1 for 0 (0, /2)
if and only if 0o < 0 < /2. This completes the proof of the proposition. (Approximate
values of 0o and 0, and hence of o and , can easily be computed using Newton’s
method.)

Proposition 9.1 and the results summarized in 2 provide some explanation of
the numerical results in [4]. For example, ifo< /2 we see for small e the regular
SOP-solutions predicted by Theorem 2.3. Theorem 2.1 asses that SOP-solutions persist
for o< < and e > 0 sufficiently small. However, these solutions apparently lose
stability for near and e > 0 small" for near Chow and Green appear to have
found, numerically, periodic solutions that are not SOP-solutions.

We now want to examine when (I), (II), or (III) is satisfied by the functions f4
or fs. With k =4 or k 5 and fixed parameters u 0 and A > u+ 1 (when k 5), we
will write

(9.24) A(x) f(x),

where the function f(x) does not depend on . In our next several theorems we will
discuss the range of for which the functions f4 and f5 satisfy (I) or (III), and we
will return later to (II). The next theorem provides a reasonably sharp and general
answer concerning when (III) holds for functions f(x); the question of (I) seems
more difficult.

THEOREM 9.2. Assumef" (0, ) (0, ) is a C function and there exists a number
0 0 such that f’(s) > 0 for 0 < s < 0 and f’(s) < 0 for s > O. Assume there exists a
unique number So> 0 such that

and assume also

d o,

d
< o > So.

Finally, assume (Sf )(x) < 0 for x> O. Define functions I(s), Xl(S), x2(s), and x3(s) by
t(s) s(f(s))-, x(s)= t(s)f(o), and

xj(s) Iz(s)f(xj_l(s)) for j>--2.
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If xo(ix) denotes the unique fixed x of ixf(x) such that x >- 0 (for Ix >-O(f(O))-l), then

{ix" Ixf(x) satisfies (I) at Xo(ix)} {ix(s)" s > So and x3(s)> s}

and

{IX" Ixf(x) satisfies (III) at Xo(ix)} {ix(s)" s> So and x2(s)_-> 0}.

There exists a number p > IX(So) =- IXo such that

{IX" IXf(x) satisfies (III) at Xo(IX)} (IXo, p],

and p < c if limx_ xf(x) O. The number p is z(f(o))-1 where z is the unique solution

of zf(z)= 0f(0) such that z> So (if such a solution exists).
If D is an open subset of R and f’(0, c)xD (0, ) is a C map such that

x-f(x, 3’) satisfies the conditions of our theorem for each 3"D (so 0=0(3’) and
So So(3") exist and are easily proven to be continuous), then the number p p (3") is also
a continuousfunction of 3". (Ifp(3") o for some 3’, continuity is interpreted in the obvious
way.)

Proof. First assume f is independent of 3’ D. For a given IX > 0 let Xo Xo(IX) ->- 0
and define 6 6(IX)_-< 0 by

f(6) f(xo).

Theorem 4.1 implies that IXf(x) satisfies condition (0) at Xo if and only if IX > IXo
So(f(So))-1= IX(So), and the results of 7 imply that IXf(x) satisfies (III) at Xo if and
only if IX > IXo and

(9.25) (IXf)2(0) -> 0

where (IXf)J is the composition of IXf with itselfj times. Similarly, IXf(x) satisfies (I)
at Xo if and only if IX > IXo and

or equivalently IX > IXo and

(9.26)

()(o) > (),

(f)(o) > Xo().

(Note that IXf(0) > IXf(xo) Xo, so (IXf)(0) < Xo.)
As in Theorem 4.1 the key idea is to parameterize by s Xo(IX) instead of IX. Since

IXf(xo) Xo, this gives

=s(f(s))-’=(s),
which is an increasing function of s for s _-> O. In terms of this parameterization we
find that IX(s)f(x) satisfies (III) at s > 0 if and only if s > So and

(9.27) x(s) >= O.

Similarly, we see that IX(s)f(x) satisfies (I) at s if and only if s > So and

(9.28) x3(s) > s.

Since Theorem 7.2 and Corollary 7.1 imply that there exists 6 > 0 such that IX(s)f(x)
satisfies (Ill) for So < s-<_ So+ 6, we have proved the first part of the theorem.

It remains to prove that (III) is satisfied on an interval (IXo, p]. Equivalently, it
suffices to prove that

{s: s > So, x(s) >- O}
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is an interval. We know that x2(s)> 0 for s near So, so it suffices to prove x(s)< 0
for s > So. A calculation gives

x() (o)(())-’[y(s) $’(s)1,
and since f’(s)< 0 for s > So, xa(s)> 0 for all s > So. Note that we have

Ix(s)f(O) Xl(S ) Ix(s)f(s)= s > So,

so we find that

lim xa(s) .
We can write

jr/, (S) XI(S)((0))-1,
so if we define g(x)= (f(O))-lxf(x),

x(s) g(x,(s)), x;.(s) g’(x,(s))x(s).

However, xa(s) > so and we have assumed that g’(x) < 0 for x > So, so x_(s) < O.
If r > So is such that x2(r)= 0, and if z xa(er) the above calculation shows that

zf(z) Of(O) and p Ix(er)= z(f(0))-’.
If we assume lim,,_,ooxf(x)=O, we obtain (because xa(s)-+oo as s-+oo) the

following

lira x2(s)= lim g(xa(s))= O.

This implies that for all large s, X2(S < 0, SO p is finite in this case.
If f depends on a parameter 3’ e D, the continuity of p(3,) follows easily from the

implicit function theorem at points where p(y)< oo, and continuity at points 3’ where
p(3’) is also easy. Details are left to the reader. [3

Remark (9.1). Iff (O, m)- (O, m) is as Theorem 9.2 and o’(a,/3)(0, m) is a
C map onto (0, m) with positive derivative, the remarks at the beginning of this section
show that o-a(ixf)o satisfies (I) or (III) if and only if Ixf satisfies (I) or (III).

As an immediate consequence of Theorem 9.2 we obtain Theorem 9.3.
THEOREM 9.3. Let fk(X), k =4 or 5, be as usual and assume v>0 and A > v+ 1 if

k 5. Define Ixk(s) S(fk(S)) -a and define O vfor k 4 and 0, v(a v)-’ for k 5.
Define o-k= v+l for k=4 and cr,=(v+l)(A-v-1)-a for k=5. Define zk to be the
unique solution z > O’k of

zA(z) OA(o).

If Xo denotes generically the unique fixed point greater than Ok of Ixfk (X), then

{IX" Ixfk(x) satisfies (III) at Xo} (ixk(crk), Ok],

where pk Zk(fk(Ok))-1 is a continuous function of v and a. If xl(s)= Ixk(S)fk(Ok) and
xj(s) Ixk(s)f(xj_l(s)) for j>=2, then

{IX" Ixfk(X) satisfies (I) at Xo} {IXk(S): S > irk and x3(s) > s}.

If v=0, then Ixfk(X) satisfies (III) at Xo for all tx > Ixo.
Proof The number Ok plays the role of 0 in Theorem 9.2, and O’k the role of So.

We have already verified the negative Schwarzian condition on fk and the other
hypotheses of Theorem 9.2 are easily verified, so Theorem 9.3 follows directly from
Theorem 9.2. [3
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We now want to study more precisely when /.t,f4(x) satisfies (I). It is convenient
to give a calculus lemma first.

LEMMA 9.1. If V > 0, then

(9.29) (v+2)
+1

e2,

and if v>-I

(9.30)

If 0 _-< c <-2, then there exists v(c) >-_ 1 such that the following inequality is valid for
v>-_v(c):

(9.31) e+C_<-
v v+l+c

Proof. By taking natural logarithms we see that (9.29) is equivalent to proving

(v+l)log 1+- >2,

and the above inequality is equivalent to

io:, io(+ 1) dt> v dt.

The above inequality is equivalent to

f2
Change variables in I by setting 1! v-p to obtain

I1
vp

do+(i/v)-p

and change variables in 12 by setting 1/v + p to obtain

12=
l +(1/v)+p do.

Since v > 0, we have

vp(1 + v-1 p)-I > vp(1 + v-1 + p)-I for 0 < p < v-1,
so I > I2.

The proofs of (9.30) and (9.31) are like the proof of (9.29). If v>_-1, (9.30) is
equivalent to

l<log 1+ +vlog 1+
v+l

Expressing both sides as integrals, the above inequality is equivalent to proving

v dt < dt- dr.
1 + J 1/+1)

Simplification shows that the above inequality is equivalent to

(9.32) 0<
o l + ]

dt dt= J-J.
al/(v+)
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Making the change of variables 1/v-p in J2, we have

fOl/’--l/(v+l)( 1-Vt)dt.(9.33) J2
1 + v-1-

Since v_-> 1 we can easily verify that

(v+l)-l>_v-l-(v+l)-,
and using (9.32) and (9.33) we see that J1 > J2 if

(9.34) (1 vt)(1 + t)-> (1 vt)(1 + -- t)-1 for 0 < < -1_(+ 1)-1.
However, again using that 1, we can check that inequality (9.34) holds, so J1 > J2.

By taking logarithms we see that inequality (9.31) is equivalent to

l+clog(l+1+c)- +log(l 1-c )v v+l+c

or, by expressing both sides as integrals,

fio:l+c)/v Jl+c)/v() fio:l--c)/(v+l+c)()v dt dt + dr.

By simplifying we see that inequality (9.31) is equivalent to

K1 Io:l+c)/ (v) dt I21-c)/<+l+*) () d, K2.

Since (1 + t)- < 1 for > 0 we see that

(9.35) K < (vt) dt

On the other hand, (1 + t)-> 1- t, so

Io:l-c)/(++) (1-c)1( 1--C ) 2.(9.36) K2 > (1 t) dt
v+l+c v+l+c

For a given c, 0 < c < 1, it follows from (9.35) and (9.36) that K < K2 if

< - +I+C+l+c
Multiplying by 2(+ 1 + c), we see that the above inequality is equivalent to

If 1-4c- c> 0, i.e., c <-2, then inequality (9.37) will be satisfied for all (c),
where

(9.38) (c)=(1-4c-c)-[(1+c)+(1-c)]=(1-4c-c)-[c+4c+c+2].
THEOREM 9.4. ere exists a continuous function

.(o, (o,

satisfying o()= (+ 1)- e+ <04() < (), where 04= O4() is as in eorem 9.3,
such that (I) holds for f(x) (at its unique fixed poin in (,)) and only if
o() < < r(). Furthermore, e have that

(9.39) limo* r() m and lim r() o()] 0, and for 2

( .( (-.(+l(e/(l,
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where we have defined/x(s)=s1- es. For 0<c<v/--2 and for u>=u(c) (u(c) as in
(9.38)) we have

(9.40) [/.1,0(9), 04(9)] ={S1-v e s" 9+ 1 < s<= 9+ 1 + c}.

Proof For notational convenience we write f4(x) f(x), 0 v, and So v + 1, and
define xj(s) as in Theorem 9.2. Theorems 9.2 and 9.3 imply

[/*o(9), p4(9)] {/Z(S)" Xz(S) >- 0},

{/x" f(x) satisfies (I)} {/x(s)" s > So and x3(s) > s}.

Furthermore, we have already shown that

x(s)>O, x(s)<O VS>So.

We fix 9 > 0 and first show X3(S < S for all large s or, equivalently, that

log (s-lx3(s)) < 0 V large s.

Using the definition of xj(s), we find

log (s-lx3(s))<-9 logs+s+ 9 logx2
(9.41)

93 log s + (1 + 9 + 92)s + 93 log 9 93 9
+1 e-s1- e.

Because the e term is dominant for large s, the right-hand side of (9.41) is negative
for all large s, so (for fixed 9 > 0) for every sufficiently large/x, tzf(x) does not satisfy
(i).

If 9-> 1, it is a calculus exercise (which we leave to the reader) to prove that the
derivative of the right-hand side of (9.41) with respect to s is negative for s >_-29.

Another calculus exercise left to the reader is to verify that

d
dv

(log (S--Ix3(s))[s=2v) < 0 for u => 2.

A direct calculation shows that the right-hand side of (9.41) is negative for 9 2 and
s 4 29, and combining the above information we conclude that

(9.42) log(s-1X3(S))<O for s>=2v and v=>2.

It follows from inequality (9.42) that, for’9-> 2,

{/x" f(x) satisfies (I)}c {/,(s)" v+ 1 < s <29}= (/x(v+ 1),/x(2v)).

Because/z(s) is increasing for s > 9-1 we have

tx(2v) tx( v + l < tx(2v) Ix( 9) v 2 -1

which immediately gives (9.39) (although we have not yet proved that r4(9) exists).
To prove that r4(9)-o as 9-0+ (assuming the existence of r4(9)), it suffices
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to prove that given any M>O, there exists 8=/(M) such that for O<v<8(M)
and u+l <s<=M,

(9.43) log($-lx3(s))----u31ogsd"(lnt-,d-v2)sd-l,,31og l--u3--u’+lsl-" eS-’--x2>O.
Because u e converges to one as uo0+, we see that Xl(S) s- eu e conver-

ges uniformly on [1, M] to s e as u 0+, and using this we see that

i x2(s) li s- ex[ e- s exp (s s e),

and that the convergence is uniform in s 1, M]. Using this information, we see that

(9.44) (log (s-lx3(s))) s- s exp (s s e),

and that the convergence is uniform in s 1, M]. Since the right-hand side of (9.44)
is positive on (0, ), there exists 6 6(M)> 0 such that

log(s-lx3(s))>O for lsM, 0<u<6.

We need only prove the existence of ra(U), or equivalently that

{s > u + 1" log (s-x3(s)) < 0} is an interval.

It is convenient to make the following observation first.
We claim that if x(s)N u+2 and s> u+ 1, then x2(s) > u. Because x(s)> 0 and

x(s) < 0 for s > u + 1, it suffices to prove that if x(s) u + 2, then x2(s) > u. However,
if x(s)= u + 2, we find as in the proof of Theorem 9.2, that

x= xf(x)(f(o))-’= -e(+2)( +2) e-+,
so x2(s) > u if

u+2)
+1

> e2

which is (9.25). We conclude that if x(s)<=u+2, then tx(t)f(x) satisfies (III) for
u+ 1 <t_-< u+2. A calculation shows that Xl(U+ 1 +c) -< u+2 if and only if

(9.45) e+C<=(u+l+c)( u+2 )u u+l+c

and Lemma 9.1 implies that if 0 < c < x/-- 2 and u => u(c), inequality (9.45) holds. This
proves the inclusion (9.40).

Logarithmic differentiation easily yields the following formulas"

dXl s+ l-u
ds -xl s

(9.46)
ds x2 s [u+ 1 -xl],

--dsd (lg (X3S))) =(s+ l- ’)[l +(’ x2)(’+

Define s, to be the first s> u+ 1 such that log (s-x3(s))=O, so we know

,d
(9.47) -ss log (s-lx3(s))ls__s, sTyli(s,+ 1- u)(1-(u-x2)(xl- - 1))- 1]<=0.
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Theorem 9.3 implies x2(s,) < v, and the remarks above show xl(s,) > 9 + 2. To complete
the proof we need only show

(s + 1 9)[ 1 -( v x2(s))(Xl(S) 9 1)1 1 --- b(s) < 0

for s> s,, and because b(s,)-<0, it suffices to prove

6’(s) (9-x2)(Xl- 9-1)-(s + 1- 9)2,.-1(x -/2-1)2x2
(9.48)

(s + 1 ’):x-x(’ x2) < 0

for s > s,.
Case 1. Assume 9_-> 1. Using the estimates Xl 9-1 > 1 and 9- x2 > 0 in the

formula for b’(s) for s > s,, we obtain

6’(s) < 1 -( x_) x(s + 1 )s-- (s + 1 )s-(+2)( x)

1-(v-x2)[l+(v+ 1)(s+ 1- 9)2s-1]-(s+ 1- v)2s-lv.
The previous inequality shows

(9.49) 6’(s) < 1 -(s + 1 9)25 -19.
The function on the right-hand side of (9.49) is decreasing for s > 9+ 1, so inequality
(9.49) implies that, for s -> s,,

49
b’(s) < 1-<0.

9+1

Case 2. Assume 0 < 9 < 1. Because x2 is decreasing and less than 9 for s >= s, and
x is increasing and greater than 9 + 1 for s > 9+ 1, 9 x2)(x 9 1) is an increasing
function of s for s-> s,. At s s,, inequality (9.47) implies

1/2<-(s,+-)-<-_(-x).(s,))(x(s,)--), so
(9.50)

1/2<(9-x)_(s))(x(s)-9-1) for s>=s,.
Using the equation for b’(s) in (9.48), we see

(9.51) b’(s) < 1 -( 9 x2)(Xl- 1 9) (s + 1 9)2s-( 9 x2)xl.

Because O< 9<1, we have (s+ 1- 9)s- > s> 1, so from (9.50) and (9.51) we derive

b’(s) < 1 -( 9 x2)(x- 1 9) 9 x2)(Xl 1 9) < 0

for s > s,. The proof is now complete.
Next we want to analyze when tzfs(x) satisfies (I). Unfortunately, our results are

incomplete. We conjecture that there exists a continuous function rs(9, it) (allowing
z5(9, it)= oo) defined for 9 > 0 and it > 9+ 1 such that lzf5(x) satisfies (I) if and only
if/Zo(9, it </z < ’5(9, it (where/Zo(9, it is as in Table 1). By using Theorem 9.3 and
Theorem 9.5, we have given a computer-assisted proof of this conjecture for various
specific 9 and it, but we have not proved it in general.

THEOREM 9.5. Assume 9 > 0 and it > 9 + 1, and let Xo Xo(tZ, 9, it and IXo tXo( 9, it
be as in Table 1 for the function fs(x)= Ixfs(x). The function txfs(x) satisfies (I) at Xo
for all large tx if

(9.52) 9 + 1 < A =< 9 + + /49 + 1 b(9),

while ifA > qb( 9), there exists a number ), /( 9, it < 00 such that txfs(x) does not satisfy
(I) at xofor any/x > /(9, it). If9+ 1 <it _<- 9+ 1 + (1/29), tzf5(x) satisfies condition (I)
at Xo for all tx > IXo(9, it ).
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Proof. While not essential, a change of variables will simplify our calculations.
For x > 0, define @(x) Xl/A, SO

(l--l(/f5) I]/)(X)=/zXx(1 + x)- _=

The remarks at the beginning of this section show that fs(x) satisfies (I) at Xo if and
only if xgs(x) satisfies (I) at x. As in Theorem 9.2 we see that xgs(x) satisfies (I)
at x if and only if g > o and

(9.53) ()3(0) > x,
where 0 (A )-, the point where g5 achieves its maximum.

As before, it is convenient to parameterize by s x, the fixed point of 5.
Define a function (s) by

(s) ’-(1 + s) s(g())-’,

so s is a fixed point of (s)Xgs(x). Define Xl(S)= (s)s(0) and x(s) (s)gs(X_l(S))
for j> 1. Just as in Theorem 9.2 we obtain from (9.53) that

(9.54) {" fs(x) satisfies (I) at Xo} {(s)" s > So and x3(s)> So},

where So=(+l)(A- -1)- as in (9.51). The proof that x(s)>0 and x(s)<0 for
all s > So is as in Theorem 9.2 and is left to the reader.

A calculation shows

Xl(S X sX+l-(1 + S-1)AO1, where
(9.55)

O1 <1.

A fuher calculation yields
v--A 1)A+vA--A(9.56) x2(s) x2 s--O1 (1 +s- (1 +x?l)-.

Equation (9.55) shows limsxl(s)=, and (9.56) gives

lira x(s)= lim s--O =0,

because A > + 1. Substituting (9.56) in the formula for x3(s), we obtain

s-x3(s) s--O-(1+ s-)(1 + x?)-(1 + x)- where
(9.57)

Equation (9.56) implies

lira s-x3(s)= lira s*-(a-)20(-a).

Because a- v(a- v)=0 for a (v), a- v(a- v)>0 for v+l<a < (v), and a-
v(a v)2< 0 for a > (v), we obtain

m for v+l<a <(v),
(9.58) is-lx3(s)= o[- for a=(v),

0 for a > O(v).

Using (9.58) and (9.54) and recalling that 0< 01< 1, we obtain the first pa of the
theorem.
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It remains to prove the final part of the theorem. We know (from Theorem 7.2
and the remarks at the beginning of this section) that s-lx3(s) > 1 for s So. Therefore,
to prove that /,fs(x) satisfies (I) for all /x>/*o (when v+ 1 <A <-v+ 1 +(1/2v)) we
need only prove that s-lx3(s) is an increasing function for s >-So. Because x(s)>0
and x(s) <0 for s>-_So, it is clear that (1 +x-’)-a(1 +x2)- is an increasing function
of s. Thus, by using (9.57) we see that s-lx3(s) is increasing if

d sX_(_)(1 +s_l)+x+_x_>O- for S>So---(9.59)
ds

By differentiating logarithmically, we see that inequality (9.59) will hold if

(9.60) s-l(s+l)-l[(A- u(A- u)2)(s+l)-A(l+ v+ u-- uA)]=>0 for s>=so.
Since s + 1 _>-A (A-u- 1)-1 for s-> So we see that (9.60) will be satisfied if

(9.61) [A- u(A- u)2]( A
-All+ u(l+ u-A)]>0.

A-u-l/

Recalling that A > v + 1 and simplifying, we see that (9.61) will be satisfied if

h<-l+v+(1/2v),

and this completes the proof.
If v= 1, Theorem 9.5 ensures that /zfs(x) satisfies (I) at Xo for all /x >/*o if

2 < A <=2.5, while the number b(1) equals (1/2)(3 +x/) or approximately 2.618. We can,
however, give an ad hoc argument (which we omit) and prove that, for u 1 and
2 < a =< (1/2)(3 +x/), tzfs(x) satisfies (I) for all

We now want to study when a function txf(x) satisfies (II) at a fixed point Xo;
our particular interest, of course, is f- f4 or f--fs. We first make some preliminary
calculations concerning local stability of period 2 points of tzf(x)-f(x).

Suppose, for some z, there exist numbers 0 < Xl < x2 satisfying

(9.62) M(x1) x2 and f(x2)-- X1.

Then we have

(9.63) Xlf(Xl) x2f(x2) c,

XlX2(9.64) /x
C

Conversely, if 0 < xl < x2, with xl and x2 satisfying (9.60), and/, is defined by (9.64),
then xl and x2 also satisfy (9.62).

Define K to be the derivative

K (f2)’(X1) --’f’(xl)f’(x2) tZ2y’(X1)f’(X2)

occurring in Theorem 7.3. A short calculation gives

(9.65)

where u (x) is the function

t U (Xl) U(X2)

(9.66) u(x) _xf’(x)_
f(x)
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Our basic idea is to use c as a parameter and to express x1, x2, Ix, and K as
functions of c. To make this rigorous, assume that f" [0, )- [0, c) is continuous and
C2 on (0, c) and that, if g(x)- xf(x), then there exists a number So> 0 such that

(9.67) g’(x) > 0 for 0 < x < So, g’(x) < 0 for x > So.

For simplicity in the statement of our theorems, further assume that

(9.68) lim g(x) O.

Define c, by

(9.69) c. g(so) max g(x),
x>0

and gl g 110, c.] and ga-- g][c., ). Then for 0 < c_<- c. (9.63) and the condition
0 < xl < xa determine Xl and x2 as functions of c"

(9.70) Xl Xl(C) g-l(c) (0, So] and xa x2(c) gl(c) [So,

where g-i and gfl are the inverse functions of gl and g2, respectively. Because g(x) > 0
for 0 < x < So and gl is continuous on [0, So], we obtain that Xl is continuous on [0, c.]
and C on (0, c.),x(O)=O, Xl(C.)=So and x(c) > 0 for 0<c<c.. Similarly, we find
that x2 is continuous on (0, c,] and C on (0, c.), xa(c.) soand x’2(c) < 0 for0< c < c..
Note that (9.68) ensures that the domain of x_ is (0, c.] and limc_o+ x2(c)=. Having
defined Xl(C) and xa(c), we then have that Ix Ix(c) and K (c), given by (9.64) and
(9.65), respectively, are functions of c. To make further progress we must establish
some of the properties of IX (c) and (c).

LEMMA 9.2. Assume f" [0, ) - [0, ) is continuous and Ca on (0, c). If g(x)
xf(x) assume there exists So > 0 such that g’(x) > 0 for 0 < x < So and g’(x) < 0 for x > So
and lim,_. g(x) =0. Let Xl(C) and x2(c) be as defined beforefor 0< c -< c. g(so), and
let (c) and Ix(c) be defined by (9.64) and (9.65). Then Ix(c) and n(c) have thefollowing
properties"

(i) Ix(c)- s/c.>O and K(c)l as c-c..
(ii) Ix(c)o as c-O+. If u(x) is defined by equation (9.66), assume that

limx_.o+ u(x) L1, where LI isfinite, and that lim,_. u(x) La, where we allow L2 -o.
Then we have limco+ (c) L1L2.

(iii) Suppose that there exists 0 >- 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0

for x > 0 (so 0 < So), and that u’(x) < 0 for x > O. Define v(x) -u(x) for x >= 0 and let
v-l(y) denote the inverse map. Note that lim, v(x)=-L2 > 1 under our assumptions,
define 8 max (-L1, L1), and assume that

(9.71) g(v-l(y)) > g(v-l(1/)) for 6 < < 1.

Then we have (c)< 1 for 0<c<c.. If we define (t)=log(g(v-l(t))) for 6<t<l,
inequality (9.71) will be satisfied if

(9.72) ’(t)<-()’() for6< t< 1.

(iv) If (c) < 1 for 0 < c < c., then tx’(c) < 0 for 0 < c < c..
(v) If u’(x)<O forallx>O and if c(O, c.) is such that (c)<=O, then K’(c)>0.
Proof (i) By definition of So, g’(so) =f(so)+ sof’(so) 0, so we obtain U(So) -1.

Since we have already noted that x(c) and x2(c) approach So as c c., we conclude
that

lim r(c)= lim u(x|)u(xa)= (-1)2= 1.
Cg
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Using the same sort of reasoning, we obtain

X1X2 S0
2

lim/z(c)=lim
c, c, C C,

(ii) Because f is continuous at zero, there exists a constant M such that

Mx >-g(x) for x small and positive.

For c > 0 and small it follows that

MXl(C >: g(x(c)) c or X >= c/M.

Using this estimate, we see that for c > 0 small,

(c) >_- (1/M)x2(c),

and because xz(c)-->oo as c->0+, /(c)-->oo as c-->0+. Because lim_.o+ xl(c)=0 and
lim_o+ xz(c) oo, lim_o+ (c) lim_o u(x) lim,_oo u(x)= LiLz.

(iii) Assume that u, f, and g satisfy the given assumptions but that there exists c,
0< c< c., such that u(c)_-> 1. Our assumptions imply L_->0 and L2<=O, SO

lim_o+ (c)<_--0. Thus, by choosing a different number c, 0<c< c., we can assume
that (c)= 1. Because u(xz)</(r) =-1 (since x2(c)> or) and because u(x)>0 for
x < 0, we must have x(c) >- 0. If 0>0, so u(O)=0, then we must in fact have x(c) > 0
and of course x(c) > 0 if 0 =0. If we write v(x(c)), then we must have 0= v(O) <
y< 1 V(so)ifO>Oand-L < y< 1 if 0 0. Furthermore, we must have -= v(x2(c)),
SO T

-1 (1, -L2) and we obtain the estimates 6 < < 1. Now (9.63) gives

g(v-l(y)) g(v-’(1/ y)),

which contradicts (9.71).
Note that (9.71) is equivalent to

(9.73) (1)-(y)<(1)-(y-1) for6<y<l.

Using the fundamental theorem of calculus and changing variables in the integral for
the right-hand side, we see that (9.73) is equivalent to

y

dp’(t) dt< - dp’ dt,

so (9.72) implies (9.73) and (9.71).
(iv) A calculation shows

(9.74) (/x(c))2 x,x2

f(x,)f(x2)
where x x(c),

so it suffices to show that if (c)< 1, then

d (_ ylX_2 ,
(9.75) dlg f(xl)f(x2)]

<0.

Using the formula x(c)=(f(xj)-l(1 +u(xj))) -1 (which we obtain by differentiating
xf(x) c), we find that (9.75) is equivalent to

2 2

(xf(x)(1 "{" U(Xj)))-1- E f’(xj)(f(xj)2( "[" U(Xj))) -1 <0.
j=l j=l
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Multiplying the above inequality by xx2f(x)f(x)= c2 and simplifying, we find that
the above inequality is equivalent to

(9.76) 2c(1 + u(xl))-l(1 + u(x2))-l(1 K(c)) < 0.

Recall that g’(x)>0 for 0<X<So and g’(x)<0 for X>So, which implies u(x)>-I
for 0 < x < So and u(x) < 1 for x > So. From this we conclude that (1 + u(x))( + u(x2))
is negative and that/x’(c) < 0 if and only if K(c)< 1.

(v) If (c)-<0, we must have u(x(c)) >= O, since u(x2(c))<-I for 0<c<c.. It
follows that

’(c) u’(x,)xu(x_) + u(x)u’(x)x; > o,

because we are assuming that u’(x) <0 for all x>0, and that x(c)>0 and x(c) <0
for 0 < c < c..

With j 4 or 5 and parameters v > 0 and A > v + 1, let f be defined as in (9.24)
and let functions_/xj(c) and j(c) be defined by substituting f for f in (9.63)-(9.65).
Define gj(x)= xf(x), so that g(x)> 0 for 0<x < (where is given in Theorem
9.3), and g(x) <0 for x>. Also recall thatfj(x)>O for 0<x< Oj and fj(x)<O for
x > 0, where 0 is an in Theorem 9.3. From Lemma 9.2 we obtain Lemma 9.3.

LEMMA 9.3. Withj=4 or 5 and parameters u>0 and A >
and (c) (defined for 0< c <- c, g(%)) have the following properties"

(i) uj(c) - try/c, > 0 and (c) 1 as e c,j.
(ii) /x(c), K4(c)-az and 5(c)-u(A-v)<0 as cO+.
(iii) (c) < 1, if 0 < c < c,j.
(iv) /x(c)<0, if 0<c<c,j.
(v) j(c) > 0, if 0 < c < c..
Proof Define u(x)= xf](x)(f(x))- and v(x)=-uj(x). A calculation gives

U4(X):P--X us(x)=[v-(A v)xaJ(l+xa)-1,

so u(x)< 0 for all x > 0. A further calculation gives

v-(t)=v+t, (v-(t))a=(v+t)(A-v-t)-l.

Lemma 9.2 will imply Lemma 9.3 if we can prove that (9.71) is satisfied with g and
vj replacing g and v, and Lemma 9.2 implies that this will be the case if

(9.77) (t) < -() (-lt) for 6 </< 1,

where j(t)=log g(v-(t)) and 34=0 and 65=(A- u) -1. We can easily check that

dP4(t)=(1--t)(v+t)-, dP’5(t)=(1--t)(v+t)-l(A--v--t)-,
so for j 4 inequality (9.77) is equivalent to

(9.78) (1-t)(v+t)-<(1-t)(vt3+t2)-1 for 0<t<l

and for j 5 inequality (9.77) is equivalent to

(9.79)
(1- t)(v+ t)-l(A -/2-t)-’ < (1- t)t-l(let + 1)-l(At vt-- 1)-’

for (A v) -1 < < 1.

Since 0< < 1, (9.78) is obviously true. Because 0< < 1 we have v+ t> vt2+ t>0;
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and by using the fact that A > v we can see

A-v-t>At-vt-lO for (A-v)-l<t<l,
so inequality (9.79) is valid, l-]

With the aid of Lemma 9.2 we can give conditions under which a function Ixf(x)
satisfies (II) precisely for Ix (ixo, r], where tr >/.to.

TI-IZOREM 9.6. Assume f" [0, c), [0, ) is a continuous map that is C on (0, ).
Assume there exists 0 >= 0 such that f’(x) > 0 for 0 < x < 0 and f’(x) < 0 for x > O. If
g(x) xf(x), assume there exists So > 0 such that g’(x) > 0 for 0 < x < So and g’(x) < 0
for x > So. Define u(x) xf’(x)(f(x))-1 and v(x) -u(x) and assume u’(x) < 0 for all
x > 0 and

(9.80) g(v-l(y))>g(v-l(1/y)) for6<y<l,

where 6 is defined as in Lemma 9.2 and v-1 is the inverse map of v. (Recall that inequality
(9.80) is satisfied if inequality (9.72) holds.) Finally, suppose there exists a C map of
an interval (a, b) onto (0, ) such that ff’(x)> Oforx (a, b) and -l(ixf)p has negative
Schwarzian derivative for all x (a, b). Then there exists tr> Ixo= f(So)S such that
Ixf(x) satisfies (II) at Xo(ix)= Xo, the unique fixed point ofixf(x) in the interval (0, c),
ifand only if Ixo < Ix <= r. Iftx (c) and K (c) are defined as in Lemma 9.2 and (c2) 1,
then Ix(c2)

Proof If f= Ixf is as in Theorem 7.3 or 7.4, but we assume that -lf ( as in
Theorem 9.6) has negative Schwarzian derivative everywhere instead of supposing that
f has, we can still easily see (using the remarks at the beginning of this section) that
the conclusions of Theorem 7.3 and 7.4 are satisfied.

Now let Ix(c) and (c) be as in Lemma 9.2. Theorem 9.3 implies that
satisfies condition (0) at Xo(ix) if and only if Ix > Ixo=f(So)S 1, and Lemma 9.2 implies
that Ixo=ix(c,) and that Ix(c)>ixo for 0<c<c,. Since (Lemma 9.2) Ix’(c)<0 for
0 < c < c. and limc_o IX (c) , we will work with the parameter c instead of Ix >
Define a number cl by

cl =inf{c>0: Ix(y)f(x) satisfies (I) at Xo for c<=y< c.}.
Corollary 7.1 implies that cl < c,. Define c2 as in the statement of the theorem if
(c) =-1 has a solution c > 0; otherwise define c_ =0. Lemma 9.2 implies that (c)< 1
for 0 < c < c. and (c)=>-1 if and only if c => c2. Thus Theorem 7.3 will imply that
Ix(c)f(x) satisfies (II) if and only if c _-< c < c. if we can prove that c: > Cl when Cl > 0.
However, if cl > 0, Theorem 7.4 and Corollary 7.2 imply that there exists 6 < 0 such
that IX cl) _-< IX <ix(c1)+6, (ixf)2 has a fixed point x such that (d/dx)(ixf)(x)<-l.
If c2 el, this contradicts Lemma 9.2, so we must have c2 > C [’]

As an immediate consequence of Theorem 9.6 and Lemma 9.3 we obtain Corollary
9.1.

COROLLARY 9.1. For parameters u >= 1 and > u + 1 let f4(x) and fs(x) be as
defined before and let Ixo(U) and Ixo(V, A) be as defined in Table 1 for the functions f4
andfs, respectively. Iff has its maximum on (0, o) at 0, there exist continuousfunctions
cr4(v) and o’5(v, A) such that Ixf satisfies condition (II) at the unique fixed point of
in 0, c) if and only if Ixo(u) < Ix <= r4(v) for j 4 or Ixo( v, A < IX -< o’5( u, for j 5.

Proof We need prove the continuity and finiteness of o-, and this follows easily
from the results of Lemma 9.3. I-1

If O’(a, b) (0, c) is as in Theorem 9.6, the results of this section also apply to
the functions -l(ixf) for v=>l and A> v+l. Taking (x)=ax, a>0, we obtain,
for example, the conclusion of Corollary 9.1 for Ixlx e and Ixlx(1 + bx)-1, where
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/-/’1 > 0 and b a x is an arbitrary positive number. Taking p(x) xp for p > 0, we obtain
the same results for tx2x" e-bx" and/x2x(1 + bxXP) -1/p, where/z2> 0, b >0, and p >0.

Although we will not pursue this here, we can establish the conclusions of Corollary
9.1 for other classesof functions, e.g., /zf6(x), where

f6(x) x exp (-x(1 + ax)),
where u => 1 and a > 0. The major problem is verifying (9.71) or (9.72).
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SINGULAR SOLUTIONS AND ILL-POSEDNESS FOR THE
EVOLUTION OF VORTEX SHEETS*

RUSSEL E. CAFLISCHf AND OSCAR F. ORELLANA$

Abstract. The evolution of a planar vortex sheet is described by the Birkhott-Rott equation. Duchon
and Robert [C.R. Acad. Sci. Paris, 302 (1986), pp. 183-186], [Comm. Partial Ditterential Equations, 13
(1988), pp. 1265-1295] have constructed exact solutions of this equation that are analytic for all < 0 but
have a possible singularity in the curvature of the sheet at 0. This shows that smooth initial data for a
vortex sheet can lead to singularity formation at a finite time, in agreement with the results of numerical
computation [J. Fluid Mech., 167 (1986), pp. 65-93], [J. Fluid Mech., 114 (1982), pp. 283-298] and of
asymptotic expansion [Proc. Roy. Soc. London Ser. A, 365 (1979), pp. 105-119], [Theoretical and Applied
Mechanics, in Proc. XVI Internat. Congr. Theoret. Appl. Mech., F. I. Niordson and N. Olhott, eds.,
North-Holland, Amsterdam, 1984, pp. 629-633]. We present an independent construction of these solutions
and use these results to infer that the vortex sheet problem is ill-posed in Sobolev class Hn with n > 3/2.
Earlier results show well-posedness in an analytic function class [Comm. Pure Appl. Math., 39 (1986), pp.
807-838], [Comm. Math. Phys., 80 (1981), pp. 485-516]. Our method is to construct an explicit singular
function that is a solution of the linearized equation, with a correction term added on to make the sum an
exact solution of the nonlinear equation. The correction term is analyzed using the Cauchy-Kowalewski
method.

Key words, vortex sheets, vorticity, Kelvin-Helmholtz instability, fluid dynamics, Birkhoti-Rott
equation, singularities, ill-posedness, instability, Euler equations

AMS(MOS) classifications. 76C05, 96E30, 35L67

1. Introduction. A planar vortex sheet is a curve in a two-dimensional, inviscid,
incompressible flow along which the fluid velocity is discontinuous. Vortex sheets, and
the Kelvin-Helmholtz instability that they undergo, play an important role in many
flows, such as mixing layers, two-fluid interfaces and flow past airfoils. Asymptotic
analysis by Moore [11], [12] and numerical computation by Krasny [8] and Meiron,
Baker, and Orszag [10] have shown that a vortex sheet may develop a singularity, i.e.,
infinite curvature at a point, in a finite time. The appearance of this singularity is
important because it is immediately followed by rollup of the sheet [9]. A more
mathematical reason for interest in such singularity formation is that it may serve as
a simple analogue of singularity formation for the three-dimensional Euler equations.

Duchon and Robert [6, 16] perform a general construction ofvortex sheet solutions
that are analytic for all > 0, by choosing initial data to lie on the stable manifold for
the Birkhoft-Rott equation ((1.1) below). The initial data can have singularities in the
(1+ v)th derivative for any v>0 (for a precise statement see [6], [16]; fractional
derivatives can be understood in the H6lder sense as in (1.6)). Our aim is to present
an independent construction ofthese singular solutions and to discuss their significance.
We also obtain slightly more precise pointwise information on the singularity, by using
a pointwise norm rather than the Fourier norm in [6], [16].

The singular solutions found here or in [6], [16] can be used to construct exact
solutions for vortex sheets that develop singularities at finite time starting from smooth
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initial data, as described in the concluding 7. This shows that for the two-dimensional
Euler equations, singular initial data (a vortex sheet) can become more singular in
finite time. Furthermore, the existence of such singular solutions shows the vortex
sheet problem to be ill posed in Sobolev space H" for n > 3/2. A somewhat different
proof of ill-posedness for vortex sheets was given by Ebin [15].

The vortex sheet is parametrized by a real variable y defined so that it is Lagrangian
(the value of y is constant on a given fluid particle) and so that the density of circulation
with respect to the y variable on the sheet is 1. The position of the vortex sheet is
defined by a complex variable z(y, t) that satisfies the Birkhoff-Rott equation [1]:

(1.1) +/- ( )’, t)PV|
Ot 2ri J-oo z(% t)-z(y’, t)’

in which the integral is a Cauchy principal value. An arbitrary constant in the definition
of the Cauchy integral is irrelevant since the right-hand side involves a difference.
Moreover, we will assume for simplicity that z is odd in )’, i.e.,

(1.2) z(-% t)=-z(% t)

so that z(0, t)= 0. The function z y is a steady solution of (1.1) and corresponds to
a fiat vortex sheet with a uniform density of circulation.

Linearization of (1.1) about the steady solution z )’ yields the following equation
for z )" + s:

(1.3) 0,()’, t)= 1/2H[sT] 1/2(s+7 s_7)

in which H is the Hilbert transform defined by H[s] s+-s_, s+ is the upper analytic
part of s, i.e., the part with positive Fourier wavenumbers, and s_ is the lower analytic
part. The linearized equation (1.3) is unstable with modes eik’+k’/2. In this paper we
are investigating the nonlinear behavior of this Kelvin-Helmholtz instability. Since the
linearized modes have arbitrarily large temporal growth rates, we find that singularities
may develop in finite time for the solutions of the nonlinear equation.

An explicit example of our singular solutions is

(1.4) z()’, t)= )’+ So+ r,

(1.5) So()’, t)= e(1 -i){(1 -e-t/2-i’r)a+"-(1-e-t/2+i’r) ’+’}

in which e is small. The dominant term So is an exact solution of the linearized equation
(1.3) and the correction term r is negligible relative to So as explained in Theorem 1.
Since So c)"

1+ for =0 and )’--- 0, then z,v= Sorv’-" c)"
-| (with a different constant

c). Therefore the vortex sheet has an infinite curvature at )’ 0, 0 for 0 < u < 1. For
the approximate singular solution Zo )’ + So, with So given by (1.5), the vortex strength
IZorl- (t =0) is plotted in Fig. 1. The cusp at )’=0 is due to the singularity. An
explanation of the terms in (1.5) is as follows. The e+/-it makes So periodic and odd.
The exponent -t gives a solution that decays in time. Such a decaying solution requires
the factors (1- i) and 1/2.

To define a more general class of functions So, let e be a small, real number and
let 1 > u > a > 0. For s analytic in IIm 3’1 < P define the H61der norm

(1.6) Isl, sup Is(v)l+ sup
IIm yl<p IIm yl,llm y’l<p
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(cusp af gamma-O from singularity)
FIG. 1. Approximate vorticity density tr=lzov-1=[1 +So[-1 with So defined by (1.5), e =0.1, 9=0.5.

The cusp at y 0 corresponds to the singularity.

We require So to satisfy the following:
(i) So solves the linearized equation (1.3);
(ii) So is analytic in the time-dependent strip IIm Yl < It]/2 for > 0;
(iii) So is small and decays to zero as - oo. At 0 So has (at most) a singularity

in its (1 + v)th derivative, i.e.,

(1.7)
(1.8) ISo  l. < ce(1 +(It1-2P) "-"-1) e

for t>0.
Note that the function So in (1.5) satisfies (i)-(iii). Our main result is the following

existence theorem.
THEOREM 1. Let e be a sufficiently small real number and let 1 > > a > O. Let So

satisfy (i)-(iii) above; i.e., So is an analytic solution of the linearized equation (1.3) that
decays to zero at ao and has a mild singularity at O. Then there is a function r( y, t)
such that

(1.9) z(% t)= y+ So+ r

is an analytic solution of the Birkhoff-Rott equation (1.1) for > 0 and ]Im ,1 < in
which K > 2 and 2 as e O. Moreover, r can be chosen so that the decaying mode
r+ + iF_ O at O and that

(1.10) lrlo+lr]o< ce 2 exp (- Itl/2),
(1.11) Irlo < Ce2(1 -t-Itl ,--a--1) exp -I tJ/2)
in which c is some constant that is independent of e and depends smoothly on a- and
(u-a)-I (i.e., c may be infinite at a 0 or a 9).



296 R. E. CAFLISCH AND O. F. ORELLANA

Since r/ + i?_ 0 at 0, in some sense half of the initial data of z is given by
3’+ So. The norm in (1.10), (1.11) is that of (1.6) with p =0. These estimates show that
r is as smooth as So, but much smaller. Stronger estimates for r on the strip [Im ,1 <
are given at the end of 6.

There are three main ideas in this construction: The first is to extend the Birkhott-
Rott equation to complex 3’. Linearization (or equivalently the form of the Kelvin-
Helmholtz instability) shows the Birkhott-Rott equation to be approximately hyper-
bolic in the imaginary 3’ direction, so that singularities will move in that direction.
This was first pointed out by Moore 11 ]. Of course, only real values of 3’ are physically
meaningful; i.e., singularities are physically observable only when they lie on the real

3’ line.
The second idea is to put the singularity in the initial data. By proper choice of

initial data, the singularities can be expected to travel approximately on the lines Im
3" +t/2. Although our method cannot track these singularities exactly, we are able
to show that the resulting solution is analytic in the wedge [Im 3’1 < Kt/2, > 0, as
shown in Fig. 2. Note that for all > 0 this wedge contains the line Im 3’ 0. Therefore
the vortex sheet is analytic for all > 0.

FIG. 2. Domain of analyticity (in 2,) for z( 3’, t) (equivalently for r(’y, t)): {llm "yl < ct, t>0}.

The third idea is to construct the solution within the class of analytic functions.
In this function class the Birkhoff-Rott equation has been shown to be well posed;
while in almost any larger class it is expected to be ill posed. For the Sobolev spaces,
ill-posedness is shown in 7. Use of analytic functions provides the stabilization
necessary to construct exact solutions in the presence of physical instability. Aside
from this practical justification, our belief that the imposition of analyticity is consistent
with the zero viscosity limit justifies the use of analytic functions, at least for some
flow regimes.
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0
2 t

n=2

FIG. 3. Domain ofanalyticityfor the iterates r, (or equivalently p,, q,). The width ofthe domain decreases
as n increases. The line segments emanating from the plane {Im /= 0} are the characteristics used to extend
the iterates to complex 2,, as in (2.12), (2.13), or (3.3).

The correction term r of Theorem 1 is constructed using the Cauchy-Kowalewski
method, somewhat modified from that in 13] involving an iteration. At each iteration
in our construction, the approximate solution is analytic in a wedge IIm Yl < ct, with
an angle c that is slightly reduced at each step, as indicated in Fig. 3. The final solution
is valid in a limiting wedge, which is shown to be nonempty.

Other analytic results for vortex sheets include a proof of short-time existence by
Sulem, Sulem, Bardos, and Frisch and a proof of existence almost up to the expected
time of singularity formation by Caflisch and Orellana [2]. The singularities described
in the present paper are not accompanied by concentrations of energy. Thus they are
much weaker than those discussed by DiPerna and Majda [3]-[5], which possibly
appear on a vortex sheet at a later time. On the other hand, there are no known
examples for which such energy concentrations develop from less singular initial data.

The outline of this paper follows. Section 2 contains a reformulation of (1.1) and
shows the sense in which the problem is hyperbolic. In particular, an equation for the
error term r is derived. In 3 we describe an iteration method for solving the equation
for r. Each iteration involves solving an elliptic problem in and Re y, then extending
the solution to complex 3’ by solving a hyperbolic problem. The elliptic problem is
solved using a Green’s function; we solve the hyperbolic problem by integrating along
characteristics. Estimates on the first iterate are obtained in 4, the induction method
is described in 5 and estimates for the successive iterates are derived using a
Cauchy-Kowalewski method in 6. At the end of that section, we summarize the proof
of Theorem 1, and we derive two consequences of Theorem 1 in the concluding section.

2. Formulation. We write z as a perturbation of the fiat sheet by z y+ s and
assume that s is 27r-periodic, i.e.,

(.1) s(+, t)= s(, t).
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The Birkhoff-Rott equation (1.1) is equivalent to the following equation for s, which
is now written in a way that is analytic for complex y,

0 1 f d"(2.2) --s*(T,t)=B[s]=-PV
Ot 2ri J-o -sr+s(y)-s(y+ st)

in which s* is the analytic extension of g, i.e., s*(3,) s(/). The operator B is expanded
as B[s] Bl[s]+ Br[s] in which

1 fo s(3,) s(3, + ’) 1
(2.3) Bl[s]( y) PV j_ a=- H[sv]

27ri

is the linear part of B and Br is the nonlinear remainder. The linearized equation (1.3)
is analytically extended as st* Bl[s].

Since So is an exact solution of this linearized equation, the Birkhoff-Rott equation
(1.1) for z 3/+ So+ r can be rewritten as follows:

(2.4) r* B,[ r] + Br[so -t- r].
Define the decaying component p and growing component q for r as follows:

(2.5) p r+ + i(r_)*, q r+- i(r_)*.

Then (2.4) can be rewritten as

(2.6) p, =-p + a,

-i
(2.7) qt =-- qr + b,

in which

(2.8) a (B_)* + iB+, b (B_)*- iB+
and B+ and B_ are the upper and lower analytic components of Br[so+ r]. Note that
a and b, and thus also p and q, have only components with positive wave numbers.

The system (2.6), (2.7) is elliptic in y, for real y, but it is hyperbolic in y, for
imaginary 3’ (or more precisely, in the imaginary y direction).

We solve (2.6), (2.7) in two parts. For 3’ real, >= 0, we solve the elliptic equation
using a Green’s function. For Im 3’ 0, _-> 0, we solve the hyperbolic equation (2.4)
by integration along characteristics using the values of r on Im 3’ 0 as "initial values."
These characteristics are indicated in Fig. 3.

We require p and q to be 2r-periodic, to vanish at t=, and to have only
components with positive wave numbers and p 0 at 0; i.e.,

(p, q)(y, t): (p, q)(y+27r, t),

(2.9) (p, q)-->0 as t->oo, p(t=0)=0,

(/ )(k, t)= e-’(p, q)(y, t) dy=O for k<_-O.

Under these conditions and for a and b having only components with positive wave
numbers, the solution of (2.6), (2.7) is uniquely given by

(2.10) p(y, t)= g(y’, t-t’)a(y-y’, t’) dy’ dt’,

(2.11) q(y, t)= g(y’, t-t’)b(y-y’, t’) d’ dr’
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for 3’ real and by

(2.12)

(2.13)

p(y+ itz t) =p(y, t+2/z)-2 a(y+ i/z’, +2(/z -/x’)) d/x’,

q(y+Ox, t)= q(y, t-2x)+2 b(y+il’, -2(x -x’)) dx’

for 3’ + i complex in which

(2.14) g(y, t)= { (-t/2+ iy),
-(-t/2+iy),

1 e
(2.15) (z)-2,n. l_eZ.

t>0,
t<0,

If a and b are analytic in y, then p and q defined by (2.10)-(2.13) are also analytic.
According to (2.5), r =1/2(p+ q)+ i1/2(p*-q*). Let A[so+ r] denote the correspond-

ing combination of the right-hand sides of (2.10)-(2.13). The Birkhoff-Rott equation
(1.1) or (2.4) for z 3,+ So+ r can be rewritten as follows:

(2.16) r= A[so+ r].

Equations (2.10)-(2.13) for p, q or the equivalent equation (2.16) for r are the main
results of this section.

3. Iteration method. In the previous section, the Birkhoff-Rott equation, for z
3/+ So+ r was reduced to (2.16) for r. We now solve this equation by iteration. Define
ro 0 and for n >-0 let rn+l solve

(3.1) r,+,(y, t)= A[so+

In terms of p,, q,, defined as in (2.5), equation (3.1) is written as in (2.10)-(2.13):

P.+I(Y, t)= g(y’, t’)a.( y- y’) dy’ dt’,
dO,/O

(3.2)
q,,+(y, t)= g(’, t-t’)b(-’) d’ dr’,

p+(+i,)=p+(%+2)-2 a(+i’,t+2( )d’
(.

q+(+i,t)=q+(,t-2)+2 b(+i’,t-2(-’))d’

for and real, in which a, b are defined as in (2.8) with r replaced by r. To show
convergence of r we obtain estimates on the difference

R= r-r_.

Let Q q- q_, P =p-p_. We use the following differentiated equations for
R, or equivalently for P,

OPn+l(Y, t)= gO(a.- a._) dy’ dt’,

(3.4)

O,Q+(, t) gO(b -b_) dT’ dr’,
dt d 0
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(3.5)

+(3" + ip, t) OP,,+(% t+)-

OQ,,+(y+Ox, t)=O.Q.+(% -2.)+2 O(b-b_)

for k l, 2.
For the H61der norm [s[, defined in (1.6), the Cauchy estimate for the derivative

of an analytic function is

(3.6) Is+(’, t)l<=(p’-p)-’[s( ", t)l, ifp’>p.

The nonlinear part Br of the Birkhoff-Rott integral operator is estimated as

IBr[s]l, < ColS.,,I i0

(3.7)
IBr[S]l colslolsl,

for any s, g in which Co c( 1 -Isl)-’ and c c( 1 -[s[)- + c( 1 -I1)-. For these
estimates we assume that

From these general estimates it follows that a,, b, satisfy

2

(3.8)
laolo + Ibolo ClSo,lo,
lao,[o + Ibovlo clso,lolso,,lo,

(3.9)

(3.10)

if [r,,r[v < ISor[, < 1/2, [rmy[o < [Soyy[ < 1/2 for m n, n- 1.
For use in estimating the iterates r,, we state a general lemma. Its proof is a

straightforward extension of the proof of H/51der bounds on the Hilbert transform
(Katznelson [7]).

LEMMA 3.1. Suppose that a de Jo b de 0 and let p and q satisfy

(3.11)
P(T, t)= g(T’, t-t’)a(T-T’, t’) dT’ dt’,

JOdO

q(y, t)= g( y’, t-t’)b( y-y’, t’) dy’ dr’

and suppose that

(3.12) lalo/ [blo -< c=(1 / --) e-’.

Let r be related to p and q as in (2.5). Then r satisfies

(3.13) [rv[o _<- ce2e -t/2 [rv,]o < ce2(1 + -"-) e-,/2

The same estimates are true for p and q.
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4. First approximation. The first approximation r R1 satisfies r A[so], i.e.,

f tf2-(4.1) Pl(T, t)= gao dy’ dt’, q,(y, t)= gbo dy’ dt’,
.IO dO ,It ,1o

(4.2)
q( / + l, ) q( "/, 21 + 2 bo dl

in which the arguments inside the integrals are as in (3.2)-(3.3). From (3.8), (1.7), and
(1.8) it follows that ao, bo satisfy

< ce2(1 + (t--2p) ’--1) e-(t-2o)laol, +[bol,-
for > 2p. In particular,

laolo+ Ibolo=< ce2(1 + "-a-l) e-t.

Application of Lemma 3.1 implies

(4.3) [rllO<-_ ce

Next estimate rl for ,+ i/x complex from (4.2) as

Ir,(’, )1o .<2 sup_
ce-(-2)/ c2p(1 +(t-2p)--) e-(-2)

C,--12 e-(-2p)/2

for Kp < with K 2(1 + 8) with 8 > 0. Similarly,

<2 sup Irlw(’, t+2/X)lo+2Ir(’. t)l,-

<= ce:Z(1 + (t-2p) "-’-’) e-<,-p)/

(4.5) + (Sp)-’ (I ao+l<,+a>o-.’ + bol<l+a>,,-,:,) d,’

<=ce:(1 + (t-2p) "--’) e-(t-2p)/2+2e26-(1 - (t-- Klp) "--1) e-<t-,,,p)/

<= c6-e:z(1 +(t_p) "-’-) e-(t-,,,p)/2

for KlP < t.

5. Induction hypothesis. Successive approximations rn and their convergence are
analyzed using an analogue of the Cauchy-Kowalewski method [13] for the integral
equations (3.2), (3.3). In each iteration the wedge of existence IIm ’1 < rit is slightly
decreased, so that the general estimate (3.6) can be employed. The object of the
modified Cauchy-Kowalewski method is to show that there is a limiting, nonempty
wedge in which the solution r is analytic. The key point of the method is overcoming
the large factor (p_p,)-i in the Cauchy estimate (3.6). As a result of this factor the
singularity in the solution r may be one order higher than the singularity in So on the
lines IIm 3’1 Kt. However, the additional singularity has amplitude proportional to
t, so that at 0, r is no more singular than So.
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The induction argument follows that of Nishida 13 with some change in notation
and indexing. Define

(5.1) ,,+1 :,, (1 eu (n + 2)-)-
for n => 1, in which/x > 0 is to be chosen later. Then

(5,2) /On " / /1U (1 e"(m +2)-)-1,

which is finite and note that /(/+1 > /(n > > RI > 2. Define the norm

(5.3) A,,(R)= sup e -2 e(’-K’’)/2t-l(t--Kmp)
t> KrnP

x {IR(t)l. + (1 / (t- KR)--’)-llRr
Since ,.+ > ,, then A,+I(R) A (R) for any R. The size of the mth correction
R, =rm- r,_ is measured by

(5.4) A,, A,,(R,,).

As mentioned above, the factor ,,p)/t indicates possible additional singularity
on the line IIm Yl =/9 ,lt, but note that it does not affect the size of R,, on the
physical line Im 3’ =p O.

The induction hypothesis is

The constant d as well as K1 will be chosen later. In the previous section, we showed
that A1 =< c(1-2)-1 so that the hypothesis for n 1 is satisfied if d-> c(-2)-1.

Now suppose that (5.5) is true for n => 1. If ,/p < t, then for n _>-j=> 1,

IR;v(t)lo < A; 1
;

e e-(’-,’)/2

(5.6)
< A 1 e e-(-/,

(5.7)

< 1- e l +(t-O) e

Since ro 0, r 2= R, r 2= R, and using the induction hypothesis at n,
this yields

I%(t)lo e A;(1 ;/Kj+I) -1 e-<’-’-0)/2
j=l

(5.8)
d e2 e-(t-.)/

de(1 +(t- ,p)"-"-’) e-<’-.)/(5.9) I(t)[o

for any j n and u,+p < t. The bounds (5.8), (5.9) will be used in 6 for estimation
of R,+.
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6. Successive approximations. To verify the induction hypothesis (5.5) for n+ 1,
the correction terms Rn+l that solve (3.4), (3.5) must be estimated. Using (1.7), (1.8)
for So, (5.8), (5.9) for rn, m-l, and (5.4) for Rn, Rn in (3.10), the forcing term in
(3.4), (3.5) is bounded for Kn+lp < by

(6.1) [(an an-1),[p q-l( bn bn-1)v[p

ce3(1 + ed)A( ](1 +(t-np)--1) e-(t-"p).
.p/

In paicular for p 0,

(6.2) I(a-a_l)lo+l(b-b_l)loce3(l+ed)A(l+t--’ e-.
First, estimate R,+I for y real, i.e., p 0. Application of Lemma 3.1 to (3.4) using

(6.2) implies that

(6.3) IR,+lvlO ce3(1 + ed)A, e-t/,
(6.4) [R.+vv[o Ce3(1 + ed)A,(1 + -a-1) e-t/2.

Second, estimate R+ly for complex y+ i, i.e., for p0, solving (3.5). For +p<t
bound

e+l()lo 2 sup

(6.5) +l(b,-b,_l)(t-2)lo_) d
2ce3(1 + ed)A. e-(’-’)/+

in which I denotes the integral. The inequalities u+ > . > 2 and +p < imply
+(p-) < (t-2). Then we may use (6.1) to bound I by

Ice3(l+ed)A" (t2)-,(O-)(1 + (t 2 "(O ))--)

e-(t2--(-)) d

(6.6) c(l+d)n(t+O) e-0/4(’- (- ffnO+(n--2))-- d
ce3(1 + ed)(n-2)-n(+O)(-nO)--

Since +> , this combines with (6.5) to show that

(6.7) IR.+lv(t)lo < Ce3(1 + ed)(u, 2)-A, eKn+lP
-(t-n+P)/2

for ,+p < t.
Third, estimate R,+lr for complex y+ i, i.e., for p 0, solving (3.5). This is the

crucial estimate of the Cauchy-Kowalewski method. For ,+p < estimate

2 sup IR,+ (t+2)loI.+,(t)l,
Il=o

(6.8) + {l(a-a_l)..(t+2)o_. +(b-b_,)..(t-2)lo_.} d
N Ce3(1 + ed)n(1
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in which I: is the integral. Define Pl by

(6.9) Pl 1/2(K l+l(t 2/) + (p -/z)),

which satisfies

(6.10) -1
p--/p< Kn+l(t--2/x),

(6.11)
t--2/. r+pl r+l(Pl-(p-t.))=(t-r+lp+(+--2)l)/2

>-(t-Kn+lp)/2.

Estimate I: using the Cauchy estimate (3.6), the bound (6.1), and the relations (6.10),
(6.11) to obtain

/2--<2 (O- (O- tz))- (a,-a,-)v(t+2t)lo+l(b.-b.-)v(t-2l)[o

t+2/x v-a-l)<-ce3(l+ed)A, (pl (p -/x))-1 (1 + (t-2/x r,pl)
(t 2/z r.Pl)

(6.12)

<=ce3(l+ed)An(t+p) e-(t-K.+,p/2 (t--Cn+lp+(n+l--2)ld,)-2

/ Kn+lp + n+l 2)i v-a-3

_-< ce3(1 + ed)A(t + p) e-(t--+o/E(r+l 2) -1

(t--r,n+lp)-l(1 +(t--n+lp)--).

Combine this with (6.8) to find

(6.13)
IR+lvvI<=ce3(I+d)A(K+-2)-I( )t--K.+lp

(1 + (t- K,,+lp) "-’-1) e-(’-.+,)/2

for .+1/9 < L
Inequalities (6.7) for R,+lv and (6.13) for R,+lvv and the definition (5.4) of A+I

imply that

(6.14)
/n+l ce(1 + ed)(Kn+l

<-_ ce(1 + ed)(K1- 2)-1An.

This inequality is also true for hj+ in terms of hj for any j =< n, so that

(6.15)
A.+, < {ce(1 + Ed)(K1-2)-I}nA

=< {ce(1 + ed)(rl 2)-’}"(:1- 2)-’.

With these estimates finished, we are ready to verify the induction hypothesis (5.5)
for n / 1 by choosing d and rl. Let

(6.16) K 2 + ae, d e-2

in which a and the parameters/x from (5.1) are still to be chosen.
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Estimate

n+l

F ;(1-,j+)-_-<(-2)- Y. (ce(l+ed)(rl-2)-l)7-1(1-r7/7+l)-
j=l j=l

(6.17) =a-le-- , (ca-lel-(l +el-2))J-(j+2)2
j=l

for any/z with 0-<_/z _-< 2/3 and a chosen (independently of/z) to be sufficiently large.
This verifies the induction hypothesis (5.5) for (n+ 1), for any n.

Completion of the induction proof shows that the inequalities (5.6), (5.7) on the
jth corrections Rj are valid for all j and that therefore the approximate solutions r,
have a limit r that solves (2.16). Finally the combination z(y, t) y+ So(% t)+ r(y, t)
solves the Birkhotf-Rott equation (1.1).

Moreover, the solution r lim,_.oo r, is analytic in rp with

r= lim :m Kll-I(1--e(m+2)2)-
=2+ _o(e).

The bounds (5.8), (5.9) show that for K < t, r satisfies

(6.18)
Ir(t)l, + Ir,(t)l,--< ce- e-’-)/

r(t)lo -< ce2-2(1 + (t- rp) -’-1) e-<’-/2.

By choosing t* , its largest permissible size, we find that r is analytic in the region
(2+ _O(e/3)) p< t. By choosing/, =0, we obtain the optimal bounds on the size of r,
although on a restricted domain. In particular for/9 0, i.e., on the physical line y
real, the bounds are

(6.19)
Ir( t)l / lrv( t)l<= ce2 e-’/-

Irvv(t)lo<= ce2(1 + v-a-l) e-,/2.

This completes the proof of Theorem 1.

7. Conclusions. We will use Theorem 1 to derive solutions of the Birkhoff-Rott
equation that develop singularities (i.e., infinite curvature) at finite time starting from
analytic initial data. Then we show that the initial value problem for this equation is
ill posed in Sobolev space H" (n > ), since the derivative of order 1 + v, for any v > 0,
can become infinite in an arbitrarily small time from arbitrarily small initial data
(fractional derivatives are understood in the H61der sense). On the other hand, the
vortex sheet problem is known to be well posed in an analytic function setting for at
least a short time [2], [14]. DiPerna and Majda [3]-[5] address the related question
of finding an appropriate function space that is preserved by the Euler flow and by
limits of Euler solutions, as well as by limits of regularized solutions (i.e., of the
Navier-Stokes equations or the numerical vortex method).

The Birkhoff-Rott equation has the following three symmetry properties: If z(y, t)
is a solution of (1.1) then so are Zb(y, t) Z*(y, --t), Z,(y, t) Z(y, t-- to), and z,(y, t)
n-lz(ny, nt).

When we use Zb, Corollary 1 follows from Theorem 1.
COROLLARY 1. Let e, v, a be as in Theorem 1 and let So satisfy properties (i)-(iii)

exceptfor < 0; i.e., So is an analytic solution of the linearized equation (1.3) which decays
to zero at =-oo (decaying backwards in time) and has a mild singularity att O. Then
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there is a function r(% t) such that z(% t)= y+ So+ r is an analytic solution of the
Birkhoff-Rott equation (1.1) for <0 and KlIm Yl <It[ in which > 2 and - 2 as e -0.
Moreover, r can be chosen so that the backward decaying mode r/- i_ 0 at t- 0 and
so that r satisfies (1.10), (1.11) for < O.

By shifting the origin oftime in the solution z of Corollary 1, we obtain Corollary 2.
COROLLARY 2. There is initial data z(% 0), which is analytic in a neighborhood of

y real, such that the solution z(% t) of the Birkhoff-Rott equation (1.1) develops an

infinite (1 + u)th derivative at a finite time to.
Finally we use the rescaling of z to zn. Take z to be a solution for <0 that

develops an infinite (1+ u)th derivative at =0, as in Corollary 1. Let z(),, t)=
N-:z(N2% N2t-2N) so that srv=zrv-y N-2s(N2y, N:t-2N). Then at t=O the
kth Sobolev norm of SN is bounded as

(7.1) _-< N:k+l e-
-0 as N.

However, the time TN of singularity formation is TN 2N-1 - 0 as N - c. For v > 0,
denote sup l01+V Z[ =sup,v, real [Z’(T)-Z’(T’)[/IT-T’ This shows the following.

COROLLARY 3. For any positive numbers u, k, e, and 6 there is initial data z 3’ + So
with [Sin < e such that sup [01+z[ goes to infinity for to < 6. In particular the initial
value problem for the Birkhoff-Rott equation (1.1) is ill posed for any Sobolev space Hk

for k > 3/2.
In other words, smallness of the initial perturbation s is not sufficient to insure

existence with bounded (1 + u)th derivative on any time interval for (1.1).
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Abstract. Artificial boundary conditions for the linearized incompressible Navier-Stokes equations are
designed by approximating the symbol of the transparent operator. The related initial boundary value
problems are well posed in the same spaces as the original Cauchy problem. Furthermore, error estimates
for small viscosity are proved.
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1. Introduction. Many problems arising in fluid mechanics lead to the resolution
of a partial differential equation in an unbounded domain. Depending on the applica-
tions, various strategies have been developed.

For stationary flows around a body, integral equations are often used (see for
instance [6]) or we can also bound the domain and prescribe on the artificial boundary
the so-called "transparent" boundary condition, i.e., the boundary condition which
simulates the missing part of the domain. This boundary condition is integral on the
boundary, and the associated initial boundary value problem is solved numerically
using either an eigenvalues expansion on the boundary [2], [22], [10] or a coupling
between finite elements in the interior and integral equations on the boundary 18], [26].

For time dependent problems, the "transparent" boundary condition is integral
in time and space and thus impractical in general. Tremendous research effort has
attempted to design useful boundary conditions for inviscid flows. Most of the studies
rely on a linearization of the equation near the boundary (for a nonlinear treatment
of the problem see [16] and [29]). Of course in the applications we solve the nonlinear
equations in the interior together with the linear boundary conditions.

There are two mathematical frames for these studies. On one hand, Engquist and
Majda in [8] and [9] designed absorbing boundary conditions with wave propagation
tools. On the other hand, Bayliss and Turkel in [4] and [5] used far field expansions.
Both works write sequences of boundary conditions that are local (i.e., differential) in
time and space on the boundary. This feature is due to the hyperbolicity or quasi-
hyperbolicity of the operators they handle.

The problem becomes less clear when it comes to viscous flows. Some numerical
answers have been given for compressible fluids (see Rudy and Strikwerda [25]). On
the other hand, calculations have been performed in [11], [12], and [19] on the case
of a parabolic equation. Moreover, the case of linear advection-diffusion has been
treated in [13]. For incompressible flows it is still, as far as we know, an open
mathematical question.

Our previous results were announced in [15].
We are concerned here with the incompressible Navier-Stokes equation,
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for N=2 or 3:

u,+(u’V)u-vAu+Vp=f inx]0,T[,
(1.1) div (u) 0 ins x ]0, T[,

u(0) u in

where u (Ul,. ", UN)-
It is important to set the artificial boundaries outside of turbulent regime,

suftieiently far for the flow to be considered as constant. We are then allowed to
linearize around the constant state and to consider the Oseen approximation as follows.

u,+(a.V)u-vAu+Vp=f inx]0, T[,
(1.2) div (u) 0 in x ]0, T[,

u(0) u in

The data f and u are supposed to be compactly supported.
All throughout this paper we study the model problem: writing artificial boundary

conditions on the hyperplane -, i.e., such that the Oseen equation in the half-space
R_ {(x, y)R, x <0} with the boundary condition prescribed on the hyperplane
x =0 is an approximation of the Oseen equation in . This enables us to use the
Fourier transform as an essential tool. The problem of designing artificial conditions
on a closed artificial boundary will be treated in a forthcoming paper.

In [13], as a first step, the linear advection diffusion equation has been studied.
This article concluded with a family of approximate boundary conditions that are local
in time and space. In contrast, here the divergence-free condition implies a coupling,
which makes the analysis more troublesome. In particular, the symbol of the operator
to be approximated contains Ikl, with k the dual variable of the tangential spatial
variable, and it does not seem easy to approximate this symbol by polynomials or
i,ational fractions of low degree in space. Thus, the approximate boundary conditions
will be local in time and global in the tangential space variables.

In the course of justifying our calculations precisely, we will prove a number of
interesting results on the spaces of divergence-free functions on a half space, without
a Dirichlet boundary condition.

The analysis is made in 2, but is valid in 3 with slight modifications (see 14]).
In 2, we define the spaces of divergence-free functions in 2 and prove trace

theorems on F {(x, y), x 0}. We then introduce the Oseen equation, give the formal-
ism necessary for a variational formulation, and state a well-posedness theorem for
the Cauchy problem in R2. We finish by specific trace results for the solution of Stokes
equation, which emphasize the regularity of u + u2 ( is the Hilbert transform along
the boundary), solution of a heat equation.

In 3 we compute the transparent boundary condition on F according to the
following principle: Problem (1.2) in 2 is equivalent (in a sense we will make precise)
to the transmission problem in ll_ x fl+, where ll+/- {(x, y), +x > 0} and

+(a. V)u-vAu_+Vp_=f in fl_ x ]0, T[,
Ot

div (u_) 0 in l-l_ x ]0, T[,

OU++(a.V)u+-vAu++Vp+=O infl+x]0, T[,
dt

div (u+) 0 "in l’l+ x ]0, T[,



310 L. HALPERN AND M. SCHATZMAN

with the initial data

and the transmission conditions

u_(O) u in f_,
u+(O) 0 in 1+,

where rn is the normal constraint.
We study the Oseen equation for u+ in fl+, with nonhomogeneous Dirichlet

boundary conditions, and prove the well-posedness in spaces where the partial Fourier-
Laplace transform in time and tangential space is permissible. We write then a
pseudodifferential relation between u+ and rn(u+) on F. Thanks to the transmission
conditions, it leads to the same pseudo-differential relation between u_ and
We call it the transparent boundary condition after proving the uniqueness for the
related initial boundary value problem in _.

In 4 we design a family of approximations to the transparent boundary condition
by approximating its symbol. These approximations are local in time and integral along
the boundary. Using the tools developed in the previous sections we prove them to be
well-posed with the same regularity as the solution of the Cauchy problem in 2. Even
at low order these boundary conditions appear to be good approximations for small
viscosity.

Finally in Appendix A, we give some information on Beppo-Levi spaces, and in
Appendix B, we show why we cannot use spaces of fast-decreasing functions at infinity
in the analysis of the present incompressible problems.

2..Definitions, notations and basic results. In this section, we describe a number
of functional spaces which are useful for our study of Stokes problem with an advection
term, otherwise called an Oseen system. We need spaces in which we are able to treat
nonhomogeneous boundary conditions, and thus transparent and artificial boundary
conditions. The typical space is the space of divergence-free functions, which are
square integrable, with a square integrable gradient, but without any boundary condi-
tion. We give density results relative to these spaces, and corresponding trace results.
Then we give rather classical results on the solution of the Oseen problem, in 2.
Finally, if u is the solution of this problem, and if is the Hilbert transform in the
direction x2, the function Ul + u2 has a number of special properties which will be
useful everywhere in the sequel. In particular, if the support of the data of the Oseen
problem is in the region {Xl--<-X d0), the restriction of Ul + u2 to the boundary
{X 0) X X is arbitrarily smooth.

2.1. Classical functional spaces. We use the formalism of [24] in many instances.
The domain W ofN has boundary F; the scalar product in L2(fl) is denoted (.,.),
with associated norm II. The classical Sobolev space Hm(fl) is the space of square
integrable functions, whose derivatives of order at most rn are square integrable; the
scalar product in Hm() is denoted (.,.), and the norm [[; the scalar product
in L"(fl) is denoted (.,.) with associated norm I1. The Fourier transform is defined
on the Schwarz space 5 by

(2.1) B(k) JN v(x) exp (-ik. x) dx,

where k. x klX + k2x2+...+ kNXN; it is extended to ’, and we will often write
(2.1) for temperate distributions by an abuse of notation.
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For any real s, the Sobolev space,of fractional order Hs(EN) is defined as

Hs("N) {v6 ’/I (l +,k[2)s[(k),2 dk < },
this space is a Hilbert space, equipped with the norm

Ilvll (1 / Ikl2)l3(/)l = dk

In particular, we will need the Sobolev spaces H1/2(F) and H-1/2(F), when F is
the norm of H/2(F) will be denoted ]. I1/=,, and the norm of H-/2(V)II,

We denote the right-hand side half-space as

O+=={x=(x,x,... x)/x>O}

and the left-hand side half-space as

O_=5={x=(x,x,. ,x)/Xl <O}.

A convenient characterization of H(O+) is given by

n(o+) {u (0, ; n(a-))/ Vk 1, ,. ., m,

oku
ox (0, ; n-(a-’))}.

Then the norm on H(O+) can be written as

oku

X2

Xl

FIG.
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We can define a partial Fourier transform operating on the tangential variables; for v
in 6e’(f+), it is defined formally as

x,-.k,V(Xl, k’) JN-, V(Xl, x’) exp (-ik. x’) dx’,

where x’= (x2,. ", IN) and k’- (k2,. ", ks).
The space Hm(f+) can be characterized too with the help of a partial Fourier transform.

We define the Sobolev spaces of vector-valued functions:

HS() (HS(f))N and H() (H(f))N.
The scalar product and the associated norm will be denoted as for the scalar Sobolev
spaces.

We denote the gradient by V, and the divergence by V..
Finally, we will need the Beppo-Levi spaces, defined as follows.
DEFINITION 2.1. Let f be an open domain of Rs. The Beppo-Levi space

BL(H(f)) constructed on H(I) is the space of distributions u such that Vu belongs
to H(fl).

I_/s+lThe space BL(H()) is a subspace of to (fl)f3 ’(fl); more information on
the Beppo-Levi spaces is given in Appendix A. Let it suffice here to observe that
BL(HS()) is a Hilbert space, with Hilbert seminorm ]lVu]l; the kernel of this
seminorm is the space of constant functions. Moreover, if fl is unbounded, BL(H())
contains unbounded elements. Examples of such behavior are given in Appendix A.

2.2. Spaces of divergence-free functions. Spaces of divergence-free functions are
an essential tool for the study of fluid motion in Eulerian coordinates. One classical
set of spaces is defined starting from

r(n)= {v (n)/v v=0}.
The respective closures of v in L2(fl) and Hl(fl) are denoted H0(fl) and V(fl); they
are very well adapted to the study of a problem with Dirichlet boundary conditions;
they admit the following characterization, when fl- R2.

V(t2) {v HI(2)/V v=O}
(2.2)

Ho(a2) { v L2(a2)/V v 0}
When fl is a domain with smooth boundary F, the characterization is modified as
follows.

V(n) {v H(n)/V v 0}
(2.3)

Ho(f)={vL(f)/V v=0 and v. n=0 on F},
where n is the exterior normal to F.
This last characterization makes sense because, on the space

E(n)={vL2(n)/V v6 L2(n)},
the normal trace v. n is defined, belongs to H/2(F), and the mapping

from E(f) to H1/2(F) is onto.
A convenient reference for the above classical results is [28]. Nevertheless, we

are interested in boundary conditions which are not Dirichlet boundary conditions,
and we introduce spaces which are not classical"

(2.4) /f(f_) (v z (n_)=/V v 0},
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where f/_ is the closed half-plane. Moreover, we introduce

(2.5) W(12_) (v H’(f_)/V v=0}

(2.6) H(D,_) {v L:(D,_)/V v=0}.

The relations between W’(I_), W(f_), and H(f/_) as well as the trace properties of
these spaces will be stated below. The results presented here differ from the standard
ones in two respects: first, we want to allow for nonzero boundary data; second, the
open set f/ contains points at an infinite distance from its boundary. The case with
zero boundary data can be found in [28]; the case where the points of I are at a
bounded distance from its boundary can be found in [1].

PROPOSITION 2.2. The closure of W’(f_) in Hl(f_) is precisely W(II_).
Proof. To prove this result, we consider an element orthogonal to the closure of

W’(f_) in W(2_). The potential of this element u satisfies a homogeneous partial
differential equation; as u is in a Sobolev space, it is a temperate distribution. This
enables us to deduce estimates on the traces of u on the boundary, and, in the same
time, the nullity of u.

Let W be the closure of /4/’(1-/_) in HI(’_); clearly, W is included in W(f_).
To prove that W is precisely W(I_), let u be an element of W(f/_) that is orthogonal
to W, or equivalently to W(f_); then, for any v in o/(f_),

As v belongs to W(I_), there is a C function o such that

(2.8) Vl v2
OX2 OX

v vanishes outside of a compact set of f/_. Conversely, any 0 in @(f_) defines a v
in //V(f_), with the help of (2.4). Similarly, the theory of Beppo-Levi spaces shows
that there exists @ in Loc(O-)c 6e’(f/_) such that

(2.9) ul u2

If we substitute u and v in (2.7) with their expressions in terms of o and @, we obtain"

(2.10)

Therefore, in the sense of distributions, satisfies the equation

(2.11) -A+A2 0 in

If we perform a Fourier transform in the tangential variable x2, which is sent to k, it
is not difficult to see that the general solution of (2.11) is of the form

(Xl, k)=a exp (IklXl)+ fl exp ((1 +lkl2)l/2xl)+y exp (-IklXl)
+ 8 exp (-(1 +lk12)l/2xl).

For to be a temperate distribution, the coefficients 3’ and 8 must v.anish, because
the corresponding modes increase exponentially at xl -oo. Therefore, , is of the form

(2.12) (Xl, k)
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We will prove that a and /3 vanish identically. For this purpose, we need some
regularity. We integrate Ik(xl, k)l= lall 2 on f_, and we obtain an estimate on a and
/3.

f { 2 a(k)fl(k) }(2.13) Ikl 2 la(k)]2+ ]fl(k)--+4 Re dk < +.
k] l+k2 k+l+k[2

We compute the smallest eigenvalue of the quadratic form that appears in (2.13). This
shows that there is a positive weight h(k) such that

f tlt2 dk dx J tkt2h(k)[l12+ [t2](k) dk,

the weight h satisfies the estimates"

h(k) in a neighborhood of k 0

1
h (k)

16[kl
in a neighborhood of kl +.

Therefore,

(2.14) ika and ikfl belong to the space H-5/2.

If we return to formulation (2.10), written in Fourier variables, we obtain the
variational problem

(2.15)

According to (2.14) and (2.12), ag/ax,, aa/ax and a6/ax have a trace on F,
even if it is in a very weak sense. Accordingly, we can perform several integrations by
pas on (2.15), and we obtain the relations

ax ax axJ r

 Sl
ox J

substituting (2.12), we obtain a linear system:

k12 + +1/I2) 0.

This system is not singular, thus a and vanish identically, and so does the potential
6 thanks to (2.12). This proves that u is zero, and that the ohogonal of the closure
of (a_) in W(a_) is zero.

We have an analogous result for the space H(fl_).
PROPOSITION 2.3. e closure of (_) in L2(_) is precisely H(fl_).
Proo The technique of proof is absolutely identical to the technique employed

for the previous proposition. It is in fact easier; the main steps begins with an analogue
of equation (2.11)"

6=0 infl_.

Then the Fourier transform of the potential y is of the form

(Xl, k)= exp (Iklxl),
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and it is very easy to prove that ax/- is square integrable; the remainder of the
proof is left to the reader.

Let us consider now the trace spaces of W(_) and H(f_). The main result we
need is as follows.

PROPOSITION 2.4. For any u (u, u2) T in W(f_), the trace ofu on F is in H1/2(F)
and satisfies

(2.16)

If W1/2 is the space offunctions that satisfy (2.16), then the trace mapping u Ul[r from
W(f_) to W1/2 is onto.

Proof Let u belong to /4/’(f_); we may write

ox, Iki -1 Re Ul(Xl, k)
OXl

2
Re (Ul(X1, k) ik/,2(X1, k)),

since u is divergence free. The function u vanishes for xl small enough, because the
support of u is compact. Thus we obtain

(2.17) f lal(Xl, k)l 2

dk<= ilull 2

The trace space of W(f_) is included in H1/2(F); together with (2.17), we obtain the
first statement of the proposition, because W(I)_) is dense in W(12_). To see that
the trace mapping is onto, take the ohogonal of the image of W(O_) in W/ by the
normal trace mapping. For all in (_), we have

Re I/1=+ aikdk =0,

and this shows immediately that the mapping is onto.
From the proof of Proposition 2.4, we deduce

COROLLARY 2.5. For any u in H(I_), the trace of u on F exists and satisfies

k
dk < +oo.

Moreover, the expression

(2.18) s(u, v) (u, v)-- IN l(Xl’ k) 31(Xl
k[

k)
dk

is a scalar product on H(O_), which is equivalent to the scalar product (.,.) induced by
L2(-_).

Proof. It is clear that

x(u, u)e (llu IIo)=;
the inequality

s(u, u) 2(llullo)
follows from (2.17).
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The dual space of W1/2 will be denoted W-1/2 and is the space of functions which
satisfy

(2.19) u W-1/2C: fa ll(O, k)l(Ik,+ l)
l/

dk < +o.

Remark 2.6. The space W1/2 is included in H1/ because the weight (Ikl: + 1/[kl) 1/
satisfies the inequality

(1 k’2 + 1[2)
’/2

--1-i-kl22 k*.

Dually, W-/:z contains H-/2.
This completes our review of divergence-free functional spaces.

2.3. Oseen system in full space. Consider the Navier-Stokes system in x+:
(2.20) u+(u. V)u- vAu+Vp =0; V u=0.

Here V is the gradient operator, A is the Laplacian operator; v. V denotes the differential
operator Vl O/OXl + v2 0/Ox:z.

We linearize this system around a constant state a (a, a), with al positive, and
we obtain a Stokes system with an advection term or Oseen system:

(2.21) u+(a. V)u- uAu +Vp 0;

(2.22) V. u 0.

A differential operator M is defined by

(2.23) M(u,p)= ut+(a" V)u- vAu+Vp.

For functional analysis reasons, it will be convenient to study the differential operator
M, defined, for/x > 0, by

(2.23), M, (u, p) ut + la,u + (a V)u- vAu + Vp.

We define a bilinear form a on H(f) by

(2.24) a(u, v) ((a V)u, v)+ v(Vu, 7v),

where

(V u, V v) (Vu, Vv) + (V uz, V v).

Clearly, a is continuous on H(f); moreover, we have

((a-V)u, u)= a. V(lul) dx= a. nlul dr.

If f 2, this expression vanishes; if f I_, this expression is greater than or equal
to zero. Therefore,

a(u, u)-> (llVullo)=;
there exists a positive constant a such that

(2.25) (llullo)=/a(u, u)>_-(llull)-, Vu in H(f).
We will need a partially antisymmetrized form of a, in order to uncouple the

boundary part of Green’s formula; let

(2.26) (u, v) =1/2 [((a. V)u, v)-((a. V)v, u)]/ u(Vu, Vv).
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As a is constant, a and can differ only by a boundary term; if ll R2, there is no
such term; if

(2.27) (u, v)-a(u, v)= - alu.v dr.

In particular, in the full space case,

(2.28) a(u, u)-(u, u)- IVul2 dx.

Consider now the linearized Navier-Stokes system in the plane"

(2.29) M,(u,p) =f in R2xR+;
(2.30) V.u=0 inR2xR/"

(2.31) u(., 0) u in R2.
This system is well posed, if we take u and f in adequate functional spaces.

PROPOSITION 2.7. For all u in H(2), and all f in L2(0, 00; L2(R2)), and for all
nonnegative tz, there exists a unique u and a p unique up to an additive constant such
that (2.29)-(2.31) hold and

u ,(E0, ); H()),
v, Ho(E0, ); L()),
u, Loc([0, 00); V’(2)),

OP
P Loc([0, 00). BL(H-I(R))).P=ot’

Here V’() is the dual of V(R) and BL(HI(Z)) is the Beppo-Levi space offunctions
whose gradient is in Ha( ). The function u belongs to Loc ([0, 00); X) if any restriction

of u to a finite time interval [0, T] belongs to LP([0, T]; X).
Moreover, for any strictly positive Ix, the following global estimates hold:

u L([0, 00); H(2)),
Vu L([0, 00); L)-(I2)),
u, L([O, 00); V’(I2)),

OP
P =-, P L([0, 00); BL(H-I(R))).

Remark 2.8. If f were a bounded open set with smooth enough boundary, it
would be an exercise to extend the existence proof in [28] for the Stokes problem to
the present situation. Though the forthcoming proof is quite classical, it does not
appear to be written with all the necessary details in the literature of which we know.

Proof We know from [24] that for every positive and finite T, there exists a unique
u in L2(0, T; V(2)) with Ou/Ot in L(0, T; V’()) such that

(2.32), (ut, v)+a(u, V)+la,(u, v)=(f, v) Vv V(2);
(2.33) u(0) u

Let us first consider the case/z 0. Relation (2.28) implies an energy estimate

ld
2 dt

Ilull/ llVullg -< IIf(t)llollullo.
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From this inequality we make a classical Gronwall estimate and deduce the estimates
on u and Vu, using the coerciveness; the variational formulation (2.32) gives the
estimate on ut. Precisely, we get the following estimates

[lu( t)llo =< u[Io -f- x/[[f[[ :<[o,

ds

These two estimates show polynomial growth in time. In order to have an estimate on
p, we proceed as in [28]. Let

U( t) u(s) ds, F( t) f(s) ds.

Then V U belongs to L2(0, T; L2(2)). If we integrate (2.21) in time, we obtain

(u(t)-u+(a V)U-vAU, v)=(F, v) Vv in V(2).
The expression u( t) u + (a V) U- vAU- F is orthogonal to divergence-free vectors,
and belongs to L(0, T; H(I2))+ L2(0, T; H-1(2)), which is included in
L2(0, T; H-1(2)). Therefore, there exists P in L2(0, T; BL(H-I(R2)) such that

u(t)-u+(a V)U-vAU+TP=F.

If we define p =OP/Ot, we obtain the announced estimate.
For the last statement, we observe that (u, p) is a solution of (2.32)0 if and only

if (w, q)= (ue-’, pe-’’) is solution of (2.32).
Thus, the polynomial growth estimates for u ensure the global estimates for w.

There is a regularity result which will be useful in what follows; denote

(2.34) H(lt2) f-) n"([2);
m__>0

this is a Frechet space, with an obvious topology. The regularity result is as follows:
LEMMA 2.9. Let u belong to H(2), andfto C(+; H(2)). Then, the solution

(u, p) of (2.29)-(2.31) belongs to C(+; H(2)).
Proof The spatial derivatives of u are divergence free, and satisfy (2.24); if we

apply the estimates of Proposition 2.7 to the differentiated equation, we obtain the
desired estimates. In order to differentiate in time, we check that the time derivative
Ut(. t) is in H(2); from (2.29), ut(., t) is the projection of vAu-(a. V)u onto H(2);
u, satisfies (2.29), (2.30), and thus Proposition 2.6 is applicable. By induction,

U E Hm(O, T; Hm(2)), ’ m in .
Leaving all details to the reader, this ends the proof.

Remark 2.10. For/x strictly positive, it is possible to prove that if u belongs to
H(2), and f belongs to ([0, ); H(R2)), then u belongs to ([0, oo); H(2)).
This result will be proved indeed for the case of the half-plane in the next section.
The reader is referred to Proposition 3.1, whose proof can be completely copied to
obtain this result. In any case, it is a question of estimating solutions of linear equations
with a nice exponentially decreasing behavior, and the proof is an easy application of
semigroup theory.

Remark 2.11. The solution of (2.29)-(2.31) does not decrease fast at infinity in
space, in general; the trouble is with the pressure. Assume that f vanishes for large x;
by taking the divergence of (2.29), in the smooth case, one can see that Ap V. f, so
that the pressure is harmonic; if p decreased rapidly at infinity in space to a constant,
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it would be identically equal to this constant (see Appendix B for a proof of this
result); this is not a general situation. If 7p decays like some power of x, at infinity,
then, once Vp is known, u is essentially a solution of the heat equation with source
Vp+f, and it cannot, in general, decrease rapidly at infinity in space.

2.4. On specific trace results for the solution of Oseen system. Consider the solution
u of (2.29)-(2.31). Extend u and p by 0 for t-<0, and denote the extended functions
still by u and p. Then,

(2.35) M,(u, p)= u(R)5 +f in R2xR; V. u =0.

We cannot expect that u restricted to {(0, xl, t)/(Xl, t)R:} will be smooth
in time, even if we assume that
(2.36) The support of u is compact and included in f_,
(2.37) The support off is in the product of a compact subset of f_ with /.

Remark 2.12. We explain why smoothness in time cannot be expected in general,
and give sufficient conditions to have it. Denote by II the projection in L:(R2) onto
H(:); assume that u is smooth enough for the foregoing computations. Then,
interpreting the pressure as a Lagrange multiplier, we can take a limit as decreases
to zero"

u,(’, O+)=IIf+u(R)5’-(a V)u+ vAu-ixu.
In this relation all the terms containing u vanish on Y fl { 0}, thanks to assumption
(2.36). Nevertheless, there is no reason why 1-If should vanish there, since II is not a
local operator. Thus, in order to have some smoothness in time, we should ask that f,
and a number of its time derivatives vanish at time 0. This assumption is not reasonable,
and we shall not make it because it turns out that we are interested in less than the
regularity of u.

More precisely, let r sgn (k) and let denote the Hilbert transform on F [27,
Chap. V and VII"
(2.38) u)^(k) -irt(k).

In physical variables, the Hilbert transform is defined as the convolution with the
principal value v.p. (1! rx:). We shall see later that we are interested only in the trace
of ul + u: on 5;. It turns out that this trace is very regular in and x_, under the
support conditions (2.36), (2.37).

A sequence of lemmas will describe the precise regularity of the trace of u +
LEMMA 2.13. Let Uo belong to H(2), and f to L-(0, oo; H(I:)), and let u be the

solution of (2.29)-(2.31). Assume (2.36) and (2.37). Let

(2.39) z Ul + u2.
Then z belongs to L2o([0, oo); H(2)) (’l LI([0, oo); L2(2)) and satisfies a heat equation
of the form

(2.40) z + tzu + a V u vAu g,

with an initial condition

(2.41) z(., 0)= u,(., 0)+ u2( ", 0)

belonging to L2(2). Here, g has support in (-,-X) R+, and X is some strictly
positive number
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Proof The function z is well defined as a function of xl, x2, and t, because Y( is
an isometry from L2(R) to itself. Moreover, z belongs to the spaces mentioned in the
lemma, because Y( commutes with the differentiations, so that if w is in Hi(R2), so is
Ygw. If we compute the right-hand side of (2.40) in the sense of distributions, we obtain

g fl + Ygf2- 0___p_p_ y( 0___p_p
OXl

It remains to show that Op/Ox+ ff((Op/Ox2) has its support in {x <--X}, because
assumption (2.37) shows that f has its support in this set. If we take the divergence
of (2.29) in the sense of distributions, we have

Ap=V .f
Therefore, p is harmonic in the region {x => -X} x x +. By partial Fourier transform
in x,

ox Ikl- "
As p is temperate in xl, x2, p is necessarily of the form, for x =>-X,

=/(0, k,. e-I,
and therefore,

O___p_p+ (yg Op) (_lk + ik(-icr))fi 0 for Xl-->
OXl \ OX2l

This proves that the support of g is indeed in the region {xl =<-X}.
LEMMA 2.14 Let w be a solution of

wt+a2Ow/Ox2-,Aw=g forx2, t,

w=0 fort=< T,

where the support of the distribution g is included in (-,-X] x R x R+. Ifg belongs to
HS(R2x), then the trace of w on Z={0}xx belongs to H( [0, T]),for all T.

Proof Among the many possible ways of proving this result, we choose the one
which is the closest to the spirit of this article; namely, we consider the problem with
respect to the variable x, instead of a problem in time. We will perform a Fourier
transform in time and in the partial space variable x2 and perform a Fourier analysis
of the ordinary differential equation obtained in this fashion. For a correct argument,
we multiply w by e-’t, where Ix is a strictly positive number. Then v w e-"t satisfies
the equation

Ov
(2.42) vt + Ixv + a Av g e-" h,

Ox2

where h has the same support properties and smoothness properties as g. This amounts
to performing a Fourier-Laplace transform in time instead of a Fourier transform. If
to denotes the dual variable of t, and k the dual variable of x2, the partial Fourier
transform of (2.42) is

023
(2.43) (ito + tx + ia2k + ,1 kl)3 ’Ox f"
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Let p be the root of vp2-(i(w+a2k)+lz + lkl-)-- 0 which has positive real part. An
elementary computation shows that the unique solution of (2.43) which is temperate
is given by

(x, , o= o sh (o(-x)h(y, , ay

+ exp (O(x-y))h(y, k, ) dy.

Thus, we can write

1
2 sh (py)f(y, k, w) dy+ exp(-py)f(y, k, to) dy(0, k, to)=

2pv

1 feOyf(y,k,w) dy"
2pv

We can see that

(2.44) Re (p)-> C(1 + Ikl +vq-GJ),
for some constant C strictly positive, and thus, it is possible to estimate

1 + Ikl:+ I,o1:)"1(0, k, w)2 dkdw

_<- ( +lkl2+la, l:) le"f(x,, k, o)) dyl 2 dkdw

<= f (l+lkl-+lwl:)"{fX_oo le:’y dy}{f I#(x, k, ,.o)1 = dx} dk&o.

If we first strengthen somewhat the hypotheses by assuming that, for some n,

(1 + Ikl 2 + k, to)l 2 dx dk dto< oo,

then, the result we look for can be easily deduced:

-x e-2X Re (p)

le2py] dy= 2 Re (p)

and thanks to (2.24), this quantity is dominated by all powers of k and to, and the
result is proved. To get rid of the extra assumption we made, we observe that an h in
HS(R2x R) is a finite sum of x derivatives of some functions hi, and the hj can be
taken with the same support property as h, and each hj satisfies

(1 + Ikl 2 + 10.,12)" Ihj(x, k, )1: dx dk dto< c.

We treat the terms

eoy Nhj(y, k, to)
o dy
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by performing an integration by parts, which will amount to a multiplication by some
extra powers of p; these powers will be nevertheless dominated by exp (2X Re (p)), and

(1 + Ikl=+ Io 1=) e,y o(Xl, k, o)
OY

dy dkd

is finite for all real m.
Going back to w, we obtain the required result.
To conclude this sequence of results, we can state now the
LEMMA 2.15. Let z be as in Lemma 2.13. en, the trace ofz on belongs to H(E).
Proo Consider the new variables

t’ t, X X1 alt, x
In these new variables, the equation satisfied by z becomes

Oz
Zt’+ a2-- pA’z g,

Ox

and the suppo of g is included in the set

{(x’, t’)/t’O and x+at’-X}.

As a is strictly positive, at’ is less than or equal to zero, and we are in the case of
Lemma 2.14.

3. Analysis of the transparent bounda condition.
3.1. Introduction. Let (u,p) be the solution of (2.29)-(2.31) with initial data

satisfying (2.36)-(2.37). The normal constraint g, is defined by

OUl(3.1) ,:(,); :-p; :.
OXl OXl

We will show in this section that the restrictions to E {0} x x+ of u and the normal
constraint g, satisfy a linear pseudo-differential relation. This relation will be computed
by Fourier techniques, working on the problem

in+xN;
(3.2) V.u=0 ina+xN;

u(O, x, t) g(x, t) in

We assume here that g is given in (N; H(N)). The choice of H(N) is justified by
Remark 2.11. On the other hand, there is no such constraint in time, and it is permissible
to have a solution with values in H (N) which decreases fast in time for all nonnegative
m. Moreover, we ask that

1

Under these assumptions, we will show at Proposition 3.1 that for all such g, (3.2)
admits a unique solution u in C(+ x N).

The mapping

can be completely described in Fourier variables:

(3.3) g)(k, )= N(k, m)(k, ),
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where E is a two-by-two matrix that will be given explicitly in terms of k and to at
Corollary 3.3.

From this operator , we will define another operator , which is a nice pseudo-
differential operator, such that the restriction of the solution of Oseen system to the
left half-plane f_ satisfies the variational equation

(3.4) s(ut, v)+(u, v)+(g,

where s is the scalar product defined at (2.18) and is defined with the help of an
explicit matrix L by

(g)^(k, to)= L(k, to)(k, to).

The next step is to study the properties of . This operator is causal, which means
that if g vanishes for t-< 0, so does g. This property plus some estimates will enable
us to extend to much larger spaces.

In view of well-posedness results, we shall prove that has some useful positivity
properties; in particular, the symmetrized matrix (L+ L*)/2 is positive semidefinite.

With this detailed study of , we prove an existence and uniqueness result for
the solution of

(3.5) M(u,p) =0 in f_ x,
(3.6) V. u=0 in f_x,

(3.7) U(Xl, x2, 0) u(xl, x2) in f_,

(3.8) 1= (ul.).

This problem is written in variational form, and, with very smooth data, it admits a
solution that is simply the restriction of the full-space problem with initial data extended
by zero in f+; the uniqueness will be a consequence of the positivity of the operators.
Once we have the uniqueness, we can extend the class of solutions for which we have
a solution, and, then, conditions (3.8) may be called transparent.

Most of the time, it will be convenient to replace (3.5) by (3.5), where

(3.5) (u, v)= (u, p)+ u;

here, /x is a positive number. This amounts to considering the system solved by
(u, p)e-"t, or, in other words, to extend the frequency to to the half plane Im(to)< O.
This is permissible because we work with causal operators, and we can apply the
Paley-Wiener-Schwarz theorem.

3.2. The boundary problem for Oseen system. In this section, we consider the
problem

(3.9)

where

(3.10)

sg,(u,p)=O in f+ ,
7.u=0 inf+,
u(O, x_ t) g(xe, t) in ,

.(u,p)=Ou/Ot+txu+(a. V)u- vAu+Vp

and
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If g vanishes for t=< to, and if (u,p) is a solution of (3.9) for/z>0, then (ue"t, pe’)
is a solution of (3.9) for/x =0, with data g,(x2, t)= g(x2, t) e".

We first prove a result of existence and regularity.
PgoPosITION 3.1. Let Z be the subspace of’(R) defined by

(3.11)

Assume that

gZ iffgH(R)and o’-1(’)) H(R).

(3.12) g 9(I; Z).

Then (3.9) possesses a unique solution u, p) such that,

(3.13) u L(; H(I)+)),

(3.14) Vu L2(; LE(f/+)),

(3.15)
Ou-- (; w’(a/)),
ot

(3.16) Vp L(; L2(I+))+ L2(R; H-I(I)+)).
Moreover, u is infinitely differentiable, and if i > O,

(3.17) u, p 6e(R; H(f/)).

Proof. Let us first construct a function z such that

z e 6e(; H(O+)),
(3.18) V.z=0,

zl g.

the function z will be a sum of two functions defined by different means. We first
extend gl; let " be defined by

(x, k, g(k, ,o exp (-Ikl,
’2(Xl, k, o9)=-icrffl(k o) exp

where

cr sign (k).

We have used the Hilbert transform, of symbol -icr, mentioned in 2, and defined at
(2.38):

2(xl, ", t)= fflO’l(X1, ", t).

Moreover,

V. ’=0; ’1(0, x2, t)= gl(x2, t).

Now, in order to compensate for the bad boundary condition of the second component,
we define a function h by

h(Xl, x2, t)= d/(Xl)[g2(x2, t)-(gl)(X2, t)],

where q belongs to (1)+), (0)=0, q/(0)= 1, and finally, we let

Oh oh
Z2 2 -JC"Zl =’1

OX2 OX
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Clearly h satisfies the boundary conditions. If (3.12) holds, then an integration in xl
shows that

Similarly,

(1 +lk[2)ml,(x, k, w)12dx,dk do

I.f ( + Ikl)(21kl)-’lff’(k’ )l= dkdoa <.

aml(X,, , o9)
dx, dkdw Ikl=l,(x,, k, co)l 2 dx, dk&o

=-d Ikl2("-’/2)lff"(k’ 60)12 dkdo < oo.

This shows that ’1 belongs to L2(R; H"(fL)), for all m. We look at time derivatives
multiplied by polynomials in t, and we show by induction that ’ belongs to
6e(R; H(f+)). A similar argument shows that ’2 belongs to 6e(R; H(f+)). By
construction, g and g2 belong to (R; H*()); the Hilbert transform in the variable
x2 leaves this space invariant; therefore, gl belongs to it, and so h and its gradient
belong to 9(; H(O+)). The function z we obtain finally satisfies (3.18).

Let now

u=v+z;

then (u, p) solves (3.9) if and only if (v, p) solves

M(v,p)=-M,(z,O) inlI+xN,
(3.19) V.v=0 inlI+xN,

v(O, x2, t)=O inNxN.

The existence of a solution of (3.19) is obtained by many classical methods; for instance,
define the generator Ao of the Stokes semigroup (without advection) by

D(Ao) {u e Ho(a+)/v- f Vu. Vvdx is continuous}

and

(3.20) (Aou, v)m u J V u" V v dx.

The operator Ao is defined starting from a quadratic form on the Hilbert space Ho;
therefore, according to Phillips’ theorem, it generates a contraction semigroup in Ho.
Its domain can be computed explicitly and is equal to

D(Ao)={uHo(l-+)f"lH2(+)/(O, x2)=O}.
Let A be defined by

(3.21)

D(A)=D(Ao);

(Au, V),o= f [(a. V)u. v+ ,Vu. Vv] dx.
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Then A is obtained from Ao by adding a strongly relatively bounded perturbation to
Ao; this is because we have the inequality for all e

IlVullo--< Ilaullo/ c()llu IIo.
Therefore, A generates a strongly continuous semigroup 3-(t); this semigroup turns
out to satisfy the estimate,

-(t)II --< e-"’, for all -> 0,

because, for all u in D(A), (Au, u)>-#x(l[U[[o)2. The solution of (3.20) is given by

v(.,t)= [’ 3-(t-s)(-sg(z,O)(s))ds,

and it is clear that v(., t) is bounded uniformly on R, with values in Ho, and that, if

# is positive, it decreases fast to zero as tends to +oo. All the other estimates are
easy to obtain by differentiation and semigroups estimates, and they are global on R.
Details are left to the reader. E1

We now perform the Fourier analysis of (3.9). For simplicity of notation, the
frequency variable o) can be real, or complex with negative imaginary part; if needed,
it will be denoted r o)- ilz when this negative imaginary part is present. We need a
few notations; the differential operator C is given by

O2f+ Of(3.22) Cf=-,Ox a’+(’ikl2+’i’+ox a2ik)f;

its associated characteristic polynomial is given by

(3.23) P(k, ’;h)=-,h2+a,+,lkl2+iz+a2ik.
The discriminant of P is given by:

(3.24) a k) + lkl=)+41’(i(’+ a
The real part of (3.24) is positive for all aJ and k, and for all #z => 0, because we

assumed al > 0. We denote by p the determination of the square root of (3.24) with
positive real part:

(3.25) p= a+4,(i(-+ ak)+ l, lk[2), Re p >0.

Then, the roots of P(k, r,. are given by

al-p a+p
2, 2,

and it is not difficult to check that

(3.26) Re A < 0 except if k r 0.

Moreover, we have immediately the following important estimate; there exists a strictly
positive constant 3’ such that

1
(3.27) (1 + Ik{ + 4T) -<-Ip[ -< -),(1 + Ik[ + 4]-).

The first result pertaining to the Fourier analysis of (3.9) is as follows.
PROPOSITION 3.2. Let (u,p) be the solution of (3.9). Then, there exist locally

integrable functions a and such that

(3.28) /(Xl, k, r) exp (-Ik]x,)a(k, r) +exp (Ax1)/(a ,t’),
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where

c,= ,/3,
A+lklX+lkl
=k

(3.29)
Affl d- ikff, 2 0",1- i,2

ce2 =-icr /32 iA.
X+lkl A+lkl

Moreover, any couple of distributions (a’, ’) which satisfies (3.27) is equal to (a, ),
up to the addition of (1,- l)S, where S is an arbitrary distribution with values in 2 and
support in {0}k,o.

Proof. We perform a partial Fourier transform on u and p; the transformed
quantities are denoted a (a, ) and/; they satisfy a system of ordinary differential
equations, with respect to the variable x, with k and r as parameters; this system can
be written

(3.30) Ca,+ 0/
=0,

(3.31) Ca2 + ik O,

(3.32) 0al + tku2 O.
OXl

If we eliminate the pressure from this system, by multiplying (3.30) by -ik, differentiat-
ing (3.31) with respect to x, and adding the two resulting inequalities, we obtain

(3.33) C ik + O.

With the help of (3.32), we eliminate ; then 1 satisfies

This is an ordinary differential equation of the fouh order in Xl parameterized by k
and r; its general solution is of the form

(k, ) exp (-Iklx,)+(k, ) exp (Ax)+r(k, ) exp (Iklx,)+(k, ) exp (A’x).

From Proposition 3.1, u belongs to L2(+xx) if g >0, and so does a; thus, for
almost every k and r, a(., k, r) is square integrable. Therefore, and vanish for
almost every k and r; thus,

(3.34) a (k, ) exp (-Iklx) + ,(k, ) exp (Axe).

Similarly, eliminating a from (3.33) and (3.34), we obtain

With the same argument as above,

(3.35) a2= =(k, ) exp (-Iklx) / =(k, ) exp (Axe).

The divergence-free relation (3.32) implies immediately that

(3.36) -[klc + ika2= O, A+ ik2 O.
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If we take into account the boundary conditions,

(3.37) , O -I’- ll, ,2 O2 "" f12,

we will now express al, a2,/31, and/32 in terms of 1 and 2. To obtain al and ill.
we have to divide by A + Ikl, which vanishes only for k -- 0. In order to obtain a2
and fl, we have to divide moreover by k. In order to obtain locally integrable functions
a and , we have to show that A/A + kl is bounded in a neighborhood of zero. But,

i(+ak)+kl
a+p

and

7"+a2kA + Ik -2
a+p+2’lkl’

which shows immediately the desired estimate. Eliminating between (3.36) and (3.37),
we can write

i1 "{- ikff,2 A (ffl- icr2) + icr(A + Ikl)
 +lkl x+lkl

and there is a locally integrable function a which is almost everywhere equal to the
expression given by the first of formulae (3.29). The second of these formulae gives a
locally integrable 131, because/31 - al. From the first formula of (3.36) divided by
k, a2 is locally integrable. From the second formula of (3.36) and the expression of
13, a division by k gives the formula for/32. If a’ and fl’ are distributions which satisfy
(3.28), they differ from a and/3 by distributions S and T with support in R x {0},o.
We must have

S exp (-]klxl)+ T exp (Axl)= 0, for all

This is possible only if S and T have their support in {0}k.o, and T+ S 0. Therefore,
we can say that a and/3 are respectively determined up to the addition of S and -S,
with S a distribution with support in {0},,.

The most important consequence of the previous proposition is the following
result on the operator, which assigns to the boundary value of u the normal constraint
at the boundary.

COROLLARY 3.3. Let (u, p) be the solution of (3.9). Let E be the two-by-two matrix
given by

(3.38) E(k, ’)= -((i’/[kl)+ ia2cr+ u(JkJ-A) icr(,A -al))-icruA u(] k A)

Then the normal constraint (-p+ , OUl/OX, , au2/Ox)lz or, is given by

or, g,
or equivalently

G(k, E(k,

Proof. From (3.29), we compute aa/axl and ca2/aXl on the boundary:

a ( Al+ik2 )
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We observe that the distribution S does not contribute, because -(Ikl / A)S--0. The
above formula proves that

(3.39) Oa -ik2,

(3.40) iAog /(A -Ikl),.

To obtain an expression for the pressure, we observe that, from (3.31), we can write

ik
The second term of this expression vanishes by definition of A; in the first term,

P(k, ; Ikl)= -alkl + i(+ a=k).

Thus,

i(A + ik)(-alk[ + i(r+ ak))

This expression can be simplified by algebraic manipulations: let y A +lk; then

P(k, , y-lkl) 0

so that

-y+ 2lkly + aly allk[ + i(+ a2k) O.

Hence,

y(-y+ 2{k{ + a)= allkl- i(r+ ak),
that is

alkl-i(r+a:k)
A +lkl

If we substitute this in the above expression of ik, we obtain

ik= -i(al + kl- A)(A + kl2).

Using once again the equation which defines A, we have

aA + lklA A== lklA lkl=- i(+ a=k),

and from here, we obtain

ik=ik 1 (Ik-a)+i a+ +i{(a-lkl)-a}.

If we divide both sides of this equation by k, we obtain, with the help of (3.39) the
unique locally integrable function equal to ; thus

u ff ff (u(Ikl- A) + a+ + ff2i(uA al).
Ox

Putting together this last expression and (3.40), we obtain the matrix E. A distribution
which is solution of our equations is equal to the expression l {(Ikl-x)+

i(a2+ Ikl-r)} + :i{(x-Ikl)- al} up to the addition of a distribution with suppo
in {k 0}. This corresponds to the addition of a space independent constant to p,
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which is natural because p is defined only via its gradient. But, as our problem was
obtained through linearization, around a constant velocity field and a constant pressure,
this constant is equal to zero.

3.2. Variational formulation for the problem with transparent condition. To obtain
a tractable formulation for the Oseen problem and "transparent" boundary conditions,
we will write a variational formulation. The existence of a solution of the variational
problem will be ensured by simply taking the restriction of a full-space problem. A
functional problem has to be settled in order to justify this formulation; a certain
pseudo-differential operator acts on the trace of u on . Originally is defined
only on very smooth functions, and it has to be extended to a larger functional class.
After this is done, we have a clean presentation of the problem with "transparent"
condition. The quotes will be removed only after uniqueness is proved.

Let/x be strictly positive, let f satisfy the assumptions of Lemma 2.9, and let u
equal zero. According to Lemma 2.9, the solution (u, p) of (2.29)-(2.31) belongs to
C(R+; H(’)). Assume that f satisfies (2.37). We assume moreover that:

(3.41) f ((0, ); H(l:Z)).
In particular, f vanishes of infinite order at =0. Then, the solution of (2.29)-(2.31)
extended by 0 for t-<0 belongs to C(R; H(2)). Arguing as in Proposition 3.1, u
belongs to 6e(; H(-)), and its trace on E belongs to 5e(; H()). In the region
f/ x, u satisfies (3.9), with

If we still denote u the restriction of u to f_ x E, and if we multiply the equation
satisfied by u on f_ x by an arbitrary v in W(f_), and integrate, we obtain, thanks
to Green’s formula

From Corollary 3.3, this relation can be written

Let us write down the matrix a1(I/2)+ E:

alI E(k, )=((al/2)+(i/Ikl)+ ia2o’+ ,(Ikl-X)
(3.43)---- itrt,A

io-(uA-al) )(al/2)+u[kl_ A

We can decompose this matrix into the sum of two matrices:

where K1 is .given by

alI---E KI+ L,
2

(3.44) KI ( 1/IklO O0) ir"

Let Y{1 be the operator of symbol K. From the definition (2.18) of the scalar product
s, we can see that

(3.45) (ut, v)+tz(u, v)+(Y{u, v)=s(u,, v)+txs(u, v).
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The matrix L can be written as follows, recalling that (al/2)-,A p/2:

(3.46) L
ia2o" + 1 kl + p-- icr( a + p)

2 -----io’(p--al)
2

v]kl+
It is convenient to write L as a sum of two matrices, one of which has p as a factor:

N
(3.47) L= M+ N1, N1 Pz.

The expressions of M and N are given by

3.48) M ( ia2tr + v[ k[
itral/2

(1(3.49) N=
io"

-io’a1/2

The matrix N is Hermitian positive semidefinite; we have

(3.50)

This relation explains why, as we mentioned in 2, the trace of Ul + u2 on E plays
a particular role in the analysis of transparent boundary conditions. As Re(p) is strictly
positive, we have

Re

The matrix M is not Hermitian, but the symmetrized M, (M + M*)/2 is equal to

(3.51)
M + M* ( vlk, 0 )2 0

This is a Hermitian positive definite matrix, for all nonzero k. Therefore L satisfies

(3.52) Re (La,

In particular, L+ I is invertible, for all values of the parameters r and k, and in
Hermitian norm on 2, we have

(3.53) [(t/I)-’al_-<lal Vt in C2.

We have thus shown the following result.
PROPOSITION 3.4. For any f satisfying (2.37) and (3.41), for u=0, and for any

positive tz, let (u, p) be the solution of (2.29)-(2.31). If we denote still by u the function
u restricted to ll_ x / and extended by 0for <- O, then u satisfies the variational inequality

(3.54) s(ut, v)+tzs(u, v)+(u, v)+(u, v)= (f, v) /v W(I_),

where the pseudo-differential operator is defined by its symbol L, given by (3.46).

3.3. Functional analysis of the operator . The class of data u and f for which
we have a solution of (3.54) is much too restricted. Thus, we extend it in several steps,
by giving first a suitable definition of the domain of . We rely, of course, on the
positivity of the matrix L observed in (3.47) to (3.52). Then, we shall give a dense
subset of the domain of, and prove that is a causal operator. Finally, the expression

((u)(t), u(t)) dt is greater than or equal to zero, if u is in the domain of , and
vanishes for -< 0.
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The operator is a pseudo-differential operator that belongs to the class S,o of
[17], [20], and [30]; it belongs in fact to a certain anisotropic class, which could be
defined. As we do not seek the highest possible generality, we will be content with
results specific to our variational problem:

DEFINITION 3.5. The domain D() of is the space of functions g such that
there exists an h in L2(; W-1/2()x H-1/2()) such that

(3.55) = (I + L)-lh.
Then, on D(W), is defined by

(3.56) g h g.

An obvious consequence of the definition and of estimate (3.53) is that D() is
a subspace of L2(R; W1/2x H-/2). A sufficient condition for g to belong to the domain
of is given by the following lemma.

LEMMA 3.6. e set Y offunctions g on such that

(3.57) g L(; H/()) and g +g H/(; H-/())
is a subset of D(); moreover, if Z is the space defined at (3.11), (; Z) is dense in
L(; W1/x H-/) in the following sense; for every g in D(), there exists a sequence
of elements g of (; Z) such that g converges to g and g converges to g in
L2(; W-1/2 x H-l/2).

Proof According to estimate (3.27), there exists a decomposition

p=p+p,
such that

Ip,I TI + }k} =, IP=I TI + I}.
We decompose L as a sum

The first functional assumption on g implies that

IIni + ’k’2’’2 dk dw < +.

The coefficients of M are bounded by y’(1 +lkl), and thus,

1
M + p

ff dkd < (7 + T’) 4i + Ikl=l#l = dkd < +.

The second functional assumption means that

1 + Ik[= Iff,- i#212 dk dw < +.

The second piece of L is estimated by

IP2NI2

dkd T I1- ’g212 dkd < +.
l+lkl= l+[kl=

This proves that g belongs to L2(R, W-1/2(R) X H-1/2(R)), since H-1/2 is a subspace
of W-1/. On the other hand, g belongs to L2(; W-1/2()x H-i/2()), and thus, g
belongs to D().
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To build a sequence g, with the required properties, let g belong to D(), and
let h g; let ,, , and X, be elements of 6e(R) such that

q3,(k) 0 if Ikl- or if Ikl n; 0. 1 if
2
-<=lkl<=n-1,
n

0 _-< o, _-< 1 everywhere;

O.(t) nd/(nt- 1) with q belonging to (R), fa 0 dx 1,

X,(t)=exp =:>X,(to)=
m

exp

We define

h, h *

Clearly, h, belongs to H(R, Z), because the choice of , disposes of all problems at
k=0. Moreover, for any given e, there exists an n(e) such that for n> n(e),

Fix n such that this inequality holds. We define now

g, =(+ 1)-lhn; gmn --Xmgn.

From estimate (3.53),

IIg g, L2(R; w-l/2(lI)xn-l/2()) --=2"
Let

hmn=(+l)gmn,

which is well defined thanks to the first part of the lemma. In the Fourier variable,

h,,,,(k, r)-h",(k, r) (L(k, z)+ 1){(X,.(.)- t’) ft,(k, .)}(r).

As m tends to infinity, ),, ft, converges to ft, in I’(E), for all rn. As the multiplica-
tion by L(k, r) maps -I(E) continuously into -L2(E), there exists an rn such that

this proves the density of
Now, we are able to prove that is a causal operator.
LEMMA 3.7. Ifg belongs to D(), and vanishesfor < O, theng vanishesfor < O.
Proof. Let g be an element of D(), and let h (+ 1)g; assume that g vanishes

for <-0. Let ,, @, and g,, h, be as in the previous lemma. Then, as we can see in
the Fourier variable,

g. g * (q.@.).
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The choice we made of . implies that

g.=0 for t>0.

The choice of q, implies that

ft,(k, to)=O for [kl -> n.

If 0 is a square integrable function on that vanishes on _, we can write

O(to- Ox)= O(t) exp (-it(to- il)) dt,

for/z O, with the estimate

I(to i/x)l -< e-2t" dt <-101=

Therefore, for g,, we have the estimate

1IL (k, oo-i)l<lx=-g.(k, )IL2(R’) 2/ if/z _>-/o > 0,

where L2(t) is the space of square integrable functions of time.
We define an operator k by its symbol:

where the tilda" denotes the Fourier transform with respect to the time variable. If v
belongs to L2(), then kV belongs to H-1/:(). The root/9 can be extended to the
half-plane " to- i/z,/x-> 0, as an analytic function of to, with the estimate

We can apply the Paley-Wiener-Schwarz theorem to ..kx2__,kgn (k, ); from the previous
considerations, for almost every k, L(k, z),,(k, z) is analytic in - for/x =-Im(z) > 0,
and satisfies an estimate of the form

IL(k, r)L(k, ’)l----< C(k, go)(1+l’l+Igl) Vg_-->go.

Thus, for almost every k, to L(k, to itx), (k, to i/x) is the Fourier-Laplace transform
of a distribution with support in [0, oo). On the other hand, L(k, to- itx)P,,(k, to-itx)
is square integrable with respect to to, and therefore,

(,_.,o)-(L(k, .),,(k, .))=0 V t<-0, and a.e. k,
and finally,

g,=0 Vt-<0, and for all x2.

By density, the same result holds for g.
An immediate consequence of Lemma 3.7 is the following.
LEMMA 3.8. Let u belong to H(E2), andf to L2(O, oo; La(2)). Assume that u and

fsatisfy respectively the support conditions (2.36) and (2.37). IfIx is strictly positive, and
if (u, p) is the solution of (2.29)-(2.31), extended by zero for negative time, then the
trace of u on E belongs to D().

Proof. According to Proposition 2.7, u belongs to L2(O, , W(f_)), and according
to Proposition 2.4, the trace of u on E belongs to L(0, c, W1/2x H1/2). On the other
hand, the support condition enables us to apply Lemma 2.14, and therefore, (ul +
belongs to H(Z).

We first obtain a result of existence, under the support condition on.. u and f,
with some functional analysis on .
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PROPOSITION 3.9. For all u in H(I_) and all f in L2(0, , L2(I_)) that satisfy
the support conditions (2.36), (2.37), andfor all strictly positive tx, there exists a function
u satisfying the variational equality (3.54) with initial data u, and such that

u e L([O, oo); H(O_)),
Vu L([0, ); L(f_)),
u, t([0, ); W’(_)).

Proof. We have to approximate a right-hand sidef+ u(R) 6 by a smooth right-hand
side fn belonging to ([0, c); H(2)). This is clearly possible by truncation and
regularization. The passage to the limit in the variational inequality is easy.

We will obtain a much better result of existence, not only for the sake of exhaus-
tivity, but also to have a convenient frame for the proof of uniqueness. We write (3.52)
as a problem with time in the full real line, extending u by 0 for t=>0; after an
integration by parts in time, we have for all v in L2(R; W(II_)) such that vt belongs
to L(R; H(12_))

(3.58) J {-s(u, vt)+ tzs(u, v)+fi(u, v)} dt+(u, *v)y. s(u, v(O))+ I (f’ v)dt.

Here, of course, 37* has L* for symbol, the domain of 37* is defined similarly to the
domain of 37, and the trace of a test function v on E belongs to D(37") thanks to
Lemma 3.6 and simple interpolation. We need to define three more operators to prove
existence and uniqueness.

DEFINITION 3.10. The operator A is an operator from W(f_) to W’(f_) defined
by

(3.59) s(Au, v) fi(u, v) Vv W(II_).

The operator B(-) is an operator from W(fI_) to W’(fI_) defined by

(3.60) s(B(-)u, v)= Ia L(k, r)a(O, k)(k, -) dk, v W(YI_).

The operator S is an operator from L(II_) to H(I-I_) defined by

(3.61) s(Sf, v)=(f, v) ’v H(12_).

The operator A is well defined; this is a classical result. The mapping which
assigns to a pair (u; v) belonging to W(II_)x W(I_) the expression

L(k, r)a(O, k)(O, k) dk

is clearly a sesquilinear continuous mapping, and thus B(r) is well defined. Finally,
the mapping

v- (f, v)

is linear continuous on H(12_), and Sf is thus well defined.
The existence and uniqueness theorem reads.
THEOREM 3.11. For all u in H(fI_) and all f in L2(0, o; L-(fI_)), and for all

strictly positive tx, there exists a unique u in L([0, ); H(YI_))f’)L2([0, c); W(I_))
such that u, belongs to L2([0, ); W(YI_)) and

(3.62) f,{-s(u, vt)+s(u, v)+(u, v)} dt+(u,*v)).=s(u, v(O))+ f(f, v) d.

for all v in L2(R; W(_)) such that vt belongs to L2([; H(I_)).
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In order to prove this theorem, we need a positivity result which will be useful
for the existence part.

LEMMA 3.12. Let g belong to the space Y defined at (3.57). Assume that u vanishes
for negative time. Then, for all positive T, we have

r
(g, g) dx2 >- O.dt

Proof. Assume first that g belongs to 6e(R; Z), and vanishes for negative time.
Let u be the solution of (3.9). Then, if we multiply the equation ,(u, p) 0 by u and
integrate over f+, we obtain

(g, g) dt- Ilu(’, T)II=+, {(u, u)+ llu(’, t)[12} dt-(?TClg( ", T), gl(’, T))F

--/t/, (ffrlgl( t), g(’, t))r dt,

where Yf is the boundary operator of symbol Ik1-1. We check that Ilul12-(Yfg, g)r is
greater than or equal to zero. By an argument analogous to the one we used at
proposition 2.4, we have the identity

(’’{g, gl)r----2( Ul, ffiru2)

and

Thus the positivity holds for smooth data. By density and causality, it will hold as
stated in the statement of the lemma.

Proof of the theorem. We first prove uniqueness; denote t the partial Fourier
transform of u in time. If u is the solution of (3.62), it satisfies

(3.63) itoa( r) + tza(
If the data vanish, we have

itot(z) +/xt(r) + Ate(r) + B(’) t(r) 0.

For almost every to, t(-) belongs to W(I_). If we multiply the above equation scalarly
by t(r) and take the real part, we obtain

(3.64) Re {/xs(t(r), t(r))+(t(r), t(z))+ s(B(’)(’), t(r))} 0.

The definition of fi and B(-) implies that the corresponding terms in (3.64) are
nonnegative; there remains

Re (/zs(t(-), t(z)))_-< 0,

and this implies that t vanishes almost everywhere. We can conclude the uniqueness
of the solution of (3.62).

Let us prove the existence under the assumptions of our theorem; if u andf satisfy
our support condition, we know that there exists a unique solution to (3.62). If this
support condition is not satisfied, extend u and f by 0 in f/+, and approximate these

0extended u and f by translated data un and fn that satisfy the support condition. For
the solution u, the positivity of implies the estimate

s(u,(T), u,(T))+ {txs(u,,(t), u,,(t))+(u,(t), u,(t))} dt<-s(u, u)<-s(u, u).

An easy passage to the limit gives the result, l-]



ARTIFICIAL B.C. FOR INCOMPRESSIBLE FLOWS 337

4. Absorbing boundary conditions. This section is dedicated to the approximation
of the pseudo-differential operator by more manageable operators. We have seen
that the symbol L of is a two-by-two matrix which is algebraic in r, k and r sgn(k).
We would like our approximation of to be local in space and time, which would
mean that its symbol is polynomial or rational in T and k. Unfortunately, we do not
know how to approximate r or Ikl by rational fractions of low degree; thus, we will
be content with an approximation which is rational in r, k and r. The idea is to
approximate the root p by a sequence of r, which keeps the essential property Re(r, => 0.
We need a number of technical results that precisely describes the properties of the
sequence ofapproximations. These properties enable us to prove a rather weak existence
and uniqueness theorem for the problem with absorbing boundary conditions. Then,
we estimate the difference between the solution ofthe problem with absorbing boundary
conditions and the solution of the problem with transparent conditions. From this
estimate, we deduce a better existence theorem. If u is small, the ditterence between
the two solutions is small with a power of u; when u and f satisfy the support
conditions (2.36), (2.37), the ditterence is estimated in a space of smooth functions.

4.1. Approximation of the symbol L. We approximate the transparent boundary
conditions in constraint formulation. If we approximated the symbol of the operator
g (Ou/Oxl, p), we could run into trouble and obtain an ill-posed problem.

We recall that we obtained at (3.47) a decomposition of the matrix L(k, T), which
we write now with an explicit dependance on the viscosity u.

N(k)
(4.1) L(k, z, u)= g(k, u)+ p(k, r, u).

2
The matrix M is of degree 1 in ; N(k) and the Hermitian symmetrization of

M(k, ) are both positive semidefinite matrices.
Now, we have to approximate p(k, r, u) so that the successive approximations,

denoted r,, will satisfy the essential property
(4.2) Re (r,(k, r, u)) -> 0 Vk,
This problem has been solved in [13] but with very few proofs. The principle of the
approximation has been obtained by observing that for all complex number d we have

hd -]k]2- ko’
(4.3) ,

-h +a+d
where a=a/u and to’ =(r+a2k)/al.

The choice of d ko’ and of the initialization h =-ko’ (because ho might be a
special case) defines a sequence recursively by:

h,,d -[k]2 ito’a
’n+l -A,+a+d

which has the three important properties:
(i) Each of the A, is rational in k, z and
(ii) The associated initial boundary value problem is, at least formally, well-posed

because Re (A,)-< 0, and we will prove that it is actually well-posed;
(iii) A is the In-1, n-1] Pad6 approximant of A around v=0 (see [13]).

More precisely, we have the
DEFINITION 4.1. Denote

(4.4) o’

al

z+a2k



338 L. HALPERN AND M. SCHATZMAN

We define"

(4.6) ho =0,

(4.7) hi -ito’,

-ito’h,, + iato’+ k2

(4.8) A.+I
h, a ito’

(4.9) r. al 2uA..
We will give now a sequence of technical lemmas on r, and

LEMMA 4.2. For all n >-_ O, k , to , u > O, r, is well defined and

(4.10) Re (h,)-<0.

Proof. For n =0 or 1, the result is obvious. Assume that Re (h,)-50; then, the
expression h,-a + ito’ has a strictly negative real part; moreover,

so that,

(-ito’h,, + iato’+ k2)(. a + ito’)
]h, a + ito’[2

[X, a + ito,[2
and by induction, the results holds true. U

LEMMA 4.3. Let p be as in (3.24) and h (al-p)/2,; then, the following relation
holds"

(4.11) hn+l--h
(An A )[ k2 + tot2]

h,, a -/to’][h a ito’]"

Proof We substitute d =-ito’ in (4.2)

-ito’h + iato’ + k2

Therefore, subtracting this expression A from the expression (4.7), we obtain
immediately (4.10). Vi

The recursive definition of , by a sequence of homographic transformations
shows that A, is a rational fraction in k and to. To obtain more information on the
sequence A,, we study the particular case a 1. Then (4.8) becomes

ito ’h, + ito + k2

(4.12) An+ A. ito’- 1

we define P. and Q. by

(4.13)

(4.14)

and

(4.15)

(4.16)

P.+I -ito’P,, + ito’ + k2)Q.

Q.+,= P.-(ito’+ 1)Q..

Re (An+l)
[k2 + to,2] Re (A, a)
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Then, we have

(4.17) A,
Q,

An obvious induction shows that P is at most of degree n, and that Q, is at most of
degree n- 1, globally in k and to’. Let P, and Q, be decomposed as a sum of globally
homogeneous polynomials in k and to’, of decreasing degree:

(4.18) P. P + Pnn-1 +...-t- pO,,

(4.19) Q, Q-I + Q,- +... + QO;

we now define the polynomial Z, by

(4.20) Z, P + kQ,.

Let

(4.21) z k- iw’.

Then Z" satisfies the following relation:

(4.22) Z,,+I=Z(Z,,-Q,,),

and if we decompose Z" into a sum of homogeneous polynomials

(423). Z,,=Z"+Z"-+ .+Z’,,,
then we can deduce Q" and P" from Z" by

(4.24) P" Im (Z’)+ Re (Z2,)+ Im (Z3,)+...

Re (Z’)+ Im (Z])+ Re (Z3,)+...
(4.25) Q"

k

Of course, these expressions terminate differently according to the parity of n.
LEMMA 4.4. Assume that ce 1. Then, there exists a polynomial R" of degree n- 1

in one variable such that Q’- can be written as

The zeros of R" are real and simple and except for k O, the next term O,-(k, kp)
does not vanish.

Proof. A simple induction shows that P, and O- are given for n odd by

/P Im (z’),
(4.26)

Qnn-l= Re (z")/k.

When n is even, they are given by

P," Re (z’),
(4.27) Q,,-1 [i Im (z")]/k.

The polynomial R’(X) is given by

R" (X) Im (1 ix)i if n is even,

R’(X) Re (1 iX)" if n is odd.
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From these formulae, Rn is of degree n- 1 and the roots of Rn are real and simple.
Geometrically, these roots are the ordinates of the intersection of the straight lines

1 + r e ik/n with the imaginary axis, when n is even; when n is odd, they are the
abscissae of the intersection of these same lines with the real axis. There are exactly
n of these lines. When n is even, one of these lines is parallel to the imaginary axis
and another is the real axis; this yields the announced n- 1 real solutions, one of
which is zero. If n is odd, one of the lines is the real axis, which we discard, and there
remain n- 1 real distinct nonzero solutions. For the last assertion, we consider first
the case of n even:

Re (Z,-1)

Relation (4.22) implies that

n-1

j=l

With the help of (4.26) and (4.25), we obtain

Re (Z-l) -Re zJQ,--\j=l

(,1 ilmzn-J ,- Re z--)=-Re z+ z
j= k j= k

odd

Im (z) Im (z-)- 2 Re () Re (-)
k j=

odd

Assume now that z is a root of Q- which does not vanish. Then, it is real and the
above formula reduces to

Re (Z,-)
2k’

which does not vanish.
The proof in the case of n odd is analogous and left to the reader. [3

In the next lemma we give an estimate on An + (ito’/n), which will enable us to
work on the variational problem for absorbing boundary conditions.

LEMMA 4.5. Assume that a 1. Then, for each n, there is a constant Cn, which
depends neither on k nor on to’, such that

(4.28)
ito

--< C,,(1 +lkl)-.
Proof. We observe that in

ito’ nPn + ito’Qn
rl nQn

the term of highest degree in to’ of Pn is (-ito’)", and the term of highest degree in to’
of Qn is (-ito’) n-l, so that nP, + ito’Qn does not have a term of degree n in to’. Thus,
we have the estimate

(4.29) InPn + ito’Qnl <= C,n{ 1 + Izl"-’ + lkl
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To estimate from below the denominator Q,, we consider first the case when n
is even. Let (p)l<-_p<-,,-1 denote the zeros of Rn, and let SCq denote the zeros ofX (Q-2)
(1, X). We make the convention that

1 "-0.

Lemma 4.4 implies that there exists a/3 such that

min I-1 =/>0.
l<=p<=n--1

Therefore, this suggests an estimate on three different regions:

," (k, ,o’)/Ikl= / I,o’1 = < r=},

=: {(k, ,,,’)/Ikl=/l,o’l’->-r and minp I,,-,o’/kl<-_. {(k, ,o’)/Ikl = / I,o’1 = _-> r2 and minp ISrp to’/k > 3’}.

For any positive r, Qn is bounded away from zero on 1; this is a consequence of
Lemma 4.2. The precise choice of r and , will be made below.

We can see that Q,"- is the product with k"- of an imaginary polynomial R,
whose roots are all real. On the other hand, Q,,-2 is real. Therefore,

n--3

j=l

n-3

_-> min (I (-1, (-1)
j=l

where the C are positive numbers depending only on n. We have the relations

and

In the region 2, I(co’/k)-pl >/3-3,. Therefore, if we choose 3/so that

(4.30) y<=-,
we obtain the estimate

IQR-2I-> Ig’llkl ’-2

In the region =, [w’ =<lkl(T+maxp I1), and therefore, there exists a constant
such that

(4.31) IQ-=I C=lzl-.
We argue similarly in the region 3; the homogeneous term Q- satisfies

I-ll=lgllkl n-1 1 I tin-1 1 Ikp
p=l p=l
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If [k/w’ <_- e, where e is so chosen that e maxp Il , then

1

2"-18 n-1

If the converse inequality holds, then

Q."-I->-Igl Ikl- ->- C4lzl-.
Finally there exists a constant C5, such that

(4.32) IQ."-I-> clzl- v z in yt3.

The number r must be chosen so that

n-3

Izl > rmin (G.Izl "-=, Cs.lzl "-1) > 2 E Clzla.
j=l

Then, there exists a constant C6n such that

Finally,

IQl c.(l +lzl "-1)

io)
< Gin{1 -+-Izl"-’ + Ikl Izl"-’}

C6. 1 +[z1"-2) =< C8,(1 + Izl + Ikl Izl) on t2;

the inequality of the statement of the lemma is satisfied, because Iw’l constant Ik[ on
Yt2. On the other region,

ito’ Cl.(1 + Izl"-’ + Ikl Izl -’) _< C9,(1 +lkl) on .
n C7.(1 / Izl’-’)

Here, the inequality stated is clearly satisfied. No difficulty can come from region 3"
The proof when n is odd is analogous and left to the reader. [3

We can now state an estimate in the general case.
PROPOSITION 4.6. There exists a constant cn depending only on al and a2, such that

(4.33)
io) (1-4- vlkl)

Proof. In the general case,

/n+l
-ito’A. + iaw’ + k2

An a ito’

then,

A.(k, to’, a) P. k, to ’, o
Qn(k, w’, a)’

where

0P,(k, to’, a)= P,+oP-’+. .+a Pn,

Q. (k, w’, a) Q"-’ + aQ’-2 +"" + a"-’ QO.
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or, in other terms,

Now, we can use (4.26):

ito,,, k, ,o ’, , +
n

a An --,--, 1 C,,o(l /lk/l)2.

This proves the proposition.

4.2. Variational formulation: existence, uniqueness, error estimates. In this section,
we shall state a variational formulation which is suitable for the analysis of absorbing
conditions. Given data u and f, we obtain by the Fourier method a unique solution
of the problem with absorbing boundary conditions of any order n. This is not enough
to obtain existence in nice spaces. One expects that the larger n, the closer the solution
with artificial boundary conditions to the full space solution. This result is obtained
by the analysis of the error, if the data satisfy the support conditions (2.36) and (2.37).
It turns out that the error is in a better space than the solution un; using causality and
positivity, we obtain the existence and uniqueness in convenient spaces.

DEFINITION 4.7. Let, for n 0

(4.34)

and

(4.35)

Lo(k, r, )= M(k, r, O)+-q N(k)

Ln(k, r, ,)= M(k, ’, ,)+ rn(k, r, ,)N(k)/2.

The operator &tn is defined by its symbol

(4.36) n(u) ff-l(Ln(’, ", ,)t(0, .,. )).

The variational formulation (3.58) is approximated by:

f{-s(u, v)+txs(u, v)+(u, v)} dt+(u,*,v)r.=s(u, v(O))+ f(f v) dt,

(4.37)

’ v L(; W(f_)) such that v, L(; H(12_)).

We have a first result of existence and uniqueness, as follows.
PROPOSITION 4.8. Let u belong to H, and letf belong to L-(; H(f_)). Then, for

n >-_ 1, there exists a unique u in H-(; H), such that, for all v in H(; W(I)_)), (4.37)
holds.

Proof Define an operator B, (to) by

(4.38) s(B,,(r)u, v)= f L,,(k, r)a(O, k) (0, k) dk V v W.

We solve (4.37) by Fourier transform in time:

(4.39) ito(tn(r) + Ate, (r)+/zt, (r)+ B, (r)t, (r) u + Sf(r).
Here A and S are defined respectively at (3.59) and (3.61).
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We estimate the solution of

(4.40) kot3n (’) + At3n (r) +/xt (’) + B(-)t (r) v
in terms of I1 11,, and IIvll . If we multiply (4.40) scalarly by the conjugate of ,(t)
and take the real pa of the result, we obtain the estimate

(4.41) I1()11 CIIvll ,,
from the positivity of the operator B,.

In order to obtain the H estimate, we take the imaginary pa of (4.40) scalarly
multiplied by the conjugate of , (w), and we obtain, for n 1,

ws(,(r), (r))+ al+ NB,(O, k, r) v,(O, k, ) dk
nail

Im ls(v, ,(r))-s(A,(r), ,(r))
(4.42)

-J Mv(O, k, r) v(O, k, r) dk

+ +-i N(o, , ). v(o, , )
n ha2

The most interesting term in the right-hand side of the above relation is the integral
term which has (A + i’/n) as a factor of the integrand; to estimate this term, we use
Proposition 4.6. We will have a result if we are able to estimate k(0,., ). This will
depend on additional regularity on (r). Let D denote the differentiation with respect
to x; if we apply D to (4.40), we can write, because B,(r) commutes obviously with
D,

(4.43) iP,(r) +(r)+AD,(r) + B,(r)P,(r) Dv.
From (4.41), we have

P r)ll w C Dvo w, C vo .
Now, this inequality enables us to conclude that, for 0,

(4.44) ]ls(,(r), (r)) C([lv[ln).
This relation concludes the proof of the existence. The uniqueness is as in the proof
of Theorem 3.12.

There is an analogous result for n 0; as it is easier, its proof is left to the reader.
PROPOSITION 4.9. Let u belong to W’; then, there exists a unique u in H (; H)

such that, for all v in H(; W), (4.34) holds.
These H estimates are of course very bad, but we will obtain better after we

make error estimates. Let us denote

(4.45) e,=u-u.

THEOREM 4.10. Assume that u and f satisfy the support conditions (2.36) and
(2.37); then, for n 1, and for all positive p, the error e, satisfies the estimate

4.46) Ile.ll.; c,llll.+llfll;.).
For n O, the exponent 2n has to be replaced by 1 in relation (4.46).

Proo We subtract (3.63) from (4.39), and we obtain

(4.47) i +A, + + B(z), (B- B)(r).



ARTIFICIAL B.C. FOR INCOMPRESSIBLE FLOWS 345

The point now is to estimate the norm of (B-B,,)(z)a(-) in W’(_), so as to utilize
(4.38). For n _-> 1, we deduce from (4.8) and (4.32) that

s((B-B,,)(7")a(’), v)= dk.

We already know from (4.10) that

An easy algebraic computation shows that there exists a constant c’ such that

IA,- AI c’ (Ikla + 12).
On the other hand, under the suppo conditions, Xu[x belongs to H(2). Thus, for
all p, there exists a constant Cp such that

N(0, k, )1 c( + Ikl 2 + 112)-,
These considerations imply the estimate

s((B B,)() if(r), v)l C"-’ "CpC’ f (I kl 2 + Ir]2)" 1 + [kl2 + Irl2)-l (k)l dk.

If v is taken in then is integrable on E, and there is a constant Cp,, such that

Thus, we obtain

II(n-
From here, the conclusion of the theorem is immediate. The case n 0 is completely
analogous.

Remark 4.11. The constant Cp,, which appears in (4.46) increases with n;
moreover, the sequence A, converges to A only for bounded values of A and o. If one
wanted to prove that the limit of the sequence u, is u, one would have to estimate an
integral involving arbitrary powers of (o ’2 + k2). Therefore, it is likely that a convergence
theorem would need very strong conditions over the data.

COROLLARY 4.12. Under the assumptions of Theorem 4.10, u, is an element of
L(a+, U(n_)) L(a+; W(n_)).

Proo From Theorem 3.12, we know that u is an element of L(+, H(O_))
Le(+; W(O_)); as the error e, belongs to the same space, the corollary holds.

In order to get rid of the suppo conditions, we prove some positivity results for

LEMMA 4.13. The operator , is causal; if g is an element of H(2), which
vanishes for lesser than or equal to zero, then

(4.48) Re (&g, g}r de N 0.

Proo The causality of comes from the inductive construction of I; it suces
to observe that I admits an extension to the half-plane Im (r)<0, and that this
extension has polynomial growth. By induction, the same holds for the I. Details of
this proof are left to the reader. The second pa of the lemma relies on the decompo-
sition

1 d
(4.49) +--

n
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where the symbol of , is bounded with respect to r. This decomposition is an
immediate consequence of Lemma 4.6. Arguing as in the proof of Lemma 3.7, and
with the help of a technique used in [21], we define ,(k,. by

(k,. )u(t) ,o_.,{L,(k,
and similarly N*(k, .), recalling the definition (3.50) of

If we let

u(t) if0=< -< T,
u(t)= u(T)(T-t+e)e -1 if T<=t<-_ T+e,

Oif T+e<=t,
then

Re f (k,.)u(t) u(t) dt= Re f L.(k, -)(r) u(-) doo>=O.

On the other hand, by causality,

Re (k, )u(t) u(t) dt= Re (k, )u(t) u(t) dt

T+e

-Re .(k, .)u(t) u(t) dt.
.IT

The first term is greater than or equal to zero; we estimate the second one as e tends
to zero; with the help of decomposition (4.49),

T+e

lim Re (k, )u(t) u(t) dt=O,
eO T

because , is bounded with respect to ’;
T+e due(t) 1

lim Re A; k, u dt k, u T) u (T)
-.o aT dt 2

as is shown by a straightforward computation. This shows the lemma. [3

Now we can give a much more precise estimate under the assumptions of
Theorem 4.10.

COROLLARY 4.14. Under the assumptions of Theorem 4.10, the solution u with
absorbing boundary conditions satisfies the estimate

1
s(u.(t), u.(t))+ {txs(u.(t) u.(t))+l(u.(t), u,,(t))} dt

2

(4.50)
1 o, uo) + (f(t), u.(t)) dt.--S(U

-2

Proof. This result is an immediate consequence of Lemma 4.13; one has only to
substitute v by u in the variational equality (4.37). We can do this for smooth enough
data; if u and f are smooth enough, ut belongs to L2(R+; H(f_)). By error estimate
(4.43), u, belongs to the same space. Therefore, using the integration over [0, T], the
positivity and a density argument, one obtains the desired result. [3

Finally, we obtain the most general existence and uniqueness theorem.
THEOREM 4.15. For all u in H(f_) and all f in L2(0, 03; L2(-_)), and for all

strictly positive tx there exists a unique u in L(R+; H(O_)) f’) L2(N+; W(f_)) such that
ut belongs to L2(N; W’(_)) and the variational equality (4.37) and the energy inequality
(4.50) hold.
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Proof. It is enough to approximate any initial data by initial data satisfying the
support condition. Then, the energy estimate gives the existence by standard procedure
of extraction of subsequences. The uniqueness depends only on the positivity and still
holds. 1-]

4.3. Explicit formulations. We write problem (4.37) explicitly for n 0 and n 1.
The variational form will be convenient for computations. We give the associated
boundary conditions; for n--2, we use an auxiliary unknown.

Let us recall first that a product in Fourier space corresponds to a convolution in
physical space. One of the important operators is the convolution by the inverse Fourier
transform of pf(1/Ik[); it is defined by

?{u(y) ;( u( k)pf(1/Ikl) ).

The kernel K of :7{ is given by

(4.51) g (x)
1

Log Ixl),

where 7---0.57721... is the Euler constant. Then, the scalar product s admits the
expression

s(u, v)= I_ u(xl, x2)v(xl, x2) dx axe
(4.52)

""-- ’ Ul(0 X2)V(0, XZ) dx2- Log ]x2-Y2lul(O, xz)v(0, y) dx2 dy2

where the barred integral means that a principal value has to be taken.
Another impoant kernel is the kernel of the Hilbe transform, which is equal

to vp(1/x).This distribution is not locally square integrable, but from the relation

11 11l
We deduce

and the kernel K of if{ is locally integrable.
According to Definition 4.7, the symbol of o is the matrix Lo given by

Lo(k, z, ,)= M(k, z, 0)+ N(k).

the value of ro is given by (4.6) and (4.9); ro al. Therefore,

(4.54) Lo(k,’r, ,)=(ia2tr+(al/2) -kral)0 a/2

Therefore,

al(Loa, 3)=---(a, )r+(-io(a,-au,),
Z
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If the vector product is denoted by the symbol , this last expression can be rewritten
as

al(Lou, 3):--(u, B)r+ (-io’a a, l)F.

We obtain the following expression of (WoU, v):

al(o90u, /))-’-7 (U, v)u+(a X u, Vl)F,

or, with the help of (4.53),

a ( OVl(4.55) (oU, v)=(u, V)r+ axYCu,
OX2/F

Finally, the variational formulation for 0-aificial conditions is stated in the following
proposition.

PROPOSITION 4.16. For n O, the variational formulation (4.37) is equivalent to

(4.56) s(u, v)= (u, v)_+(Y{u, V)r;

(4.57) s(u,v)+s(u,v)+(u,v)+(u,v)r+ ax2gu, Ov =(v) Vve W(a_).
Ox2/ r

Proof The above dictionary of kernels proves that the following variational
equality holds:

--S(U, Ot)+S(U, O)+(U, O)+(U, O)+ aXff{u, 001 dt
Ox/

f ( v) dt + s(u, v(0)).

for all test functions v in L(; W(_)) such that v, belongs to L(; H(_)). Observe
that the second integral along F makes sense because of the characterization of the
trace on F. Using a test function of the form

v= W@,

where v belongs to W(_) and is a smooth function, we obtain (4.57). U
In the case n 1, L1 is more complicated:

r is given by

Therefore,

rlL,(k, ’, ,)= M(k, ’, u)+T N(k),
Z

2ui
r a+(z+ azk).

a

(4.58) L,(k, r, ,) Lo(k, r, )+ lkl +-- (r+ ak)N(k).

Therefore, we have only to compute the extra terms which did not appear before:

2" Ox’ r
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In the same fashion,

ikN(k)a. dk =1- ika. dk+ Iklxadk2"rr 2"rr 2"a"

u, + x, 1
r OX2 OX2 F

N(k). a-I .a+ (-i)
2 2 2

=(u, r)r+ (Cr x u,

We can summarize this calculation:

OX2 F al V

x,l +--(u,+u,v)v+(Yfvx(u,+u),l)v.
OX2 OX2 v a

Finally, we have the following result:
PROPOSITION 4.17. For n 1, the variational formulation (4.37) is equivalent to

P a
s(u,, v)+--(u,, v,)+(ycv x u,, )+ os(u, v)+a(u, v)+(u,

a

(4.59) + a x Y{u, OVt + v y{
au Ov

+-- u, + x,l
Ox/r Ox’ r a

=(fv) vin W(O_).

Proof This is simply a consequence of the previous computation.
In order to obtain the strong formulation of the boundary conditions, we observe

hat if the matrix E is defined by

alI(4.60) E K Lm,
2

where K is given by (3.44), then the associated operator gives the boundary
condition

(4.61)
The matrix Eo is given by

E ( ia2" i’r/l itr).
Therefore, the corresponding boundary condition is given by

(4.62) trll _yOu+u x a,
Ot

(4.63) O’12’-- 0.

The same kind of computation gives the result for n- 1"

OUl(4.64) O’11 -77{ +u x a + v 0ul + a2 (U + U2)
Ot Ox2 al

(4.65) Ou+__ a (-u +u)
022 al
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In [13], the family A, defined by (4.4)-(4.8) had been introduced to design
absorbing boundary conditions for the advection-dittusion equation u, + aVu ,Au

0. It turned out that with this special choice, the boundary conditions assumed a very
special form, namely

O+aV u=0.

The analysis is much more intricate here, and we will merely outline a possible
strategy for the case n 2. It relies on the introduction of an unknown auxiliary,
defined on the boundary. This technique had been initiated in [23] and proved to be
very useful [3]. Using the symbols and the expression of A2 and A1, we get a formulation
of L2 as

2 k2-k- ’2
L2=L+’(I-2)N, or L2=L- N.

1 + 2iw’,

Let us introduce the auxiliary function q defined on the boundary through its Fourier
transform by the expression

(4.66) ,Na q,
1 + 2ito’

or equivalently, using the fact that

( 2’(t X)) (0 1( X))(4.67) 1+-- +a2 (o1+ Y(02) + 2’ i+- +a2 (Ul+ u2) 0.
a2 Ox2 a

then L2a is given by

(4.68) L2a
We conclude that the boundary condition associated with the second approxima-

tion 2 reads

(4.69)
t,’ 0 + a2 111 -}- U2 -- (1) -- i,
al Ox2

(4.70) 21 P02 (+ )az (u2 u+)+ iv
0 O.

OX2 al OX2

These formulae have to be supplemented with (4.67).
Remark 4.12. The first boundary condition (4.62), (4.63) is actually local and can

be written in the form"

(4.71) Ou
-k- (a V)Ul----. 0
ot

OU2(4.72) -0.
Ox1

Appendix A. The standard spaces of Beppo-Levi functions are studied in [7]; the
distribution spaces described by Definition 2.1 are ofthe very same nature. The common
property of the spaces BL(HS(f)) is that their local properties are the same as the
local properties of. HS+l(f), but their properties in the large are quite different. In
particular,
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LEMMA A.1. For any n, for any unbounded open set fl of n, and for any real s,
there exists an unbounded function in BL(H ()).

Proof. If is enough to exhibit examples; outside of a compact subset, we require
u to be equal to

r1/4 if n 1;

Log Log r if n 2;

r-1/4 if n >-3.

Checking that these functions give the answer is an exercise left to the reader.
Though the elements of BL(HS(fl)) may be unbounded, they are nonetheless

elements of 9’. This is a consequence of the fact that vp(1/ik) in dimension 1, and
proper generalizations of this in dimension greater than or equal to 2 admit a Fourier
transform, which is known explicitly. Moreover, the growth of the elements of
BL(H ()) is polynomial at most and can be estimated precisely.

Finally, the Beppo-Levi spaces are natural spaces on an unbounded domain,
where the only estimate is an energy estimate that involves only the gradient.

Alpendix B. In this appendix, we prove a result on the behavior at infinity of
harmonic functions. This result is probably part of the folklore of the subject, but we,
know no source where to find it in simple form.

LEMMA B.1. Let p be a function on RN such that Ap (computed in the sense of
distributions) has compact support. Ifp decreasesfast at infinity to zero, then p is constant
outside of a compact set of

Proof. Let p be a C test function that is radial and has support in the ball of
center 0 and radius 1. Denote p(x)=e-p(x/e). If p is harmonic for all x in
ER_2--{X/IX >= R-2}, then it has the mean property in this region, and, whenever

Ix _-> R 2 + e, we have

u(x)=u*m(x).

Therefore, u has derivatives of all orders in int (ER_2), and all of its derivatives decrease
rapidly at infinity. Let be an infinitely differentiable function on N such that

q 0 for Ixl--< R 1

p 1 for Ix[ >= R.
Then q =po is in 5e(N), and, hq has support in the ball of center 0 and radius R.

We perform a Fourier transform on the equation Aq q, and we obtain

(B.1)

Thanks to the Paley-Wiener theorem, (s) can be extended to all of CN and is an
entire function of s; moreover, for all n, there is a constant Cn such that

< C,,(1 + Il)" eRIIm(:)l"

From (B.1), we can see that can be extended to all CN as a meromorphic function
of :, with possibly a pole at zero. But, since q is in 9(gN), is in 5e(N), tOO, and
there is no pole of at zero. Thus t satisfies the estimate

[t(sc)[ =< Co for Il =< 1,

I()]-< C,(1 +l[)" eRlIm(:)l, for [sc[=> 1.
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Thus q has compact support in the ball Ix[-< R, and therefore p vanishes for Ix[_->
R.

If p is known in (2.29)-(2.31), then u is the solution of an advection diffusion
with right-hand side f- Vp; therefore, if p does not decrease rapidly to zero at infinity,
and iff has compact support, for instance, u cannot generally decrease rapidly to zero
at infinity. Therefore, a smooth solution u is in a space of function with polynomial
estimates at infinity, and the dual of this space is a strict subspace of
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BLOW-UP ESTIMATES FOR A NONLINEAR HYPERBOLIC
HEAT EQUATION*

HAMID BELLOUT’ AND AVNER FRIEDMAN

Abstract. Consider the Cauchy problem for

eu,, + u,- Uxx F(u);

u represents the temperature when the standard Fourier law q ux (q flux) is relaxed and F(u) is a nonlinear
source of energy. It is established that the solution exists for 0< < 4(x), and it blows up as b(x).
Further, b(x)o To as e-0 where To is the blow-up time for ut-u,= F(u).

Key words, blow-up of solutions, blow-up time, hyperbolic equations
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1. Introduction. Recently there has been increasing interest in the blow-up of
solutions of nonlinear heat equations, such as

(1.1) ut-Uxx-F(u),

and nonlinear wave equations, such as

(1.2) Utt-- Uxx F(u);

typically F(u)---Aup (p> 1) or F(u)---e as u; see [10], [11], [13], [16], [17] and
the references given there regarding (1.1), and [4], [5], [14] regarding (1.2).

Equation (1.1) models the heat equation when the flux q is given by the Fourier
law q =-Ux and the conservation of energy equation is

(1.3) ut + qx G (G a source of energy).

Fourier’s law implies infinite velocity of heat propagation, and there have been a
number of modified laws that rule out this feature. One common version is [1], [2],
[3], [6], [7], [18], and [19]

q(x, t+e)=-Ux(X, t) (e>0)

or its approximation

(1.4) q(x, t)+ Eqt(x t)=-Ux(X, t).

The conservation of energy equation (1.3) then needs to be modified also (see [8]),
but for e small it is approximately the same as before. From (1.3), (1.4) we deduce

(1.5) eutt+ ut Uxx F

where F G+ eGt Gt 0G(u (x, t))/0 t); for e small, F G.
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t Northern Illinois University, Department of Mathematics, De Kalb, Illinois 60115.
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In this paper we study the Cauchy problem for (1.5) with F F(u). If

u(x,O)=f(x),
(1.6)

u,(x,O)=g(x)

then, since it is natural to assume that, initially, the temperature satisfies the heat
equation, we are led to the assumption that

(1.7) g f,, + F(f).

In 2 we represent (1.5), (1.6) in two equivalent but useful forms. In 3 we
establish the existence of unique solution u of (1.5), (1.6) for 0< < 4(x), which
blows up to +c as b(x). The method of Caffarelli and Friedman [4], [5] shows
that iff(u) up as u c then b (x) is continuously differentiable. Additional estimates
on u (independent of e) are established in 4.

Next, in 5 we prove that

(1.8) lim inf b (x) _-> To

where To is the blow-up time for (1.1) with u(x, 0) =f(x). Finally, in 6 we prove that

(1.9) lim sup b(x) -< To.
0

Some generalizations and extensions are given in 7.
Results of the type (1.8), (1.9) have been established for other types of equations

in 12], 14], 15].
Assumptions. Throughout this paper we assume that F C,

F(x)>-O, F"(s)>-_O if s>_-0,

(1.10) F’(s)>0 if s>0,

F(s)

(1.11) f>-_ O, f+ eg >--_ 0 (for all small e > 0),

(1.12) f, g belong to C3(R),
C

f(x)+lg(x)l <=
(l+lxl)’

(1.13)

Y [If’(x)l + Ig’)(x)l] _-< C for more constants C > 0, a > 0
i=1

and (1.7) holds. In 6 we will also need the assumption

(1.14) g>_-0.

The results of this paper extend also to the case where (1.7) is not valid and to
space dimension <-3 (under some additional assumptions on F); see 7.

2. Equivalent formulation for the Cauchy prolflem. We denote by u the solution

(if existing) of

oelg el,It,-{" gl, lgxx F( u),

(pie) u(x,O)=f(x),
u,(x,O)=g(x).
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Setting

(2.1) v(x, t)= u(x, t) e t/(:)

we get the equivalent system

El)tt 1)XX F(I) e
1-t/(2e)) et/(2e) + V,
4

(P) v(x,O)=f(x),

1
v,(x, O)=ef(x)+ g(x).

Setting

(2.2) w(x,r)=v(x,t) where r- ,/7’

we get

1
w. w,,,, F(w e-’/(247)) e/(2"/7)+ w,

4e

w(x,O)=f(x),

1
w(x, O)=ef(x)+x/-dg(x).

The concept of a solution of (pi) is always understood in the classical sense.
Using the representation formula

(2.3)

1 1 f +tz(x, t)=-[z(x+ t, O)+z(x-t, 0)]+
.,x-t

zt(, O) asc

+- ds (z,, Zxx)(Y, s) dy
2 ex-,+s

for z w we then obtain for u the representation:

U(Xo, to) e-V(2 )ff e-o/(2)
et/(2e),e(U dx dt + 3/’--’--’-2x/ r(xo,to) 8e

(2.4)

fL(Xo, to)

+-e-to/(2) f Xo+-e +f Xo-e

+-- e-to
2 axo-,o/,#; 2/ef(X)+v/Tg(x) dx,

et/(2e)U dx dt

where Xo , to > 0 and

to- t}K-(Xo, to) (x, t) e (o, ), lX Xol < x/-d



BLOW-UP FOR HYPERBOLIC EQUATIONS 357

THEOREM 2.1. Let (1.7) and (1.10)-(1.13) hold. Then there exist functions
b(x), u (x, t) satisfying

(2.5) 0 < c <= b (x) <- oo for some c > 0

(2.6) if dp(x) oo then dp(x) < oo for all x R

u is a solution of (ply) in the region

ll, {(x, t) R x [0, oo); y < 4, (x)}

and

(2.7)

(2.8) u(x, t)- oo

The pair b, u) is uniquely determined.
3. Proof of Theorem 2.1. Let

c independent of e );

and ]b(x)-b(x’)[__<x/ tx, x

F(min (u, n)) if u>0 (n l, 2, .)
Fn(u)=

F(0) if u-<_0

and denote by u, the solution of (Ply) corresponding to F,. The corresponding w w,
satisfy:

(w" e-/24;)) -r/(Zx/e) 1
W-- Wxx Fn e + w

4e

(3.1) w’(x,O)=f(x),

1
w(x, O)=ef(x)+x/-{g(x).

Using (1.11) in the representation (2.3) for w", we can deduce by a continuity argument
that w"(x, t) _-> 0 for x and all > 0.

Next we apply the arguments in [4] to w" to deduce, that, for a sub,sequence, w,,,
w---limw,, exists if 0-<-<b(x) and w--oo if ’>b(x), and, if b+c,b is
Lipschitz continuous with coefficient 1. The last fact is based on the inequalities

w => + w, Co (o constant)

whose proof is as in [4]. Next, instead of (1.22) in [4] we have

14n <-C for some Co>0, C>0
F(w. + Co)-

and this implies (using the last condition in (1.10)) that

w(x, )-oo it ’ (x).
In view of (2.1), (2.2) we conclude that the corresponding subsequence u,, converge

to u which is finite if t< b(x) and +oo if t> b(x), where b(x)= x/-(x), and
u(x, t) - o if - b(x).

We have thus established (2.6)-(2.8). To prove the first inequality in (2.5) it suffices
to establish the following lemma.

LEMMA 3.1. There exist positive constants M, T independent of n, e such that

(3.2) sup u"(x, t) <-_ M.
’nx(O,T)
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Proof We compare u" with the solution 3’(t) 3’. (t) of

(3.3) y(0) a,

y’(0) F,(a)

where a is sufficiently large positive constant. The functions z"= u"-y, satisfy:

Y(z")=F,(u")-F,(y,)=c(x, t)z", c>=O,

z"(x, 0) <0, zT(x,O)<-_o.

Representing z" by the integral formula (2.3) we can establish by continuity in that
z"(x, t)< 0 for all x, t. Thus in order to complete the proof of Lemma 3.1 it remains
to prove:

(3.4) 3’,(T) _-< 2a for some T independent of n, e.

To prove (3.4) we rewrite the differential equation for 3’ 3’, in the form

e(et/y’)’= F,(y) e’/ >-0.

Since 3,’(0) > 0, we deduce that 3"(t) > 0 as long as 3’(t) is positive. Differentiating the
equation in (3.3) once in t, we also have

e(e’/y")’= F(’y’)y’ e’/ >_--0

and, since 3,"(0) O, we deduce that y"(t) > 0 as long as y(t) > O. It follows that y"(t) > 0
for all t. Therefore

Defining T, by 3’(T,)= 2a, we conclude that

12a ds I’" 3"(t)
<__ T,.=-- F,(s)- F(y(t))

Since T,-> > 0 and is independent of n if n is large enough, the assertion (3.4)
follows.

We have completed the proof of existence of a solution (u, b). Uniqueness now
follows by an easy argument; see [4] or [5] for details. (Note that for uniqueness we
need not use the fact that c in (2.5) is independent of e.)

As in [4] we can establish that u is in C2’1 in .
The following fact will be used in 6.
THEOREM 3.2. If in addition to the assumptions (1.7), (1.10)-(1.13) we also assume

that (1.14) holds, then

(3.5) Ou>= O in 1.
Ot

Proof Set

(3.6) z(x, -)= ut (x, t) e ‘/(2), Z-v/-{.
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Then

1
z..-Zxx= F(u")z+-e z,

(3.7) z(x, O)= g(x),

1
z (x, r,(x).

Consider first the case where g(x) _-> 6 > 0. Then representing z by an integral formula
(2.3) and proceeding by continuity on ’, we can establish that z(x, r)> 0 for all x, -.
Applying this to (3.7) with g _>- 0 replaced by g + 6, and letting -* 0, yields z _-> 0 where
z is given by (3.6), and (3.5) is then proved by taking n-->

4. Additional estimates on u.
LEMMA 4.1. Assume that for some positive constants M, T the solution of (P)

(established in Theorem 1.1) satisfies:
(4.1) u (x, t) <= M in [0, T], for all small e.

Then there exists a positive constant C1 independent of e such that

C1(4.2) u(x, t)+lu.,(x, t)l--
(1 +lxl)

in [0, T],

(4.3) lu ,ml/lu ,,l/lu.... l/lu ,,ml/lu ,xxml/lu ,,xml<-c, in [0, T].

Proof Consider the function

eAt
W(x, t) (l+xZ)/-’

A>O.

For any A (no matter how large), if e is small enough then

A

On the other hand

u (u)u ((v) F(v))v
and therefore the function z W-u satisfies

Az>= W-(u)u>=F(u)z if t<T

provided we choose A such that A > 2F(m). Noting that

z(x, O) > O, z,(x, O) > 0

if A is large, we can represent z by the integral representation (2.3) and then deduce
by continuity on t, that z = 0 if < T. Thus

eAT
u<=W,=

(1 +x2)-/2"
Similarly, from the equation
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and the fact that IF’(u)l <-_ F’(M) we can proceed as before to estimate u,t from above
by the same function W (with a different constant A). The function -u,t is estimated
similarly. Thus (4.2) is proved.

The function U,x is estimated similarly using the comparison function W with
O 0o

Next we differentiate u-F once in and once in x and obtain

Yu,,tx F’(u)u,tx + F"(u)u,,tU,,x.
Noting that

IF"(u )u,tu,l C,

we can proceed as before to compare u,, with Wo eat provided A is suciently
large. We thus obtain the estimate

lu,,x[ C; C constant.

Similarly we establish the estimate

Differentiating (u)= F three times and using the estimates derived so far, we
can again compare u.x and u,,x with Wo and thus complete the proof of (4.3).

Remark 4.1. Lemma 4.1 implies that any sequence e 0 has a subsequence such
that

Ue Ue,x Ux Re,xx Uxx
(4.4)

uniformly in compact subsets of x [0, T].

However, we cannot establish the boundedness of u,t, by the method of Lemma 4.1
(since u,,,(x, 0) is unbounded as e 0), and thus we cannot asse that

(4.5) u,, u, uniformly in compact subsets of x [0, T].

LEMMA 4.2. Under the assumption of Lemma 4.1

(4.6) u(x, t) u(x, t), u,,(x, t) u,(x, t)

as e O, uniformly in compact subsets of x (0, T], where u is a solution of (1.1).
Proo Multiplying (u) F(u,) by e’/ and integrating in we find that

u,,(x, to)
1 _,/g

1 fe (x)+- e-’/ [u,x(x, s)+ F(u(x, s))] e/ ds.
o

Set

and write

(4.7)

Then

H=u,x+F(u)

1
le, e

E
_t/g(x + 1 fo [H(x,s)-H(x, t)] eS/ ds+H(x, t)[1-et/]

E

=-J1 +J+J.

uniformly in ItS, T].
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Next, by Lemma 4.1, [He.,[ =< Co where Co is independent of e. Hence

IJl <-- Co t- s) e-’)/ ds

Coe e -e-t/+l <-- Coe.
e

Finally, by Remark 4.1, any sequence e-0 has a subsequence such that (4.4)
holds; therefore

J’- Uxx + F(u).

Thus, by (4.7),

u,,- Uxx+ F(u)
uniformly in compact subsets of N x (0, T]; the right-hand side must coincide with ut
(since u - u uniformly) and thus u is a solution of (1.1).

Since u is also continuous up to =0 and u(x, 0)=f(x), and since

In I_-<M by(4.1),

u is uniquely determined [9; Chap. 2]. It follows that (4.6) (and (4.4)) hold for the
full range of the parameter e.

Consider now the parabolic equation

ut-Uxx=F(u),
(4.8)

u(x,O)=f(x),

and set

N( t)=- sup sup u(x, t).
0<s<t xNt

Then there exists a largest To such that

N(t)<oo Vt<To.
We assume that To < co; To is then called the blow-up time for (4.8).

LEMMA 4.3. If the assumptions of Lemma 4.1 hold with T < To, then

(4.9) u / lu,,I -< Ar in N x [0, T]

for all e sufficiently small, where

(4.10) Ar sup (u+lut])+l
Ix[0,T]

(which is a positive constant independent of M).
Proof. By Lemma 4.1, if p is sufficiently large then

u(x,t)+lu.,(x,t)l<l iflx[>o, O<=t<=T.

On the other hand, if Ix[-<p, 0_-< t_-< T then, by (4.2) and Lemma 4.2, (4.9) holds
provided e is sufficiently small.

5. lira inf tb >_- To.
THEOREM 5.1. Under the assumptions of Theorem 2.1, for any T1 < To, dp(x) > T1

for all x provided e is small enough, and

(5.1) u u uniformly in x [0, T]

as eO.
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Proof .From the proof of Theorem 2.1 we have that the conditions of Lemma 4.1
hold for some small T (see (3.2)). Lemma 4.3 thus implies that M in (4.1) can be
replaced by the constant

A= sup (u/lut[)/l,
x[O,T]

provided e is small enough.
Let v(t) be the solution of

By (3.3), (3.4),

(5.3)

ev,, + v, F(v),

v(0) A,

v,(O)=F(A).

v(t)<2A if 0< t_< o-,

where tr is a positive constant independent of e.

We wish to compare u with v(t- T+ 8) (for any 8 > 0) provided e is sufficiently
small (so that (4.9) is valid) in order to deduce that u(x, t) exist in x[0, T] for

T-6 + tr (as long as T1), and

u(x, t)<=4 in,x[0,

To do this we work with the solutions u of the truncated problems and proceed
precisely as in the proof of Lemma 3.1, with 0 replaced by T-&

Since 8 is arbitrary we deduce that the conditions of Lemma 4.1 hold with T
replaced by T+ r. We can proceed in this way step-by-step until we reach the value
t= T.

COROLlaRY .2. Under the assumptions of Theorem 2.1

5.4) lim inf [inf b x >- To.
e-0

6. lim sup --<_ To.
THeOReM 6.1. Let the assumptions of Theorem 2.1 hold and assume also that (1.14)

holds. Then, for any x ,
(6.1) lim sup b(x) <- To.

e-->0

Remark 6.1. Baras and Cohen [0] proved that if one approximates F(u) in (1.1)
by uniformly bounded smooth functions F(u), then the corresponding solutions
un(x, t) converge to + for > To. Theorem 6.1 is a somewhat analogous result for a
different type of approximation, namely, for the solutions of (P) as e ->0.

Proof. Suppose the assertion is not true. Then there exist Xo and > 0 such
that for a sequence e--> 0,

b (Xo) > To + 2&
By (2.6) we then get, for any p > 0,

(6.2) b(x)> To+ Vx(-p,p),

provided e is small enough.
From the definition of To it follows that there is a sequence (x,, /,) with / $ 0

such that

u x,, To rtn --) oc if
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Choose any large positive constant M and let no be such that

u x,o, To- rl,o) > M.

By Theorem 3.2, u(x, t) is monotone increasing in and therefore

(6.3) u(X,o, t) > M if To- r/, =< =< (X,o).
We choose p in (6.2) such that p > [X,o[ + 1. Then

(6.4) (x)> To+6 iflx-x.ol<_-l.
Introduce the function

It satisfies

q(x) - sin 7r(x X,o).

It --"/T21]/, I]/> 0 in x, < x < x, + 1,

(6.5) q,(X,o) q,(x, + 1) 0,

fxXnOoo" q,(x) dx 1

Multiplying (u)= F(u) by q,. and integrating over {x. <x <x,o+ 1}, we find
that the function

Xn0+l
a(t) u(x, To- rl,,o + t)(x) dx

Xn

satisfies:

Since

ea"+ a’=-Tr2a+ F(a)+[u(x, To-rl,o + t)Ox(x)]X.oXno

q(X.o) -c<O,

it follows that

(6.6)

where (6.3) was used; also

qx (x, + 1) > 0,

ea"+ a’ >= -Tr2a + F(a) + cM

(6.7) a(0) > 0, a’(0) >- 0, a’(t) => 0. [3

LEMMA 6.2. The solution a( t) of (6.6), (6.7) blows up in time <= provided M is

sufficiently large and e is sufficiently small.
Assuming the lemma we conclude that

(x) < To- r/, + 6 for some x e (X,o, X,o+l),
which is a contradiction to (6.4).

Proof of Lemma 6.2. Let b(t) denote the solution of

(6.8)

(6.9)

where

(6.10)

eb"+b’=co(F(b)+M),

0 =< b(O) < a(O), b"(O) a’(O)

c as in (6.6).
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Writing (6.8) in the form

e(e’/b’)’= Co e’/(F(b)+ M)>= 0

we see that b ’-> 0.
We claim that if M is large enough then, for any e > 0,

(6.11) b(t) blows up in time =<8.

Indeed, suppose b(t) exists for all <= 6. We claim that there exists a to such that

(6.12) to (0,), b"(to)>-O.

Indeed, otherwise we have

and therefore, by (6.8),

Hence

b"(t)<0 /t(0,6/2)

b’>-co(F(b)+M).

a/2 b’

o co(F(b)+M)-2"

But the left-hand side is bounded above by

Co(F(7 + M)
which is <6/2 if M is sufficiently large; this is a contradiction.

Having proved (6.12), we differentiate (6.8) in and obtain, after multiplying by
e

e(e’/b") Co e/F’(b)b’ >-- O.
Using (6.12) we deduce that

b"(t)>-O if t> to.
Hence

b"+b’=co(F(b)+M)+(1-e)b">=Co(F(b)+M) if t>-_to.

Denoting by 3’(t) the solution of

(6.13) )’"+)"= co(F(),)+M), )’(to)= b(to), )"(to)= b’(to),

we deduce that

e(et/(b-)’)’)’>=O, (b-)’)(to)=(b-)’)’(to)=O.

It follows that b(t) >- 3’(t). On the other hand, we can easily see that if M is sufficiently
large then )’(t) blows up in time t<-_ to+)’ Therefore

(6.14) b(t) blows up in time t< 6.

To complete the proof of the lemma we compare a(t) with b(t). From (6.10) and
(6.6), (6.8) we find that

e(e’/(a-b)’)’>_coF’(a-b) e ’/.
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Also since (a- b)(0)> 0, (a- b)’(0)_-> 0, we easily deduce that a(t) >- b(t) for all for
which b(t) exists. It follows that a(t) blows up in time <6.

7. Generalizations.
7.1. The results of this paper extend to the case where (1.7) is replaced by

provided h satisfies

g=fxx+F(f)+eh

C
(7.1) Ih(x)l<- for some c > 0,

(1 + Ixl)"

(7.2) 2 Ih")(x)l--< C,
i=1

and

(7.3) ge0.

These conditions ensure that (1.13) holds and that

2 IOu,(x, O)l <- M <
i=1

which is the only condition that urn(x, 0) needed to satisfy in the previous analysis.

7.2. The results of this paper extend to the case where x is N-dimensional with
N 2 or N 3, provided F, f and g satisfy the following additional conditions:

(7.4) sf’(s)-F(s)<-O Vs_->0,

+1 f(x)+tg(x)>=-elVf(x) Vt>=O, xeN,

1
2ef(X)+V/-g(x)-lVf(x)l+- g(x)

(7.6)
>e IVg(x)l + A ee IV=f(x)l

+4-f(x)]-I IVf(x)l + IVg(x)l

Vt=>0, x E IN

where I > 1 (I constant) (here g Af+ F(f)). These conditions are satisfied if

F(s) eS, 0<0-<1,

C
(7.7) f(x)=A+fl(x), IDII(X)I<-(I/IxI)

for 0 <_-lal <_-5 and some/3 > 0, and A is a sufficiently large positive constant.

Under these conditions the existence and uniqueness of a solution u can be established
using the formulation (p3) and the approximating sequence considered in [5]. Condi-
tion (7.5) ensures that u-> 0. The existence of (x) and (2.5), (2.6) result from the
inequality

which is proved using the extension ofthe representation formula (2.3) to N dimensions
[5] and the conditions (7.4), (7.5). The results of 4, 5 extend with minor changes to
dimension N. Finally, in 6 we need a stronger assumption, than (1.14), namely,

(7.8) g(x)>=6o>O.
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Using this we can prove as in [5] that :11 > 0 such that

  lVu l.
This guarantees that, for any > To+ 0-/2 (0- arbitrarily small),

u(x, t)> M for x in a fixed ball B of radius 10-/4.

Introducing the function

a(t)= u x, ro+-+ d/(x) dx

where p is the principal eigenfunction of -A in B, ff > 0 in B, 1, we again derive
(6.6), (6.7), and conclude that a(t) blows up in time T0+ g.
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A STRONG MAXIMUM PRINCIPLE FOR A NONCOOPERATIVE
ELLIPTIC SYSTEM*

GUIDO SWEERSt

Abstract. In this note it is shown that on a ball in N, with N> 2, a maximum principle holds for a
special elliptic system. This system is such that the classical maximum principle is not applicable.

(1)
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Introduction and results. A linear elliptic system
k

-Au, + y hu/3 =f with a {1, 2,. , k}
/3=1

is called cooperative (see [3]) if

(2)

If, moreover,

h/3 <= 0 for a /3.

k

(3) Z h,/3 ->-0 force{1,2,...,k}
/3=1

we can extend the results of the maximum principle to system (1) (see [4, p. 191]).
The motivation for this note was the question of whether or not the cooperative

property is necessary for obtaining a maximum,, principle. Recent results for
noncooperative systems have been obtained by De Figueiredo and Mitidieri [1], and
Weinberger [5].

We consider an elliptic system, with Dirichlet boundary conditions, which is in
some sense the simplest noncooperative system:

-Au fl- Av in fl,

(4) -Av=f2 infl,

u v 0 on 01),

where II is the unit ball in N, N> 2. The classical maximum principle gives the
following positivity result, which is not uniform.

LEMMA 1. Let fl, f2 C(12) for some 3’ > 0 with fl >= 0 and fl O. Then there is

A (fl,f_)> 0 such that for all , [0, , (fl,f)) the solution u of (4) satisfies
(5) u>0 inl2.

The classical maximum principle does not show that it is possible to find a uniform
result for f2 =<fl. Nevertheless, we prove for

-Au =f-Av in fl,

(6) -Av=f infl,

u v 0 on 0II,

the following theorem. (The same result holds for (4) if f_-<f and fl =f)

* Received by the editors November 30, 1987; accepted for publication (in revised form) June 15, 1988.
Department of Mathematics and Informatics, Delft University of Technology, 2600 AJ Delft, the

Netherlands.
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THEOREM 2. (a) There is a largest ho>0 for which the following holds. For all
(u, v) C2(1)x C2() satisfying (6), such that A <ho, f_>-0 andfsO, wefind that

(7) u>0 in 12.

(b) ho_-<(h-l+hl)-l(<hl) where hi,h2 are, respectively, the first and second
eigenvalue of

-Aq hq in 12,
(8)

q 0 on 012.

Remark 1. If N 1 then

(9) u(x)= -(1-]x-yl-xy) 1--(2+2lx-yl-x-y2) f(y) dy.
--1

Since max {(2 + 2Ix y[- x2 y); 1 =< x, y -< 1 } we find that ho 3/2 =< (h -1 + h1 )-1
--1 -1 --17r/5 1.97. A direct calculation shows that (h + h + h +" )- 3/2. I cannot

explain this similarity.
Remark 2. Let H be a subspace of C(12) such that the inverse B of-A, with

zero Dirichlet boundary condition, into C(1)) is well defined. Theorem 2(a) then
shows that

(10) B(I-AB)f>O in12

for all A < Ao and f H with f=> 0, f r 0.
Remark 3. The classical maximum principle [4, Thm. 2.2] shows that Bf> 0 for

f as in (10). If also f(xo) 0 for some Xo f, then

(11) ((I-,B)f)(xo)<O forall, >0.

Remark, 4. Consider the system

-Au =f- A2v in 12,

-Av u in 12,

u v 0 on 012.

Hence for B as in Remark 2 and h < A1

U-- (A 4B4) k (I+AB)(I-AB)Bf.
=o

If A < Ao as well, then Theorem 2(a) together with the classical maximum principle
shows that iff -> 0, f# 0 then u > 0 in f. Both this system and (6) cannot be uncoupled
as in [1, Remark 1.7] to find a maximum principle. Recent results concerning [1,
Remark 1.7] can be found in [5].

Remark 5. Let 12 be an arbitrary domain, and let ql, q_ be the first and second
eigenfunctions of (8), respectively. Set H {Clql + c2q2; cl, c R}. We can prove that
B(I-AB) from H into H is positive if and only if A =< Ao= (A]- +A)-. We can also
hope that in general Ao=(A-I)-1, with the summation over all eigenfunctions.
However, direct but tedious computations show that with f=(0, 1) and H=
{CI(#I -- C202-4- C3(#3 C R} the following inequality holds:

ho<(A -[-A -[-h
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Proofs. Lemma 1 can be proved by a straightforward application of the classical
strong maximum principle. Let ql be the first eigenfunction of (8) with ql > 0 in [l.

Since v 0 on 0fl and v C2(1)), there is Cl > 0 such that

(12) v<=clol in

Let w C2(fi) be the solution of

-Aw=v infl,
(13)

w 0 on Of.

The maximum principle, [4, Thm. 2.6], then shows that

Cl(14) w-<7-ol in

Since -A(u+ Aw)=fl-->_0 and fl # 0, the strong maximum principle [4, Thms. 2.6, 2.7]
implies that u + Aw > c2o in lI for some c2 > 0. Hence,

C1 C2(15) u>c2(Ol-twc2(l-i--(OlO inlIifA-<A -.
1

Proof of Theorem 2(a, b). Equations (6) can be rewritten as

u(x) fa G(x, y)(f(y)-Av(y)) dy

(16) Ia G(x, Y)(f(Y)-A fa G(Y, z)f(z) dz) dY

=Ia(G(x,Y)-AIaG(x,z)G(z,Y)dz)f(y)dy,
where (see [2, eqs. (2.12), (2.13)]),

(17)
G(x, y)= g,(lx- yl-" -I(lylx-lyl-’y)l=-"),

G(x, o)- g,(lxl=-"- 1).

The Euclidean norm is denoted by l" l, and g, (n(n -2)w,) -1, where w, is the volume
of the unit ball in N.

TO prove the theorem, it is sufficient to show that

(18) M(x, y):= (G(x, y))- Ia G(x, z)G(z, y) dz < M

for some M < oo. We then find that u > 0 for all A -< Ao M-1.
We will prove (18) by direct computations.
To simplify the notations we set

(xy)--Ix-yl, (XY) I([ylx lyl-’y)l, etc.
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Note that (XY)=(lyl:lx[2-2(x, y)+ 1)1/2= (YX), and hence

(XY)2-(xy)2= lyl2lxl2 + 1 -Ixl2-]yl2

(19)
(1 -Ixl2)(1 -[y]) > 0 for x, y 6 ,

(20) (xy)-’-(XY)-l=(1-[xl2)(1-ly[) (xy)-l(XY)-1

(XY)+(xy)

Using (17)-(20) we find that

f ((xz)2-"-(XZ)-")((YZ)-"-(rz)2-")
dzg-lM(x, Y)

(xy)2-" -(Xy)-"
.-3 (xz)_.+(xz)_((xz)-’-(xz)- E_-o
n--3 3-- -k

(21)

for x y.

n-3

((YZ)-- (YZ)-1) E (Yz)a-"+k(YZ)-k dz
k=0

(1-]x]=)(1-Izl=) 1 +(xy)(Xr)- (1-ly]Z)(1-Izl2)
1 + (xz)(XZ) -1 (1 -Ixl:)(1 -lyl2) 1 + (yz)(YZ)-1

.-3 _./(,-3 (XZ)2-,,+k(xz)-Z-k)(yk=O (yz) rz)--k
dzn--3=o(xy)-.+(xy)--

=(xy)"-2(Xy)(3( (xy) ]k)-l fa (1-[zI2):(I+(xy)(XY)-’)
x=o (xY)/ (1 + (x)(xz)-l)(1 + (y)( YZ)-’)

=o k(xz)/ =o k(YZ)/
(yz "(xz)-"( YZ) xz)- dz

(xY)"-(xY) f. (1-1zl):(n-2)(Yz)-"(xz)-"( Yz)-(xz)- dz.

Assume x y and split O in and O, where

{z ; Ix- zl < ly- zl}, {z e ; Ix- zl > ly- 1}.

If Ix zl < ly zl, then lY zl lY xl- Ix- zl [y xl- ly zl and

I(lylx-lyl-ly)l -< lyl Ix- zl / I(lylz-ly[-’y)l

--< [Y zl + I([ylz -lyl-y)l

Hence

(22)

(23)

(xy) <-- 2(yz), and

(XY) <= 2(YZ) for Z -1"
By exchanging x and y, respectively X and Y, we find equivalent inequalities for

z 2. Moreover,

(24)

(XZ)2 --Ixl=lz[=- 2(x, z) + 1

e IxIlzl=- 21xl Iz[ / 1

(1-1xllzl)=
_-> (1 -Izl)= -(1 -Izl=)= for z fl.
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(25)

Combining (21)-(24) yields

M(x, y) <= 2(n 2)2g,
\ (XZ \(-z)] (YZ) /

+I (1( -IzI:z]2((xy)]’-2((XY)]:zrz) \(] \(xz)l
(Y)-" az)

N2"+a(n-2)Zg,(y
a (xz)2-"dz+fa (yz)2-"dz)

( 2n+4( n 2)2gn f2a zI-" dz 2"+5
n -nw,Z)w,_,

which completes the proof of Theorem 2(a).
To prove Theorem 2(b) let ql and (02 be, respectively, the first and second

eigenfunctions of (8), with ql > 0 in f.
First note that Ao=< A1. Indeed, if A > A1 then u A]-I(1-A/A1)q is a solution of

(6) with f= q>0 in f, while u<0in 12. Suppose (A-+A)-I <A -<)t and let c>0
be the largest constant such that

(26) q cq2 -> 0 in f.

Let U be the solution of (6) with f= (01 --C(02. Then

(27) U=h-Z(hl-h)(ql-cqz)-C(h-z-hz)(h-(h- + h)-)q2.

If A A then U is negative somewhere in l) since q2 changes sign. If A < A1 then U
is negative somewhere since c is the largest constant such that (26) holds, which is a
contradiction. [3

Acknowledgment. I thank E. Mitidieri for many stimulating and helpful discussions.
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A SINGULAR PERTURBATION ANALYSIS OF REVERSE-BIASED
SEMICONDUCTOR DIODES*
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Abstract. The one-dimensional equations of semiconductor devices are presented and studied here as
a singular perturbation problem. It is shown that the limit problem, for reverse-biased devices, is a variational
inequality of double obstacle type, which justifies, in some sense, the so-called total depletion assumption
often used by engineers. It is also proven that the solution is unique if the value of the singular perturbation
parameter is small enough.

Key words, semiconductors, singular perturbations
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1. Introduction. The basic equations governing carrier transport in semiconductor
devices are [10]"

(1.1)

(1.2)

(1.3)

div (eVd/) -q(D- n +p)

Op= div DvVp + p,vpV0) + R
Ot

On
-div (DVn-tx.nVO)+ R

Ot

in f x [0, T],

in f x [0, T],

in f x [0, T],

(1.4) suitable initial and boundary conditions,

where $(t, x), the electric potential; p(t, x), the concentration of positively charged
holes; and n(t, x), the concentration of negatively charged conduction electrons, are
the unknowns. The function D(x), the doping profile, is supposed to be known, as
well as e(x), the permitivity of the semiconductor material. On the other hand,
and/x,(V q), the hole and electron mobilities, Dp(V q) and D,(V q), the hole and the
electron diffusion coefficients, and the generation-recombination term R(p, n, V q) are
supposed to be known functions of V and p, n, V q, respectively. Finally q is the
charge of the electron.

In the present paper we study a simplified version of (1.1)-(1.4). In particular:
(1) We consider a one-dimensional case: f ]-a, b[ with a, b > 0.
(2) We assume e, [J,p, [Ubn, Dp, D, to be constants.
(3) We consider the stationary case: Op/Ot=On/Ot =0.
(4) We neglect the generation-recombination term: R =0; this makes sense at

least for reverse-biased devices, such as those we will consider.
(5) We assume D(x) to be of the form

(1.5) D(x) Do sign x, (Do>0)

(in particular this implies that the junction is at x=0); in fact, to assume that
D(x) D1 < 0 for x < 0 and D(x) D2 > 0 for x > 0 (which is far more realistic) would
only complicate the notation, and would not change the results.
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C.N.R., Pavia, Italy.

$ Dipartimento di Scienze Statistiche dell’Universit di Padova, Padova, Italy.
Dipartimento di Matematica dell’Universit di Trento, Trento, Italy.

372



SINGULAR PERTURBATION IN SEMICONDUCTORS 373

With assumptions 1 )-(5), 1.1 )-(1.3) can now be rewritten, after a suitable scaling,
as follows:

(1.6) d/=-Ds+ns-p in I-a, b[, (d/=etp/qDo;D=D/Do),

(1.7) (hp’ +pff’)’ 0 in ]-a, b[, (p=p/Do),

(1.8) (An’z- n’)’ 0 in ]-a, b[, (n n/Do).

Note that the same A appears in (1.7) and (1.8) because we assume Einstein’s relations

(1.9) Dp/IZp D,,/tx,, kT/q

hold (here k is the Boltzmann constant and T is the absolute temperature). The
dependence of A on the other physical quantities is given by

(1.10) A ekT/q2Do,
which shows that [A square meters. For a piece of silicon at room temperature and
a doping Do 1023/m3, (1.10) gives A- 10-16 m2. Let d be the actual length of the
device (a typical value would be d 10-5 m). By scaling the domain to one, we obtain
A/d2- 10-16 (m/d)2, which is now a good dimensionless "stiffness parameter." From
now on we will assume that d is used as the unit for length. In particular, b + a 1.d:
Hence, a typical value for A would be , -10-6 d 2. Note that equations (1.6)-(1.8)
are not dimensionless. In particular, [q]=[d]=L, [p]=[1], [n]=[1], and
[x]=[d]=L.

It is natural to ask what is the limit of the solutions of (1.6)-(1.8) (with suitable
boundary conditions) as Aid goes to zero. This has been done previously [2]-[4]
with some additional simplifications. In particular, in [2] and [4] the unipolar case
(say D =-1 and ns 0) has been studied for one-dimensional and two-dimensional
domains (respectively), while in [3] the full set of three equations has been considered
(in one dimension) but with simplified boundary conditions. In the present paper we
consider the limit of (1.6)-(1.8) for ,/d going to zero with more realistic boundary
conditions. More precisely, the physical boundary conditions are given (before scaling)
by

(1.11) p(-a) Do(1 +/3), p(b) Doff,

(1.12) n(-a) Doff, n(b) Do(1 + fl),

kT 1+/3 kT 1+/3
(1.13) (-a) V-log, (b)= V+log

2q /3 2q /3

Here the externally applied potential is assumed to be -V at x =-a and V at x b
(reverse bias). In (1.11)-(1.13)/3 is the solution of

(1.14) /3(1 + fl) = n/D
with

(1.15) n, 2(27rkT/h2)3/2(m,mp)3/4 e-%/2kr

(h is Planck’s constant, m, and mp are the effective mass of an electron and hole,
respectively, and Wy is the width of the semiconductor forbidden band). After scaling,
(1.11)-(1.13) become

(1.16) p(-a) 1 +/3, p(b) =/3,

(1.17) n(-a)= fl, n(b)= l + fl,

(1.18) O(-a) =- =-a- y, O(b) O c+ y
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with

(1.19) a=V,
qDo

In [3] the simplified boundary conditions

(1.20) ps(-a) 1,

(1.21) ns(-a) -0,

(1.22) d/s(-a) -a,

were assumed instead of (1.16)-(1.18).

A l+fl
oy=log fl

p(b) =0,

n(b)=l,

(b) c

If we want to study the limit of the problem (1.6)-(1.8) plus (1.16)-(1.18) for A
going to zero, we should express the dependence on A of the boundary conditions
(1.16)-(1.18) as well. Let us look again at (1.10). Since it is not reasonable to assume
that k, e, or q can change, we may think either the temperature T goes to zero or the
doping Do goes to infinity. At first sight perhaps the second possibility looks physically
more appealing, but it has the drawback that Do also enters in the scaling so that in
the end we would not clearly understand the significance of the limit problem for the
original unscaled variables. The first possibility does not have this drawback, and
therefore we choose to let the temperature go to zero both in (1.10) (as was done first
in [2] and then in [1], [3]) and in (1.15). Still we point out explicitly that the limit for
T- 0 has to be understood as just a mathematical "trick" in order to have better
insight into the qualitative behavior of the solutions for the physical value of A (or,
rather A/d2), which is actually very small.

If we assume that the variable parameter in (1.10) is the temperature T, we can
then express the behavior of the boundary conditions (1.16)-(1.18) as a function of A
as follows:

(1.23) /3 1/2(x/1 + 4BA e-A/x 1),

(1.24)
A

y= log (41 +4BA e-A/’ d- 1)/(41 +4BA e-A/’--l),

with

(1.25) A Wfe/q2Do,
(1.26) B 4Do(Z’rrq2/h 2e )3( m,,mp )3/2.
Note that A is the scaled value of the potential difference associated with the energy
gap between valence and conduction band, which is a kind of built-in potential at 0K.

In the present paper we study the limit for A - 0 of (1.6)-(1.8) with the.boundary
conditions (1.16)-(1.18) and the relations (1.23)-(1.24). We show that as A 0 the
solutions of this problem tend to the solution of the double obstacle problem: find

o C1([-a, hi) such that

(1.27) o(-a) -(a + a/2), d/o(b) a + a/2,

(1.28) -(a+A/Z)<-qo<-_a+a/2 in]-a,b[,

(1.29) $’>-_-D(x) when qo>-(a+a/2),

(1.30) ’ <-_ -D(x) when d/o < a + a/2.
Moreover, Po and no are then the characteristic functions of the sets {o -a-A/2}
and {o a+A/2}, respectively. In some sense this justifies the so-called "total
depletion assumption," which is often used for reverse-biased devices.
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We also show that the solution of (1.6)-(1.8) plus (1.16)-(1.18) is unique for A
small enough. To our knowledge, three techniques are available for proving the
uniqueness of the solution of this problem.

(1) For A big enough, the nonlinearity of (1.7)-(1.8) becomes negligible and the
uniqueness of the solution is trivial. However, this case is physically unreasonable.

(2) For a small enough we have a small perturbation of the nonlinear problem
qP’s =-D(x)- v e-’z’s/x + v e ’z’s/’ that is of monotone type. This approach is followed,
for instance, in [9]. See also [7] for additional references.

(3) For h small enough, we can take advantage of the uniqueness of the limit for
h 0 of the solutions of the problem itself. This approach has been followed in [3]
for the simplified boundary conditions.

Here the result is proved for the physical boundary conditions. However, we point
out that uniqueness is not expected to hold in more general two-dimensional cases.

Finally, we remark that, although the difference between the simplified boundary
conditions (1.20)-(1.22) and the physical ones (1.16)-(1.18) is very small (of order
10- or less for silicon at room temperature, for example), the qualitative behavior
of the solutions changes. For instance, with the simplified boundary conditions we
have, in general, q’s(-a) < 0 and q’s(b) < 0, while with the physical boundary conditions
we have q’(x) > 0 everywhere. Similarly, we have Jp := (hp’ +pq’) < 0 with the sim-
plified boundary conditions and Jp > 0 with the "true" boundary conditions.

For a different scaling and a different asymptotic analysis see, for instance, [6], [7],
and the references therein. For an analysis ofthe present scaling in some time-dependent
problems, see [8].

2. An existence theorem. For the reader’s convenience we rewrite the full problem
in its scaled version here. We delete the subscript s.

PROBIEM 1. Given the positive constants a, b, A, a, A, and B, find functions q,
p, and n such that

l+t(2.7) q a +- log,
2

and/3 is the positive solution of

(2.8) /3(1 +/)= nA3e-a/x=: 2i.
In the following we use, as an abbreviation, the notation

(2.9) D(x)=-signx.

We also introduce the so-called Slotboom variables"

(2.10) p(x) p(x) exp [(6 O)/X ],

(2.11) (x) n(x) exp [-( + )/].

(2.1) " -sign x-p+ n in ]-a, b[,

(2.2) [(Ap’+p$’)’ 0 in ]-a, b[,

(2.3) (An’-n$’)’ 0 in ]-a, b[,

(2.4) q(-a) -q, qt(b) q,
(2.5) p(-a) 1 +/3, p(b) =/3,

(2.6) n(-a) =/3, n(b)= 1+/3

where
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We use them at once to show some interesting properties of the solutions of
Problem 1 (if any exist). Substituting (2.10) and (2.11) into (2.2),(2.5) and (2.3),(2.6),
respectively, we get

(2.12) (exp[-(-/,)/A]p’)’=0, p(-a)=flexp(-Ea/A), p(b)=fl,

(2.13) (exp[(ff+)/A]tr’)’=0, tr(-a)=fl, tr(b)=exp(-2a/A).

From this and the maximum principle we obtain

(2.14) fl exp (-2a/A) p fl,

(2.15) fl exp (-2a/a) fl,

and moreover it follows that p is a nondecreasing function and is a nonincreasing
function. Finally, from (2.10)-(2.15) we obtain the well-known propeies (see, e.g.
[93, [11])

(2.16) fl(+l)exp(-2a/X)pn=pexp(2/X)fl(+l)exp(2/X)

and

(2.17) p>0, n>0,

which are the propeies we mentioned above. Let us remark also that solving (2.2)
and (2.3) for p and n, using the boundary conditions (2.4)-(2.6), we get, respectively,

{(2.18) p(x)=exp [(-O)/a]fl e-2/a e/a e+/a

+ e

(2.19) n(x)=exp[(+)la] e

and then we can write (2.2) and (2.3) in the form

(2.20) .p’+p’=:Cp=V(e/"-e-/")/f e

(2.21) hn’-n’=: C,=hv(e-/-e/ e-/.

With these preliminaries we outline the proof of the following well-known result (see,
for instance, [5], [7]).

TueogzM 1. For every h>O there exists at least one solution {if, p, n} of
Problem 1.

Proof Let

(2.22) X=(1 +1 +4v exp (2a/h))/2

be the maximum root of the second-degree equation

2e2a/A(2.23) X2-X vi =0

and consider the set

(2.24) Kx {(p, n)" ONp N x, ON n N x} c (L(-a, b))2.
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Now we define on Kx a mapping T’(p, n) (, ) in the following way. For fixed
(p, n) Kx let be the solution of

(2.25) "= D-p+ n in I-a, b[, (-a)=-q, (b)= q,
and then let P and N be the solution of

(2.26) AP"+P’’+P"=O in]-a,b[, P(-a)=l+fl, P(b)=/3,

(2.27) AN"- N’’- N"=0 in ]-a, b[, N(-a) fl, N(b) 1 +

(which are given explicitly by (2.18) and (2.19), respectively, with in the place
of q). Now let us set

(2.28) p min (X; P), min (X, N).

This defines the operator T. Obviously, T maps Kx into itself. On the other hand, T
is compact and therefore has a fixed point. Let (/, r) be such a fixed point and q the
corresponding solution of (2.1). To prove that (/, r, q) is a solution of Problem 1, it
is enough to show that the c.orresponding functions P, N satisfy P -<_ X, N =< x..Suppose
to the contrary that, e.g., P has a maximum /3(g) > X at 0 I-a, b[. Then P"(g) =< 0,
/3,(:) =0, and from (2.26) it follows that/3(g)@,,(g) => 0, so that "(g)=> 0. Now

(2.29) 0 =< "(:)= D(:) -/() + r(:)

=< l-x+ )Q(g) =< l-x+ ’ e/a//3(:) < l-x+ ’ eZ/’/X
(where we have used the fact that/3 and satisfy (2.16)), and this contradicts the
definition of X. l-]

Finally, let us note, as follows from (2.1), (2.18), and (2.19), that any solution of
Problem 1 is of class C in I-a, b[ and analytic in I-a, 0[ and in ]0, hi.

3. Qualitative properties of the solutions. In this section we will study some
qualitative properties of the solutions of Problem 1. The objective is twofold. On the
one hand, we want to know the behavior of p, n, and q, which is of interest in itself,
and on the other hand, the results obtained in this section will be used to prove an
important a priori estimate in the next section.

PROPOSITION 1. Let , [-a, b], # O. Then the following two assertions hold"
(a) Ifp()-D() < n(,), then p-D cannot have a minimum at and n cannot

have a maximum at .
(b) Ifp(,)- D() > n(), then p-D cannot have a maximum at and n cannot

have a minimum at .
Proof The result is an easy consequence of the maximum principle applied to

(2.2) and (2.3).
Remark 1. Let : [-a, b]. If p()- D(ff-) < n(ff) and p’(ff) 0, then p cannot

be decreasing in a left neighborhood of . To see this it is enough to calculate
lim_,_ p"(x). Mutatis mutandis we can state and prove several similar results (with
n instead of p, > instead of < and + instead of -).

Now let us define the following two functions:

(3.1) M(x) =max(p- 1, n) in I-a, 0],

(3.2) m(x) min (p-1, n), in I-a, 0].

PROPOSITION 2. M has no maxima and m has no minima in ]-a, 0[.
Proof. Let us suppose that M has a maximum at ]-a, 0[. From Proposition

1, it follows at once that p()-1 n() and therefore M()= m(). On the other
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hand, we will have also M’(g)= m’(g)= 0 and p’(:)= n’(g)= 0. From this and (2.1)-
(2.3), we infer that p"(g) n"(:) =0. Now, taking successive derivatives of (2.1)-(2.3),
we conclude that all the derivatives of p and n vanish at g. Since p and n are analytic
we have p 1 +/3 and n =/3 in I-a, 0]. Note that in this case we have "(0-) 0. On
the other hand, since p(x) and n(x) are continuous at 0, (2.1) implies @"(0+)= ,2,
so that, from (2.2) and (2.3), p"(0+) > 0 and n"(0+) < 0. Then in [0, hip D is increasing
near zero and n is decreasing near zero. Since p-D 2+/3 and n =/3 at 0+ while
p- D 1 +/3 n at b, we would contradict Proposition 1 in [0, b]. The same reasoning
shows that m cannot have a minimum in ]-a, 0[.

PROPOSITION 3. b satisfies d/’(-a) > 0 and ’(b) > O.
Proof. The proofs of the two assertions are similar. Let us prove the first one.

Assume to the contrary that @’(-a)=<0. Equations (2.20) and (2.21) imply that
p’(-a) > 0 and n’(-a) < 0. Then M p 1 and m n in I-a, 0] and for every x I-a, 0]
we have M’(x)>0 and m’(x)<0 (otherwise Proposition 1 or Remark 1 would be
contradicted). Hence p D > 2 +/3 at 0+, with p’(0) > 0, n’(0) < 0, and p(0) 1 > n(0).
This is impossible because of Proposition 1 and p- D 1 +/3 at b.

PROPOSITION 4. If m is decreasing in [-a, 0], then z := n-p+ 1 > 0 in ]-a, 0].
Proof. To the contrary assume first that z has a negative minimum at ]-a, 0[.

Hence we have z()< 0, z’()=0, and z"()-> 0. Since z’()=0 we have n’()= p’()
and, since m(x) is decreasing, n’() p’() =< 0. Inserting this in (2.20) we get p’() > 0.
Now, subtracting (2.3) from (2.2), we get

(3.3) -Az"+ (p’+ n’)q’+(p+ n)z O,

which is impossible. Now assume that z has a zero minimum at 37 ]-a, 0[. Hence we
have z()7)=0, z’(37)=0, and z"(7)=>0, and therefore p’(37)= n’(37)--<0 and if’()7)> 0.
Because of (3.3), z"(37) 0 and p’(37) n’(37) 0. This implies, according to the reasoning
given in the proof of Proposition 2, that p 1 +fl and n =/3 in ]-a, 0[, which is
impossible. Hence we have shown that z cannot have a nonpositive minimum in I-a, 0[.
To conclude the proof we must show that z(0) > 0. Let us assume that this is not true,
i.e., z(0) _-< 0, that is n(0) _-<p(0)- 1 and z(0) < z(x) for all x I-a, 0]. This and the
hypothesis on m imply that n(0)< fl and n’(0)-<0, which contradicts Propositions 1
and 2 (or Remark 1) because p(0+)-D(0+)>2> n(0+) and n(b)=p(b)-D(b)--
1+/3. [3

PROPOSITION 5. If m is decreasing in I-a, 0] then we have the following"
(i) m =p- l < M= n in ]-a, O];
(ii) m =p- 1 is strictly decreasing in I-a, 0];
(iii) M n has at most one minimum (and here n < fl) in ]-a, 0];
(iv) If there exists I-a, 0] such that n() > fl, then n’() > O.
Proof. Assertions (i) and (ii) follow from Proposition 4 and the hypothesis.

Assertion (iii) follows from Proposition 2. Finally Proposition 1 (or Remark 1)
gives (iv). I-1

Analogous results hold in [0, b] for the functions

(3.4) M(x) max (p, n 1) in [0, b],

(3.5) (x)=min(p,n-1) in[0, b].

More precisely we have the following propositions.
PROPOSITION 6. If r is increasing in [0, b], then z := n-p- 1 < 0 in [0, b[.
PROPOSrrION 7. If r is increasing in [0, b], then we have the following"
(i) r=n-l<M=p, in [0, b[;
(ii) n5 n 1 is strictly increasing in [0, b ];
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(iii) M p has at most one minimum (and here p < fl) in [0, b[;
(iv) If there exists [0, b[ such that p() > , then p’() < O.
We now verify the hypotheses on m and
PROPOSITION 8. The function m is decreasing in [-a, 0].
Proof. If m is not decreasing, we must have m’(-a)>=0 by Proposition 2. Hence

p’(-a)>-O and n’(-a)>=O. Now, adding (2.20) and (2.21), we get

(3.6) A(p’+ n’) C, + C,, +(n -p)q’.
This yields, for x =-a,

(3.7) A (p’(-a) + n’(-a)) Cp + C, q/(-a) >- 0

so that, by Proposition 3,

(3.8) Cp+C,>O.
On the other hand, (3.6) for x b yields

(3.9) A(p’(b)+n’(b))=Cp+C,,+d/’(b)>O,
from which it follows that p’(b)> 0 and/or n’(b)> 0, so that r’(b)> 0. Hence, again
by the obvious analogy of Proposition 2, rh is increasing in [0, b ], so that, by Proposition
7, n- 1 r < M =p in [0, b[ and n is strictly increasing in [0, b]. Now, let us consider
the two following cases" (I) m is increasing in I-a, 0]; (II) m has a maximum at

]-a, 0[. Next we prove that both (I) and (II) are impossible, and in this way we
prove the proposition. In fact, (I) implies that M is increasing in [-a, 0] also; hence
p’(x) >= 0 and n’(x) >-_ 0 in [-a, 0], so that p(0) 1 >/3 and n(0) >/3. Then M’(0) => 0
and M(0) >/3 + 1. On the other hand, M(b) =/3, so that M has a maximum in [0, b[,
which contradicts Proposition 2. Let us consider case (II) now. If m has a maximum
at ]-a, 0[, then M is increasing in [-a, 0] and m is decreasing in [, 0], with
m’(x) < 0 and M’(x) > 0 in ]if, 0] (see Remark 1). Moreover, m p 1 in [, 0], since
otherwise M would have a maximum. Summing up, we can say that: (1) n’> 0 and
/3<n<1+/3 in ],b[; (2) p’<0 in ],0] and, due to Proposition 7, in [0, b[
p(x) M(x) has at most one minimum where p </3, and p’ < 0 where p >/3. From (1)
and (2) it follows that the equation p(x)-n(x)=0 has a unique root x* ], b[ and
p(x*) n(x*) >/3. Let us now consider the function pn. Since p and n are increasing
in [-a, if], we have (pn)()>(pn)(-a)=,8(1 +/3) and also (pn)’()>-O. On the other
hand, multiplying (2.20) by n, (2.21) by p, and adding we obtain

(3.10) A (pn)’ Cpn + C,,p,
and therefore

(3.11) A (pn )" Cpn’ + C,,p’.
Now, by definition of x* we have n -> p in Ix*, b], which together with (3.8) and (3.10)
yields (pn)’>0 in [x*, b]. Yet, from (3.11) and Cp>O, C,, <0, n’>0 and p’<0, we
get (pn)"> 0 in [, x*[. Therefore pn is strictly increasing in [, b], so that (1 +/3)/3
(pn)(b) > (pn)(Y,) >/3(1 +/3). This concludes the proof. [3

The proof of the following result is entirely analogous.
PROPOSITION 9. The function r is increasing in [0, b].
Finally we can prove that is monotone. More precisely we have the following

proposition.
PROPOSIVION 10. The function q is such that ’> 0 in [-a, b].
Proof From Propositions 8 and 5 it follows that p’_-<0 in I-a, 0]. Hence from

(2.20) we get pO’= -Ap’ + Cp > 0, and therefore ’> 0 in I-a, 0], The proof that ’> 0
in [0, b] is completely analogous. [3
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Summary. Summing up the results of this section, we can say that the solutions
(,, p, n) of Problem 1 have the following qualitative behavior. In I-a, 0] p is decreasing,
n has at most one minimum, and @ is convex. In [0, b]n is increasing, p has at most
one minimum, and , is concave. In I-a, b] p and n are positive functions bounded
above by +/3 and @ is an increasing function.

4. A convergence theorem. In this section we study the behavior of the solutions
of Problem 1 as A tends to zero. It is convenient to write explicitly the dependence of
such solutions on A, and therefore from now on we denote by (,, pa, na) a solution
of the problem for a given A. Our study is based on the following a priori estimate
that follows at once from the results of the previous section.

THEOREM 2. There exists a constant C independent of A such that for every A > 0

(4.1) =,/ p ’,’ / n ,,, -< c.
Proof In the following C denotes several constants, all independent of h. Since

px is decreasing in I-a, 0] and has no maxima in ]0, b[ it follows that 0 < px <- 1 +/3.
Analogously, we obtain 0<n <=l+fl. Hence IIpll,_-<c and IInllc_-<C. However,
since px and n have at most one minimum in I-a, b[, we obtain IIpXIIc_-<c and
n[[ L’ ----< C. Therefore, Px ’,’ --< c and [nx w’.’ -< C.

From these estimates and (2.1) it follows that [[,[[LO--<C. From the
monotonicity of , it follows that 6x c _-< C. Finally, we obtain 6 c -<_ C, and
therefore ,, w=._-< C. [3

Before turning to the convergence thereom, which is in a certain sense the central
result of the paper, we prove the following lemma.

LEMMA 1. There exists a constant C independent of h such that

(4.2) O < Cp(h <- Cfl,

(4.3) -C<-C,(A)<O,
where Cp (h) and C, (h) are given by (2.20) and (2.21), respectively. In particular,

(4.4) lim Cp(h) lim C,(A) 0.
hO A-O

Proof. Let us prove (4.2), since the proof of (4.3) is similar. From (2.7) it
follows that

(4.5) e/x e/x/fl/(1 +/3),

(4.6) e-/x e-7/xx/(fl + 1)//3,

and from this and (2.20) we get

(4.7)

Now, introducing

(4.8)
we can write

(4.9)

and since

(4.10)

Cp=(Afl e6/X-A(l+fl) e-6/x)/I
q :-- e4’/x,
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we have

’ q,’(0) I(4.11) b’- A
4)

with 0 I-a, b[. From (4.11), (4.9) and (4.1), (4.2) follows at once. [3.

THEOREM 3. Every sequence {, p, n}>o of solutions of Problem 1 converges,
as A O, to the solution { bo, Po, no} of the following double obstacle problem.

PROBLEM 2. Find qo cl([-a, b]) and SOp, :, such that -a <= -:p < sen -< b,

(4.12) qo

(4.13) q =-sign x in ]-p, ,,[,

A
(4.14) qo c +-- in [,,, b],

2

and define

(4.15)

(4.16)

po 1 in ]-a,-p[, po =0 in ]-SOp, b[,

no 0 in ]-a, sen[, no 1 in ]:,, b[.

Proof By Theorem 2 there exists a subsequence of {q, p, n}mwhich we denote
in the same waymsuch that

(4.17)

(4.18)

(4.19)

qx qo in H2(-a, b) weak,

Px - Po in L2(-a, b),

nx no in L2(-a, b),

when A - 0. To prove Theorem 3 we show that these limit functions verify (4.12)-(4.16).
Taking the limit as A 0 in (2.1), (2.4), we can write, thanks to (4.17)-(4.19) and taking
into account (2.7) and (2.8),

(4.20) q -sign x-po+ no

(4.21) qo(-a) =-(a +-),
However, again by Theorem 2, we have

(4.22) Apo0

(4.23) An- 0

in ]-a, b[,

A
Oo(b) a +--.

2

in Ll(-a, b),

in Ll(-a, b),

when A 0. Now taking the limit as A 0in (2.20)-(2.21), we deduce from (4.17)-(4.19)
and (4.22)-(4.23) and using Lemma 1, that

(4.24) poq =0 in I-a, b[,

(4.25) noq =0 in ]-a, b[.

Moreover, from the results of 3 we get that

(4.26) q(x) => 0 in [-a, b],

(4.27) q(x) => 0 in ]-a, 0[, q(x)-< 0 in ]0, b[,
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and we have also that

(4.28)

(4.29)

Now let us set

(4.30)

(4.31)

0=<po =<1 in]-a,b[,

0 -<no -<1 in]-a,b[.

-:p inf {xl-a <- x -< b, q(x) > 0},

:, sup {xl-a -<_ x -< b, q6(x) > 0}.

From (4.26)-(4.27) it follows that ,, :p >0. Hence we have (1) p>0 in ]-Sep, ,[ and,
(2) q6= 0 in I-a,-:p[ and in ],, b[. From (1), (4.24)-(4.25) and (4.20) it follows that
0o satisfies (4.13) and po no=0 in I-sOp, :n[, and from (2) and (4.21) it follows that
o satisfies (4.12) and (4.14). On the other hand, if-a <-:p we have no 0 and Po 1
in I-a, -scp[ because, from (4.20) and (4.28)-(4.29), 1 => Po no + 1 _>- 1. In a similar way
we prove that, if :, < b, Po 0 and no 1 in ]:,, b ]. Since the limit is unique, by standard
arguments we then deduce that the whole sequence (Px,Px, nx) converges to
(qo, Po, no).

Remark 2. It is well known that (4.12)-(4.14) (which is clearly equivalent to
(1.27)-(1.30)) can also be written as a minimum problem: Set

={dp(x)GHl(-a, b)" b(-a) =-(a +),
(4.32)

A( ) Ain]_a,b[}b(b) a +-, a+ -< b(x) =< a +
2

then o(X) is the unique minimum in of the functional

(4.33) J(b) = (b’)2 dx+ 49 signxdx.

5. A uniqueness theorem. As we said in the Introduction, we are not able to prove
that the solution of Problem 1 is unique for every A > 0. In this section we prove that
the solution is unique provided that A is small enough. The proof is similar to that
contained in [3] but is somewhat more involved.

THEOREM 4. There exists A* such that the solution of Problem 1 is unique
provided h < h *.

Proof. The scheme of the proof is the following one (as usual C denotes different
constants independent of h). First we remark that from Theorems 2 and 3 it follows
that there exists a such that every solution (0h, Px, nx) of Problem 1 satisfies

(5.1)

whenever A <[. Next we suppose that there exist two solutions (qqx,Plx, nix),
(ff/2X, P2x, n2x) and set

(5.2)

Then from the previous remark we can say that for

(5.3)

From this estimate we will obtain the following:
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From (5.4), since

(remark that 6A(-a)= 6A(b) =0), we get that

(5.6) IIlle

and

This last estimate is an improvement on (5.3). Actually from (1.23) we have/3 0(A 3),
so that (5.7) can be written as

From (5.8) we will obtain the estimate

(5.9) IIX lib_< cxll I1 for A _-<[-<_X,

which will enable us to conclude the proof. Indeed from (5.5) and (1.23) we can write,
using (5.9),

(5.10)

or

(5.11) 2(1 CA e-A/x <= O.

Now, since there exists such that 1 CA e-A/x > 0 whenever A -< , we get 1166 II/ o,
i.e., OlX =tp2A for A <A*=min{,}. From (2.18), (2.19) we get at once pl=p2x,

M1A n2x.
Now it remains to prove first that (5.3) implies (5.4) and then to prove that (5.8)

implies (5.9).
Proofof (5.4.). In the following we delete the subscript A to simplify the notation.

Let (1]1, Pl, r/l) and (i]/2, P2, n2) be two solutions and let 6 01. From (2.10), (2.11)
we write p=pexp[(q,-tp)/A], n tr exp [(qJ+ qJ)/A] for i= 1,2, so that from the
equation

(5.12) 3"=p -P2 + it2- nl

we get

--6"+ Pl exp [(- ,)/A ](1 -exp (-6/A)) or, exp [(tp + I]Jl)/A ](1 -exp (6/A))
(5.13)

exp [( _)/A ](P2 Pl) + exp [( + )/A](rl r2).

From (2.18) and (2.19) we can write pi and ri for i= 1, 2 in terms of tPi as follows:

(5.14)

(5.15)

pi=[3 exp(-2a/A)(1-ri)+ri with ri=l_ exp(qi/A)
exp (if,/A )’

exp (-i/A)
or, =/3 exp (-2a/a )(1-s,)+ fls, with s, IY 7-xxp7)"
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Then we insert (5.14) and (5.15) in (5.13), multiply by 6, and integrate, to obtain

(5o6) I1’11+ 6 exp [(- ql)/1 ]p|(1 exp (-6/A))

6 exp [(0 + )/1]oh(1 exp (6/I))

exp[(-)/]exp(-2/)(r-r)

+ exp[(-)/](r-r)

+ exp[(O+)/]exp(-2/)(s-s)

+ exp[(+)/](s-s)=I+II+III+IV.

Let us estimate the term I; for this we write

fL ixexp (0/A)
(exp (-0UA) exp (/A))

Since and are increasing in I-a, b], it follows that

s.17 xp-,/ [ xp,t/ dt,.
Hence (5.3) and (5.17) yield

(b+a) [ 1 exp (-2a/) ]5.) 1ep(/) I exp(/) 2;i?;
Let us now estimate I exp (/1).Working as in the proof of Lemma 1 (see (4.8) and
(4.11)), we have, for suitable Oe ]-a, b[,

1 (O)exp(-O/1) <Cexp(_/1(5.19) I exp (/I)- 1(1-exp (-2/I))=
so that the following bound holds:

(5.20) ICllll=.

For the next term we obtain

II exp (/I) [exp (-/1)r- exp (-/1)r]

+ exp (/I) (1-exp (-/I)) exp
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and, using (5.14), (5.17), and (5.19), we have

(5.21) II_-< c (1-exp (-/A)) exp ((- l)/,)rl.
}

Analogously, we have

(5.22) exp [(x)/A] exp (-O(t)/) dt <- b-x

and

1 C
(5.23) b_ exp (-,/h)-- h

exp (-O/A),

so that

(5.24) III_-< c ll ll  ,

(5.25) c-- exp((+)/A)(exp(/A)-l)s.

Summarizing (5.16), (5.20), (5.21), (5.24), and (5.25), and recalling (5.14) and (5.15),
we have

II’llb+ exp((-,)/)exp(-2/)(1-rl)(1-exp(-/))

+ exp((+)/)exp(-2/)(1-s)(exp(/)-l)

Hence (5.4) follows, since (exp(/1)-l)0, (1-exp(-/1))0, 1--rl0
1--S10.

Proof of (5.9). From (2.20) and (2.21) we obtain

(5.26) A (p-pl)’+ ff(P-Pl) Cl-pl’,

(5.27) A(n-nl)’-(n2-n)=c+n’.

Solving for P-Pl in (5.26) and for n-nl in (5.27), we obtain

exp (-/)( fb f )r exp (2/A)pl’-- exp (/A)p’(5.28) p Pl A

s2 exp (-02/)n8’- exp (-02/)n8’(5.29) n nl A

After integrating by pas in (5.28) and (5.29), we substitute them in (5.12), multiply
by 6, and integrate, to obtain

II ’llb= exp ((-@2)/A) -r (exp (/A)fll)’+ (exp (/A)p,)’

+ exp (( + :)/I)
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(5.30) x s2 6(exp (-6/A)o’1)’- 6(exp (-6/A)O’l)’

A
6(P1+ n)

V+ VI + VII + VIII-- (p+ n).

Then from the definition of p ((5.14)), we have

V
exp (/") I I exp (2/.)

6 exp (-/A)r 6(1- exp (-2a/A))
exp (/A)

exp (/A)f exp (-@/a)r ’ exp (/X)pl.

Since Op , from (2.14) and since (5.17), (5.19) hold, we have

(5.3

cllll,
where we also used the Cauchy-Schwarz inequality and (5.6), (5.7). Let us integrate
by pas the ollowing term:

VI= exp ((- $2)/A) 6 exp (6/A)p’ + 6--exp (6/A)p

exp ((@- @)/a) 8 exp (8/X)pl+exp (8/X)p

_,,--(exp(6/A)pl)’
6

VI1 + Pl +vI:z-

We estimate separately VI and VI2. For the former, recalling the definition of pl and
(5.17), (5.19), we get

Vii__< ; oo/3 ’,
exp (qT/A)exp1]/1/A fb( fx7 (l-exp (-2a/A)) exp (--$2/A) exp

cllll.
Analogously, considering also (5.6) and (5.7), we have

;( Ifl exp (- @2/A exp @2/AVIN(1-exp (-2/))1111 exp (/)
exp (/I)

clll +1111 I exp((()-O(x))/)p dtdx.
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Finally, since 0 -< Pl --< 1 +/3 <_- 2 and I]/2 is increasing, we get the following estimate for
the term VI, using (5.6), (5.7) once more:

Analogously,

(5.33) VII<_-c
and

22 fb 3
(5.34) VIII < C nl

Gathering (5.30)-(5.34), wc obtain

I ( (c i1 11  _ Zpa
__ -- 2.1 +

Since (5.8) holds there exists such that for A , the two last integrals are positive;
hence we obtain (5.9).
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PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS*
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Abstract. The concept of persistence reflects the survival of all components of a model ecosystem. Most
of the results to date are restricted to ordinary ditterential equations or to dynamics on locally compact
spaces. The concept is investigated here in the setting of a C-semigroup which is asymptotically smooth.
Since the equations of population dynamics often involve delays or diffusion this seems the appropriate
setting. Conditions are placed on the flow on the boundary which, given the presence of a global attractor
provided by the assumption of dissipativeness and asymptotic smoothness, are necessary and sufficient for
persistence.

Key words, persistence, asymptotically smooth, global attractor
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1. Introduction. The notion of persistence (defined below) captures a basic idea
in ecology by expressing the ultimate survival of the component populations of a model
ecosystem. Most of the applications have been to autonomous systems of ordinary
differential equations and thus make use of dynamics in Euclidean spaces. (Exceptions
are: Dunbar, Rybakowski, and Schmitt [5] and Hutson and Moran [11], who apply
this idea to reaction diffusion equations; Gatica and So [6], who work with non-
autonomous ordinary differential equations; and Burton and Hutson [2], who work
with delay equations.) The notion of persistence is basically a dynamic one and has
been explored in the context of locally compact metric spaces in [3] and [4]. However,
many of the models of population dynamics naturally involve such concepts as delays
or diffusion resulting in functional differential equations or partial differential
equations. There is still a natural setting for the application of the ideas of dynamical
systems [7], [10] but it is in spaces that are not locally compact.

The purpose of this note is to develop this idea of persi,stence under a reasonable
set of hypotheses so that it can be applied to biological problems with delays or
diffusion. The general setting is that of a semigroup and the basic hypothesis is that
of being asymptotically smooth, a notion that has been helpful in developing the
dynamics in infinite-dimensional systems. The work blends the ideas of [7] and [3].

The hypotheses naturally are more difficult to check in this setting. The basic one
involves knowledge of the attracting set (defined below), which is difficult to obtain
in an infinite-dimensional system. Nevertheless, we feel that this is the natural and
proper setting for the concept of persistence and that the theorems may be useful when
specific equations are studied.

2. Preliminaries. In this section we give some background material on dynamical
systems and the existence of global attractors. Let X be a complete metric space (with
metric d) and suppose that T(t)’XX, t>=O, is a C-semigroup on X; that is,
T(O) I, T(t + s)= T(t)T(s) for t, s >=0, and T(t)x is continuous in t, x. The positive
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orbit y+(x) through x is defined as y+(x) U to { T(t)x}. The t0-1imit set is defined as

to(x)= n c1 u {T(t)x}.
’>0

This is equivalent to saying that y to(x) if and only if there is a sequence t, - co as
n- co such that T(t,,)x y as n co. If B is a subset of X, we define the to-limit set
of B as

to(B)= n C1 LI T(t)B,
’0

where

T(t)B= U {T(t)x}.
xB

This is equivalent to saying that y to(B) if and only if there are sequences t,--> co,
x, B such that T(t,)x, --> y as n - co. Note that double sequences are needed to define
to(B).

It is important to make another remark about to(B). It is tempting to consider
the set

U

as a candidate for the limiting behavior of the set B since it contains the to-limit set
of each point. This set is generally much smaller than the set to(B). In fact, to-limit
sets of points in B could be disconnected even when to(B) is connected. From the
point of view of the qualitative-behavior of the dynamics generated by the semigroup
T(t), it is necessary to consider the sets to(B) defined above.

If the points x or the sets B have negative orbits, we can define the a-limit set
a(x) of x and a-limit set a(B) of B in a similar manner taking into account the
possibility of multiple backward orbits. When the points or sets belong to an invariant
set A, we will restrict the backward orbits to those remaining in the invariant set and
denote this by aa(X). Sometimes it is convenient to have the alpha limit set of a specific
full orbit, y(x) through a point x. We denote this by a(x).

A set B in X is said to be invariant if T(t)B- B for t-> 0; that is, the mapping
T(t) takes B onto B for each => 0. This implies, in particular, that there is a negative
orbit through each point of an invariant set.

A nonempty invariant subset M of X is called an isolated invariant set if it is the
maximal invariant set of a neighborhood of itself. The neighborhood is called an
isolating neighborhood. The stable (or attracting) set of a compact invariant set A is
denoted by W and is defined as

ws(a) {xlx X, to(x) # 6, to(x)c a}.
The unstable (or repelling) set, W" is defined by

W"(A) {xlx X, there exists a backward orbit y-(x) such that ar(x) # , %(x)m A}.
The weakly stable and unstable sets are defined as follows:

Ww(a) {xlx e X, to(x) # , ,o(x) n a }
W:(A) {xlx e X, a(x) 6, (x) n A }.

A set A in X is said to be a global attractor if it is compact, invariant and, for
any bounded set B in X, ( T(t)B, A) 0 as t--> co, where 6(B, A) is the distance from
the set B to the set A:

6(B, A) sup inf d(y, x).
yB xEA
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In particular, this implies to(B) exists and belongs to A. A global attractor is always
a maximal compact invariant set. The semigroup T(t) is said to be asymptotically
smooth [9] if for any bounded subset B of X, for which T(t)B c B for >-0, there
exists a compact set K such that (T(t)B,K)-O as t-o. In particular, to(B)c K.
The semigroup T(t) is said to be point dissipative in X if there is a bounded nonempty
set B in X such that, for any x X, there is a to to(X, B) such that T(t)x B for _-> to.

A basic result on the existence of global attractors is the following theorem.
THEOREM 2.1 [7] [8]. If
(i) T(t) is asymptotically smooth,
(ii) T(t) is point dissipative in X,
(iii) 7+(U) is bounded in X if U is bounded in X,

then there is a nonempty global attractor A in X.
If there is a to >- 0 such that T(t) is compact for > to then T(t) is asymptotically

smooth. In this case we can dispense with hypothesis (iii) of Theorem 2.1 and prove
Theorem 2.2.

THEOREM 2.2 [1]. If
(i) there is a to>-O such that T(t) is compact for t> to,
(ii) T(t) is point dissipative in X,

then there is a nonempty global attractor A in X.

3. Persistence. In this section we consider a particular system motivated by biologi-
cal considerations. We will assume that the metric space X is the closure of an open
set X; that is, X XkJcX, where cX (assumed to be nonempty) is the boundary
of X. We will also suppose that the C-semigroup T(t) on X satisfies

(3.1) T( t): X - X, T( t):0X - 0Xand let To(t) T(t)lxo, To(t) T(t)[oxo.
The set OX is a complete metric space (with metric d). Therefore, if T(t) satisfies

the conditions of Theorem 2.1 in X, then To will satisfy the same conditions in OX.
Therefore there will be a global attractor Ao in OX.

When T(t) satisfies the conditions of Theorem 2.1 or Theorem 2.2, it may not be
the case that To(t) even has a maximal compact invariant set in X. There may be
points x in X for which to(x)OOX d?. In this case, there is clearly no maximal
compact invariant set in X. It can also happen that to(x)CIOX= d? for all x and
there does not exist a maximal compact invariant set in X, for example, a simple
predator prey model with families of periodic orbits. From the biological point of
view, these concepts are important for they are related to the coexistence ofpopulations.

The concept of persistence is introduced to assist in the understanding of these
last remarks. The semigroup T(t) is said to be persistent if for any xX,
lim inft_,o d(T(t)x, OX) > 0. The semigroup T(t) is said to be uniformly persistent if
there is an r/>0 such that, for any xX, liminft_od(T(t)x, OX)>=rl. If T(t) is
persistent, it need not be uniformly persistent [4].

To obtain an equivalent formulation of persistence in terms of attractors, it is
convenient to introduce two definitions. We say that a set U in X is strongly bounded
in X if it is bounded in X and there is an r/> 0 such that d (x, OX) >- rl for x in U.
When we restrict the semigroup T(t) to X we can think of OX as being part of
"infinity." The "bounded" sets in X should then be the strongly bounded sets in X.
We say that T(t) is strongly point dissipative in X if there exists a strongly bounded
set B in X such that for any x X, there is a to to(X, B) such that T(t)x B for

_-> to. The following proposition is obvious.
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PROPOSITION 3.1. Suppose that T(t) is point dissipative in X. Then we have the
following:

(i) T(t) is persistent if and only if to(x) is strongly bounded for each x X.
(ii) T(t) is uniformly persistent ifand only if T(t) is strongly point dissipative in X.
We need the following definition. Ao is said to be a global attractor for T(t) in

X relative to strongly bounded sets if Ao c X is compact, invariant, and 6(T(t) U, Ao) -0 as c for all strongly bounded sets U. In particular, to(U) c Ao for each strongly
bounded set U in X. In the case in which X is a finite-dimensional Banach space
(or when there is a to -> 0 such that T(t) is a compact for -> to and T(t) is strongly
point dissipative in X) we can use the same arguments as in the proof of Theorem
2.2 to obtain the existence of a global attractor in X. We can also prove Theorem 3.2.

THEOREM 3.2. Suppose T(t) satisfies (3.1) and we have the following:
(i) There is a to->O such that T(t) is compact for t> to;
(ii) T(t) is point dissipative in X;
(iii) T( t) is uniformly persistent.

Then there are global attractors A in X and A in OX and a global attractor Ao in X
relative to strongly bounded sets. Furthermore,

A Ao [_J W"(Ao)

where

w"(ao) {x a[ aa(X) ao}.

Proof Theorem 2.2 implies the existence of the global attractor in X and OX.
With the interpretation of OX as part of infinity for X the existence of the attractor
in X follows from the proof of Theorem 2.2. It remains to prove that A has the specific
representation stated in the theorem. Suppose x A\Ao. Then there exists a full orbit
to(x) in A. Since A is compact, it follows that ar(x) exists, is compact, invariant, and
belongs to A. Since Ao is uniformly asymptotically stable, there is a 6 > 0 such that
distance d(y, Ao) -> 6 for y a(x). If y : OX, then to(y) Ao. However, the previous
inequality implies that this is impossible. Therefore, a(x) OX. Since a(x) is compact
and invariant, it follows that ce(x) Ao. The theorem is proved. [3

The first hypothesis in Theorem 3.2 has little to do with the global properties of
orbits. For example, it is generally satisfied for delay equations with finite delay or
systems of parabolic equations. Hypothesis (ii) is a global property of the orbits, but
it is expected to hold for most systems, since it essentially says that infinity is unstable.
The most difficult hypothesis to verify is (iii), the uniform persistence.

We would like to verify uniform persistence by discussing only properties of the
flow in a neighborhood of OX. The Lyapunov approach is an attractive way to do
this, and this approach has been used in [5] and [11]. In [11] a type of Lyapunov
function has been employed to show that the corresponding semigroup T(t) is strongly
point dissipative in X. Thus, a global attractor in X exists from Theorem 3.2; this
is a stronger conclusion that the one asserted in [11]. In the next section we give
another method for obtaining uniform persistence.

If the map T(t) is only asymptotically smooth then the analogue of Theorem 3.2
is Theorem 3.3.

THEOREM 3.3. Suppose T( t) satisfies (3.1) and we have the following:
(i) T(t) is asymptotically smooth;
(ii) T(t) is point dissipative in X;
(iii) y+(U) is bounded if U is bounded in X;
(iv) T( t) is uniformly persistent;
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(v) 3,+(V) is strongly bounded in X if V is strongly bounded in X.
Then the conclusions of Theorem 3.2 are valid.

4. Chains and uniform persistence. In this section we give characterizations of
uniform persistence in terms of the behavior of the flow on cX. We need some
additional definitions.

Let M, N be isolated invariant sets (not necessarily distinct). M is said to be
chained to N, written M- N, if there exists an element x, x M t_J N such that
x W (M) f’l W (N). A finite sequence M1, M2, , Mk of isolated invariant sets
will be called a chain if MI M2-’’’ Mk(M M, if k 1). The chain will be
called a cycle if Mk M.

The particular invariant sets of interest are

(4.1) ,0 U to(x).
xeA

is isolated if there exists a covering M t.J

__
M of by pairwise disjoint, compact,

isolated invariant sets M1, M,..., M for T such that each M is also an isolated
invariant set for T. M is called an isolated covering. A will be called aeyclic if there
exists some isolated covering M L/= M of/ such that no subset of the M’s forms
a cycle. An isolated covering satisfying this condition will be called acyclic.

The principal result on persistence can now be stated.
THEOREM 4.1. Suppose T(t) satisfies (3.1) and we have the following"
(i) There is a to>-O such that T(t) is compact for t> to;
(ii) T.(t) is point dissipative in X;
(iii) Ao is isolated and has an acyclic covering M.

Then T( t) is uniformly persistent if and only iffor each Mi M

(4.2) W’(Mi) f-I S= dp.

For the case in which T(t) is only asymptotically smooth, we have the following
theorem.

THEOREM 4.2. Suppose T(t) satisfies (3.1) and we have the following"
(i) T(t) is asymptotically smooth;
(ii) T(t) is point dissipative in X;
(iii) /+( U) is bounded in X if U is bounded in X;
(iv) Ao is isolated and has an acyclic covering.

Then the conclusions of Theorem 4.1 are valid.
For the proof we need the following lemma.
LEMMA 4.3. Assume that T satisfies i)-( iii) of Theorem 4.2. Let T+, be a sequence

of precompact semiorbits, with to-limit sets ton. Suppose that M is a compact, isolated
invariant set with ton f-I M c for n large. Ifpn ton is such that d (pn, M) O, then there
exist sequences { qn }, { rn }, qn, rn ton and elements q W (M)\M, r W (M)\M with
limn_.oo qn =q and limn_. rn r. The q and r can be found in an arbitrarily small
neighborhood of M.

Proof. Let us first prove that the set {ton} contains a subsequence that converges
in the Hausdortt metric to an invariant set to. The omega-limit set of a semiorbit 3,

+

consists of full orbits and belongs to the global attractor A for T(t). Let K be the set
of nonempty compact subsets of Y=C1 Uxx to(x) with HausdortI metric p. The
subsets ton are uniformly bounded compact subsets of f. Since each element of K is
a subset of A which is compact, there is a subsequence, which we again label ton such
that p(ton, to) 0, to e K. Clearly to is invariant.
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Let U be an isolating neighborhood of M and V an open set such that M c V
CI (V)c U. Then Pn V for large n. Since Pn ton, which is invariant, there is a full
orbit through Pn. Since Pn V, there is a corresponding Yn 0 V, with T(zn)pn Yn and
T(t)pn V, for 0 > > zn. Since Yn fl we may select a convergent subsequence, again
called Yn, such that limn_ Yn Y 0 V f) to and, in particular, y M.

If {’n } were bounded, we could select a convergent subsequence ’n --> " which, by
continuity, makes T(z)y M. Hence T(t)y M for t> -, and y WS(M)\M. Thus we
may assume that ’n --> -o. This has the consequence that 3,/(y) c V or y WS(M).

Since y to we may select the qn’s as stated. The proof for the rn’s follows similarly,
taking into account the possibility of multiple backward orbits. (Note that in this case
we need only one backward orbit to remain in V.) This completes the proof of the
lemma.

Remark 4.4. If, in Lemma 4.3, there is a single orbit y/(x), with Pn y/(x) and
limt_d(pn, M)=0, and x: W(M), the proof provides similar sequences {rn} and
{qn} on ,+(x) (see [3, Thm. 4.1] and [5, Thm. 2.2]).

Proof of Theorem 4.2. The necessity of (4.2) is clear. Suppose (4.2) holds and
T(t) is not uniformly persistent. There are two cases to be considered in the proof.
There is a sequence of points Pn with either Pn y/(tn) for some orbit y/(x), x X
or Pn ton for some sequence of omega limits sets, such that d (Pn, OX) - 0 as n ->

Choose a subsequence such that pn --> q and, if in the second case, such that ton --> to as
in the proof of Lemma 4.3. Let fl be to(x) in the first case or the to of Lemma 4.3 in
the second. Clearly, y/(q) c OX and q Ww(Mi) for some Mi, say for M1. By Lemma
4.3 (or Remark 4.4), there exists a point ql W(M1)fqfl. Since fl is invariant, there
exists a full orbit y(q) through q that lies in f. av(q) exists, and, since cev(ql is
invariant, av(ql)f’) W(Mj)# th, say for j 2. If av(ql)c Me, then Me is chained to

M. Clearly we can choose a new sequence of points p, either on the sets ton or on
the orbit y+(x) whose distance from Me tends to zero. Using Lemma 4.3 or Remark
4.4, choose q2 and repeat the argument. If av(pl) is not a proper subset of M2, then
we proceed essentially as in the proof of [3, Thm. 3.1] to reach a contradiction of the
no cycle condition. The proof now follows the general scheme of the proof of Theorem
3.1 of [3], keeping in mind the two cases mentioned above and taking care to use a
full orbit when constructing the alpha limit sets needed to chain sets. The reference
in the proofin [3], [4], however, is not needed in view ofthe statement of Lemma 4.3.

5. An example. Suppose that x(t) and y(t) represent populations that grow
according to the delayed logistic equation

x’(t) rlx(t)(1 -x(t- 1)), y’(t) rey(t)(1- y(t- 1)).

If rl and re are sufficiently small, each population grows to the carrying capacity 12,
p. 14J--in this case, to one. Suppose that each produces a metabolic product or a toxin
that inhibits the growth of the other, i.e., each reduces the current intrinsic growth rate
of its competitor. The equations then take the form

(5.1) x’(t) rlx(t)[1 -x(t- 1) -/xly(t)], y’(t) rey(t)[1- y(t- 1)-/xex(t)].

This is one of a large variety of possible competition equations with delays that may
be modeled on the Lotka-Volterra equations. We show that if, in addition to the above
assumption on the ri’s,/./,1 and/xe are less than one, the system is persistent.

The appropriate space X is the positive cone of C[0, 1] x C[0, 1]. The form of
the system of (5.1) insures that solutions corresponding to positive initial conditions
(positive functions on [-1, 0]) remain positive, i.e., the positive cone X is invariant.
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For any pair of initial functions (b, q) X, let x(t, b, ) be the solution of (5.1) and
define T(t)(ch, d/)X, t>-O, by T(t)(qb,b)(O)=(x(t+O, dp, d/), y(t+O,,)),
-1<_0=<0.

Then T(t) is completely continuous for > 1. Simple comparison arguments show that
T(t) is point dissipative. There are three constant solutions on the boundary of X
corresponding to x(t) 0 and y(t) 0, x(t) 1 and y(t) 0, and x(t) 0 and y(t) 1.
The origin is clearly unstable. Let us linearize around (0, 1) to find

h( t) r, hl( t)(1 tx,), h’( t) r2[-h2( 1) p.2hl( t)].
The characteristic equation factors as

[A- r(1 -/x)][A + r2 e-] 0.

There is a unique positive (since/z < 1) eigenvalue corresponding to the first square
bracket being set equal to zero. This corresponds to an eigenvector of the form 1, 0] .
The eigenvalues from the second square bracket can be shown to have negative real
parts. These correspond to an eigenvector of the form [0, 1] 7, and hence correspond
to solutions that remain in the part of the boundary of X given by x(t) 0. Thus the
stable set of this constant solution does not intersect the interior of the cone X. A
similar argument applies, at the constant solutions x(t) 1, y(t) 0, when/ < 1. Since
the origin is unstable, Ao is just the union of the constant solutions. Taking the M’s
to be these constant solutions, there are no cycles in the boundary of X. The constant
solutions are also isolated invariant sets. Hence (5.1) is uniformly persistent, and there
is a global attractor in the interior of C[0, 1] C[0, 1].

When the number of equilibrium points is small (as expected in population
equations) and the dimension of the unstable manifolds is small, we can anticipate
checking the chain condition directly as in the example by letting the sets M be the
equilibrium points. The results, however, allow for greater flexibility in the choice of
the cover. For example, if one face had three equilibria P, 1, 2, 3, and connecting
orbits y for (i,j) I= {(1, 2), (2, 3), (3, 1)}, connecting P to P, then we could select
as an element of the cover the three points and the connecting orbits. We would then
need to show that the attracting set of this element of the cover does not intersect the
interior of the space. Often there can be a good biological reason that prevents cycles.
In the example above, the instability of the origin (common for competition problems)
precludes the connection ofinvariant sets in the two faces (x, 0) and (0, y), x, y C[0, 1].
In predator-prey problems there are no compact invariant sets on the predator axis
(corresponding to extinction in the absence of prey), which is often helpful. There are
obvious difficulties when the limit sets are more complex than equilibri.a or periodic
orbits. Ideall.y we would like to devise a criterion that would make the sets A0 "uniformly
repelling." Ao, of course, if it is isolated, is a one-element cover so, in principle, the
theorem can be applied directly to it.
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SOMMERFELD DIFFRACTION PROBLEMS WITH
FIRST AND SECOND KIND BOUNDARY CONDITIONS*
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Abstract. A class of interface problems is considered where the solutions of one Helmholtz equation
in the upper half-plane x2 > 0 and of another in the lower half-plane x2 < 0, respectively, are related by two
transmission conditions on the line x2 0. One of these is of the first kind, the other one of the second kind,
and they are different for x > 0 and Xl < 0, respectively. In general, there appears a coupled system of
Wiener-Hopf equations. Necessary and sufficient conditions for the correctness of the problem in a Sobolev
space setting are presented as well as explicit formulas for a factorization of the Fourier symbol matrix of
the one-medium problem, the solution in closed form, and its asymptotics near the origin.

Key words, diffraction problem, Wiener-Hopf operator, factorization, matrix function, Helmholtz
equation
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1. Introduction. We investigate a certain class of diffraction problems leading
to simultaneous 2 x 2 systems of Wiener-Hopf equations. These can be considered in
two ways, which we combine in this paper.

First, the classical Wiener-Hopftechnique, represented by Noble 17], for instance,
centers around a function theoretic factorization of the Fourier symbol matrix function
cr(:), :, i.e., an explicit representation cr=tr_o’+ with upper/lower holomorphic
matrix functions cr(:) for Im : 0 with algebraic behavior at infinity. In contrast to
factoring rational matrices 1 ], this is a very subtle problem (see Heins [6], [7], Daniele
[2], [3], Rawlins [19], Khrapkov [10], and others [8], [9], [13], [14], [23]), and it
seems to be the only method for obtaining a closed form solution.

On the other hand, we may be interested in finding a function space setting such
that is well posed. This is equivalent to a certain operator factorization type in a
more general context (see Devinatz and Shinbrot [4], Mikhlin and Pr6ssdorf [16], and
Speck [21]) where some invariant subspaces are involved.

For the one-medium problems we will find a class of symbol matrices tr depending
on a parameter h that can be factored by Daniele’s method--provided h is not
exceptional (see Theorem 3.1). It is remarkable that this factorization does not corre-
spond to a factorization of a bounded operator into bounded operators (Lemma 4.1);
for only a small subclass of problems (a parameter subset (0, 1) c C of measure zero)
can this be achieved by rearrangement (Theorem 4.4). For the majority of problems
there exists only a generalizedfactorization corresponding to an operator factorization
into unbounded operators (Corollary 4.6), which is best understood in the theory of
systems of Cauchy type singular integral equations (see [16]). However, it helps to
solve the well-posed problem (Corollary 5.1), to find the asymptotic behavior (Theorem
5.2) and to illuminate the various structures of in a function space setting based
on the energy norm (Theorem 2.1 and Corollary 4.6).
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sponsored by the Deutsche Forschungsgemeinschaft under grant Me 261/4-1.
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We now formulate problem . Find

U G L2([2),
UlO+/- E HI(-+),
A+k,2=0
(a+k)u =0

’+" X2<0,

(1.2)

where Im k >0 holds and the Dirichlet data uS ul,,2=+/-o and the Neumann data
u Ou/Oxalx2=+/-o satisfy

aoUo + bou ho

alu q- bit/1
+

aoUo + b’ou h

a +
lUi + blu-( hi

with known constant coefficients ao,..., b E C and hoe H1/z(R+), hi E H-1/2(+),
h E H1/2(R_), h E H-1/-(_).

The following facts are known from [22], which is used for reference.
Let 1+/- denote the characteristic function of +/-, F the Fourier transformation,

a(SCl, sea)= FU(Xl, x2)= exp (i(sClXl + &Xa))u(xl, xa)d(Xl, xa) and ts(:l (SOl2- ky) l/a,
j 1, 2, with branch cuts +k +/- it, - >_- 0, and ts(sel) SOl at +c. For brevity :1 is replaced
by sc in what follows.

First, any solution of (1.1) satisfies the representation formula

U(X1, X2) G
u

(Xl, x2u
(1.3)

-1 {e xt,) A+Fx, Uo()l+(x2)-t-eX2q(O-()l_(x2)}.

one+,

one_

Second, we introduce the boundary operators

B+" H1/2()2
-’ H1/2() X U-1/2(),

(1.4) B+=F_I( ao bo ) F F_
-al bl t2

o’B+ F,

B_- F-l( a’o
--atl

b’o
b 12/" F F- orB_" F,

which correspond to (1.2) but act on functions living on the whole axis. Problem
is said to be of normal type, if trB+/-(:) are regular for : E R and both are stable at infinity"

(1.5) [det O’B+/-()] +/-l-- o(l:l+/-l),
This assumption is equivalent to the bijectivity of B+/- and can also be written in the
following form:

aoblt2()+ boaltl() O,
(1.6)

aobl + boal # 0

supplemented by analogous conditions for the primed coefficients.
Third, there is the following theorem.
EQUIVALENCE THEOREM. Let be of normal type (or only B_ invertible). Then

u solves Problem , if and only if (i) u is represented by (1.3) where u are given by

(1.7) (u- 1{ V+ leh
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with even or odd extension of the data onto the whole axis and (ii) the functions (more
precisely" functionals) v+, w+ are solutions of the Wiener-Hopf system

+ h*l]’
F-1(1.8) W= 1+ tr. F"/l/2(a+) x -l/2(U+) H1/2(a+) x H-1/2(+),
-1

B+B_.

Note that H(+) is defined to be the closed subspace of H= H() functions
supposed on + (the natural embedding into H(+) is not closed with respect to the
H(+) topology for s=}mod 1). This space is sometimes denoted by Ho(+) for
s= +}, 6o [12], H [5], ’2(a+), or H2(a) [20]. The multiplication operator
1+ acts on distributions as a restriction on test functions supposed on +. Other
(continuous) extensions instead of l,, lo are admissible.

2. The structure of Wiener-Hopf operators corresponding to problem .
THEOREM 2.1. Let be ofnormal type. The operator Wgiven by (1.8) is Fredholm,

if and only if the elements of the matrix

c a’ob + ba -ab + bla ab+ba ]

satisfy the conditions

(2.2) ad 0, bc 0

or

(2.3) ad O, A -1 bc/ ad : [0, 1 ].

In both cases, the analytical index of W equals zero (we call A ad/ bc the characteristic
parameter of ).

Proof The symbol matrix tr reads explicitly

1 \(( aob,t2++bla,ltlboa’ -aob+ boa(2.4)
ablt2+ ba’ltl -albl 1)tit2 albtl + blat2/"

Now put t(:)= (sc2- k2) 1/2 with an auxiliary wave number k (that we only need in the
case kl # k2) and

(2.5) t() t_()t+() (- k)1/2(so + k)1/2
with the usual choice of branches, see above. It is known [5, Thm. 4.4, Lemma 4.6],
[22] that the mappings

F-ltr+ F" IIS(+)- IIS-r/2(R+),
(2.6)

1+. F-’tr. FI: H*(R+)- Hs-r/2(a+)
are bijective for any extension and arbitrary r, s R. Therefore W is equivalent to
(coincides up to invertible factors with) the lifted operator

(2.7) Wo 1+ cro F" Lz(R+)2- L2(+)2

where the lifted matrix

(2.8)
0 -1 0 t+

1 ((aobt2+boaq)(t_/t+),aoblt2+boal t, (-albl+blal)(tlt2/t)
(-aob{ + boa)

(albotl + blat2)( t+/ t_)
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is also invertible in C(R)22 and tends to

+/-a b )(2.9) tro(+/-)
c +/-d

at infinity, i.e., tro is piecewise continuous on the (one-point-)compactified axis .
The theory of systems of Cauchy-type singular integral equations on the unit

circle, which can be transferred to the real line case by the stereographic projection
(or Cayley transformation) [16, Chaps. V, IV.6], implies that the Fredholm property
of Wo (and thus of W) is equivalent to

(2.10)
det ro() 0, R,

det [tro(-m) + (1 -/.)tro(+C)] # 0, /z [0, 1].

This can easily be rewritten in the form (2.2)-(2.3). Furthermore, we obtain the
index formula

(2.11)
Ind W dim N(W) codim R(W)

Ind Wo -ind detcro 0

where the winding number of det % vanishes, since

(2.12)
det tro()= det tr(s) det trn+(s)/det trn_(s)

(aob, t2() + boa, tl())/(a6b t2() + b’oa tl())
is an even function in .

COROLLARY 2.2. There exists a generalized factorization 16, V.5-6] in L2([)2

(2.13)
0

-i
Cro+(),

E1 2x2i.e., with/(1,/(2 7/, O’0+/- L2(R, p) are holomorphically extendable into the upper/lower
complex half-plane where p(s) (2+ 1)-1/2 holds (the elements ofptro+/-1, belong to
where tro+/--I denote the inverse matrices), ifand only if is of normal type and (2.2)-(2.3)
are satisfied. This also yields Ind W -/(1 -/(2 0.

Remarks 2.3. (1) There corresponds a bounded operator factorization Ao
F-ltro F=Ao_CAo+, Ao+, C E(L2()2), with (2.13), if and only if the matrix
functions are bounded invertible, i.e., tro+/- This is also called a cross

factorization in the context of general Wiener-Hopf operators [21], which yields a
generalized inverse of Wo (cf. [16, Thm. 4.2].). If the additional factors satisfy tro+/-

C()2-, then (2.13) is said to be a right canonical (matrix)factorization [16, V.3.2.].
But here this is not true in general according to discontinuities at infinity (see (2.9)).

(2) So far we do not know about /(1 =/(2=0 and the invertibility of W. The
previous result is not constructive.

(3) Obviously, the system decomposes, i.e., tr is triangular (see (2.4)) if and only
if (i) the vectors (ao, bo) and (a, b) or the vectors (al, b) and (a, b) are parallel,
which means that the corresponding data are given along the full line, or (ii) ao
(or similar) according to a pure boundary value problem for the lower (or upper)
half-plane, which can be treated separately, or (iii) in the case tl-- t2 only" the vectors
(ao, bo) and (a, b) or (al, bl) and (a, b) are antiparallel. The first case (i) bc=O
is excluded by (2.2)-(2.3). The range of W is not closed in H1/2(+)x H-1/2([+);
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there appear compatibility conditions and problems that are well-posed in other space
settings where at most a single Wiener-Hopf equation must be solved. The other two
cases do not disturb the conditions (2.2)-(2.3) and we have an invertible system
according to two isolated equations ofthe type that appears for Sommerfeld’s half-plane
problem. All these cases have been discussed in [22].

3. The explicit function theoretic factorization for one-medium problems. We con-
sider the nondecomposing case of a normal type problem with tl t2 and write
o- from (2.4) in the standard form

(3.1) o’=
ct d h -1 1

after some elementary transformations.
The following factorization of this nonrational matrix function is based on the

work of Daniele [2] and others (see above). Only the case h =-1 corresponding to
the mixed Dirichlet-Neumann problem

+ ho u-=h one+U0

+ /,/- +
U0 --Ul--U?--O one_

has been solved before [7], [14], [18]. The exceptional (decomposing) case A =0 or
c is excluded here, A 1 is nonnormal and A 2 corresponds to the strange reference

+ + +problem where, for instance, Uo, u -Ul + and u, Uo -Uo on

_
are given, (see

[22]) and where Wo is not Fredholm in our (Lv, p= 2) setting (see (2.3)).
THEOREM 3.1. For any A C, 0 A 1, a factorization o" r_o’+ into lower

holomorphic function matrices is given by

(3.3)
r+ (1 h -1) 1/4 cosh C" log 3’ 0

(o-sinh [C. log 3’+/-] t/-
with

x/X+l x/k++iv/k:
(3.4) C- /log 3"+(so)

and algebraic behavior as --> +/- (e.g., put arg [0, 7r), arg (x/-+ 1)/(x/- 1)
[-Tr, 0], Re C [0, 1], arg x/ 1/2 arg k and branch cuts as before).

Proof. To construct tr+/- we write [2]

1 0

where the latter matrix has polynomial elements and find a matrix M log r in the
sense of o-= exp M (which is defined as a series) by putting

(3.6) logtr=logg 0 +r t2

with

-1 x/+l
(3.7) g=det o’= 1--A -1, r log---Z 1"VAt VA
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Surely, 7. does not depend on the branch of v/ An additive decomposition

(3.8)

1 -2i ( v/++ix/k- x/k-+ix/k+}t(:) 7rt(sc-- log x/
F log

(y+/- are not upper/lower functions themselves) yields

2C
(3.9) 7" 7"+ + r_, 7.+() /-z-, log y+()

VA

where r+ are holomorphic in Im > -Im k and Im < Im k, respectively. A factoriza-
tion of g g_g+, g+ (1- A-l) 1/2 is trivial here.

Associating

+ 7"+(3.10) (log tr)+/- log g 0 2

which obviously commute with each other, we have

(3.11) tr+/- exp (log tr)+/-

in coincidence with (3.3). It is also possible to check (3.3) directly.
The behavior at infinity is determined by

,/ -1/, - +o,
r+()"t 2.,/U-/k ill /z, -o,

(3.12)
/x/- 1/2, -- +00,

-()’
te-k-/ I1 -’/, -, -o.

Thus the arguments of ,+/- are bounded and the entries of exponential type in r+/-

behave as

lexp [C. log Y+/-(:)]I O(exp {Re C. log

(3.13) { O(ll:ReC/2), ---> +c
O(ll+ReC/2),

Note that this is bounded (the hyperbolic terms oscillate), if and only if C iR holds
or equivalently A > 1 corresponding to the case that was excluded in (2.3).

4. How to find a generalized factorization. To end up with the inverse of W we
try to consider (3.3) as a factorization in the sense of (2.13)--after the lifting process
described in (2.6)-(2.8).

It will be seen that this is not possible without an additional modification: the
splitting-off of a polynomial matrix in the middle of (3.3). In our opinion this
phenomenon is typical of problems with more general boundary or transmission
conditions.

Furthermore, we will see that here usually (in contrast to the scalar Dirichlet or
Neumann problems) the plus/minus factors correspond to unbounded operators on
L2(R)2, i.e., cro+/- L(R)22 holds only in "exceptional cases," which makes the interpre-
tation in the spirit of singular equations 16] most important.
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For a better understanding of the (linear) operator theoretical structure of the
factorization, we consider Wo in (2.7) rather on the whole scale of Lp spaces LP()2,
1-<p-<_ (the elements occurring in (2.8) are Lp multipliers [11]), or at least for
1 < p < (because of relations to singular integral operators). This, in fact, means that
we seek ula Ws’P(O+) with s-I/p=1/2, i.e., s=-+l/p, which is physically less
important.

It is known that the Fredholm property of Wo on LP(+) is equivalent to a
factorization (2.13) with upper/lower function matrices

(4.1) - Lp(E, P0.0_ 0.0+
2/p 22

O’o+, o’- tq(, p2/q)2, l/p+ 1/q 1

(see [16, V, Thm. 5.2]). Further note that q(:) [sC-k[ ", :c, implies

(4.2) LP(, p/P)’ txp < 1.

We call ord o =/x the exact order of o (at +), and the order of a matrix function is
defined elementwise.

Now we are able to test whether the lifted function theoretic factorization defined
by

(4.3) o-o+=
0 t-

o-_ .o-+

is a generalized factorization with trivial middle term (K1 K2=0).
LEMMA 4.1. Formula (4.3) is not a generalized factorization for any p (1, ) and

any parameter A C.
Proof From (3.3), (3.13), and (4.3) we obtain for 03 A 1 and 6 Re C [0, 1]

(see the Appendix)

(4.4)
1/2(6-1))1/2(6-1)
1/2(a- 1))1/2(6+1)

with regard to ord det r+ 0.
Thus (4.1)-(4.2) cannot be satisfied for any p, since/x =1/2(6+ 1), I/p> tx>-_1/2 and

1/q >/x _-> contradicts lip + 1/q 1.
LEMMA 4.2. For 6 Re C Re (i/7r) log (x/- + 1)/(x/--- 1) [0, 1) and [lip -1/2l >

/2, a generalized factorization reads

’0"0 tYO- 0

o )((- i)/(+ i))" O’o+

(4.5)

Thus the index of Wo acting on LP(+)2 is given by

(4.6) Ind Wo-- -(1 + 2)--
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for p < 2/( 1 + 5) and p > 2/( 1 5 ), respectively, and a left/right inverse is given by

(4.7) Wff Aff+l+ U-11+ A-ff_ILP(n+)
with Ao+/- F-O’o+" F and U F-((( i)/(+ i))i) F.

Proof It is easy to verify the properties (4.1), since all elements of ro_ and ro/

are of order 1/2(- 1) and 1/2(6 + 1). Since ord det ro_ =-1 in the first case (see (2.8),
(3.3), (4.5) (det r+/-=const!)), we have ord ro_=+1+1/2(6-1)=1/2(6+1) in any place
etc., which yields the corresponding properties (4.1) of the inverse matrices.
Thus (4.5) represents a generalized factorization and the following conclusions are
standard [16], [21].

Remark 4.3. This trick obviously does not work for 1/p [1/2(1 8), 1/2(1 + 6)], and
in particular not for p- 2 where Ind Wo 0 holds.

For 6 Re C 0, i.e., h 6 (1, oo), see the Appendix, where only the case p 2 is
excluded (cf. the remark after (3.13)).

For 6 1, i.e., h (0, 1), we do not have any result so far.
THEOREM 4.4. For (0, 1], and I1/p-1/2[ < /2, a generalized factorization reads

(4.8) O.o=O.o_.O.o+=o_( 1 01) ( 1

71/%/ 71/%//"
O’0+"

Thus Wo and W are invertible and

(4.9) Wff= Aol+"
holds according to this factorization.

Proof The following cancellation in the asymptotic behavior of the terms in (3.3)
becomes most important. Abbreviating the hyperbolic terms there by c+, s+, and the
exponential by e+ we obtain

c++ s+t= e+(sc+ t)+ el(sc- t)

o(l:l /=/’) / o([:l /-1),
(4.10) o(11/=_)+ o(11_/=/), -o(ll’-/), I:1
according to (3.1 3), 5 (0, 1 and

k2

(4.11) sc-t O(sC-1),
:+t

By analogy, there holds

(4.12) c_t- s_t O([:1’-/2),
in contrast to

(4.13) c+ s+t, c_t + s_
Thus we obtain the following lifted modified factors and their orders"

( 1 01) (11 0 )O’o+= _so/ o’+
0 t+

(4.14)

-c+/x/-- s+t/x/ s+/ + c+] 0 t+

ord O-o+=\(1_5) 1/2(1-5)
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and

(4.15)

t_ 01)o._(1’-= (0 t- U4-

0 -1 -s_t/t-+c_/v/- c_

ordo.o_=\5(l_6 1/2(6-1)
+1Now we ask to which LP(N, 02/p) spaces the elements q of o.o+/- belong. Obviously,

(4.16) ord q x _-<max {1/2(1- 6), 1/2(6-1)} 1/2(1- 6)
holds for 6 (0, 1]. So p is determined by, see (4.1)-(4.2)

(4.17) I/p>1/2(1-6)
and the same condition must be satisfied for 1/q 1 l/p, i.e., I1/p 1/21 < 6/2.

Remark 4.5. The operators Ao+ are not bounded for 6 # 1 but the composition
Ao-_ll+ Ao_ is (see [16, V.5]).

COROLLARY 4.6. In terms of the characteristic parameter A ad/ be (see Theorem
2.1) we obtain the following alternative conclusions for the p 2 theory of Wo.

(1) A 0: o.o is triangular. Wo decomposes into two single Wiener-Hopf equations
that are invertible (see [22]).

(2) A l:o.o degenerates, and R(Wo) is not closed or any p).
(3) A (1, c):o.o admits a function theoretic factorization, but not a generalized

factorization in L2(/)2 (but in LP(/)2, p # 2/(1 + 6)), and Wo is not Fredholmforp 2.
(4) A (0, 1):o.o admits a bounded factorization due to 6 Re C--1, and Wo is

invertible (for every p (1, ).
(5) A [0, o): o.o admits an unbounded factorization due to 6 < 1 with vanishing

partial indices, and Wo is invertible (also forp(2/(l+6),2/(1-6)) and one-sided
invertible for p outside the closed interval).

5. The explicit solution and its asymptotics. We continue with the one-medium
case and assume o. to have standard form (3.1), which leads to the one-parameter
family of reference problems :

(A+ k2)u 0 in [l+ J 1-,

(5.1)
-2uff ho on +,
(1 A -1)u- (1 +/ -1) u- h on +,
+ u=h ont/0

+ u-=h onR_/’/1

(see (1.1)-(1.2) and (2.4)). Other realizations for the same parameter are available.
COROLLARY 5.1. is well-posed (with respect to the space setting in (1.1)-(1.2)),

if and only ifA-16C\[0, 1] holds. The solution is then given by (1.3), (1.7) where the
unique solution of the Wiener-Hopf system (1.8) must be inserted. This reads

(V+)=W+ W-l(h)h
(5.2)

All+" A-l(lohleh)



SOMMERFELD DIFFRACTION PROBLEMS 405

where the Fourier symbols d+ of A+/- are represented by

(s.3) + -U4- +’ -=- /-
(see (4.14)-(4.15)). Again, A+/- are not bounded operators in (HI/-x H-I/E, LEx LE)
and (LEx LE, H1/Ex H-I/2), respectively, for 6 # 1. But there hold (despite the
unboundedness)

(5.4)
A-11+ A_ (L2 X

W-’ G ---(H1/2(+) X H-1/(+), l/(+) x/_r-1/2(+)).
THEOREM 5.2. If the data h*o, h*l in problem are sufficiently smooth and rapidly

decreasing (like e-’,l+(Xl)), the singular behavior of the solution is described by

(5.5) Vu(x)"-const. Ixl /=-, Ixl-,0
with 6 Re (i/7r) log (x/-+ 1)/(/-- 1) 6 (0, 1 provided X

_
1, ).

Proof By standard arguments [5], [6], [17] the singular behavior depends on the
maximal order in the symbol matrix of

(5.6) ord ci)_l ( 6/2 6/2-1)1 -6/2 -6/2

So the gradient of the solution behaves like the inverse Fourier transform of
(:2+ 1) 1/2(1-/2>(sc+ i)-1.

6. On the two-media case. We finish with some remarks about problems where
the wave numbers kl, kE differ and continue considering the matrices r(:) tr(:; kl, k2)
and tro()= tro(:; kl, k2, k) in (2.4) and (2.8), respectively.

Remark 6.1. If is of normal type, kl k2 holds and if tr is of Khrapkov type [10]

(6.1) cr --/IR1 + ,t/,2R2

with scalar functions/x; and polynomial matrices R;, then it must be even of triangular
form, i.e., the Wiener-Hopf system decomposes.. More precisely there holds that (i)
both of the main diagonal elements disappear (two isolated boundary value problems),
or (ii) they are linear dependent and at least one of the other two disappears (excluded
due to an isolated Wiener-Hopf equation with another suitable space setting; see
Remark 2.3.3(i) or (iii) where both of the off-diagonal elements disappear (trivial,
since o- is constant)).

So the explicit factorization method of 3 does not help in any case where kl k:
although the existence question is completely answered by Corollary 2.2 (with unknown
partial indices).

Remark 6.2. The idea to invert Wo using the fixed point principle [15], [21] works
in the case A (0, 1) where we have a bounded factorization. Consider tro(sC; kl, k2)
as a perturbation of tro(sC; k) with k 1/2(kl + k), Im k; > 0, and the same coefficients,
i.e., the same characteristic parameter A. Using the factorization (4.8) tro= tro_ro+ of
tro(:; k) we obtain

O’o(:; kl, k2) O’o(:; k)(I + tr())

with I1  11 1 for [k k21 < (e) and further

cro_(:; k)(I + t())tro+(:; k)

with IIIIL(,)< 1 for IIk-kll < g(1).
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This yields the (usual) representation

W-I F-1 --1 F-1Oo+ F ’. (1+ ((:) F)Jl+ F-1-1 F]0"0_ L2(+)2.
j=O

Sufficient estimates for kj can be obtained easily, in contrast to the case h E C\[O, 0o)
where the factors are unbounded and we only know about the invertibility in a
nonspecified neighborhood of W.

Acknowledgments. The author thanks Robert Allan Hurd who was a guest
professor at the Technical University of Darmstadt, funded by the DFG in 1986, for
many fruitful discussions that initiated this work and that lead to the explicit factoriz-
ation of the symbol matrices under consideration.

Appendix. The parameter regions. The admissible values of C in (3.3) are described
dependent of A E C. Another choice of the branches leads to the same factorization.
Here we have Re C [0, 1 ], Im C (0, 0o) or Re C (0, 1), Im C (-0o, 0] (Figs. 1-4).
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GREEN-RIEMANN FUNCTIONS FOR A CLASS OF HYPERBOLIC
FOCAL POINT PROBLEMS*

NEZAM IRANIPARASTY

Abstract. Focal point problems such as those in [Hiroshima Math J., 14 (1984), pp. 203-210] in a

characteristic triangle have been extended to similar problems for hyperbolic equations of the form utt uss +
q(s, t)u -Ap(s, t)u. Criteria for the existence of eigenvalues are established by means of Riemann and the
generalized Green functions.

Key words, focal point, eigenvalue, Riemann function, Green-Riemann function, Riemann’s method,
Cauchy problem

AMS(MOS) subject classification. 35L05

1. Introduction. In [5], Kreith has used d’Alembert’s method and the theory of
positive operators to study certain hyperbolic boundary value problems. In this paper
we extend some of the results of [5] to a more general problem using Riemann’s
method and the theory of positive operators.

Historically, one of the basic assumptions underlying mathematical models of a
vibrating string has been the notion of "simultaneous crossing of the axis" [1]. This
assumption refers to the phenomenon of the string passing through its equilibrium
state, a quite feasible occurrence for free strings. However, for a string under an
arbitrary linear restoring force, such a phenomenon is more difficult to establish. Kreith
[4] has studied one such formulation, a semidiscrete case of the following problem:

(1.1) tltt-tlss4C-p(s, t)u=0, 0<s<L, t>0,

(1.2) us(O, t)=us(L, t)=0, t>0,

(1.3) u(s, O)=O, ut(s, O)= g(s), O<- s<-_L,

(1.4) u(s, T)=O, T=const., O<-s<-L.

In a related paper by Kreith [5], the spatial boundary conditions (1.2) are left
out and the differential equation (1.1) is considered over the characteristic triangle

R(s, t)= {(o, 7"): s-(t--)< o’<s+(t--), O< 7"< t}.

Under suitable initial conditions of the type (1.3) the string is then required either to
pass through its equilibrium or to be at rest at a single point s 0 at time T, which
constitutes a modification of condition (1.4). The "hyperbolic focal point problems"
of [5] are then many-degrees-of-freedom analogues of the boundary value problems
for d2u/dt2+pu=O, (p>0).

In this paper we extend the techniques of [5] involving an equation of the type

utt-uss+Ap(s, t)u=0, (s, t) in R(0, T),

under appropriate initial and time boundary conditions, to the equation

(1.5) u,-Uss+(q(s, t)+Ap(s, t))u=0, (s, t) in R(0, T),

under the same conditions.

* Received by the editors April 20, 1987; accepted for publication (in revised form) June 1, 1988.

" Department of Mathematics, Western Kentucky University, Bowling Green, Kentucky 42101.
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In 2 we use the Green function method of [5] to establish a positive eigenvalue
and its corresponding nonnegative eigenfunction for (1.5) when q is a constant. Under
the initial and boundary conditions of 3, the method runs into difficulty (as in [5])
when q 0, but succeeds when q c 0. Under the conditions of 4, we see that (1.5)
can only be transformed into an integral equation. No solution has been established
in this case.

2. Right focal points. We apply the technique of [5] to the problem

u,,- u + q(s, t)u -hp(s, t)u in R(0, T),

ut(s, 0)-0 in [-T, T],

u(0, T) 0.

First the data u(s, O)= kg(s) will be assigned to solve the Cauchy problem

u,,- uss + q(s, t)u -Ap(s, t)u in R(0, T),
(2.1)

u(s, 0)- kg(s), u(s, 0)-0 in I-T, T],
and then the condition u(0, T)= 0 will be imposed to find k.

By Riemann’s method

u(s,t)=- u(s+t,O)+u(s-t,O)+ (vu-uv)do’+ -Apvudo’dr
d s--t (s,t)

therefore (2.1) has the solution

u(s, t) kg(s + t) + kg(s t) kg(tr)v,(o’, 0; s, t) dtr
ds--t

(s,t)

where v(tr, r; s, t) satisfies

v-v,+q(tr, r)v=0 in R(s, t),

(2.2) v-=l alongr=-tr+(s+t),

v=l alongr=er-(s-t).

Hence u(0, T)=0 implies

and the solution to

’R<O,r) Ap(cr, )v(r, ; O, T) u &rd
g( T) + g(- T) Irr g(cr)v,(o’, 0; 0, T) do"

(2.3) u(s,O)=kg(s),

u(0, T) 0,

can be written in the form

-u(s,t)=
i O, T)

where

(2.4)

utt- Uss + q(s, t)u -Ap(s, t)u in R(s, t),

u,(s, O)=0 in I-T, T],

G(s, t; er, r)p(tr, r)u dtr dr,

1 g(s+t)+g(s t) --.s--t g(r)v,(Cr, 0; S, t) do"
G(s, t; r, r)-- g(T)+g(_T)_ir_r g(r)v,(cr, 0; 0, T) &r v(tr, r; 0, T)
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for (o., ’) in R(O, T)-R(s, t),

l g(s+ t)+ g(s t) --as--t g(O.)V(O., 0; S, t) do"
v( o", r; O, T)

2 g(T)+g(-T)-r_r g(o")v(o", 0; 0, T) do"

1

2
v(o",r’s,t)

for (o", r) in R(s, t).
For q(s, t)=-O the Riemann function v(o", ’; s, t)-- 1 and the Green-Riemann

function (2.4) reduces to

1 g(s + t) + g(s t)
G(s, t; o", r)= g(T)+g(-T)

for(o+/- r) in R(O, T)-R(s, t),

l g(s+t)+g(s-t) 1
for (o., r)in R(s, t).

2 g(T)+g(-T) 2

In [5] it has been pointed out that such a Green function is not symmetric but is
nonnegative for positive concave g in [-T, T]. To show that G(s, t; o", -) can be made
nonnegative in R(0, T) for q(s, t)>= 0, we need the following lemmas.

LEMMA 2.1. Let q(s, t)>--0 and v(o", r; s, t)>-0 in R(s, t). Then v(o", r; s, t)>= 0 in

R(s,t).
Proof. Choose the change of independent variables x x//2((t -) + (s o")) and

y=x/-/2((t-r)-(s-o")) to transform (2.2)into

(2.5) Vxy +1/2q(x, y)v O,

v(x, 0)= 1, x in [0, x/T],

v(0, y)= 1, y in [0, x/T].

Equation (2.5) integrated over [0, y] and [0, x] yields

Vx(X, y)= - q(x, "q)v(x, "q) dq -<0,

Vy(X, y)- - q(:, y)v(, y) d =< O;

therefore

v= -x//2(vx+Vy)>=O.
LEMMA 2.2. Let q(s, t)=--- C>0, C be a constant, and to be the first zero of Jo the

Besselfunction oforder zero. Thenfor T -< to/v/-(, v(o", r; s, t) >-_ O for all (s, t) in R(O, T)
and (o", r) in R(s, t).

Proof With q=-C, the Riemann function v(o", r; s, t)=Jo(x/-F), where F=
x/(t-r)2-(s- o’)2. The function Jo is nonnegative for x/-F-< to. This implies that Jo
is nonnegative for all (o., r) lying in the region between the two branches of the
hyperbola (t--)2-(s-o")=to2/C. Therefore R(s, t) will lie in this region, for all
(s, t)in R(0, T), if T<-to/x/-.

It follows from Lemmas 2.1 and 2.2 that for q=-C>0 and T<-_to/v/-( the
inequalities v(o", ’; s, t)_-> 0 and v(o", r; s, t)_-> 0 are satisfied for all (s, t) in R(0, T)
and (o", -) in R(s, t). Let To<to/x/-t be chosen such that v(o", 0; 0, To)>=m for-To -<

o"-< To. Let v(o", 0; s, t)-<M for (s, t) in R(O, T), s-t<=o"<=s+ t. Assume that g is
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positive and concave with a maximum go and minimum g(T) g(- T) over the interval
I-T, T], where T satisfies

(2.6) T =< min (g( T)/Mgo, To).

Then with To, m, M, go, g(T), and T so defined we have the following lemma.
LEMMA 2.3. Let T be defined by (2.6) and let g be a positive continuous function

with g" <= 0 in T, T]. Then the values ofg in (- T, T) can be chosen so that G(s, t; or, r) >=
0 in R(O, T).

Proof For the integrals in the numerator and denominator of the expression for
G we have

g(o-)v(o-, 0; s, t)do- < 2 TgoM <-_ (2g( T)/Mgo)goM 2g(T),
--t

T

-T
g(o-) v(o-, 0; 0, T)do- <2TgoM <- (2g( T)/Mgo)goM 2g(T).

Therefore g(s+ t)+g(s-t) can be chosen large enough in (-T, T) so that

g(s+ t) + g(s t) [s+t-Js-t g(o-)v(o-, 0; s, t) do" 1 v(o", r" s, t)
g(T)+g(-T)-r_T g(o")v(o", 0; 0, T) do" m v(o-, ’r; 0, T)"

Hence G(s, t; o", r)>= 0 for all (s, t) and (o", r) in R(0, T).
For p _-> 0, define A to be the operator

A[u]--ff
R

G(s,t;o",r)p(o",r)udo"dr.
(O,T)

Then A is uo-positive and completely continuous in Lq(1 < q <) due to the bounded-
ness of G and p [3, Chap. 2, pp. 230-232]. When we choose K to be the cone of
functions u nonnegative in R(0, T), the operator A maps K into K. The theory of
Krasnoselskii [3, Chap. 2] then yields the following theorem.

THEOREM 2.1. There exists a T and a function g positive in I-T, T] such that for
p >= 0 in R(O, T) and q C > 0 the eigenvalue problem (2.3) has a unique eigenvalue
Ag > 0 and a corresponding unique nontrivial solution that is nonnegative in R(O, T). All
other eigenvalues of (2.3) satisfy IAI> A.

3. Left focal points. An argument similar to the one in 2 can be applied to the
following eigenvalue problem:

(3.1)
Utt- Uss + q(s, t)u -Ap(s, t)u in R(0, T),

u(s, 0)=0, ut(s, O)= kg(s) in I-T, T],

(3.2) u,(0, T) 0.

However, for q(s, t)=O the technique of 2 fails. In this case a result has been
established in [5] for the existence of a focal point for

ut, us +p(s, t) u 0 in R (0, T),

u(s, O)= O, ut(s, O)= kg(s) in I-T, T],

u,(O, T) O.

Again solve the Cauchy problem (3.1) by the Riemann method to obtain

1( fs+’ II/ )kg(o")v(o", 0; s, t) do"- Ap(o", r)v(o", r; s, t)u do" drU(S, t) - .s-t (.,)
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and so

1(ut(s, t)=- k(g(s+ t)v(s+ t, O; s, t)+ g(s- t)v(s- t, O; s, t)
s+t

+ g(tr)l)t(O’, 0; s, t) do’)
ds--t

-A (p(-,r+ (s + t), ,r)v(-,r+ (s + t), 7; s, t)u(-,r+(s+ t), ,r)

+p(,r+ (s-t), r)v(r+(s-t), ; s, t)u(,r+(s-t), r)) d,r

-t p(, -)v,(c, -; s, t)u(, -) -R(s,t)

Impose condition (3.2) and assume that p(-r+ T, r)=p(r-T, ,r)=-O, 0<= r<= T to
obtain

A R<O,r p(o’, ,r)Vt(O’, ,r; O, T)u do" d,r
k= g(T)+g(-T)+[.r_r g(o’)v,(cr, 0; 0, T) do"

The solution of (3.1), (3.2) can now be written in the form

1
u(s, t) RO,r) G(S, t; or, r)p(cr, r)u do" d,r,

A

where

G(s, t; tr, ,r)
1

2

g(cr)v(o’, 0; s, t) do"

g(T) + g(- T) + g(o’)vt(tr, 0; 0, T) dtr
T

v,(o, ,r; O, T)

for (o-, r)in R(O, T) -R(s, t),

1 ds--t
g(cr)v(cr, O; s, t) do"

2 g( T) + g(- T) + Ir_r g(cr)vt(cr, 0; O, T) do"
1

v,(o’, ,r; O, T)- v(o’, ,r; s, t) for (o-, ,r) in R(s, t).

As in 2, for q= C>0 the function v(r, r; s, t) =Jo(x/-F) and we have the
following lemma.

LEMMA 3.1. Let to be the first zero ofJo. Then for T<= w/v/- the Riemann function
v(o., ,r; s, t) Jo(x/-F) satisfies vt(cr, ,r; 0, T)_-<0 in R(0, T).

Proof Note that for F /( T ,r) (or)

vt(o’, "r; O, T):(x/r-(T-’r)/F) ((-1)kk/(k!)2)(x/r-F/2)2k-1.
k:l

To have vt(r, z; 0, T)<=0 in R(0, T) we let

(k/(k!)=)(x/-F/2)k->=((k+ 1)/((k+ 1)!)2)(x/F/2)2k+ for k- 1,2,3,...,

which implies that F must satisfy F _-< x//, i.e., T- ,r)- (tr)2 _-< 8/C. The characteris-
tic triangle R(0, T) now lies completely between the two branches of the hyperbola
(T-,r)2-(o’)2--8/C if T<=,fglV. But T already satisfies T<=wl/-<v//,f-, so
we are done.
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Let g be positive in [-T, T] and C > 4to 2. Then T < and the values of g at the
endpoints of [-T, T] can be chosen large enough so that

(3.3) g(T) + g(- T) + g(o.)vt(o., 0; 0, T) do" > 0.
T

Now by Lemmas 2.2 and 3.1, G(s, t; o", r)_-<0 in R(0, T). If p is chosen nonpositive
in R(0, T), then the operator A defined by

A[u]=ffR G(s,t;o",z)p(o",z)udo"dr,
(O,T)

is a positive operator on the cone K of functions u nonnegative in R(0, T). Once
more Krasnoselskii’s theory [3] implies the following theorem.

THEOREM 3.1. Let q(s, t)=- C > 4to 2 and T<-to/x/- where to is the first zero of the
BesselfunctionJo oforder zero. Letp(s, t) <- 0 in R(O, T) withp 0 along the characteristic
boundaries ofR(O, T). Finally let g(s) > 0 in [-T, T] satisfy (3.3). Then there is a unique
eigenvalue Ag > 0 to which there corresponds a unique nontrivial solution of (3.1), (3.2)
which is nonnegative in R(O, T). All other eigenvalues of (3.1), (3.2) satisfy IAI> Ag.

4. Conjugate points. It appears that even the introduction of an extra function q
to the conjugate point problem of [5] does not help resolve the establishment of a
conjugate point. By the method of the last two sections the problem

u,- Uss + q(s, t)u -hp(s, t)u in R(0, T),

(4.1) u(s, 0)-0, ut(s, 0)- kg(s) in I-T, T],

u(0, T) 0,

can be written in the equivalent form

u(s, t) G(s, t; o", "r)p(o", -r)u do" d’r,
i O, T)

where

1 0;
G(s, t; .___-T)o", =- -T g(o")V(o", 0; 0, T) do"

1 ++t g(o")v(o", 0; s, t) do"
-2 I_TT g(o")V(o", 0; 0, T) do"

v(o", r; O, T)

for (o", z) in R(O, T)-R(s, t),

1
v(o", z; O, T)- v(o", z; s, t)

for (r, r) in R(s, t).

Nevertheless, the Green-Riemann function G(s, t; o", z) cannot be made nonnegative
or nonpositive in R(0, T). However, the conjugate point problem (4.1), in a slightly
different form, has recently been studied by Kreith [6] and Haws [2]. Their method
involves construction of a symmetric Green function. The results of [6] and [2] show
the existence of such conjugate points.
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Abstract. For the wave equation with lower-order nonlinearities a regularity theorem is given which
ensures that solutions in certain L are in fact smooth solutions to the equation. For equations with energy
estimates the existence of global classical solutions in lower dimensions is obtained.
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1. Introduction. The purpose of this paper is to study the regularity of solutions
to the Cauchy problem for equations of the form

(1) u, ’ (-m)mu "41- au +f(u) g

in R/ x R with initial data

(2) u(O, x)= Uo(X), u,(0, x): Ul(X)
where rn_->l, 0=I-I(0/0xi),, ]al=2lai], and a=>0. The nonlinear term f(u)is
described in 3. The results we prove apply also to the analogous class associated to
the Schr6dinger equation"

(3) iut+(-A)’u+f(u)=g

with initial data u (0, x) u0(x).
The existence of classical (C2) solutions, particularly of (1), has been studied by

many authors. The results, however, all have some restriction on the dimension. In
the case m 1, J6rgens [4] proved the existence of classical solutions if n 3. This
was extended to n < 10 by Brenner and von Wahl in [2]. In the case m->2 these
solutions have been proven to exist by Pecher [7] and Narasaki [6], who extended
this to n <= 6(m k) + 4. Similar results have been obtained for the Schr6dinger equation
(3). For example, Tsutsumi and Hayashi [10] have shown the existence of classical
solutions when tn 1 and n-< 9.

In this paper we present a regularity theorem, valid in all dimensions, which states
roughly that a solution is smooth if it contains a critical amount ko of differentiability.
Since there is no positivity condition imposed on f(u) this theorem applies also to
solutions that eventually blow-up. If a positivity condition is added then the existence
of global classical solutions in lower dimensions is obtained.

2. The linear estimates. Let a => 0. The solution of the Caachy problem for

u, + (-A)’u + au O, t, x) R+ R"
can be written in terms of Fourier multipler transformations with multipliers

cos (t/a + Ijlzm) and (a + Iscl2") -1/2 sin (t/a + 1[2m).
Denote the corresponding transformations by Kc and K,, respectively. Let L(R")
(I-A)-’/Z(LP(R")) with norm Iflka,=--I(I--A)k/ZflLp. If k is a nonnegative integer,
then an equivalent norm is Iflp +y.ll=k IO’flp See [9].
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The following lemma summarizes work by previous authors on these trans-
formations.

THEOREM 1. Suppose p-14- q-1 1 and 0 <- A <- m.
(i) If A 4- mn[1/2 1/p[ m then K is a bounded linear transformation from

LP(R n) to L_,(R) with norm t(t) <- C(1 4- t) M, where M-M(n). Similarly Kt is a
bounded lineai" transformation from Lp R

(ii) Assume l(p_-<2. If m-l, suppose that A4-(n+l)ll/p-1/2[<-_l. If m) 1,
suppose that A4-2n[1/p-1/21 (2m. Then Kt is a bounded linear operatorfrom LP(Rn)
to L,(R) with norm K(t) such that o K(s) ds oo for all oo.

Proof. (i) Let ,/(x) be a C function of R such that (x)=0 if [xl_< 1 and
(x) 1 if [x[->_ 2. The multiplier

(1 (tl/’*:)) cos (tx/a + l:12")(1
determines a transformation on Lp with norm _-<C(1 4- t)4 by the Mikhlin-H6rmander
multiplier theorem [3 Thm. 2.5]). The remaining part of the multiplier for K c consists
of two terms of the form

k {eit("-[l’)},

where t x/1 + t2l:l2", a x/a + Il2m, . x/1 +1[2"*, and k=(m-A)/m. Each of the
multipliers in { } brackets is bounded on all L p, 1 <p<oo, with norms <--C(l+t)k<=
C(1+ t) and <_-C(1+ t)4 by the Mikhlin-HSrmander theorem. A simple change of
variables shows that the first multiplier has norm independent of t. But
,l()exp(il.l’)(l+[[2") -k/2 is a multiplier on LP(R) if 11/2-1/pl<k/n=
(m-A)/2mn. If n= 1, m= 1, A=0 then it is a multiplier for l<p<oo. See [9], p.
113. The proof for Kt is the same. In fact in this case the norm goes to zero as t--> 0.

(ii) In this case Pecher [9] has shown that

exp (itx/a + l12m)(a + I1)-/(1
defines a bounded transformation from LP(R) to Lq(R) with norm <-_CtP(1 + t),
where p-(n(1-21p)+m-A)/m and p=<0. If m= 1, then lip <-

1/2+(m-A)l(mn+ m). This shows that (I-A)A/2Kt is bounded with norm -<(t)_-<
CtP(1 + t). From the Plancherel theorem this operator is also bounded for L2 to L2

with norm <-Ct(m-A)/m. If m-A < n then p d0 when p 1 and so (I-A)A/2Kt is also
bounded from Lp to Lq for p arbitrarily close to one. This shows that the operator is
bounded for all 1 < p _<-2 and removes the restriction p =< 0 when m > 1. On the other
hand, if m- A_-> n, then the multiplier can be written as

1 + t?)-(-’)/2sin (t,/a +

The combination of Sobolev’s theorem, the Plancherel theorem, and Sobolev’s theorem
shows that this is bounded from Lp --> L2- L2- Lq with norm <-C for all 1 < p _-< 2.

The only restriction that now remains on p is when m 1. It is, however, necessary
that (t) be locally integrable. For this we need p > -1. For m > 1 this is equivalent to

When m 1 this is weaker than the other condition"

_-<1.
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For the application of Theorem 1, (4) and (5) can be rewritten as

(6) 2<-q<-2(n/l)/(n-l/2A) if m-1

(7) 2<-q<2n/(n-2m/A) ifm>l.

If the denominator is zero or negative this is interpreted as 2_-< q
In Example 1 below, the first part of Theorem 1 will be used. This imposes a

stronger condition

(8) 2<=q<2mn/(mn-2m+2A) ifm>l.

For the Schr6dinger equation

iu, + (-A)" 0

the multiplier is exp (it]lZm). Let K,s denote the corresponding transformation.
THEOREM 2. Assume l<p-<2 and p-l+q-1. If n(1/p-1/2)<m then KS is a

bounded linear transformation from LP(R ") to Lq(R ") with norm Ks(t) satisfying
o s(s) ds < for all <.

The proof of Theorem 2 is similar to that of Theorem 1. For the Schr6dinger
equation the condition on q is

(9) 2<-q<Zn/(n-Zm)

if2m<n and2=<q<if2m=>n.

3. The nonlinear terms. Several types of nonlinearity will be considered for (1).
The important information is summarized in the parameters ko, y, q, T and two
functions Y and to. The basic property is that for all k => ko there exist a locally integrable
function Y and a continuous function to on [0, T] such that

il0) IK,(f(u)(s))l+,,<=(t),o(lu(s)l,a)lu(s)l+,,a
for s, [0, T]. This inequality together with Gronwall’s inequality will allow us to
show that a solution u in L, is actually in L,+I, and so on. The particular values of
q, if, and to will not be important in the final result. We will concentrate therefore
more on ko, 3’, and T.

Example 1. Consider (1). Let ko=> A and

l<- y<-l+4n(1-A)/(n(n-l+2A)-2(n+l)(ko-A)) ifm=l
(11)

l<-T<l+4(m-A)/(mn-2m+2A-2m(ko-A)) ifm>l.

Let u be a function on [0, T] with values in LqA(R"), where q is a value satisfying (6),
(8) and q _-< T + 1. The function u(t)(x) will be written as u(t, x). Let N be the number
of multi-indices a such that lal <-A: N 1+ n +.. "n A. The nonlinear terms will be
assumed to be of the following form

f(u)(t, x)= d/(t, x, u(t, x), Ou(t, x), .),

where q is a real-valued C function on [0, T] R"+u. We place the following growth
condition on the function

(12) l0 t,x,z to(t, X, Z)I __--< C(1 + Iz])maxCv-Il’

for all (t, x, z) [0, T] x R"+N and (b, 6, a) Zo x Z+N. Also assume that 0q,(t, x, 0)
0 for all 6 Z, (t, x) [0, T] R". Thus ]cq,(t, x, z)] =< Clzl.
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For simplicity q, is assumed to be a real-valued function on [0, T] x Rn+, but
the proofs are the same if , is a complex-valued function on [0, T] x R x CN. In fact,
for the Schr6dinger equation it is necessary to consider such. complex-valued non-
linearities.

Let r/ C(R") be such that r/(z)=0 if Izl=< 1 and r/(z)= 1 if Izl2. Define
o( t, x, z) (1- (z))( t, x, z), =, and

(13) f(u)(t, x)= i(t, x, O"u(t, x), .)

for i= 0, 1. Now o and its derivatives are bounded, and satisfies

(14) 0 b,OOzl(t,x,z)lNClz[-I ifla[ N .
Let Z. We now describe the decomposition of 0 (f(u)) used in the proof of

(9). By differentiating (13) we see that

(15) O((u)(t)) 2 E OOzj)(u)(t)E C
i=1

where I,1 , I111+ I,1. We may assume that I11=1"" ". Define

I1
6(t)=o(f(u)(t))+E E (OOo)(U)(t) Ec O’u(t)

8 [a[> y i=1

(16)

+(t) 2 2 OxOzo)(U)(t)X c H O’u(t)
Il=J i=

for Oj < . Also p p, p2 q, p+2 q/j for 1 j < %
LEMMA 1. Let ko, q, be as described above. If (k-A)+ n(1-2/q) (k-A)n/q,

k Z and k ko then there exists a continuous function on R such that

(17) If( u)( t)lk+l__A,p l(I U (t)l ,)l U (t)lk+l,q

for all u(t)L+,(R"), t[0, T].
Proof If[fl] k-A+ 1 then O(f(u)(t)) has an expansion as in (15). First consider

the terms in (15) where [al> y. In this case 00 L, and so this function can be
ignored. We wish to apply H61der’s and Sobolev’s inequalities to get

(18) H o’u(t) H [o’u(t)l/.,lu(t)l-l,q u(t)l+l.q.
i=1 p i=1

To do this we must find a [0, 1] such that a 1 and

N -, i=1
n p q

(1 k-[i[)
+

ai 1
N--N-, i2,

q n p q

where In, IN (k-A+ 1)(A+ 1) and s+ max {s, 0}. These inequalities can be written
equivalently as

+l,l-g- a, i=

(19)
q

+ll-k NaN i>2
q
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The sum over i= 1,-.., lal of the right-hand terms is lalPlq >- lal/y> 1. If we can
show that the sum of the left-hand terms is less than or equal to one then a suitable
collection {ai} must exist.

Let

s- +ll-g- 1 + +l,l-k
i=2

Consider the effect on S of differentiating in (15). Differentiating O,u adds at most
one to S while differentiating 1 can add as much as A + 1 because of the chain rule.
If (n/q)+(A+l)-k<l (that is, k>A+n/q), then S is largest when lal=l-and
lull k + 1. In this case

(nS<_- -+k+l-k-1
q

and the sum of the left-hand sides of (19) is bounded by pq =< 1. On the other hand,
if k<=A+ n/q when $ is largest for terms where lal k-A+ 1 and Ivil=A+ 1. In this
case

S<_- +A+l-k-1 + +A+l-k
i=2

(0)
=(k-A+ l)(+A+ l-k) =-(k-A)2+(k-A) n

q

Thus the sum of the left-hand sides of (19) is bounded by

{-(k-A)+(k-A) n-+n-.
q

The condition on k given in the statement of the lemma guarantees that this is less
than or equal to one. This completes the justification of (18).

The proof for la <_-), is similar except that in this case the functions ql are
no longer bounded. The terms in (15) are bounded by

(21) U(t)
IIA

HBlder’s and Sobolev’s inequalities give

U(t)l p
Ila p/a i=1

lu(t)l-, lU(t)lk+,,q,

assuming that we can find constants a,e [0, 1] such that ao(y-]a[)+li, ai 1 and

n p q

1 k+l-lvi < <--,
q n p q

q n p q

i=0

i=1
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Equivalently,

p n
k+A <ao<p

q

+111-/- --<a -p
q

t+luil-k <-- ai <-p.
q

The weighted sum of the right-hand sides is ,p/q => 1. For the left-hand sides consider

S=(3,_lal)
n

k+A + +lz,,l-k-1 + lu, l-k
i=2 q

If k-A>= n/q the maximum of S occurs when I1 and I1 =m/ll k/ . Then

s--<0+ +1,1-- =---<-
q P

If k-A<n/q then I,I_-<A/ v where l_-<vi and 2 vi--<l/31 k/l-A. Then

S<_(/_[a[
n
k+A + +A+vl-k-1 + +vi-k+A

i=2

,--(-(,-+ 2 v+--_-<,--(-l(,-.q i=1 q

Therefore to ensure that S <-nip n- n/q we require

/n/ q <= n- n/ q + k A)( / 1).

In terms of ,/this is equivalent to

(22) ,_-< 1 + n(q-2)/(n-(k-A)q).

Since the right-hand side is an increasing function of q for (k A) _-< n/2, we substitute
the upper bounds for q given in (6) and (8).’Since k_-> ko, this gives (11).

The proof of the lemma is concluded by summing over
LEMMA 2. If ko is a constant such tha ko>-A and (k-A)2+n(1-2/q)>-_

(k A) n/ q for all k >- ko then esimate (1 O) holds for all k >-_ ko.
Proof. Let 131 k + 1- A. Lemma 1 gives the appropriate estimate forf(u). Next

we prove the corresponding estimate for 4j(t), as defined in (16). The proof of Lemma
1 shows that 14(t)l is bounded by the right-hand side of (17).

For 42(t) we use the fact that

InI<=A

because I(0Po)(t, x, z)l _-< Clzl. Hence

Iba(t)lq <= lu( t)la,q <--lU(t)l,q.
For each 1 <=j < 5’, Pj/ q/j and the derivatives of ’o are bounded. Therefore by

H61der’s inequality

I+a(t)lq/ c I-I Io’iu( t)lq flu( t)lqlU( t)l+,q.
i=1
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By Theorem 1, Kt is bounded from Lp to L and from Lq to L with norms K(t)
and o’(t). Therefore by interpolation K, is bounded from LPJ to Lq with norm
-< (t) + tr(t) ;(t). Using Lemma 1 and the estimates for the bj gives the inequality
(10). As explained in (8) the condition on 3’ is given in (11).

The other property off(u) that is used is the observation from (14) that differenti-
ation with respect to does not change any of the estimates. This is used later in
Lemma 9.

Example 2. The condition on ko can be relaxed if we consider fractional orders
of integration. The use of Besov spaces to accomplish this appears in Brenner 1] and
Brenner and von Wahl [2]. The cost of this extra freedom in k, however, is that in
(12) we must add the condition

(23) Io,ooT(t,x,z)l<-_f(l+lz[)-I1 iflc[ < y+l.

Thus certain derivatives of p must decay. A condition of this type appears in [2, 5,
p. 112].. All other conditions are the same as in Example 1.

LEMMA 3. Ifko Rissuchthat (r-A)2+ n(1-1/q)> (1 + n/q)(r-A)forallr R,
r >= ko then there exists e > 0 such that for all r >-_ ko there exists a continuous function
on [0, T] satisfying

g,(f( u)(s))l+, <= ( t)o2(lu(s)l,)lu(s)l+,
for all s, [0, T].

Proof Lemmas 1 and 2 settle the case when r Z and e 1. The proof of Lemma
3 is a modification of this argument. It suffices to consider two cases, the first case is
when r + e Z. The second case is when r + e -< r < r + e ([ r + e is the integral part
of r+ e).

Case (i). Suppose that r+ e Z. The difficulty is proving Lemma 1 arose when
trying to satisfy (19). In this case I1 r + e- A and S becomes

S- /[,ll-r-e / /l,l-r
i=2

As before, the case r >-A + n/q presents little problem. If r < A + n/q then the largest
value of S occurs when [a[= r+e-A and I,I-A/ 1. Thus

S <- +A+l-r-e + +A+l-r
i=2

-+l-e +e-.
q q

The expression is bounded by n/p n- nq if

e(A+n/q-r)<-(r-A)2+n +1 (r-A).
q

Therefore an appropriate value of e > 0 exists if

(:4) (r-a)+n--> + (r-a).
q

Case (ii). Suppose that [r+e]<-r<r+e. Let k=[r+e]=[r] and
Here it is appropriate to obtain estimates in terms of the Besov spaces Brp,q(R’). See
[2], [9], [10]. Let o represent the Lp modulus of continuity of g e LP(R)

o(, g)= sup Ig(.+h)-g(.)lp, p>_-l.
Ihl_-<
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Then the norm of Bp,q(R n) is given by

IIIglllr,v,, Igl, + t -rq-k . COp(, Og)

These spaces are close to the LPr(R n) spaces in the sense that for any r R, 1 < p < o,
1 < q-<_oo, e>0,

LP/(R") B’p,q(Rn) LL(Rn),
and the inclusions are continuous.

Here Ifll k-A, and we will prove that

< o2(lu( t)lr,[[[o’f(u)(t)lllr+, k.p,q-- o)lllu(t)lllr-,,o,
where el > 0 and k_<- r + el < k + 1. If we can prove this inequality then the statement
of the lemma will follow by replacing the Besov space norms with Lrp norms and then
applying the operator K,.

The function O(f(u)(t)) can be written as a sum of products as in (15). To
calculate the Lp modulus of continuity of the terms where -< it is necessary to
prove that

IO OxOz d/l t, x, z) O OxOz 1( t, x, zz)l <= C(Iz[ + Iz2l)e-Il-llzl-
ifll_-< /- 1.

This is an easy calculation. However, when 2’-1 < ]a[ < 2’ the extra condition (23) is
needed to prove that

b(26) [OO’Oz I]tl(t, x, z,) -0,0x0= ,(t, x, z2)l CIz,- z2l -I1

With these two inequalities it is not hard to calculate the Besov space norm of the
terms with lal-< 3’. The Besov norms for the terms with [al> 3’ are straightforward.
The only problem is to check the condition imposed on the parameter r.

Equation (18) is replaced by

II o ’u( t)
r+e1-k,p,q j= ij

-< u (t)lr+e,q,
where el < e. The sum overj comes from the use of the triangle inequality in calculating
the modulus of continuity. The conditions analogous to (19) are

+l,l+e-e-k <-_a <-p- ifi=j
n q

+1,1- r _-< a, _-<
p

if ej.
n q

We must ensure that

+ +l ,l-r <-.
p

As in Lemma 1 the case r >-A + n/q is easy. Suppose that r < A + n/q. This sum is
largest when lal k-A and I,l A + 1. Now (27) becomes

--+A+l-r (k-A)+(e-e-k+r)<-
q P



NONLINEAR WAVE EQUATIONS 423

or

(r-A)2+n-->(r-A) +1 -(r-k) A+-+2-r -(e-el).
q q

Since this condition is weaker than (24) we are done. Therefore in this example ko
can be any real number such that ko => A and

(r-A)2+3" > 1+ (r-A)

for all r >= ko.
LEMMA 4. Let r R, r >-_ k then
(i) Ig,(f(u)(s))lr,q <= (t)o(lu(s)l,)lu(s)l,
(ii) IK,(f(v)(s)-f(v)(s))l, < (t)Ol(S)lv(s)-v_(s)l a

r,q

where tol(s)= ,o=(IVl(S)l+lv=(s)l) and o_ is a continuous function on [0, T].
Proof. The power d comes from (23) and (26). Statement (i) follows from the

proof of Lemma 3 with e 0. The proof of (ii) is virtually the same.
Example 3. The fact that Lq to Lp estimates were used for Kt resulted in the

restriction (11) being, imposed on 3’. The growth condition on 3’ can be relaxed for
m > 1 if we assume that

(28) 10b007 (t, X, Z)[ _<-- Clz] v-Il.o

and 9,axd/(t,x, 0)=0 for all (t,x, z) and (b, 3, a). This is not a serious restriction in
higher dimensions, where 3’ < 2. However, where 3’ is permitted to be large it requires
that has a ceain number of zero derivatives at z 0. In this case d(t)= (t) and
Kt is considered only as a mapping from tp to tq. The proof of the analogue of
Lemma 1 is easier here since the splitting f=fo+f and the are not necessary. As
in the proof of Lemma 1, y must satisfy

e 1+ n(q-2)/(n-(k-A)q).

If the upper bound in (7) is used for q then the new range is

(29) lT<l+(4m-2A)/(n-2m+A-2(ko-A)) ifm>l.

For the SchrSdinger equation (22) and (9) imply that

l<-_3"<l+4m/(n-2m-2n(ko-A)) if2m+2(ko-A)<n

and

l<_-y< if2m+2(ko-A)>=n.

Example 4. In some cases the critical index ko can be lowered. Let 0_-< A1-<-A
and suppose that f(u) is a function as in Example except that f(u) is a polynomial
as a function of au for all a, Ic[ > A1. The nonlinearities studied by Pecher [7] and

0Narazaki [5] have the form g(u)(t)=,l31<_A/2 (g3(O3u(t))), where g is a smooth
function on R such that

Ig)(r)l <- C(1 +lrl) maxv-j’), re R,j>-_O

and g(0)=0. This is a special case where p is a polynomial in Ou for ]al> A/2 (A
is even). In this case from (20)

S<--(k+l A/2)( n )-+A/2+l-k -1
q
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and the restriction on k becomes

n n(k-An-->(k-A
q q

The condition for 3’ is y_-< 1 + n(q-2)/(n-(k-A/2)q). This can be relaxed as in (29)
if

Ig(r)l =< Girl v-j,o), r R

Example 5. Like polynomials, nonlinearities involving convolution can be quite
simple. For example, if f(u)=(V, u2)u where V Lr, n/2<-r<-_, then

If(U)ik+l,q <-- Clu t)l 2

A 0, 3, and we may take ko 0. Here we use estimates of K, as an operator from
Lq to Lq. The fact that/Co 0 will imply by Theorem 3 that all solutions with this type
of nonlinearity are classical solutions, assuming that V and the initial conditions are
smooth.

The implications of all of these inequalities for f(u) will be discussed, in
5 and 6.

4. Existence. Define W(T) to be the space of continuous bounded functions
from [0, T] to L(Rn) with norm

[Igll sup {[g(t)l,q 0 _-< < T}.

The integral equation corresponding to the nonlinear wave equation (1) is

(30) u(t) KC (uo)+ K,(u)+ K,_(g(s)-f(u)(s)) ds

The solution for the corresponding linear equation is

h(t) KC (Uo)+ K,(ul)+ Kt_s(g(s)) ds.

Thus

u(t) h(t)- Kt_s(f(u)(s)) ds=- F(u)(t).

Rather than using Uo, Ul, g it will usually be convenient to express our regularity
assumptions in terms of h, the solution of the linear equation. For the existence of
solutions we use the standard procedure of setting up a contraction mapping in the
space W(T1).

LEMMA 5. For a nonlinear equation (30) with corresponding parameters ko, y, q,
T - o, if h W(T) and k >-_ ko then there exists T1, 0 < TI < T such that (30) has a
solution u W( T1).

Proof. Let k ko. By Lemma 4 or its equivalent

gt_,(f(u)(s)) ds <- C1 (t--s)to(lu(s)lk,q)[U(S)ll,q ds.
k,q

We may assume that to and to2 are increasing. Hence, using the norm of W,(T1),

(32) IIF(u)ll -< Ilhll + C, ;(s) ds ,o

This shows that F maps W(T) to itself.
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Similarly, by Lemma 4,

IF(v)(t)-F(vz)(t)lk,q<= Kt_s(f()l)(s)-f(v2)(s)) ds
k,q

(33) r
<-_ c=(Io(S) ds)oo=( o, I,/l, v=ll)II Vl-v=ll d/2.

Let M > 211hll, and suppose that T1 is so small that

Cto(M)+ Cto(M)Ma- (s) ds <-.
2

f I111 -< M, IIvll--< M, I111 -< M then (32) and (33) become

IIF(u)ll<-M and IIF(v,)-F(v)ll-llv,-vll/2.
Thus F is a contraction of the ball of radius M in Wg(T). Consequently F has a
unique fixed point u e W(T).

5. Regularity. The proof of the regularity of u uses repeated applications of the
following well-known inequality.

LEMMA 6 (Gronwall’s inequality). Let T>0. If U C([0, T]), H e C(R/), and
Loc(R/) are positive functions satisfying

U( t) <= H( t) + (t- s) U(s) ds

for all 0 < < T, then there exists oo C(R+), depending only on , such that

U(t) _-< o:(t) max H(s)
O<=s<=t

for all 0 <-_ < T.
The proof is a straightforward induction on T.
LEMMA 7. Suppose that f(u) is a nonlinearity from 3 with parameters ko, y, q,

and T. For any k >= ko, ifh W( T) and u Wo( T) is a solution of the integral equation
(30), then u W( T).

Proof. From the integral equation and (10),

[u( t)lk+l,q Ih(t)lk+l,q + ;( s)oo(lU(S)lk,q)lU(S)lk+l,q ds
(34)

Ih(t)lk+,,q + ;(t- s)lu(s)lk+l,q as

when a3 =sup {oolu(s)lk,q)" Os T}. The proof will be completed by induction on k.
The lemma is obviously true when k ko. Suppose it holds also for some k-> ko. By
Lemma 5 there exists T -< T such that u e W,/(T1). Let T be the largest such constant.
Gronwall’s inequality applied to (34) shows that

lu(t)l+, o)(t) h

for 0=< t=< T1, where to2 depends on and a3 but not on lu(t)lk+l,q. If T1 < T then
lim,_,r, lu(t)lk+,q < oo and u(t) can be extended past T by a contraction argument as
in Lemma 5. Since this contradicts the maximality of T then T1 T. As approaches
T, lu(t)lk/,q remains bounded. Consequently u e W,+(T). In the case of a nonlinearity
from Example 2 the argument is the same except that we conclude that u e W,+(T).
The result is the same in either case.
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LEMMA 8. Ifu is a solution ofthe integral equation (30), u W( T) and h Wk( T),
k > A+ n/ q, k >- ko, then u Wk( T).

Proof. Since by Sobolev’s inequality L c L then

If(u)(t)12<= C(1 /Iu(t)IA.)-I[u(t)IA.2.
Because A_-< m and K, maps L2 to L then an application of Gronwall’s inequality
to the integral equation shows that u W(T1).

Let /3 be a multi-index with I 1- k-A+ 1. Since u(t) L L then as in the
proof of Lemma 1

I1
(35) Io’(f(u)(t))l<=fo(lu(t)lk,q) E H o’u(t)

a,v i=1 2

To apply H61der’s and Sobolev’s inequalities as in Lemma 1 it is necessary to find
constants ai [0, 1] such that ai 1 and

( k/l-I/,’il)
+

ai 1
--<__--__-<- i=1

n 2 2
(36)

(1 k-[,l) + a, 1
__<--__<- i__>2.

q n 2 q

The sum of the right-hand sides is /(11-1)/q>-1/2. Note that I1 =< I/1 /A k/ 1 and
I,l_-<k for i_->2. Since k>A+n/q then

1 k-I,l_<l(l,l_a)
q n n

This means that the sum of the left-hand sides of (36) is largest when I1 1 and is
_-<1/2. Consequently an appropriate collection on {ai} does exist and

l0 (f(u)( t))12 _-< Cto (I u t)lk,q)lu( t)l k+.2.
hence [f(u)(t)ll+l_A,2 is bounded by the same expression. Now an application of
Gronwall’s inequality completes the proof that u W/I(T1).

LEMMA 9. Let k > n/ 2. Ifdp Lk R then Kt qb is differentiable in t, O( Kt dp /0
KtC(6) c C(R_+1) W(oo).

If qb Lk+.,(R ") then K (b) is differentiable in t, O(K (qb))/O
-(aI+(-a)’)K,(b) C(R_+I) fq W().

Proof. Let :,--x/a +l:l TM and cb,=(I--A)k/:cb. The function b, is continuous by
Sobolev’s theorem. The Lebesgue dominated convergence theorem implies that

s(Sr) ,(,){sin ((t + s),,)-sin (t,,)-cos (t,,)}s:,
converges in L norm to zero as s--> 0. Since

K’+s(dP)-Kt(dP)-KCt (6) < l(K,+,(ch,)-K,(ch,))-KCt (ch,)
S S 2

then the difference quotients converge uniformly to KtC(c)=Ocb/ot. The Plancherel
theorem also implies that Kt(ch) and Kc(b) are continuous functions of with values
in C(R) whenever b L,. The proof that K tC(b) has a continuous derivative is
similar. The lemma applies also to Kt(d(s)), where b W2k(T).

"2Let Wk,j(T) be the space of functions u such that Ou Wk(T) for all O<=j<=J.
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LEMMA 10. Suppose that kl > (J 1)m + (J + 1)A + n/2, J _-< 1, and u and h are
’2 2solutions of (30) and (31), respectively. Ifh Wk,j( T) andu Wk( T) then u We,j(T),

where k kl-(J- 1)m-JA.
Proof. Analogous to (15),

(37) O(f(u)(t))=, (obto)(u)(t) C 1-I Ot’O’U(t)
b i=1

where I,,I-<A, Ir, l<_-j. If u W and k2>A+n/2 then d’uL for all lal_-<A and
(obtOzp)(u)(t)L. Also Ot’Ox’u(t)L for all i. Therefore u Wk2,j(T) implies that
f(u) Wg2-A,j( T). In particular, f(u) Wk-A.O( T) 2Wk2_A( T).

Differentiating the integral equation (30) gives

Otu Oth KCt_s(f(u)(s)) ds

02,u= Oh-f(u)(t)+ (aI+(-A)’)K_s(f(u)(s)) ds.

2 ’2 "2From the first equation O,u e W_a( T), u e Wg,_,l(T), and f(u) e Wg,_2,( r). Since
the integrand is in Wg,-m-2(r), the second equation gives O,u Wgl_,_2( ), u e

’2 TIiz,_,,,_2,2(T), and f(u)e W,_m_3A,2(T). In general, Ou e WI_(__,(). This
proves the lemma.
ToM 3. Leef(u) be the nonlinearity described in 3 with parameters ko, % q

2and T1. Let TN T1, kl, kl> k(m+A)+n/2, klko. Suppose that UoeLk,+km(R ),
2u L+k_m(R"), g Wk-m,k( T).

"2If u Wo( T) is a solution of the integral equation (25) then u Wk,k( T). If k J
and km > J+ n/2 then u C([0, T]x R"). In particular, if J 2 then u is a classical
solution of the differential equation (1).

Proof Since kl > n/2, Lemma 9 proves that K(uo), K,(Ul) and K,_(g(s)) are
in ,,k. Therefore h ,.k(T). Lemmas 7 and 8 combine to show that u Wo(T)
implies uW,(T). Since kl>k(m+A)+n/2 then Lemma 10 proves that u
"2W,(T).

This theorem applies also in the case where blow-up occurs" T. If u has a
critical amount of regularity ko then the smoothness of Uo, Ul, and g imply that u is
smooth. Conditions that guarantee this critical amount of smoothness are discussed
in the next section. It turns out that the conditions for solutions to be classical for
0 T are similar to the conditions proved elsewhere for global classical solutions.
Also, note from (11) that the power y can increase as ko does.

The main difficulty for a specific equation is calculating the best values of ko such
that

IK,(f(u)(s))l,+., <= (
for all k -> ko (the general form of (10)). For the nonlinearities of Example 1 satisfying
(12), ko- A is either zero or the largest root of the quadratic x2 xn/q / n(1 2/q) 0
(Lemma 2). In Example 2 with the extra condition (23), ko-A is either zero or the
larger root of the quadratic x2-(1 + n/q)x+ n(1-1/q) =0 (Lemma 3). In Example
5, ko- A is zero. If ko- A 0 then every solution in W with smooth initial conditions
Uo, Ul, g will be smooth. If we take Example 2 with the upper bound given for q in (6),

{(hE/ n /2) //(n2/ n+2)2-8n(n+3)(n+ 1)}
ko ifrn 1 n > 10.

n+l
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As n --> 0o, q -> 2, and ko/n -> 1 / 2. If ko > n/2 then Sobolev’s theorem guarantees that
u L. A similar earlier result by von Wahl [11, p. 269] proved that if f(u) has
polynomial growth, and u Wo(T) where ko Z, ko>= n/2, then u is a classical solution
of(l).

6. Classical solutions and energy estimates. Let f(u) be a nonlinearity as in
Example 2 with the extra condition (28). For simplicity assume that Uo, ul, and g are
sufficiently smooth. In this section we derive several simple consequences of
Theorem 3.

If m 1 then

(38) 1 _-< 3/-< 1 + 4n(1 A)/(n(n 1 + 2A) 2(n + 1)(ko A)).
In this case q =2(n+ 1)/(n-1 +2A) and ko can be calculated from Lemma 3; that is,

(k-A)2+n(1-1/q)>(l+n/q)(k-A) for all k>_- ko.
This quadratic in ko-A has no real roots if (1 + n/q)2< 4n(1-I/q) or

(39) (n 2 + n + 2 + 2An)9 < 8n(n + 3 2A)(n + 1).
in particular, if A 0 then this is satisfied for n < 10. Theorem 3 implies that a solution
of the integral equation (30) such that u W(T) is a classical solution of (1) for
0< < T if n < 10. Similarly u W(T) is a classical solution whenever n satisfies (39).

If f(u) is a nonlinearity from Example 4 of the form

f(u)(t)= E (-1)llo(f/3(Ou(t)))
1/31_-<3/2

where f/3 is a smooth real-valued function on R, and f/3(0)=0. We make the extra
assumption that

rf/3(s) ds>-O rR.

For these nonlinearities the energy norm

E( t) ]atu( t)l + lu( t)l m,2
is bounded as a function of for all t. This shows that a weak L2 solution u(t) exists
for 0=< < 0o. Suppose for simplicity that rn 1. It follows from H61der’s and Sobolev’s
inequalities that u e wq(0o) since

< lu(t)l /--IIaiU (t)l q]0,(f(u)(t))], 1,2

if q<= 3/+ 1 <=2n(q-2)/q(n-2)+2. The restriction on q leads to the following upper
bound on 3/:

(40) 3/< 1 +4n(1 -A)/(n -2)(n + 1).
If ko 1 then (38) becomes 1 -< 3/_-< 1 +4n(1-A)/(n2-3n-2-2A). This upper bound
is slightly larger than 1 + 4/(n- 3) when A 0. The limit on 3/is imposed therefore by
the transition from L to Lq rather than by Theorem 3. By Theorem 3, u(t) is a classical
solution if n < 10 and (40) holds. The power (40) also appears in Lemma 111.5 of [2],
however, for lower dimensions, n < 10, Brenner and yon Wahl are able to prove the
existence of classical solutions for 3/< 1 + 4/(n 2).

If m > 1 then from (7) q < 2n/(n-2m + A). The condition for ko is

(41) (k-A)2+n(1-(n-2m+A)/2n)>(l+n(n-2m+A)/2n)(k-A) if k>_- ko.
This quadratic has no real roots if

(n 2m + A+ 2)2 < 8(n + 2m A).
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Let A=0. From (29), l<-y<l+4m/(n-2m-2ko). From Theorem 3 it follows that
a solution u of (30) in W(T) is a classical solution of (1) if n <2m+2+4.
Similarly a weak Lq solution (u Wqm(T)) is a classical solution of (1) for 0 < < T
if n<4m+4m/(m-1) and a strong tq solution (u W,,(T)) is classical if n<
6m-m/(m-1/2).

These results appear quite weak when compared to the results in [7] and [6]. In
these papers there is a positivity assumption to guarantee a finite energy norm. The
difference is that in this case, in contrast to rn 1, more essential use is made of the
energy norm. See, for example, Lemma 9 in [6].

For the Schr/Sdinger equation, A =0 and y < 1 +4m/(n -2m 2ko). The condition
for the dimension is (n-2m+2)2<8(n+2m). Therefore every solution in W/I(T)
is a classical solution for 0 < < T if n < 2m + 2 +4m. This agrees with the result
of Tsutsumi and Hayashi, who assuming a finite energy norm, proved that for m 1,
n-< 9, global classical solutions exist. The nonlinearities in this case typically are of
the form fo(u)u, where u is complex-valued and fo is a real-valued function on C.

Acknowledgment. I thank T. Narasaki for many interesting conversations on the
regularity theorem and positivity conditions.
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INFINITE-ORDER DIFFERENTIAL EQUATIONS AND
THE HEAT EQUATION*
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Abstract. A method is given for solving certain infinite-order differential equations whose characteristic
function is an entire function of order less than 1. The infinite-order operator is expressed as an infinite
product of first-order operators and is then inverted by a sequence of integral operators. The method is a
natural generalization of a finite-order method and can be computed numerically. The method is shown to
converge and an error estimate is given. Applications to solutions of some heat equation problems are
indicated.

Key words, infinite-order differential equation, entire functions, heat equation
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1. Introduction. It has seemed natural to many people to extend the idea of a
linear ordinary differential equation with constant coefficients

N

E a,,f<")(t) g(t)
n=0

to an equation with an infinite-order differential operator

(1) anf<n)( t) g(t).
n=0

In fact, during the first half of this century the subject received a great deal of attention.
In 1936, Davis [3] published a book on the subject with a bibliography of over 40
pages. In more recent times infinite-order differential operators were used by Hirschman
and Widder [4] to invert convolution transforms and by Widder [7] in his study of
the heat equation. Significant work, frequently by Russian mathematicians, is still, being
done. We know of no efforts, however, to use modern numerical methods to solve
practical problems related to equations of type (1).

Here we give a method for solving certain of these equations and a brief discussion
showing how the method can be implemented numerically. We also give examples
showing the connection of (1) to the heat equation. Many other types of infinite-order
differential equations can be used for other problems, and we intend to treat some of
them in later papers.

2. Basic assumptions and definitions. If we write (1) as .--0 a.Df(t) g(t),
(D= d/dt), then by analogy with the characteristic polynomial of a finite-order
equation, the characteristic function is defined as A(z)= Y..__o a.z. The infinite-order
differential operator is then written as A(D) and (1) becomes A(D)f= g.

To obtain a reasonable theory we must make certain assumptions about the
functions A(z), f(t), and g(t).

We will assume that A(z) is an entire function of exponential type of order a 1.
This means that for any e > 0 there exists an N such that la.I < n-"/(+) for n > N.
Except for polynomials, entire functions of order less than one always have an infinite
number of zeros. We also assume that all zeros of A(z) are real and negative. The
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following examples: cosh (x/), z-1/2 sinh (x/), and the modified Bessel function Io(x/),
each of which is of order 1/2, satisfy all our assumptions. (Our results can be immediately
extended to the case where A(z) has only a finite number of positive zeros.)

For A(D)f to be defined, f must be infinitely differentiable and Y’,n__o anf(t)")
must converge, but f(t) need not be analytic.

To insure uniqueness of the solution of an Nth-order differential equation, N
boundary conditions are prescribed. Here we prescribe the infinite number of conditions
f(")(t) 0 for > 0, 0. These conditions are required if f(t) is to represent the
temperature at an interior point of a region whose initial temperature is zero.

The function g(t) is assumed to be continuous for >-0, and g(t)= 0 if =< 0. We
do not assume g(t) to be analytic or even differentiable. In our applications g(t) will
represent the temperature at the boundary of a region or the average over the boundary
of the temperature. The behavior of f(t) for negative is of no concern.

In general our assumptions about A(z) are more restrictive than those found in
most of the classical literature, while the assumptions about f(t) and g(t) are consider-
ably less restrictive.

3. Examples of applications to the heat equation. Consider the one-dimensional
problem with variable end conditions:

ut(x, t)= uoc(x, t), -1 < x < 1, 0 < t,

u(x, 0) 0, -l=<x--<l,

u(-1, t)=dp(t), O_--<t,

u(1, t) dp2( t), O=<t;

u(x, t) is required to be continuous for -1 =<x -< 1, 0=< t. We assume bl(t) and b2(t)
are continuous for t-> 0 and vanish for _-< 0.

Let g(t)=1/2[qbl(t)+qb2(t)] and let f(t)=u(O, t). We will show that f(t) satisfies
the equation cosh (x/-)f( t) g( t) together with the condition f")(0+)=0. The
expression

{ x2n x2n+l }(2) u(x, t)= Y (2n)f(t)+ h<(t)
.=o (2n+ 1)!

represents a solution to the heat equation if f(t) and h(t) are in a suitable class of
infinitely differentiable functions. See Widder [7, p. 43] and Cannon [2, p. 27]. It is
seen from this expression that f(t)= u(0, t) and that

D
g(t)=1/2[u(1, t)+ u(-1, t)]= ,:oZ (2n)if(t) (x/-)f(t)

so that cosh (v/-)f(t) g(t). As for the condition f("(0+) 0, the fact that 4,1(t) and
b2(t) are both zero for =< 0 implies that u(x, t) can be defined to be zero for negative
and will still satisfy the heat equation. In fact the extended u(x, t) can be taken as

the solution to the following problem whose boundary data are continuous:

ut(x, t)= Uxx(X, t), -l <x < l, -l < t,

u(x, -1) 0, -l=<x=<l,

u(-1, t)=b,(t) ifO=<t, u(-1, t)=O ift<O,

u(1, t)=b2(t) ifO--<_ t, u(-1, t) =0 if t<O.
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Since every solution to the heat equation is analytic in x and infinitely differentiable
in (Widder [7, p. 84]) we see that

O" 02"f(")(0+) lim u(O, t)= u(x, t) =0.
t-,O+ O 0- x=O

In a similar manner we can show that ux(O, t)=h(t) satisfies A(D)h(t)-
1/2[bl(t)- b2(t)], where now A(D) sinh (x/)/x/-. It is also true that h(")(0+) 0 for
n=0, 1,2,....

If f(t) is the temperature at the center of a long cylinder of radius 1 and if the
temperature in the cylinder is zero at =0, then f(t) will satisfy Io(x/-)f(t)= g(t),
where g(t) is the average temperature on the surface, r= 1, of the cylinder.

All these examples can be derived, at least formally, by using the Laplace transform
to obtain an equation, A(s)F(s)= G(s), where F and G are transforms of our f and
g. The solution is then the inverse transform of G(s)/A(s). The difficulties we encounter
are that the transform of g(t) and the inverse transform of G/A may be very difficult
to find or may not even exist. If numerical methods are used, our method may be
preferable since findingf(t) may require less effort than the computation of G(s) alone.

4. Infinite products and a method of solution. Entire functions of order less than
one always have an infinite product expansion

(3) A(z)= A(O) l-I 1-
=0

where the A, are the zeros of A(z). Moreover,

A’(z) d
log A(z) E (z- A,) -1

A(z) dz ,=o

so that

(4)
A’(0)

2 a ;’
A(0) ,=o

For functions of order a less than one it is also true that Y. Ih,I- converges for any
/3 > a. This will be used in the proof of Lemma 5.

For a discussion of all these facts see Chapters 1 and 2 of Boas [1]. Section 12.10
of [1] in which Boas discusses infinite-order differential equations with analytic f(t)
and g(t) may also be of interest.

The operator A(D) is now written as a product of operators:

(5) A(D)= A(O) 1-
=0

The use of the infinite product rather than the infinite sum seems to be due to tt
[6]. It has since been used by many others, e.g., Korobeinik [5], whose methods are
related but differ considerably from those discussed here.

Although tt has made the same assumptions about the characteristic function
A(z) as we have, his objectives differ from ours. One result, however, his Theorem V,
is impoant to us. He introduces the notation A and (A) as follows:

Af= lim A(O) 1 f(t), (A)f=i 2 a.Df(
N =0 =0

Theorem V states that (A)f= Af if f is analytic. His proof, however, does not really
require the analyticity of f Infinite differentiability and the convergence of (A)f will
suffice. This more general result will be used in the. proof of Theorem 2.
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Equation (5) displays A(D) as an infinite product of first-order operators. We
denote them as K.=(1-D/A.). To find the inverse of K we solve K.f(t)=
f(t)-(1/h.)f’(t)= g(t) subject to the condition f(0)= 0. The well-known elementary
solution is

f( t) -Anet’x" e-SX.g(s) ds.

We define the operators L, by

(6) L,g( t) -Aet. e-S,.g(s) ds.

The L are inverses of the K in the sense that for any continuous g, KL,g =g and
for any ditIerentiable f satisfying f(0)=0, L,,K,f=f. We solve A(D)f=g by the
sequence of inverse operators, i.e., the solution to (1) is to be given by.f=
1-[,=o Lg/A(O). In Theorem 1 we will prove the convergence of this infinite product
of operators and in Theorem 2 we show that it indeed yields a solution to (1).

To construct a practical algorithm we let fo(t)= g(t)/A(0) and then define f+l(t)
recursively by f+1() Lf(t). A numerical method for computing L,f(t) is given
at the end of the paper.

THEOREM 1. IfA(z) saisfies the above conditions, then for any continuous g(t) the
sequence {fn} defined by

g(t) fo’fo( t)
A(O),

f/( t) -A e’ e-f(s) ds

converges uniformly in any bounded interval 0 <- <-_ T. We hae the explicit error estimate

II/-LII <21ol IlgllA(0) A’(0)-e(0) I1-
k=0

Remarks. We use the sup norm: Ilfll=suplf(t)l for 0_-<t_-< T so that we can
exploit the completeness of C[0, T] and the fact that convergence in this norm is
uniform convergence.

We will repeatedly use the formula

(7) f,/l(t) -A,, etA e-’".f,(s) ds

for the solution to the initial value problem

It is convenient to rearrange the first part of (8) as f+l(t)-f(t)= (1/A,)f’+l(t) and
take norms to get

(9)

(10)

ILL+,-L I1/.1 f’+, II.
The operator L,(g) in (6) may be written as Io-I e(t-"g(s) ds. Define

,(t) {A, eta if t>-O,
if t<0,

so that

(11) L,(g) ,(t-s)g(s) ds.

Before proving Theorem 1 we prove two lemmas.
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LEMMA 1. I]fn+,]l < [[fo[[ for all n >--0.

Proof Using (11) and taking norms, we have

IlL/ill--IIe(/)ll--sup (-x)L(s) dx

--< L sup ( ) d

From (10) we compute Ior (t- s) ds 1-e’ so that IIL/,II < IILII sup I- e’"l Since
A<0 and t_->0, I-e’"l < 1. Hence ILL.111 < IILIIo Likewise IILII < IIL-II etc.,so that
for all n -> 0, IlL/ill

LEMMA 2. f’,,+l < f for all n >= 1.

Proof We assume that n _>- 1 and show that f’,+ is obtained from f’, in exactly
the same way that f,+ is obtained from f,. Lemma 1 will then imply Lemma 2. We
must assume n => 1 since we did not assume fo(t) g(t)/A(O) to be ditterentiable. But
for n-> 1, f,(t) is differentiable and f,(0) 0, as can be seen from (7).

Let 0 in (8) and it follows that f’,+(0)= 0. We differentiate (8), and the result,
together with f’+(0) 0, gives

(12) f’.+,(t)-(1/h.)(f’.+l(t))’=f’.(t), fn+l(O)=O, (n-->_ 1).

We see that (12) is the same as (8) with f. and f.+l replaced by f’. and ftn+l, and
Lemma 2 follows.

Proof of Theorem 1. From (9), IIL/-LII=I1/;tIIIT’./II, and Lemma 2,
IIf’,/ < [If 11, we have

(13) Ilf,+,-f, < I1/.l IIf II.
If n <m are any two positive integers then (f,-f,)=(f,-f,+l)+(f,+l-f,+2)+
+ (fro-l--fro). Taking norms, we have IIf.-fll-<-IIf.-L+,II + IIL+I-L+II +’’ "+

Ilfm-l--fll. Using (13), we obtain IIf-f.ll</ll-l/l+,l-l/.../lA_ll-311fqll.
Hence

m-1

(14) IIf -L < IIf 2 lag[
k=n

The right-hand side of (14) can be made arbitrarily small by making n sufficiently
large. Therefore {fn} is a Cauchy sequence and limm-fm =f exists.

To derive the error estimate we take the limit of (14) as m to obtain
n--1Ilf-LII < I[AII Y:, IA1-1 Using (4), we have 2k=n lag[ -1-- A’(O)/A(O)--,k=O IA, 1-1

From (9) with n =0, we have II/11-Iol II/ -/oil. But II/-/oll < II/11 / II/oll < 211/oll so
that IIfll < 21;tol II/o11. Since fo g/A(O) we have the final result:

[ nl 11(15) Ilf-f, ll<2[Aolllg[lA(O)- A’(O) A(O)k=0[Akl--
Before proving Theorem 2 we need five more lemmas. The reader may wish to

look at the proof of Theorem 2 before reading the proofs of these lemmas.
In the lemmas that follow F(t) is any continuous function such that F(0) 0 if < 0.
LEMMA 3. For any e >= O, there is an with 0 <- <- e and a function r( such that

LnF(t)=F(t-)+r(t). Moreover, F(t-) and r(t) are continuous and Ilr(/)ll -<

2eollF(t)lI.
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Proof. Since 3(t-s) =0 if s> t, and F(s) =0 if s<_-0 we have

L.F(t)= 3.(t-s)F(s) ds

It--cxb I3(t-s)F(s) ds+ 3(t-s)F(s) ds.

Because 3, (t) is nonnegative, the generalized mean value theorem for integrals implies

6,(t-s)F(s)ds=F(t-) 6,(t-s) ds (where e ), and

(t-s)F(s)ds=F(t-) (t-s) ds (where0NNe).

From (10) we compute I’2 e =e and I;- (t-s) ds= 1-e (where we
write I in place of I to simplify notation). Even though and may be discontinuous
functions of t, the functions F(-) and F(t-) are continuous since

F(t-)=(1-e")- (-s)F(s) ds, and

F(- ) e-" (t- s)F(s)

We now have LF()=[1-e"]F(t-)+e"F(-) or LF(t)=F(t-)-
eF( ) + eF( ) F( ) + r( t), where r(t) -eF( ) + e"F( )
e"[F(t-)-F(t-)]. Hence

We return to subscripts and write e and in the next two lemmas, which deal
with sequences of the operators L.

LMNa 4. Iffor each we choose an e, thenfor each k there is an
and a function R(t) such that k: Lk(F)= F(t-X)+ R(t), where
X=2k=,k. Moreover, F(t-X) and R(t) are continuous and []R[[
[k=, (1 + Zebras) 1]]F].

Proof Use induction on the number, m n + 1, of factors in the product. If m n,
there is only a single Lk L,, and Lemma 3 gives the result. Assume the lemma is true
for m-n factors

m--1

fl Lk(F)= F(t-x_I)+ R-I,
k:n

m-1where X-I k= k and

e_
k=n

Applying L and using Lemma 3, we have

EkE= L Lk(F)
k=n k=n

=F(t-)+R_(t-)+r(t) where Ilrll2ellF+e_ll.
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Let R Rm-l+ r. Then R is continuous since r is continuous by Lemma 3 and Rm-1
is continuous by the induction hypothesis. The function F(t-X) is continuous since
F(t--x)=Hk=, Lk(F)-R(t). As for the norm of R, we have

IIRII < IlRm-lll + Ilrll =< IlRm-,ll +2eX IIF+ Rm-,ll,

Using the induction hypothesis on IIRm-lll, we have

]R < (1 + 2e’-a-) (1 + 2ekxk) 1 Eli + 2emx" Eli,
Lk=n

[mR 1-I ( + 2ekx) 1 F II.
k=n

LEMMA 5. There is a sequence of positive numbers ek such that -k=n ek and the
product Ilk=,, (1 +2ek) both converge.

Proof. Since a, the order of A(z), is less than one, there is a fl such that a < < 1.
Recall that the series o I1- will converge if > . We let e I1- so that

k=n ek k=n lAnl- converges.
The infinite product = (l+2e,) will converge if =oe=

=o exp (-I1(1-) converges. To show that this latter sum converges, let N be any
fixed integer such that N(1-)> 1. For any x>0 we have e-X<Nx-’, hence
exp (-IAI(-)) < gt I1-"- and therefore 2k=, exp (-Il(-) < N

LEMMA 6.

lim 1] LkF= F.
no k=n

Proof. Choose ek as in Lemma 5. The F(t-X) and R(t) of Lemma 4 are continuous
and X k--. k converges since 0 -k <- ek. We can therefore take the limit as m
in Lemma 4 to obtain Hk=. Lk(F)= F(t-x)+ R(t), where

e --< II ( + 2e") 1

Taking the limit as n oo, we prove the lemma.
LEMMA 7.

I-I LkF= 1-I Lk I-I LkF.
k=0 k=0 k=n

Proof. From the proof of Theorem 1 we know that Hk=n LkF converges uniformly
n--1

so that I-Ik=o Lk k=

THEOREM 2. Iff A(O)-1Hk=o Lkg, then A(D)f= g, that is to say, the function
constructed by Theorem 1 is a solution to (1).

Proof. By Theorem V of [5], we have

A(D)f i,E 1 f(t).a.D"f(t) lim A(0) Yo
Introducing the definitions of f, K., L., and canceling A(O), we have

A(D)f lim A(O) H
Lkg

lira Lkg.
k*=o k=O A(Oi n-oo k=O =0
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Applying Lemma 7, we have,

A(D) lim Kk Lk H Lkg.
k=O k=O k=n

Using the fact that the Kn and L, are inverses, we have

nil n--1

A(D)f=lim Kk H Lk I] Lkg lim H Lkg.
noo k=O k=O k=n noo k=n

Applying Lemma 6, we have A(D)f= limn_oo Hk=n Lkg g.

5. Numerical method for computing L,f(t). Our method necessitates computing
Lnf(t) for large values of ]An]. We will show how this can be done without computing
the extremely large e-s- or the extremely small e t". To simplify notation we omit
subscripts by writing L(f)= F(t)=-A e’ o e-Sf(s) ds. The integral is evaluated by
standard interpolatory quadrature formulas with e-s as a weight function. Taking a
stepsize of h, the two-point formula has the following form:

t+h

e-a f(s) ds= i -1 e(t+h)’[Klf(t)+ K2f(t+ h)].

Therefore

(17)

where

e-Sf(s) ds Klf(t) + K2f( + h

KI= K2= 1--Ah -Ah

Note that the terms A -1 e (t+h)’x and A e-(t+h)’ cancel; thus K and K2 do not depend
on the limits of integration but only on A and the stepsize h. The same will happen if
interpolatory quadrature formulas with more nodes are used, but we omit the details
here.

A simple algorithm for computing F(t)= L,,f can be based on (17).

Divide the interval [0, T] into N subintervals each of length h. Let A An and
compute K and K2. Let K3 eh and F(0)=0. Then:

For k 1 to N
Let F[kh] =f[(k- 1)h]K +f[kh]K2+ F[(k- 1)h]K3
End of algorithm.

The formula for F[kh] in this algorithm is the sum of the terms f[(k-1)h]K+
f[kh]K2, which give -A ekhx Jk- e- s) ds according to (15), and the term

F[(k- 1)h]K3 -A e(k-1)hA

0

e-f(s) ds eh.

These terms combine to give -Z eTM Ikoh e-’f(s) ds.
Note that as A--o, KI-0 and K2- 1 so that F[kh]-f[kh] agrees with

Lemmas 3 and 6.
The algorithm has been tested on a variety of problems and found to be stable.

When used on heat equation problems, whose solutions are known from other methods,
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the error estimate has been found to be reliable. The speed of convergence can be
substantially improved by standard "extrapolation to the limit" methods. We hope to
report more fully on the numerical aspects of our method in a later paper.
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Abstract. A differintegration operator of rational, real or complex order u, is defined in the literature
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tion operator of any noninteger complex order, i.e., in all cases except ordinary derivatives and primitives.
It is shown that branchpoint operator is distinct from, but related to, the rule of composition of differintegra-
tions, and can arise if (a) the two systems of differintegration named after Liouville and Riemann are
combined, or (b) if certain double,loop integrals are interchanged, in such a way that the inner path goes
through a branchpoint. The differintegration operator has been used widely in connection with special
functions [Fractional Calculus, Academic Press, New York, 1974; Fractional Calculus, 2 Vols., Descartes
Press, Koryama, Japan 1984; IMA J. Appl. Math., 36 (1986), pp. 191-206; Mat. Vesnik, 38 (1986), 375-390],
and should not be confused with the branchpoint operator, which can lead to different formulas, as shown
by the example of Hermite functions.

Key words, annihilation, ditterintegration, complex integration, cut-plane, branched functions, Hermite
functions

AMS(MOS) subject classification. 30A99, 30C45, 30E20, 30E99, 33A65

1. Introduction. The differintegration operator of complex order u can be defined
[16], [12] as a generalization of both the ordinary nth derivative and nth primitive,
which correspond to the particular cases of order, respectively, u +n, -n a positive,
negative integer n N. There is one system of differintegration, or one type of derivative
of complex order, for each set of branchcuts in the complex plane [1]; the two most
important systems [21], 13] are the Liouville [11] operator D"/Dz" applying to
analytic functions, and the Riemann [20] operator d’/dz applying to functions with
a branchpoint. The two systems are generally incompatible [2]; e.g., they lead to
formulas for the differintegration of exponential (Liouville type) and power (Riemann
type) that are inconsistent for nonintegral complex orders of derivation. The rules of
Liouville and Riemann ditterintegration may be similar (e.g., for zero) or distinct (e.g.,
for a nonzero constant). Here we introduce a distinct, but related concept, namely,
the branchpoint operator 8"/8z" of order

The branchpoint operator arises if some "invalid" manipulations are performed
with the differintegration operator, e.g.; ( 2) if the operator is applied under integral
sign at a branchpoint; ( 3) ifthe order ofintegration in a double integral is interchanged
so as to make one path go through a branchpoint. From this viewpoint some care
should be taken when using the ditterintegration operator repeatedly because, when-
applied outside its conditions of validity, it may still give quite definite results that ar
no longer ditterintegrations, but rather the outcome of a distinct operator, the branch-
point operator. The branchpoint operator 8!8z can only be applied after the Liouville
differintegration D"/Dz", and the result is a Riemann differintegration d +’/dz +’,
multiplied by a factor A(/z, v). Apart from the latter factor, the result looks like a
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composition of derivatives, albeit of different types. Since the coefficient does not
involve the independent z or dependent variables, the branchpoint operator retains
the linear property of derivation operators. The coefficient A(tz, u) depends on the
orders tz, u of the operators, however, and can, in certain conditions ( 3): (a) become
equal to unity, in which case the branchpoint operator reduces to a differintegration;
(b) vanish, in which case the branchpoint operator annihilates the differintegration to
which it is applied. More precisely, the case (b) above shows that a branchpoint
operator can be found such that it annihilates a Liouville differintegration operator of
any complex order other than an integer ( 4) so that the annihilation property fails
to exist only for ordinary derivatives and primitives.

The differintegration operator provides a powerful method of study of the proper-
ties of special functions 16], 15], because the latter are specified by the differintegration
of elementary functions [9], [8]. The application of rules of differintegration can be
used to give convenient proofs of a number of properties of special functions, viz.,
both shorter proofs of known results [3] or new results [4] possibly harder to find by
other methods. Since several of the proofs of properties of special functions involve
repeated differintegrations, care must be taken not to confuse differintegration and
branchpoint operators. This point is illustrated by the example of Hermite functions,
which can be defined by the differintegration of the Gaussian function ( 5); this
definition agrees with the integral representation of Hermite functions of complex
order and, in the case of positive integer order, reduces to the Hermite [7] polynomials.
The branchpoint operator can be used to annihilate a Hermite function of nonintegral
complex order, i.e., any Hermite function other than a polynomial. If the branchpoint
operator is replaced by a differintegration, the result is no longer zero, but rather
another Hermite function. The difference between branchpoint and differintegration
operators is made clear by noting that they lead, when applied to Hermite functions,
to distinct integral identities.

2. Relation between branchpoint and differintegration operators. Before we can
define the branchpoint operator, we must recall the definition of differintegration
operator, in the context [10], [14], [15], [1] of the theory of analytic functions.

DINION 1. The derivative of complex order D, of an analytic function F(z),
is defined by means of the generalized Cauchy integral:

DF f(z+)(1)
Dz

(F(1 + u)/27ri} (’-- z)-"-IF(") d,
d cx:exp{ arg(z)}

along Fig. 1, a Hankel [6] loop going around " z in the positive direction, and starting
and ending at infinity, respectively, above and below the branchcut C---{’: Isr] > ]z],
arg (sr) arg (z)}. The integral is assumed uniformly convergent with regard to z in a
region D and u is not a negative integer.

Remark 1. The expression (1) with complex , is designated "generalized Cauchy
integral" because in the case where , n is a nonnegative integer n e to, the integrand

oo exp [iarg (z)]

FIG. 1. The differintegration of an analytic function involves a contour integral (1) along the Hankel [6]
path, going counterclockwise around the branchpoint =z, and starting and ending at infinity in the -plane,
respectively, above and below the semi-infinite branchcut, joining z to infinity in the direction of arg (z).
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has a pole of order n + 1, and the loop can be closed around it, so that we regain the
original form of the Cauchy integral for the nth order derivative of an analytic function.

Remark 2. Formula (1) holds for all complex values of u, other than negative
integers v =-n with n 1; this case is covered by the analytic continuation of (1) in
the v-plane for Re(v)<0, by Weyl’s (1917) formula:

(2)
DF fdz

{r(-)}-- (z-x)--aF(x) dx,
exp {i arg (z)}

which is proved elsewhere [1].
Remark 3. The convergence of the integrals (1) and (2) requires a restriction on

the asymptotic behavior of the function F(z) in a sector about the branchcut, e.g.,

(3) arg(’)- 6 < arg(z)< arg(’) + 8: f() o(Re(u)-e),
for some e, 6 > 0.

Remark 4. The case where v -n is a negative integer n e N, which was excluded
from (1), and is included in (2), is the ordinary nth primitive.

The latter remark suggests that the preceding definition could be restated in terms
of integration with complex order.

DEFINITION 2. The operator integration I" with complex order u is defined by
the derivative D of complex order v.

Remark 5. The integration operator with complex order I’= D is defined by
(1) with v replaced by -v, for v complex other than a positive integer; for Re(v)> 0,
the integration operator I is also specified by (2), with v replaced by -v. In both
cases an asymptotic condition is needed, e.g., (3) with +v replaced by -v.

Remark 6. The similarity of Definitions 1 and 2, respectively, in terms of derivative
and integral, has led to the adoption [21], [16] of the term "differintegration."

As an example, we consider the analytic function F(z)= eaL
THEOREM 1. The rule of differintegration of the exponential is

(4)
D(eaz)

e---a
Dz

Proof Substitute F(z)= e into (1) for v complex other than a negative integer,
and into (2) for Re (v)< 0. Evaluation of the integrals in terms of gamma functions
leads [2] to (4).

Remark 7. Formula (4) was used by Liouville [11] to define a "derivation of
nonintegral order."

Remark 8. Definition (1) can be designated, on historical precedent, as the
"Liouville differintegration."

If function F(z) has one branchpoint z a, Definition (1) must be modified
because now the branchcut is finite [9], [8], [1], [2], viz., Definition 3.

DEFINITION 3. The derivative of complex order u of the function (z-a)"F(z),
where F(z) is analytic, and (z-a)" has a branchpoint at " a with exponent x, is
defined by the generalized Cauchy integral:

(5) d{(z-a)"F(z)}-{F(1- + ,)/2-i} (-a)"F()(-z)-- d,
dz

along Fig. 2, a teardrop loop, going around " z in the positive direction, and passing
through " a. The integral is assumed to be uniformly convergent with regard to z in
a region D, v is complex other than a negative integer, and Re (x)>-1.
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FIG. 2. Teardrop loop in the t-plane, passing through the branchpoint 0 (t 1) and going in the positive
direction around the other branchpoint 0), so that the finite branehcut along the straight line (0, 1)
lies in its interior.

Remark 9. The definition can be extended [2] to all other values of , ,, by using
integrals similar to (5), along: (i) the straight line joining sr a to sr z; (ii) the teardrop
loop, Fig. 3, passing through sr z and going around " a; and (iii) a Pochhammer
19] double-laced loop going around both sr a and sr z, twice, in opposite directions.

THEOREM 2. Definition (5) leads to the rule of derivation of the power:

(6) d(z----)= {F(1 +/.)/r(1 + # u)}z-dz

with not a negative integea

Proof The proof is given in the literature (e.g., [2]).
Remark 10. Formula (6) was used as the definition of a "derivative of general

order" by Riemann [20], so that (5) may be designated the Riemann system of
differintegration.

The Liouville (1) and Riemann (5) differintegrations are the two simplest systems,
since they involve only one branchcut in the complex plane, viz., respectively, infinite
and finite. Other systems of differintegration involving more than one branchcut in the
complex plane exist [1], but they are not needed to define the branchpoint operator.
To introduce the latter, we consider a repeated Liouville (1) differintegration:

(7) D Dz{F(l+)/2i} (-z) --1
DF

Dz ] exp {i arg (z>} D
d,

where , are complex numbers other than negative integers. Substitution of (1) into
(7) would lead to a double integral, the evaluation of which is deferred to 3, since
it leads to a less direct approach to the branchpoint operator. A simple and direct way
of applying the differintegration of order to (1) would be to take the differintegration
under integral sign, as a "Riemann differintegration":

(8) - " 8z- {r(l+ )/2s} F()
k Dz e, ,g (z)> dz

note that (8) is not equivalent to (7), because a LiouvilIe differintegration D/Dz,
outside the integral sign in (7), is replaced inside the integral sign in (8), by a Riemann
differintegration d/dz, which is that appropriate (6) to the power (-z) --"-. Thus
we are not calculating a repeated Liouville differintegration, as in (7), but rather (8)
defines a new concept, which we call the branchpoint operator.

I

FIG. 3. Mirror image of Fig. 2.
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DEFINITION 4. The branchpoint operator 6/8z of complex order , applied to
the Liouville differintegration (1) of order ,, complex other than a negative integer,
is defined by (8) applying a Riemann differintegration (5) under integral sign.

We have now to show that the branchpoint operator is unique, and indicate how
it can be calculated.

THEOREM 3. The branchpoint operator 8/8z of order tz, applied to a Liouville
differintegration D/Dz of order ,, yields a Liouville differintegration of order I + ’, to
within a factor, in curly brackets, which depends only on tz, ’:

(9) 8’(DF )/6z {F(l + v)F(-,)/F(1 +/z + ,)F(-/z- p)ei}
D+F

Dz / Dz +’’

the formula holds for complex I, ’, tz + u, excluding integer , and negative integer tz + u.

Proof Apply the Riemann rule of differintegration (6) to (8), to obtain

" z {F(1 + p)F(-u)/2iF(-p- )} e-i
Dz ]

(10)

F()(-z) ---’ d,
exp {i arg (z)}

where we have used {d(-z)/dz} =(-) e-, because the transformation -z z
along the Hankel loop is equivalent to a change of argument -, i.e., argument in
the clockwise direction. Formula (6) applies in (8) if-u-1 is not a negative integer,
i.e., u is neither zero nor a positive integer; since u, a negative integer, has already
been excluded by (8) Definition 1, all integer values of u are excluded in (10). The
latter simplifies to (9), by using (1), for + u, not a negative integer.

3. Derivation at and inversion of integrals through a branchpoint. Starting from the
repeated Liouville differintegration (7), we may: (i) evaluate the double integral, leading
to the rule of composition of differintegrations (Theorem 4); and (ii) interchange the
integrals, so that one of the paths goes through a branchpoint, and the branchpoint
operator is obtained instead (Theorem 5). Before we can indicate the deformation of
path that leads (ii) to the branchpoint operator, we must revise the proof of the
composition rule (i), to show where the change takes place.

THEOREM 4. The Liouville differintegration operator satisfies the composition rule:

(11) D’(DF]/Dz" D’+F= D(DF/Dz\ Dz / Dz +" Dz. /

where I, ’, i + ’ are complex other than negative integers.
Proof When we substitute (1) into (7), the repeated Liouville differintegration is

given by

D(DF/Dz =-{F(I
]

)F(1 +/)/4r2}

(12)
exp {i arg ()}

(+)

exp {i arg ()}

with , p complex other than negative integers. The d integration is performed (Fig.
4) along a Hankel loop around , and the d integration along another Hankel
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FIG. 4. The double differintegration involves two Hankel paths in intersecting - and ?-planes, such that
the branchpoint in the q-plane lies on the path of integration in the -plane and the branchpoint z in

the (-plane lies on no path of integration, i.e., no path touches a branchpoint in its own plane.

loop around sr z, so that none of the loops touches a branchpoint in its own plane
(although the Hankel loop in the ’-plane touches the branchpoint sr 7 in the l-plane,
which is not a problem). Since the integrals (12) are uniformly convergent, the order
of integration can be reversed"

(13a) D" D"F Dz" -{F(1 + )F(1 +)/4} F(v)(z, ) d,
Dz ] exp {i arg (z)}

where the function is given by
(+)

(13b) (z..) (- z)-"-(,- )--’ d.
exp {i arg

which is an Eulerian integral of the second kind.
To evaluate (13b), we perform the change of variable t=(-z)/(-z), which

maps the points , to 0, 1, so that we obtain (Fig. 2) a teardrop loop passing
through 0, and going counterclockwise around the branchpoint 1; the integral
along this loop can be evaluated in terms [5] of beta functions:

l+)

(14a) (V-z)"+"+(z, )= t"+(t- 1) -"- dt=-2isin(u)B(+u+l,-u);

the integral (14a) converges only for Re ( + u) > -1, but it can be extended, using a
Pochhammer [19] double-laced loop, to [5] all nonintegral values of + u. Thus (14a)
holds for all complex values of + , except negative integers. The formula (14a) may
be simplified using the relation between beta and gamma functions, and the symmetry
properties of the latter:

(z, )= -2i sin ()r(-.{r( +, + /r( +,)}(, -z) ----’
(14b)

2i{F( + + )/r( + )F( + )}(n z) -"--’.
Substituting (14b) into (13a), we obtain

rD Dz={F(l++u)/2i} (-z)----F()d
Dz ] exp {i arg (z)}

D,+,F
Dz.+
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where (1) was used, because + u is not a negative integer. The proof of (15), which
coincides with (11) when the symmetry in + u is taken into account, thus holds for
all complex , u, + u other than negative integers. [3

To obtain the branchpoint operator, in addition to the inversion of integrals (13a),
(13b), we interlock the two paths of integration (Fig. 5), by replacing the inner Hankel
path in (13b) with a teardrop loop.

FIG. 5. The deduction of the composition rule requires only the interchange of the q- and -planes in Fig.
4, but if the first Hankel path is replaced with a teardrop loop, a distinct, branchpoint operator arises, because
the two loops are interlocked and there is a finite branchcut along part of the intersection of the two planes.

DEFINXON 5. The branchpoint operator 6/6z of order /, applied to the
Liouville differintegration D"/Dz" of order u, not a negative integer, is defined as the
composition of Liouville differintegrations (12) of orders , u, in which the outer path
of integration is unchanged (13a):

and the inner Hankel path (13b) in Fig. 4, is replaced with a teardrop loop in Fig. 5:

(16b)
(z+)

q,(z, n) (- z)--"-’(n )--’ ,
which goes round sr z in the positive direction, and passes through the branchpoint

Remark 11. The substitution of two Liouville differintegrations in (13a), (13b),
with one Liouville and one Riemann differintegration in (16a), (16b), is analogous to
the change from (8) to (9), to define the branchpoint operator.

Thus we may expect the present Definition 5 of branchpoint operator (16a), (16b),
to be consistent with Definition 4, i.e., it leads to the same result (9), as was deduced
from (7).

THEOREM 5 (Consistency of Definitions 4 and 5 of branchpoint operator). The
branchpoint operator, introduced ((16a), (16b)) by Definition 5, coincides with (9), which
was introduced by Definition 3:

(17) Dz" ,l
6z e-i"{sin {r(g + u)}/sin (ru)} Dz+
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Remark 12. We will prove Theorem 5, using the same steps as for Theorem 4, to
show that the only difference between the composition rule (11) and branchpoint
operator (17) lies in the deformation ofthe inner path of integration from (13b) to (16b).

Thus we can start the proof by evaluating (16b).
Proof To evaluate (16b), we may perform the change of variable s=

(-z)/(rl-z), which is the inverse s= 1/t of the transformation t=(rl-z)/(-z)
used to evaluate (13b); the reason is that the inversion s 1/t maps a Hankel path in
the t-plane to a teardrop loop in the s-plane. The transformation s=(-z)/(rl-z)
maps the teardrop loop in (16b) into a rescaled loop, going round sr z or s 0 in the
positive direction and passing through " r/ or s 1; this teardrop loop, in Fig. 3, is
the mirror image of that in Fig. 2, which was used in the evaluation of (14a). The latter
is replaced, in the present case, with

(o+)

(18a) (r-z)"+"+14,(z r/)= s-r-l(1-s) -"-’ ds=-2i sin(Tr/x) e-i’rB(-/x,-u),
dl

where B(...,...) denotes Euler’s beta function, and the integral converges for
Re (u) < 0. By using the Pochhammer loop, it can be extended to all complex, noninteger
values of u. Thus the evaluation of (18a) holds for all u, other than zero or positive
integers. We had assumed earlier, in Definition 5, that , is not a negative integer; thus,
the derivation so far excludes all integer values of u. The beta function is related [5]
to thegamma function"

,(z, r/) -2i sin (Tr/x) e-i’rF(-/x){F(- u)/F(-/x u)}(r/- z) -r--’
(lSb)

e-’"{27riF( 1 +/x )r(- v)/F(-/x u)}( r z) -r- -’.

Substituting (18b), which replaces (14b), into (16a), which replaces (13a), we obtain

a- az- {r(1 + )r(-)/r(1 + g + )r(-g )} e
Oz

(z+)

(19) {F(1 +/z + v)/2vri} (q-z)--"-’F(q)dq
exp {i arg (z)}

Dr+"F
{sin{r( + v)}/sin (zru) er}

where we have used (1), assuming that x + u is not a negative integer. The result (19)
differs from the composition rule (15) in the term in curly brackets. The conditions of
validity are the same on x + u, i.e., not a negative integer, but are distinct on: (i) x,
unrestricted in (19), not a negative integer in (15), because of the Liouville differintegra-
tion; (ii) u, not a negative integer in (15) and not an integer in (19), i.e., the branchpoint
operator does not apply to ordinary derivatives or primitives. [3

4. Composition and annihilation of derivates of complex order. Definition 4 and
Theorem 3 in 2, or Definition 5 and Theorem 5 in 3, give two distinct, but equivalent
((9)= (17)) approaches to the branchpoint operator, which may be summarized in the
following "anomalous" property A1.

PROPERTY 1. The repeated Liouville Dr, D" differintegration (12), with orders
x, u, if either (Definition 4) the outer differintegration is taken under integral sign as
Riemann d r differintegration (8), or (Definition 5) in the inversion of integrals (13a),
(13b) the inner Hankel path is deformed (16a), (16b) into a teardrop loop, then the
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branchpoint operator 6 is obtained, which, when applied to the Liouville D" differin-
tegration of order ,, differs from the compound Liouville D+" differintegration of
order/x + ,"

(20) 8(D"FDz" ]
8z A(tz, u)

Dz +,

by a factor A, which does not involve the dependent F(z) or independent z variables"

(21)
a(/x, u)= e-i{sin {Tr(/x + u)}/sin (zru)}

{1-exp (-izr(/x + u))}/{1-exp (-izru)},

but depends only on the orders /x, u, such that u is not an integer, and /x + u not a

negative integer.
Remark 13. The exclusion of + u a negative integer means that the result of a

branchpoint operator applied to a Liouville differintegration cannot be an ordinary
primitive.

Remark 14. The exclusion of u an integer implies that the branchpoint operator
applies only to Liouville differintegration other than ordinary derivatives or primitives
for which there is no branchpoint in the integrand of (1).

Since the branchpoint operator
yields to within a factor not involving the dependent or independent variables, another
Liouville differintegration Dr,+", a second branchpoint operator 62 may be applied,
and so on, iteratively, up to ,-N for any positive integer N. Concerning the factor
(21), it can be decomposed into the following ratio"

(22a) A(tx, u) a(tx + u)/ a( u),

(22b) a(a)-- 1-exp (-i27rce),

which satisfies the following recursive rule"

N N

I] A(/zk,/zk-1 +’’" +/z, + ,) 1-I
k--1 k=l

(23) a(zN +" "+/x,+ ’)/a(’)=a(txN+’’’+l, ’);

the latter, when multiplied by the Liouville differintegration

N D’F .DF
(24) H A(/z,/z_,+...+/z,+ ,) A(iN +’’’+

,--- Dz" Dz"

proves, by (20), the iteration rule for branchpoint operators.
PROPERTY 2. The iterated branchpoint operators of orders /x,...,/XN, applied

to a Liouville differintegration of order ,, is equal to the Liouville differintegration of
order/x +. +/zN + ,:

with a factor given by (21) with x $1 + + N" formula (24) assumes that is not
an integer, and none of the xl + ,, , x +. +x + , are negative integers.

Remark 15. Although the coefficient of (25) is similar to that of (20) with -=
x +...+ x, the restrictions on the parameters are not. The condition x + , not a
negative integer is necessary, but not sufficient, in (25); there are further (N-1)
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intermediate restrictions, namely, [-1-"" "--/aLk -- / not a negative integer, for k
1,...,N-1.

Substituting IX IX1 +" "+ IXN in (20), viz.:

(26) (--z)’++’(DF (zz)++’+

Dz ]
A(IXN +. .+IX,, u) F(z),

and comparing with (20), we follow the rule of composition of branchpoint operators.
PROPERTY 3. The iterated branchpoint operators of orders Ix,’’’,ixr, are

equivalent to a single branchpoint operator of order Ix Ix +...+ Ixr, applied to a
Liouville ditterintegration D":

(27) (z) Dz" Dz ]’

assuming that u is not an integer, and none of the /J,1 --/,""", fi’N--"" "--/dl -- / are
negative integers.

The branchpoint operator satisfies the same composition rule (27) as the Liouville
differintegration, although the two operators are generally distinct. From (20) they
coincide only if the coefficient is unity A(IX, u)= 1, which is the case in (21), with u

not an integer, if and only if Ix is an integer. Thus we have the following degenerate rule.
PROPERXY 4. The branchpoint operator 6" coincides with the Liouville differin-

tegration D" if and only if the order Ix is an integer, i.e., both are ordinary derivatives
or primitives:

Dz
6z" Z,

Dz.+ IX

where u is not an integer.
Remark 16. The branchpoint and differintegration operators would have to

coincide for ordinary derivations or integrations. The theorem shows that they are
distinct generalizations, for all complex, nonintegral orders Ix.

The degenerate rule can be extended to iterated branchpoint operators by using
(25) instead of (20), viz., Property 5.

PROPERTY 5. The iterated branchpoint operators 6"... 6 ", of orders
Ixu,..., Ix coincide with the Liouville differintegration D" of order equal to the
sum IX Ix, +. + Ixu if and only if the latter is an integer:

(29) (z)" (z)"’(D"F (zz) "’++"’+Dz /
F(z),--> tx IX, + + IXN 77,

where u is not an integer, and none of Ix + u, , IXN +" + IX1 + u is a negative integer.
Remark 17. Property A5 follows by applying A3 to A4, i.e., (27) and (28) yield (29).
Remark 18. The result (29) shows that the composition of branchpoint operators

/xl /N6 ,..., 6 with complex nonintegral orders Ix,...,ixn, which are not Liouville
differintegrations by property A4, may be equivalent to a Liouville differintegration
of order Ix Ix1 +" "/ Ixu, if and only if the latter is an integer.

Property 4, in the form of Remark 16, that the branchpoint and differintegration
operators do not coincide for nonintegral complex orders, opens the way for the
annihilation of the latter by the former (since they must be applied in this order, this
is the only annihilation possible). To find the cases, i.e., properties A4 and AS, of
coincidence of branchpoint and differintegration operators, we have required that the
coefficient (21) be unity; the annihilation of the latter by the former generally requires
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the coefficient (21) to vanish. This is possible, for nonintegral complex v, if and only
if/x + v is an integer, i.e.,/z =p- v where p is any integer p ’. We have proved the
following annihilation property.

PROPERTY 6. The Liouville differintegration D
is annihilated by the branchpoint operator 6", if and only if its order =p- v differs
from -v by an integer p"

(30)
k Dz ]

8zp- O.

Remark 19. All Liouville differintegrations D can be annihilated by a suitable
branchpoint operator, except the function itself v 0, an ordinary derivative v , or
an ordinary primitive v

Remark 20. For each Liouville differintegration D of complex nonintegral order
v, there is a denumerable infinity of branchpoint operators 6p- with integer p that
annihilates it.

Propey A6 extends to annihilation by iterated branchpoint operators.
PROPERTY 7. The iterated branchpoint operators 6",...,6" of orders

u,"" ", 1 annihilate a Liouville differintegration D of order u, if and only if the
sum of all orders is an integer:

(31)

where v is not an integer, and none of + v,..., +...++ v are negative
integers.

Remark 21. The use of iterated branchpoint operators (31) increases the number
of possibilities of annihilating any given Liouville differintegration of nonintegral
complex order v, relative to that stated in Remark 19; i.e., we have a continuum of
possibilities instead of a denumerable set.

Remark 22. If we exclude the possibility of annihilating functions and ordinary
derivatives and primitives, then the branchpoint operator goes as far as we could
expect, i.e., (i) it can annihilate every other instance of the Liouville dierintegration,
and (ii) it offers an infinity of possibilities of doing so.

5. Discussion. Although the Liouville differintegration and branchpoint operator
are generally distinct, they are both derivation operators since they are linear and
satisfy the Leibnitz rule, in the extended form [17], [18], [2], [4], which we quote first.
TOM 6. e Liouville differintegration oforder v, of the product of two analytic

functions F(z), G(z), satisfies the generalized Leibnitz rule:

D{F(z)G(z)}
(32)

Dz =o Dz-k

where F(z), and F(z)G(z) satisfy the asymptotic condition (3).
Proof Since the proof differs from those in the literature in matters of detail, we

give a brief outline here. The asymptotic condition (3) for F(z)G(z) implies that we
need consider only pa L of the Hankel path in (1) that lies within a circle of finite
radius ]ff] R; the remainder of the path gives a term O(R-)O uniformly as R.
Thus we have

D{F(z)G(z)}
{F(1 + u)/2i} f F()G()(-z)-- d.(33)
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The function G(z) is analytic in the circle I’[ <-- R + 6 for some 6 > 0, and thus has the
Taylor series

(34) G(sr) E {(--z)k/k!}G(k)(z),
k=O

uniformly convergent in a closed subcircle Irl-<_ R. The latter (34) may be substituted
into (33), and integrated term by term:

(35) D{F(z)G(z)}-- Y {F(1 + v)/k’27ri}G(k)(z). F()(-z)-+-1 d.Dz k=o

Since F(z) satisfies the asymptotic condition (3) with e, it also satisfies e- k for all
positive integer k, and path L may be extended back to the Hankel loop:

D{F(z)G(z)}= E {F(1 + u)/k!r( + u-k)IG((z)
Dz k=O

(36)

applying (1), we obtain

{r(1 + v- k)/2ri}
exp {i arg (z)}

F(sr)(sr z) -+-’ dsr;

D-kF
(37)

D"{F(z)G(z)}
Z {F(1 + u)/kF(1. + v-k)}G(k)(z)

Dz k=o Dz’-k

which is equivalent to (32), with the notation

(38) ()--F(I+ v)/F(1 + k)F(1 + v-k).

We have proved the extended Leibnitz rule.
We may now proceed to prove that 6" is a differentiation operator, by the following

sequence of reasoning.
Remark 23. In the case where v n is a positive integer, (v-k)!= oo for k > n,

and (32) reduces to the ordinary Leibnitz rule:

Remark 24. The ordinary Leibnitz rule (33) looks like a binomial expansion of
derivates, and the extended Leibnitz rule (32) looks like a binomial series of Liouville
ditterintegrations.

THEOREM 7. The Liouville differintegration D is a derivation operator, because (i)
it is linear, and (ii) it satisfies the extended Leibnitz rule.

Proof (i) The linear property results from Definition 1 as a generalized Cauchy
integral (1).

(ii) The extended Leibnitz rule is proved in Theorem 6.
A similar result holds for the branchpoint operator.
PROPERTY 8. The branchpoint operator 3’ is a derivation operator, since (i) it is

linear, and (ii)it satisfies the extended Leibnitz rule in the following form:

(40) 6’ 6z,=
2’

G(k)(z)Sl-k -k

Dz" k=o k ’/z azU

where , v are not integers.
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Proof The linear property (i) of the branchpoint operator 6" follows from that
of the Liouville differintegration because the factor (21) connecting them (20) does
not involve the independent z or dependent F(z) G(z) variables.

The factor (21) is unchanged if we add to the arguments any integer numbers p,
q, viz.,

(41) p, q e 7/: A(/z + p, u + q) A(/z, u).

Writing the Leibnitz rule (32) with u replaced by/x + u, and multiplying by (41), we
obtain

(42) A(/z, u)
D’+"{F(z)G(z)} D/U-kF

Dz+ k=o G(k)(z)A(tx k, u) Dz,+_k

substituting (20) into (42), yields (40), which is (ii), the extended Leibnitz rule for the
branchpoint operator. We must exclude integer u, and also the negative integer
/x 1, ,/x k, the latter set of conditions is equivalent to stating that/z is not
an integer.

As an example of the application of the branchpoint 6" and differintegration D
operators to special functions, we consider the Hermite function.

DEIIrITION 6. The Hermite function H(z) of complex order u and variable z
is defined by Liouville differintegration with order u of the Gaussian function of
variable z:

(43) H,,(z)=-ei"ez2D(e-z2)
Oz

Remark 25. In the case where u n is a positive integer, Definition (43) agrees
with that of the Hermite [7] polynomial:

(44) Hn(z)=(-)neZ2{e-Z}n).
Remark 26. Using (1), the Hermite function of complex u, nonnegative integral

order, has the following integral representation:

(z+)

Z2 _2(45) H(z) {F(1 + u)/27ri} e (z- ) u--1 e d,
exp {i arg (z)}

along a Hankel loop (Fig. 1).
Remark 27. When we use (2), the Hermite function of complex order u, with

negative real part Re (u)< 0, has the integral representation

(46) H(z) {eZ/F(-u)} f (x- z) --1 e’ dx,
exp {i arg (z)}

along a semi-infinite straight line (Fig. 1).
Remarks 24-26 show that the definition of the Hermite function via the Liouville

ditterintegration (43) agrees with other definitions in the literature [5], and applies to
all complex orders u.

We proceed to prove the annihilation property.
PgoeEgxv 9. The Hermite function (43) ofnonintegral complex order u, multiplied

by a Gaussian function e-z of the independent variable z, is annihilated by the
branchpoint operator 6p- of order p- u, differing from -u by an integer p:

(47) ueC-7/, peT/: 6P-{e-H(z)}/zP-=O.
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Remark 28. The need for the Gaussian function e as a factor in the curly
brackets in (47), follows from (30), the general annihilation Property 5, in the particular
form:

(48) 0= ei’6p-"
D (e )’l / z:

-D-z-; 8z’-" 6P-"{e H,,(z)}/6zv-’.

Proof Remark 28 may serve as a short, indirect proof of (47). We may also prove
Property 9 directly, by substituting (48) into Definition 4 of branchpoint operator (6)"

"- {r(1 + u)/2.a’i}
Dz exp {i arg (z)} dzp-

e d,

(Z--)
2(49) {F(-u)F(1 + u)/27riF(-p)} e i=(p-’) (- z) -p-1 e- d

exp {i arg (z)}

{r(- )r(1 + )/r(-p)r(1 +p) e’’}Hp(z),
where (45) was used. The Hermite polynomial in (49) does not vanish, but the coefficient
in curly brackets does:

(50) c(,, p) r(-)r( + v)/r(-p)r(1 +p)=sin (Trp)/sin (Tru)=0,

because p is an integer. Substitution of (50) into (49) proves (48) and (47). [3

If in (47) we set/x p ,, and replace the branchpoint operator 6" with a Liouville
differintegration, the result is not zero, but rather, as follows from (43) and (11)"

Dz
e

Dz
Dz"

(51)
_z2ei’D’+’(e-Z2)Dz+" e-izrt e H.+,,(z),

a Hermite function of order/x + v. The result (51) can be stated as an integral identity.

(52)

THEOREM 8. The Hermite function satisfies the integral identities"

z (z) {1"(1+ )/27ri}e- g.+
exp {i arg (z)}

(z- r)-’-’H(sr) e dsr

(53) {I-’(--/A,)} (--X)-l-lHu(x) e dx,
exp {i arg (z)}

where the Hankel path (52) applies for tz not a negative integer, and the straight path
(53) for Re (/x) <0.

Proof. Substitution of (1) and (2) into (51), yields, respectively, (52) and (53).
The integral identities (52) and (53) allow the evaluation of certain integrals of

Hermite functions in terms of other Hermite functions. They are similar to results
holding for other special functions [2].
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ON A GENERALIZED MIT’FAG-LEFFLER THEOREM AND IMPLICIT
DIFFERINTEGRATION*

L. M. B. C. CAMPOS

Abstract. The differintegration operator is defined in the literature lB. Ross, ed., Fractional Calculus
and Applications, Springer-Verlag, Berlin, New York, 1974; Fractional Calculus, Academic Press, New York,
1974; Fractional Calculus, 2 vols., Descartes Press, New York, 1974; IMA J. Appl. Math., 33 (1984), pp.
109-133] as an extension to real or complex order u, of the ordinary nth derivative and primitive, which
correspond to, respectively, u + n, -n, a positive, negative integer. The differintegration operator has been
used to generalize [SIAM J. Math. Anal., (1970), pp. 288-293; SIAM J. Math. Anal., 2 (1971), pp. 37-48;
Mat. Vesnik, 38 (1986), pp. 375-390; Mat. Vesnik, 40 (1988), p. 85] the power series associated with the
names of Taylor, Laurent, Lagrange, and Teixeira. Here we generalize the Mittag-Leffler theorem on series
of fractions, as a representation of the ditterintegration of a meromorphic function ( 3); the proof uses the
principal parts of the Laurent series expansion, and of the differintegration of a function near a pole ( 2).
The rules of derivation with complex order have been discussed in the literature [SIAM J. Appl. Math., 18
(1970), pp. 658-674; SIAMJ. Math. Anal., 3 (1972), pp. 1-16; Portugal Math., 43 (1985), pp. 347-376], and
we prove ( 3) a new rule of differintegration of implicit functions. The differintegration operator has many
applications to special functions [Ross, op. cit., pp. 323-356; SIAM Rev., 18 (1976), pp. 240-268; IMA J.
Appl. Math., 36 (1986), pp. 191-206], and we illustrate our results in this regard ( 5) with Hermite functions.

Key words, implicit differintegration, series of fractions, meromorphic functions, singularities, residues,
Hermite functions

AMS(MOS) subject classifications. 30A99, 30B99, 30D30, 30E20, 33A65

1. Introduction. The differintegration operator has been defined in the context of
real [23], [18], generalized [14], [15], and complex [17], [1] functions, as an extension
of the ordinary derivatives and primitives. It has some properties analogous to those
of ordinary derivatives, e.g., if F(z) is an analytic function, its Liouville differintegration
DF/Dz with Re (u) > 0 is also analytic ( 2). This extends the known result that an
analytic function is infinitely differentiable from u- n positive integer to the whole
right-hand u-half-plane. It suggests that the differintegration D" of an analytic function
F(z) has a Taylor series type of expansion in ascending powers of z. If the function
F(z) has an isolated singularity at z ’, its differintegration DF/Dz has a Laurent
series type of expansion, involving ascending and descending powers of z- ’. It is not
the purpose of this paper to address the representation of the differintegration of
functions into power series, which is discussed elsewhere in the literature [19], [21],
[3]. For our purposes, it is sufficient to note that the Laurent series type of expansion
specifies the principal part of the differintegration of a function DF/Dz near
singularity, either essential or pole.

The latter remark suggests a form of representation of the differintegration of a
rational function; such a function is analytic except for a finite number of poles, and
the principal parts near these specify its differintegration to within an added constant,
which may be evaluated at any regular point. This process can be extended to a function
with an infinite number of poles and no essential singularities, i.e., such that the poles
"spread" to infinity, and do not "cluster" in the neighborhood of an accumulation
point (which would be an essential singularity). This leads to a generalization of the
Mittag-Leffler theorem [24], by representing the differintegration of a meromorphic
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function as a series of fractions, viz., the principal parts at the poles. The added constant
can be evaluated at any regular point, provided that the series converges uniformly in
its neighborhood. The question of convergence is the only point where the proof of
the generalized Mittag-Leffler theorem for the ditierintegration of a meromorphic
function goes beyond the analogous finite expansion for a rational function.

Since the diiterintegration is a generalization of the ordinary derivative, the
question arises of extending the rules of derivation to complex order, e.g., ditterintegra-
tion of elementary functions [10], [2]. The Leibnitz rule can also be extended [20],
[22], [2] into an infinite chain rule, which shows that several important special functions
are ditterintegrations of products of elementary functions [11], [2]. Here we prove
( 4) a rule of implicit ditterintegration of a function with regard to another; this rule
may be combined with the chain rule, and both lead to series expansions. The use of
Riemann ditterintegration to obtain properties of special functions, both short proofs
of known results and new formulas, is well documented in the literature [18], [6]. The
Riemann [10] rather than the Liouville [17] differintegration should be used for
hypergeometric, confluent, Legendre, Laguerre, Jacobi, Gegenbauer, and Chebyshev
functions, because these involve branchpoints. The Hermite function involves the
Liouville ditterintegration of an integral function, namely [5] the Gaussian, and we
choose it ( 5) for examples of application of rules of ditierintegration, since it appears
to have received less attention in the literature.

2. Extensions of the Laurent series and calculation of residues. We recall the
definition of the Liouville [13] system of differintegration, in the context [12], [16],
[17], [1] of functions of a complex variable.

DEFINITION 1. The differintegration D of complex order v, not a negative integer,
of an analytic function F(z) is defined by the generalized Cauchy integral:

D,F (z+).(1) Dz,, {F(l + v)/2rri} (-z)-"-’F(C) d,
J ooexp{i arg(z)}

along a Hankel [8] loop (Fig. 1) going round " z in the counterclockwise direction,
and starting and ending at infinity, respectively, above and below the branchcut
C {’: Isr] > [zl, arg (’) arg (z)}. The function satisfies the following asymptotic
condition:

(2) arg (sr)- <arg (z) < arg (st)+ : F(’) O(’Re-),
for some e, 8 > 0 in a sector about the branchcut C, so that the improper integral in
d" converges (1). It is assumed that the convergence is uniform with regard to z in a
region D.

arg(z)+

0 z oo exp [i arg (z)]

arg(z)-

FIG. 1. The differintegration of an analytic function involves a contour integral (1) along the Hankel [8]
path, going counterclockwise around the branchpoint z, and starting and ending at infinity in the -plane,
respectively, above and below the semi-infinite branchcut, joining z to infinity in the direction of arg (z), so that
in an angular sector containing the branchcut the function satisfies an asymptotic condition (2).
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Remark 1. The extension of Definition 1 to negative integer order u, the relation
with ordinary derivatives and primitives, and the integration with complex order are
summarized [5] and proved [1] elsewhere. For the present we note as an immediate
consequence of Definition 1 that the asymptotic condition (2), for the convergence of
(1), is still met with u replaced by /, such that Re (/ _-> Re v), thus proving
Theorem 1.

THEOREM 1. If the differintegration DF/Dz of an analytic function F(z), with
complex order 9 exists, then the differintegration D’F/Dz" with complex order I, such
that Re () _-> Re(9), also exists.

Remark 2. If we set/ 9 and Re (p.) Re (9), i.e., Im (p.) Im (9), Theorem 1
still holds, showing that the imaginary part of the order of differintegration D"F of a
function F(z) does not affect existence.

If we set 9+1,..., 9+n,... in Theorem 1, it follows that DF/Dz, if it
exists, is infinitely differentiable, and thus, in the context of complex analysis, specifies
an analytic function.

THEOREM 2. The differintegration D (1) of (2) an analytic function F(z), if it

exists, specifies a function G(z) =- DF/Dz, which is analytic in the region D, ofuniform
convergence of the integral (1).

An analytic function has a Taylor series expansion, which we may expect to hold
for the function G(z)=- DF/Dz in Theorem 2. Noting that Gk)(z) D+kF/Dz+k
by the rule of composition of derivatives [ 1 ], 5], we may expect the following theorem
to hold.

THEOREM 3 (extended Taylor series). The differintegration D, with complex order
9, of an analytic function F(z), can be represented by an extended Taylor series of
ascending powers:

DF D+kF
E {(z-st)k/k!} D,+k,(3)

Dz k=O

whose coefficients involve differintegrations of orders 9, 9 + 1,..., 9 + k,. ., equal to 9

plus a nonnegative integer, at a regular point . If l is the singularity of F(z) closest to
the regular point , and R =-[1-1, then the series (3) converges: (i) absolutely, in the
open circle [z- [ < R; (ii) uniformly, in the closed subcircle z l <- R e, for some e,
such that 0 < e < R.

Remark 3. The regions of absolute and uniform convergence of the extended
Taylor series (3) are the same as for the original Taylor series, which-is obtained by
setting 9 0, in which case only ordinary derivatives are needed.

Proof The proof of (3) is broadly similar to the standard demonstration of the
Taylor series [24], except that the binomial rather than the geometric series is needed
to establish the extended Taylor series [4]. The details are too extensive [6] to be
reproduced here.

If the function F(z) has an isolated singularity at z r, it can be expanded in the
neighborhood in a Laurent series [24], and its differintegration D with complex order
has an extended Laurent series [6], viz., Theorem 4.

THEOREM 4 (extended Laurent series). The differintegration D, with complex order
9, of a function F(z), having an isolated singularity at z , can be represented by an
extended Laurent series:

(4) D"F,_, Ak(Z-- )k + A_k(Z-- )--k
UZ*" k=O k=

where the coefficients Ak of the ascending integral powers, and A-k of the descending
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complex powers, are given, respectively, by

(5) Ak ={F(1 + 9+ k)/k!27ri} Ii (z-’)-v-k-1F(z)dz,

(6) A-k=- e’=V{F(’+ k)/(k-1)!27ri} Ii (z--)k-lF(z) dz,

where L, are Hankel paths like (1), with lying within L. If z =rl is the singularity of
F(z) closest to z=, then the series (4) converges: (i) absolutely in the open disk
0 <]z l < R ofradius R ff 1; (ii) uniformly in the closed subdisk e lz 1 R ,
with e, 3 > O and e + < R.

Remark 4. In the absence of differintegration u 0, the factors in curly brackets
in (5), (6) reduce to (2i)-, and only integral powers appear in (4), which reduces
to the original Laurent series.

Remark 5. If the function F(z) is analytic at z if, then the inner path can be
shrunk to zero, so that (6) vanishes and (4) reduces to the first sum, where the coefficients
(5) can be evaluated using (1)"

(7a) Ak k t)-iD+kF/Dv+k,
(7b) A-k =0.

Substituting (7a), (7b) into (4), we regain the extended Taylor series (3).
Remark 6. The regions of absolute and uniform convergence of the extended

Laurent series (5), (6) are the same as for the original Laurent series with 0, because
they are independent of ; they differ from the regions of absolute and uniform
convergence of the Taylor series (extended (3) and original =0) only in excluding,
respectively, an open (closed) neighborhood of the singularity z ft.

The descending powers of the extended Laurent series, viz., the second term on
the right-hand side of (4), specify the principal pa of the differintegration DF/Dz
in the neighborhood of the singularity, viz., Propey 1.

PROPERTY 1 (principal pa of a differintegration). The differintegration D, with
complex order , of a function F(z), with an isolated singularity at z if, has principal
pa consisting of: (i) an unending sequence ofpowers with exponents 1, ,

DF
(8)

Dz
A_,(z-) ’+A_(z-) -+.

if z ff is an essential singularity; (ii) a sequence of m powers of exponents -, --1,... ,--m;

DF
(9)

Dz
A_,(z- ) ’+... + A_ (z- )

if z ff is a pole of order m.
The coecient A_I is the residue and can be calculated, at a pole, from the

differintegration (9), as follows.
PROPERTY 2. The residue A_ of the differintegration DF/Dz at a pole of order

m (9), can be calculated by

(10) A_ lim {(m 1)}- {(z )m+DF/D2}

where (d/dz)- is an ordinary derivative.
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Remark 7. In the case m 1 of a simple pole, the residue (10) can be calculated
without derivations, by

DF
(11) A_I lim (z-

Dz

Not only the residue A_a, but also all other coefficients A_k, of principal part of the
differintegration at a multiple pole (9), can be calculated by a formula analogous to (10).

PROPERTY 3. The coefficients A-k with k 1," ", m, of the principal part (9) of
the ditterintegration at a pole of order m, can be calculated by

(12) A_k=lim {(m-k)[}-a( d)"-k( D2F-
z-c zz (z- st) "+"

Dz j.

Remark 8. The residue A_a (10) is the particular case k 1 of (12).

3. The generalized Mittag-Letiler theorem for meromorphic functions. The iden-
tification of the principal part of a ditterintegration D"F/Dz at a singularity opens
the way to the representation of functions having no singularities other than poles by
sequences of fractions. For rational and meromorphic functions, which have, respec-
tively, a finite and an infinite number of poles, the representation by means of regular
or singular power series, e.g., Taylor (3) or Laurent (4)-(6) type, requires extensive
use of analytic continuation because the radius of convergence of each series is limited
by the nearest singularity. Also, the form of the coefficients tends to be complicated
in such cases, e.g., they involve Bernoulli or Euler numbers for the compound
trigonometric and hyperbolic functions, viz., the tangent, cotangent, secant, and
cosecant, which are meromorphic. The representation by means of series of fractions
is much more convenient, since a single expansion holds over the whole complex
plane, and the coefficients are determined by the principal parts at the poles. We start
with the case of rational functions, having a finite number M of poles, for which
questions of convergence do not arise. We assume that the differintegration DF!Dz
is a rational function, with a finite number M of poles, at the points z ak, with orders
bk, for k 1,. -, M, with AJ_k as coefficients of the principal parts:

b

(13) DF’-" Akj(z--ak)--J;
Dz j=l

the point at infinity may also be a pole, of order bo, with coefficients Aj ofthe principal
part of the ditterintegration:

(14) DF--. A_jz+j.Dz" j=o

Thus the function G(z), obtained by subtracting from DF/Dz" its principal parts
(14), (13) at all the poles, has no singularities in the extended complex plane and
reduces to a constant:

DF b b
(15) G(z) A_jz ’+j Akj(z ak) -’-j const. G(’),

Dz j=o k=l j=l

e.g., its value at any regular point z sr.
The result (15) may be stated formally as the following theorem.
THEOREM 5 (expansion in fractions). Ifthe differintegration DF/Dz with complex

order is a rational function, with M poles ak of orders bk, with k 1,-.., M in the
z-plane, with coefficients Akj with j 1,. , bk of the principal parts (13), plus possibly
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a pole of order bo at infinity, with coefficients Aj with j 1,. , b0, of the principal part
(14), then it can be represented by a finiteexpansion in fractions:

(16)

DF DF
Dz--; D--y

+ A(z"+ "+)
j=l

M b

+ E E A{(Z--ak)-’-J--(--ak)-"-J},
k=lj=l

where is any point distinct from the poles ak, with k 1," , M.
To extend the theorem to the case when the differintegration DF/Dz is a

meromorphic function with an infinite M o number of poles, we must first consider
their location in the complex z-plane, as illustrated in Fig. 2. (i) The poles ak with
k 1, , M, can have no accumulation point (because the latter would be an essential
singularity, contradicting that DF/Dz be meromorphic); (ii) a compact region, e.g.,
a circle ]z] < R of center at the origin and radius R, can contain only a finite number
of poles (otherwise, if the number of poles were infinite, at least one accumulation
point would exist); (iii) if the poles are ordered by modulus ]ak] ]ak+l], they must
tend to infinity lal- c as k- (otherwise if lal < R for all k 1,. , , a circle of
finite radius would contain an infinite number of poles); (iv) a sequence of regions

a2

FIG. 2. If the differintegration of a function is meromorphic, it has an infinity of poles ak, which when
ordered by nondecreasing modulus lak+,l--> lakl tend to infinity as k c, allowing the construction ofa sequence
of regions Ok, each containing the first k poles al, ak, and all of the preceding regions D1, D2, Dk_l
with boundary OO lying outside a circle ofcenter at the origin, and radius R cx3 growing without bound as k c.
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Dk can be constructed, such that Dk contains only the poles al,’’’, ak and in its
interior can be drawn a circle of radius Rk => la-l, such that Rk- as k- c. These
remarks show that to extend (16) to meromorphic functions, the following modifications
are needed: (i) the second term on the right-hand side should be omitted, since the
point at infinity of a meromorphic function is not a pole, but rather a "point of
accumulation" of poles; (ii) the sum over the number of poles M , in the last term
on the right-hand side of (16) becomes a series, provided that its convergence be
assumed by the asymptotic behavior of the differintegration DF/Dz

It will turn out that, in the present case, a sufficient condition for the convergence
stated in (ii), is the same as for the original Mittag-Leflter theorem, namely [24], that
the ditterintegration D"F/Dz be bounded on the boundaries ODk of the sequence of
regions Dk tending to infiinity in Fig. 2. This leads to the generalized Mittag-Leftter
theorem, for the ditterintegration of meromorphic functions.

THEOREM 6 (series of fractions). The differintegration DF/Dz, with complex
order u of a meromorphic function F(z), with an infinity of poles ak of orders bk, with
k 1,..., c, with coefficients Akj with j 1,..., bk of the principal parts (13), can be
represented by a series offractions:

(17)
D’F DF bk
-----+ E E Akj{(Z--ak)-’---(--ak)--},
Dz D k=l=

where ak for k 1, , o, is any regular point. Assuming that the differintegration
DF/Dz is bounded, as k on a sequence of loops OOk, each containing the first N
poles al,’’’, ak (Fig. 2), the series (17) converges: (i) simply outside the poles, i.e.,for
[z ak[ > 0 for all k 1,. c; (ii) uniformly outside a closed neighborhood of the poles,
viz., for [z- ak[ >- 8k > 0 for some 8k, with k 1, , c.

Remark 9. The existence of a pole at infinity, as in the second term on the
right-hand side of (16), is incompatible with the boundedness condition on the sequence
of loops OOs, which assures the convergence of (17).

Remark 10. The asymptotic condition (2) on the function F(z), even if it could
be restated in terms ofthe differintegration DF/Dz, would not satisfy the requirement
for convergence of (17); the latter is an isotropic condition, applying as [z[- c for all
directions 0_-<arg(z)<2er, whereas the asymptotic condition (2) is restricted to a
narrow sector about the branchline.

Remark 11. The main differences between Theorems 5 and 6 are that: (i) the
functions

DYE M

E Ak-(z ak)--J(18) GM(Z)=--
Dz k=l

are analytic in the compact region DM, but not in DM+, ", and thus do not reduce
to constants; (ii) the Hankel path in Fig. 1 lies partly outside the region DN in Fig. 2,
so that a loop integral for (18) uses a path distinct from Hankel’s.

Remark 11 points to the two difficulties (i) and (ii) that must be resolved to prove
the convergence of (17) and, in fact, lead to the restrictions in Theorem 6, which
appear in addition to those in Theorem 5.

Proof Since the function (18) is analytic in the region DM, we may use the
generalized Cauchy integral for its ditterintegration:

(19)
D’{G.(z)}

{F(1 + u)/27ri} fo (rl-z)-"-GM(rl) drl+ 8M(Z),
DM
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where the last term on the right-hand side of (19) accounts for the part of the Hankel
path (Fig. 1) outside the loop 0Dt (Fig. 2) and gives a negligible contribution 6M(Z) 0
as M-, because of the asymptotic condition (2). The remainder of the series (17)
after M terms, is given:

b

AM(Z, st) akj{(Z--ak)-"-J--(--ak) -’-j}
k=M+lj=l

(20)
=GM(z)-GM(),

where (18) was used. Substituting (19) with 9=0 into (20), we obtain the following
integral:

a(z, ) (z) +()

(21) (27ri)-’ Io GM(rt)rl-’{(1-z/rt)-’
DM

--(1--’//) -1} dn

(27ri)-’(z- ’) f r/-2{1 + O(rl-’)}O(rt) d7,

which has an upper bound"

(22) IAM(Z,)-’-61vt(Z)+6M()I<=(BIZTr)’IZ--I

27rRM R{1 + O(R)},

because" (i) the ditterintegration DF/Dz, and hence (18), is bounded by B on the
sequence of loops ODM (ii) the points z, sr are fixed points and hence Isr z is bounded;
(iii) the other bounds for terms in (21) show that (22) is O(R), and since R
as M-, the expression (22) vanishes. Also, M(Z), t(sr)-0 as M--, implying
that the remainder of the series (17) vanishes AM(z, sr)0 as M -c, proving its simple
convergence. The convergence is improved from simple to uniform for points at a
finite distance Isr- ak[ >- tk > 0 from all k 1,. ., oe the poles ak.

4. Rules of differintegration of products and implicit functions. The prototype of
series expansion for a differintegration is the extended Taylor series (3) from which
the theory may be developed in two directions: (i) by allowing one or more singularities
of the function F(z), we are led to the extended Laurent series (4)-(6), the principal
parts in the neighborhood of singularities (8), (9), and the generalized Mittag-Leflter
theorem (17) developed in 2-3; (ii) in 4-5, we consider the consequences of
replacing the independent variable z by an auxiliary analytic function f(z) in the
extended Taylor series (3), leading to an extended Lagrange series"

D{F(z)} }k -, D"+k{F()}
(23) Y {/(z) (k) +,

D{f(z)}" k=o D{f(’)}

provided that the implicit differintegration appearing in the last factor of (23) can be
evaluated. The extended Lagrange series (23), expressing the ditterintegration of an

analytic function as an ascending power series of a suitable auxiliary analytic function

f(z), can be further generalized [3], [6] to the extended Teixeira series; the latter
allows the dependent variable F(z) to have an isolated singularity at z sr, in which

case the power series expansion involves descending as well as ascending powers of
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the independent variable f(z), e.g., the particular case f(z) z is the extended Laurent
series (4)-(6). Our present aim is not to obtain the most general power series expansion,
as that question is addressed elsewhere 19], [21], [4], [6]. Thus, we leave these remarks
in passing and return to the rule of implicit differintegration, which is of use in
connection with problems other than the extended Lagrange series (23).

If in Definition 1 of differintegration (1) the independent variable z is replaced
by an analytic function f(z), we obtain the integral

D{F(z)}=- {F(1 + ,)/2ri} {f()-f(z)}--1
D{f(z)} exp {i arg (f(z))}

(24)
F()f’() d,

the evaluation of which leads to the rule of implicit differintegration.
PROPERTY 4. The implicit differintegration (24), with complex order , of an

analytic function F(z), with regard to an auxiliary analytic function f(z), at a point

" z that is not a zero of the latter f’(z) O, is given by

D{F(z)}- lim
0

{F(’){(- z)/(f()-f(z))}/lf’()}.(25)
D{f(z)}

Remark 12. The assumption that the auxiliary analytic function f(’) is not zero
at " z implies that the equation

(26a) f() f(z) (- z)H(, z),

(26b) H(z,z)O,

has a single root " z, and thus the function

(27) G(, z)=- F(){(f()-f(z))/(-z)}--lf’(")

is also analytic at " z.

Proof The function (27) may be substituted into (24), which gives

D{F(z)}
{F(1 + u)/Zcri} G(’, z)(’- z) -- dsrD{f(z)}"

(28)
o’{G(,z)}

lim
-z 0r

allowing its evaluation by (1). The expression (28) with (27) leads to (25).
We may apply Property 4 to the evaluation of the coefficients of the extended

Lagrange series (23), viz., the following theorem.
TI-IEORM 7 (extended Lagrange series). The differintegration (24) with complex

order v of an analytic function F(z), with regard to an auxiliary analytic function f(z),
without zeros f’(z) O, can be expanded in an ascending power series of the latter (23),
with coefficients given by (25). The series converges" (i) absolutely in the open region"

(29) D-OD=- {z: If(z)[ < R};

(if) uniformly in the closed subregion"

(30) 0<e<R" D.=-{z: If(z)l<-R-} D-OD,

where R is the largest positive real number such that the region D excludes all singularities
ofF(z).



SERIES OF FRACTIONS AND IMPLICIT DIFFERINTEGRATION 463

Proof. The only results not proved before concern the conditions of convergence,
which are similar to those for the extended Taylor series in Theorem 3, replacing
f(z) z-, as suggested by a comparison of (23) and (3).

To develop the rule of implicit differintegration (Property 4) further, we need the
extended Leibnitz rule, in one of the forms [20], [22], [2], [4], that appear in the
literature, viz., Property 5.

PROPERTY 5. The differintegration (1) of complex order u of the product of two
analytic functions F(z)E(z), such that F(z) and F(z)E(z) satisfy the asymptotic
condition (2), is given by the infinite chain rule:

(31) D{F(z)E(z)}-
Dz k=o Dz’+k

(32)

Proof. A direct proof of the extended Leibnitz rule in the form (31) can be found
elsewhere [5].

To apply the infinite chain rule (31) to (25), we split the term in curly brackets
into two factors, namely, F(sr) and E(z, ’):

(33)
d{f(z)}" imz {F()E(z, r)},

(34) E (z, ff) f’(sr){(sr z)/(f() -f(z))} v+l,
to obtain Property 6.

PROPERTY 6. The ditterintegration (24), with complex order v of an analytic
function F(z), with regard to an auxiliary analytic function f(z), at a point z that is
not a zero of the latter f’(z)# O, is given by

D{f(z)}" ,=o Dz’ Dz"-"
(35)

(Vk)DED"-F=E
k=O Dzk Dz-k

(36)
Dz

f’(sr){(r- z)/(f()-f(z))} "+l,

where F(z), and F(z)E(z,) are assumed (see (34)) to satisfy the asymptotic
condition (3).

Proof Substitute (31) into (33) to obtain (35), with (36) given by (34). [3

The application of the rule (35) of implicit ditterintegration is facilitated by the
following remark.

Remark 13. The series (35) terminates at k n: (i) for , n a positive integer,
i.e., an ordinary derivative of order n, or (ii) if one of the functions f(z), E(z, ) has
derivatives vanishing beyond the order n, i.e., is a polynomial.

The latter case (ii) can be illustrated by the implicit ditterintegration of a power
F(z) zm, with a positive integral exponent m:

d(zm)_ (k){m!/(m-k)!}z’-kd-kE(37)
d{f(z)} k--O dz-k’

in (37) we have used Riemann d instead of Liouville D differintegrations, since

Properties 4-6 hold for the former [1], [2], as well as for the latter. Of the two series
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(35), one may be simpler than the other, e.g., for the implicit ditterintegration of the
logarithm:

(38)
d (logz)=logz+ E {(-)k/k}{F(l+v)/F(l+v-k)}z-kd-kE
d{f(z)} dz k=l dz-k"

Both in (37) and (38) the coefficients (36) still need to be calculated; an example is
the case of implicit ditterintegration with regard to the square f(z)= z2, away from
the origin f’(z) 2z # 0, viz.,

dz-k ;z
{2sr(" + z)-"-’}

+(v-k) (st + z) --’
-z

{r(1 )/r(1 + k- 2v)}(2z) k-’.

Substituting (39) into (37) and (38), we obtain

(40) lv,kZ Z
d(z2) k=O

(41)
d"(log z)
d(z2) =logz{F(1-v)/F(1-2v)}(2z)-"+ 2k-Z’Z-2" C,,,k,

=1

(42) - r(1 + )r(1 v)/F(1 + u k)r( 1 + k 2v),

as worked-out examples of the implicit ditterintegration rule.

5. Discussion. The differintegration applied most often to special functions [11],
[10], [2], [4] is the Riemann type, since the hypergeometric function and several of
its particular cases involve branchpoints. The Liouville differintegration [17] is not
suitable for these functions, but rather for those defined from analytic functions; an
example is the Hermite function of complex order u and variable z, which is defined
[5] by the Liouville differintegration of the Gaussian function:

O,’(e -z2)
(43) H,,(z) =-- e irv ez2

Dz"

Substituting v by u + 1, and using the chain rule (31)"

(44)

we obtain the recurrence formula

(45) Hv+l(Z 2zH,,(z)-2vH,,_l(Z).

Differentiating (43) with regard to z"

D 2 D z D D v+l

e e e-z2 e 2z + e46
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we obtain the derivation formula

(47)
D{H,,(z)}

Dz
2zH,,(z)- H,,+l(Z) 2 uH_l(z),

which was simplified using the recurrence formula (45).
Both the recurrence (45) and derivation (47) formulas hold for all complex values

of and lead to

(48)

DZ{H,,(z)} D{2zH,,(z)} D{H,,+I(z)}
Dz2 Dz Dz

=2H,,(z)+2z
D{H(z)}

Dz
2(, + 1)H(z),

which is the differential equation satisfied by Hermite functions,

D D
(49) Dz---5-2z+2t, H(z) =0.

Dz

Substituting (1) into (43), we obtain the integral representation of Hermite functions:

(z+)

(50) H,,(z) {F(1 + u)/27ri} ez2 (z- ,)--1 e-C d’;
cexp{i arg (z)}

the change of variable rt z- can be performed to move the branchpoint r z of
the integrand to the origin r/= 0 of the r/-plane:

(o+)

(51) H,,(z) {F(1 + u)/2.a-i} r/--’ e-’+2"z dr/;
ooexp (i0)

this can be interpreted again using (1) to show that the Hermite function is specified
by the limit:

(52) H,.(z) lim D{exp (-r/2 + 2r/z)}/Drt .
Using the chain rule (31) once more:

(53)
D{e-" e2nz}

e’z ko (2z)
D7

D-k(e-,)

in (52), we obtain the expansion of the Hermite function in power series:

(54 ( e- =o (-n_(O,

with coefficients involving its value at the origin, e.g., for v r/ a positive integer:

we have an identity for Hermite [9] polynomials.
We conclude the examples of differintegrations applied to Hermite functions with

the deduction of an addition formula. The latter is derived from the definition (43)"

(56) H,,(z)-- e iz’" eZ(D/Dz)"{e-’z e-(1-a)z:Z},
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by applying the chain rule (31):

(57)
D

{e_az e_(,_.)z:} D
=o

Introducing the new variables:

(58a) x zx/S,
(58b) y= zx/1- a,

the factors in (57) become, respectively,

(59a)
D e_ a/ D

e_(_=(l_a)(_/ D -
Substitution of (59a), (59b) into (57) and (56) gives

H(z) ei e e-a
(60)

where we have used (61a):

(61a) x +y z,
(6b) a /( +y/x),

--(1--a)ze

e-y2.

e-y2

which follows from (58a), (58b) together with (61b). Recalling (43), we may interpret
(60), with (61a), (61b), as Property 7.

PROPERTY 7. The Hermite functions satisfy the addition theorem"

(,/x +y I; +/x-/,
k=0

(
N(x( +x/y-(-/g_(y,

which terminates only at k--n, a positive integer, only for Hermite polynomials H,,.

[3a]

[3b]
[4]
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EXISTENCE THEOREMS FOR BOUNDARY VALUE PROBLEMS FOR
nth-ORDER NONLINEAR DIFFERENCE EQUATIONS*

JOHNNY HENDERSON?

Abstract. For the nth-order nonlinear difference equation u(m + n) =f(m, u(m), u(m + 1),. , u(m +
n-l)), where f:[a, +)xRn-->R is continuous, and the equation u,=f(m, Uo,’"", Un-l) can be solved
for u0 as a continuous function of ul,’’’, un for each m [a, +), it is shown that the uniqueness of
solutions implies the existence of solutions for conjugate boundary value problems on [a, +). Shooting
methods are used in conjunction with an induction.

Key words, nonlinear difference equation, boundary value problem, uniqueness implies existence

AMS(MOS) subject classifications. 34B10, 34B15, 39A10, 39A12

1. Introduction. For a R, let the interval [a, +c) {a, a + 1, a + 2, .}, and if
b a + m, for some rn 6 N, let the closed interval a, b] {a, a + 1, , b}, and let the
intervals [a, b), (a, b l, and (a, b) denote the analogous discrete sets. In this paper, we
will be concerned with uniqueness of solutions implying the existence of solutions of
certain boundary value problems for the nth-order nonlinear difference equation

(1) u(m+n)--f(m,u(m),u(m+l),. .,u(m+n-1)), n>-2,

where

(A) f: [a, +Do) x R" - R is continuous and the equation u, =f(m, Uo, , u,-1) can
be solved for Uo as a continuous function of ul,. ., u, for each rn e [a, +De).

We remark here that (A) implies (1) is an nth-order difference equation on any
subinterval of [a, +De), that solutions of initial value problems for (1) are unique and
exist on a, +De), and that solutions of (1) depend continuously on initial conditions.

Recently, much research activity has focused on the existence of solutions of
boundary value problems for finite difference equations. Much of this activity has been
motivated by Hartman’s landmark paper [18] and has been devoted to analogues .of
results for boundary value problems for ordinary differential equations. In particular,
Ahlbrandt and Hooker [7]-[8], Eloe 11 ]-[ 13], Hankerson 14], and Peterson [25]-[28]
have published a number of results concerning the disconjugacy or disfocality of linear
difference equations, whereas other papers by Ahlbrandt and Hooker [6], Hankerson
and Peterson [15]-[16], Hooker et al. [19]-[22], Patula [24], and Smith and Taylor
[31] have dealt with oscillation and nonoscillation of linear difference equations.
Moreover, in papers by Agarwal [1]-[4], Eloe [9]-[10], Hankerson [14], Peterson [29],
and Rodriguez [30], questions have been addressed dealing with boundary value
problems for the nonlinear difference equation (1).

In this work, the types of boundary value problems for (1), for which we address
the question of uniqueness of solutions implying the existence of solutions, are
analogous in some sense to those known as conjugate problems for ordinary differential
equations.

DEFINITION. Given m 6 [a, +Do) and m2, mn N, let s, , s, [a, +Do) be
defined by Sl ml and si si_ + mi, 2_-< =< n. A boundary value problem for (1)
satisfying the conditions

(2) u(si) yi, l <= <= n,

* Received by the editors July 20, 1987" accepted for publication (in revised form) June 1, 1988.
? Department of Algebra, Combinatorics and Analysis, Auburn University, Auburn, Alabama 36849.
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where yi 6 R, 1 -< _-< n, will be called an (ml, ", m,) conjugate boundary value problem
for (1). (In the case when mi 1, 2_-<i_-< n, the problem becomes an initial value
problem for (1).)

For (ml,"" ", m,) conjugate boundary value problems for (1), our main result is
motivated by a theorem for conjugate boundary value problems for ordinary differential
equations proved by Hartman [17] and Klaasen [23].

We will use some of the terminology introduced by Hartman [18] and employed
in many of the above-cited papers dealing with difference equations. For a function
u:[a, +c) R, Hartman defined mo [a, +o), in the case that mo a, to be a node of
u if u(a) =0, and rap> a to bea node ofu if u(mo) =0or u(mo- 1)u(mo) <0. Moreover,
Hartman defined mo a to be a generalized zero of u if u(a) =0, and rap> a to be a
generalized zero of u if u(mo) =0 or there is an integer j-> 1 such that (-1)Ju(mo
j)u(mo) > 0 and if j > 1, u(mo-j + 1) u(mo- 1) 0. (Note that if mo is a node
of u, then mo is a generalized zero of u.)

In view ofthis terminology, our uniqueness assumption on (ml, , ran) conjugate
boundary value problems for (1) takes the following form:

(B) Given ml [a, +o) and m2, mn N, if sl m and si s_ + m, 2 <-_ <= n,
and if u(m) and v(m) are solutions of (1) such that u(s)= v(sl) and u(m)-
v(m) has a generalized zero at s, 2<-i<-n, then it follows that u(m)=v(m)
on [sl, sn] (hence on [a, +o)).

In 2, we will state for convenience and reference some theorems concerning
continuous dependence of solutions of (1) on initial and boundary conditions. Then,
in 3, we prove that under assumptions (A) and (B), each (m,..., m,) conjugate
boundary value problem for (1) has a unique solution on [a, +o). The proof employs
shooting methods in conjunction with an induction on the indices m2," ",

2. Continuous dependence. In this section, we will state standard theorems concern-
ing the continuous dependence of solutions of initial value problems and (m, , m,)
conjugate boundary value problems for (1). We state these results for convenience and
reference, and hence will eliminate repeating them later.

Our first theorem follows immediately from condition (A).
THEOREM 1. Assume that condition (A) is satisfied. Ifthere exist a sequence {yk(m )}

of solutions of (1), an interval rap, mo+ n 1 c a, +), and an M > 0 such that
lYk (m)l <- M, for all rn rap, mo + n 1 ], for all k N, then there exists a subsequence
{yk(m)} that converges pointwise on [a, +c) to a solution of (1).

In turn it follows that if (B) is also assumed, then the continuous dependence of
solutions on initial conditions, coupled with an application of the Brouwer Theorem
on the invariance of domain, imply that solutions of conjugate problems depend
continuously on boundary conditions; for a typical argument with difference equations,
see [14].

THEOREM 2. Assume that with respect to (1), conditions (A) and (B) are satisfied.
Given a solution u(m) of (1) on [a, +o), points S < S2 <’’" .S belonging to [a, +o),
an interval [s, b], where b>=s,, and e >0, there exists (e,[sl,b])>O such that, if
[u(s)-yil < 6, 1 <= <-_ n, then there exists a solution v(m) of (1) satisfying v(si) Yi,
1 <- i<= n, and [v(m)- u(m)[ < e, for all m [s, b].

From Theorem 2, we can state a theorem similar to Theorem 1.
THEOREM 3. Assume that (A) and (B) are satisfied and suppose that, given m

[a, +c) and for some m2," ", m, N, there exist unique solutions of (1), (2). Let si,

1 <- <-_ n, be corresponding points in [a, +o). Ifthere exist a sequence {yk(m)} ofsolutions
of (1) and an M > 0 such that [Yk (S)I <-- M, <= <= n, for all k N, then there exists a
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subsequence {yk(m)} that converges pointwise on [a, +c). In particular, for this sub-
sequence, if limj Yk (Si) Yi, 1 <--_ <-- n, then {Yk (m)} converges pointwise on a, +) to
the solution of the (ml,""", mn) conjugate boundary value problem for (1) satisfying

y(si) Yi, 1 <- <= n.

3. Uniqueness implies existence. In this section, we prove that hypotheses (A) and
(B) imply the existence of solutions of (ml," ", mn) conjugate boundary value prob-
lems for (1). The method of shooting is employed in conjunction with an induction
on m2,’", m. Shooting methods, frequently paired with comparison results for
uniqueness, have been used by Agarwal [4], Hankerson [14], and Peterson [29] in
obtaining the existence of solutions of two-point problems for (1). For linear difference
equations, results appear in [5] where shooting methods are used for multipoint
boundary value problems.

The theorem we present here is analogous to the uniqueness implies existence
result that Hartman [17] and Klaasen [23] proved for conjugate boundary value
problems for ordinary differential equations.

To better illustrate the inductive pattern used with the shooting method in the
proof, we will specifically detail the inductive steps on the indices m,-2, mn-1, mn.
Then, the general inductive step is outlined in the latter part of the proof.

THEOREM 4. Assume that with respect to (1), conditions (A) and (B) are satisfied.
Then given m [a, +o) and m_, , m N, each (ml,. m) conjugate boundary
value problem for (1) has a unique solution on a, +c).

Proof. We remark first that the uniqueness of all such solutions follows from (B).
As stated above, the proof is by induction on m:, , m,, and throughout the proof,
let y R, 1 _-< _-< n, be given.

To begin, let ml [a, +c) be given, let mE ran= 1, and let Sl ml and
s s-i + m, 2 <-_ <_- n. From the existence of unique solutions of initial value problems
for (1), it follows that there exists a unique solution u(m) of(l) on [a, +c) satisfying

tl(Si) Yi, 1 <= <-- n.

Assume now that m > 1 and that, given ml [a, +c) and m2 mn-1 1,
there exists a unique solution of each (ml, 1,..., 1, h) conjugate boundary value
problem, where 1 =< h < m,, for (1) on a, +c).

Under this assumption, let m[a, +) be given, let m2 mn_ 1, let
s m, si Si-l+ mi, 2<= <- n, and let z(m) be the solution (given by the induction
hypotheses), of the (ml, 1, , 1, m, 1) conjugate boundary value problem for (1)
satisfying

Zl(Si) Yi, 1 <- <--_ n 1,

ZI(Sn--1)-"O.

Now define S1--{rR] there is a solution y(m) of (1) satisfying y(si)--ZI(Si), 1--< i--<
n-l, and y(s,)= r}. Since z(s,)S1, $1 is nonempty. Moreover, it follows from
Theorem 2 that S is an open subset of R.

We claim that $1 is also a closed subset of R. Assuming the claim is false, it
follows that there exist roe S\S1 and a strictly monotone sequence {rk}c $1 such that
limk rk ro. We may assume without loss of generality that rk ro. For each k N, let
yk(m) denote the corresponding solution of (1) satisfying

yk(Si) Zl(Si), 1 <= <--_ n 1,

yk(S,): rk.
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It follows from (B) that yk(m)<yk+l(m) on (sn-1, +), for all keN. Further-
more, the induction hypothesis implies the existence of unique solutions of
(ml, 1, .:., 1, rnn- 1) boundary value problems for (1), which, when coupled with
Theorem 3 along with roe:S, implies that yk(Sn--1)’+3, as k-+cx3. Moreover, by
Theorem 1, there exists moe (s,, s / n-1] such that yk(mo)//X3, as k- +.

Now let u(m) denote the solution at the points s2,’’ ", s,-1, Sn_l + 1, s, of the
(ml + 1, 1, , 1, m 1) conjugate boundary value problem for (1) satisfying

u(si) zl(s,), 2 <= <= n 1,

u(s._ + 1) O,

u(s,,)=ro.

Since yk(S, 1)’+ and yk(mo) +, whereas yk(s,) rk < ro u(s,), for all k,
it follows that, for some K e N, u(m)-yl((m) has a generalized zero at s, and also a
generalized zero (or zero) at some hoe (s,, mo]. Furthermore, u(si)-yi((si)=0, 2 <= i-<
n-1, and hence from (B), u(m)=yl((m) on [a, +c), a contradiction.

Hence $1 is also closed and consequently S R. Choosing yn e S1, it follows that
there exists a solution y(m) of (1) satisfying

y(si) Yi, 1 <=.i <- n.

In particular, given m e [a, +), m2 m,_ 1, and m, => 1, each (ml, 1, , 1,
m,) conjugate boundary value problem for (1) has a unique solution on [a, +oo).

For the next part of the proof we induct on mn-1. For this part, we now assume
that rnn_ > 1 and that given rn e a, +c), m2 ran_2 1, and rn, >= 1, there exists
a unique solution of each (ml, 1,..., 1, 1, m,) conjugate boundary value problem,
where 1 <= < m,_l, for (1) on [a, +).

With that assumption, let ml e [a, +cx) be given, let m2 ran-2 m, 1, let
Sl ml, si si- + mi, 2<= <- n, and let z2(m) be the solution at s,. , s,_’, s,_- 1,
S,_l of the (m, 1, , 1, m,_l- 1, 1) conjugate boundary value problem for (1)
satisfying

Z2(Si Yi, 1 <= <= n 2,

g2(Sn_l--1):O,

Z2(Sn_l)--yn_

This time, define S2={reRI there is a solution y(m) of (1) satisfying y(si)=Z2(Si),
1 <= =< n 1, and y(s,) r}. Again, since z(s,) e S, S is nonempty. Also, Theorem 2
implies that $2 is an open subset of R.

We now claim that $2 is also closed. Assuming that S is not closed, it follows
that there exist roe S\$2 and a strictly monotone sequence {rk}c $2 such that limk rk
to. We may assume again that rk’ ro and as before, let yk(m) denote the corresponding
solution of (1) satisfying

yk(Si) Z(S,), 1 <= <= n 1,

yk(S,)=r.

It follows from (B) that yk(m)>yk+(m) on (s,_,S,_l) and yk(m)<yk+(m) on
Is,, +), for all keN. Since ro $2 and since there exist unique solutions of (m,
1,. , 1, mn_- 1, 1) problems, Theorem 3 implies that yk(S,,-1-- 1)$--c, as k--> +c,
and Theorem 1 implies that there exists mo e (s, sn + n- 1] such that yk(mo) +, as
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Let u(m) be the solution atthe points s2," ", s,_2, sn-2+ 1, Sn_l, S of the (ml + 1,
1, , 1, 1, m,-1 1, 1) conjugate problem for (1) satisfying

u(si)=z(si), 2<-i<-_n-2,

u(s._2+ 1) O,

u(s._,) z(s._),

u(s,)=ro.
Since y(s,_a-1)$-, whereas u(s,_)-y(s,_a)=O and u(s,)-y(s,)>O for all
kN, it follows that for all k sufficiently large, u(m)-y(m) has a generalized zero
at s,. Since yk(mo)$ +o, there exists K N such that u(m)-yl(m) has a generalized
zero at s, and a generalized zero (or zero) at some no (s,, mo]. We also have that
u(s)-yl(S)=O, 2<=i<-n-1, and (B) implies that u(m)=yl(m) on [a, +); again,
this is a contradiction.

Thus, $2 is closed and $2 R. Choosing y, $2, it follows that there exists a
solution y(m) of (1) satisfying

y(si) Yi, 1 <-- <-- n.

In summary, given m e a, +), m m_2 mn 1, each (ml, 1, , 1, m-l, 1)
conjugate boundary value problem for (1) has a unique solution on [a, +).

Still assuming the induction hypotheses associated with mn-1 1, we assume in
addition that m, > 1 and that given mle [a, +) and m2 mn_2 1, there exists
a unique solution of each (ml, 1,. ., 1, ran-l, h) conjugate boundary value problem,
where 1 _-< h < m, for (1) on [a, +c).

With this latter assumption, let ml e [a, +c) be given, let m2 mn-9_ 1, let
Sl,"’, s be defined in the usual way, and let 2’3(m be the solution at the points
Sl, , s_2, Sn_l, s 1 of the (ml, 1, , 1, m_l, m, 1) conjugate problem for (1)
satisfying

Z3(Si) Yi, 1 <= <-- n 1,

Z3(Sn--1)=O.
Define $3 {re RI there is a solution y(m) of(l) satisfying y(si) z3(s), 1 -< -< n

1, and y(s,)= r}. As before $3 is a nonempty open subset of R, and we claim that $3
is also closed. Assuming again that the claim is false, let roe $3\S and {r}= $3, with
r’ro, be as in the previous considerations, and let y(m) denote the solution of (1)
satisfying

yk(si) Z3(Si), 1 -<_ -<_ n 1,

yk(S,) rk.

Condition (B) implies that yk(m)< Yk/l(m) on (sn-1, +), for all k e N, and because
of the existence of unique solutions of (m, 1,..., 1, m,_, m,- 1) problems for (1)
along with ro $3, Theorem 3 implies yk(S, 1)’ +, as k +, and Theorem 1 implies
that for some m0 e (s,, s, + n 1 ], yk(mo) +, as k -* +c.

Now, let u(m) be the solution at s2,"’, s,_2, s,_2+ 1, S,_l, s, of the (ml+l,
1,. ., 1, 1, m,-1-1, mn) boundary value problem for (1) satisfying

u(si)-Za(Si), 2<--i<-n-2,

u(s._+ 1) O,

u(s,,_,)=z(s._),

u(s,)=ro.
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Such a solution u(m) exists by the primary induction hypotheses on mn-1 in this
section of the proof. Because of the unbounded conditions on {yk(Sn 1)} and {yk(mo)},
while U(Sn)>yk(S), for all keN, there exists KcN such that u(m)-ylc(m) has
a generalized zero at sn and a generalized zero at some no C (s,, mo]. Moreover,
u(si)-y:(si)=O, 2<=i<=n-1, from which it follows that u(m)=yc(m) on [a, +c),
a contradiction.

Consequently, $3 is closed, S3--R, and choosing y, $3, the corresponding
solution y(m) of (1) satisfying y(s)=y, is the desired solution. In particular, given
ml e [a, +o), ms m_e 1, and m _-> 1, each (ml, 1, , 1, m_l, mn) conjugate
boundary value problem for (1) has a unique solution on [a, +).

This completes the induction on mn_. That is, given ml e [a, +o), ms
m,-e 1, and m,_, m,->_ 1, each (ml, 1,. ., 1, m_, rnn) conjugate boundary value
problem for (1) has a unique solution on [a, +o).

To illustrate the pattern of the induction better, we will give some of the details
of the four steps involved in the induction on

For this section of the proof, our outstanding assumption is that m_2> 1, and
that given m[a, +o), ms mn_3 1, and mn-1, m,,>-l, there exists a unique
solution of each (m, 1,. ., 1, k, m,_l, rn,) conjugate boundary value problem, where
1 -< k < m,_2, for (1) on [a, +). Under that assumption, we will be concerned with
solutions of (ml,1,...,1, m,_2,1,1) followed by (m,l,...,1, mn_2,1, m,),
m,> 1, followed by (m, 1,..., 1, m,_2, m,_, 1), m,_> 1, followed by
(ml, 1,. ., 1, m,_2, m,_, m,), m,_, m,> 1, boundary value problems for (1).

Let m c [a, +), let rn2 mn-3 m,_ m, 1, let si, 1 <= <_- n, be as usual,
and let z4(rn) be the solution of the (m, 1, , 1, m,_e- 1, 1, 1) conjugate boundary
value problem for (1) satisfying

Z4(Si) Yi, 1 <= <- n 3,

Z4(Sn_2 1 O,

Z4(Si) Yi, n 2, n 1.

Defining $4 {r R there is a solution y(m) of (1) satisfying y(si)-- Z4(Si), 1 <- i<= n- 1,
and y(s,)= r}, $4 is nonempty and open.

If we assume $4 is not closed, then let ro and {rk}, with rk ’ ro, be as usual and let
y(m) denote the corresponding solution of (1). It follows in this case that y(s,_2-
1)’+c, as k--> +, and for some mo(S,sn+n-1], yk(mo)’+oo, as k--> +oo.

Denoting by u(m) the solution of the (m + 1, 1,. , 1, 1, m,_2-1, 1, 1) problem
for (1) satisfying

u(si) Yi, 2 <- <= n 3,

U(Sn_3+I)--O,

U(Si) Yi, n -2, n 1,

u()=ro,

it follows that for some K N, u(m) -YK (m) has a generalized zero at s,, a generalized
zero at some no (sn, mo], and zeros at si, 2<= i<=n-1. Again, we contradict (B), and
hence $4 is closed. Select yn c $4 and the corresponding solution is the desired solution
of the (ml, 1,..., 1, m,-e, 1, 1) problem for (1).

In addition to our assumptions on m,_2 > 1, we assume that m, > 1 and that given
m [a, +), ms mn-3-- mn-1 1, each (ml, 1,. ., 1, m,-e, 1, h) conjugate
boundary value problem, where 1 <= h < m,, for (1) has a unique solution on [a, +oo).
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Given m C [a, +m) and m2 mn-3 mn-1 1 with si, 1 <= <= n, as usual, let
zs(m) be the solution of the (ml, 1," ", 1, mn-2, 1, mn 1) problem for (1) satisfying

2’5(Si) Yi, 1 <- -< n 1,

zs( sn 1) O.

Defining $5 in the standard way, $5 is nonempty and open.
If we assume S is not closed, then let r0 and {rk}, with rk’ to, be as usual, and

let yk(m) be the appropriate solution of (1). By the existence of unique solutions of
(ml, 1,..., 1, ran-2, 1, m.-1) problems for (1), we have that yk(S--l)’+O. Also,
yk(mo)’+, where mo is as usual. In this case, now let u(m) be the solution of the
(ml + 1, 1,. ., 1, m_2-1, 1, m) problem for (1) satisfying

u(si) zs(si), 2 <-- <-- n 3,

U(Sn_3 + 1) 0,

u(si) zs(si), i= n-2, n- 1,

u(s.)=ro.

In this case, there exists KcN such that u(m)-yic(m) has a generalized zero at
sn, a generalized zero at some no(S,,mo], and zeros at si, 2<-i<-n-1, the usual
contradiction.

Thus $5 is closed, and we conclude the existence of unique solutions of
(ml, 1,. ., 1, m,-2, 1, m,) conjugate boundary value problems for (1) on [a, +o).

In addition to the primary induction hypotheses on m,_2, we assume now that
mn-1 > 1 and that given ml [a, +m), m2 mn_ 1, and m, _>-1, there exists a
unique solution of each (ml, 1, , 1, m,_, 1, m,) conjugate boundary value problem,
where 1 -< < m_, for (1) on [a, +m).

In this case, we let m e [a, +), m mn_3 m, 1, and we let z6(m) be
the solution of the (m, 1,. ., 1, m_, m-l- 1, 1) problem for (1) satisfying

Z6(Si) Yi, 1 <- <-- n -2,

Z6(Sn-1 0,

Z6(Sn-1)=Yn-1

The corresponding set $6 will be nonempty and open. Repeating the pattern, we assume
$6 is not closed and make the usual arguments using ro, {rk}, and the corresponding
solutions of (1). In this case yk(S,_--l),l,--o, as k+, and for some mo
(s,,,s,+n-1], yk(mo)’+cX3, as k- +.

With u(m) the solution at s,...,s_’3, s_3+l, sn_, S_l, s of the (m+
1, 1,. , 1, rn_2-1, rn_, 1) boundary value problem for (1) satisfying

U( Si) Z6(Si) 2 <-- <- n 3,

U(Sn-3+ 1) 0,

U(Si)--Z6(Si) i=n-2, n-1,

(s.)=ro,

it follows that for some K c N, u(m) -yi,:(m) has a generalized zero at s, a generalized
zero at some no(S,, mo], and zeros at si, 2 -< i-<n-1. This is a contradiction to (B),
and hence $6 is closed; consequently each (ml, 1,..., 1, m,,_2, m_, 1) problem for
(1) has a unique solution.
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For the final step under the primary induction hypotheses on m,_2> 1 and the
induction hypotheses on mn-l> 1, assume in addition that mn> 1 and that given
rnle[a,+m) and m2 mn_3=l, there exists a unique solution of each
(m, 1,. , 1, m,_2, mn-1, h) conjugate boundary value problem, where <= h < m,,
for (1) on [a, +m).

To complete the argument, let m e [a, +m) be given, let m2 mn-3 1, and
let zT(m) be the solution of the (ml, 1,. ., 1, m,-2, m,_, m,- 1) boundary value
problem for (1) satisfying

Z7(Si) Yi, 1 <--_ <--_ n 1

z7(s, 1)=0.

Defining the nonempty open set S in our standard manner, and making the usual
assumption that $7 is not closed, let ro, {rk}, and yk(rn) be the appropriate values and
solutions. We can argue that yk(Sn--1)+ and yk(mo)+c, for some mo
(s,, s, + n 1]. If u(m) is the solution of the (ml + 1, 1, , 1, m,_2-1, m,_, mn)
conjugate boundary value problem for (1) satisfying

1,1 S Z7( S ), 2 <--__ <-- n 3,

u(sn_3+l)=O,

u (si) z7(s ), n 2, n 1,

u(s.)=ro,

then there exists KN such that u(m)-yl(m) has a generalized zero at s,,
a generalized zero at some no(sn, mo], and zeros at si, 2<--i<=n-1. This
contradicts (B); hence $7 is closed, and as in each of the above cases, the
(ml, 1,. ., 1, m,_2, m,_, m,) problem has a unique solution.

That concludes the induction on m,_2; in particular, given m a, +), m2
mn-3 1, and m,_2, mn-1, m, _-> 1, each (ml, 1, , 1, m,_, m-l, m) conjugate boun-
dary value problem for (1) has a unique solution on [a, +).

Although our above arguments exhibit the entire pattern for the induction scheme
in obtaining solutions ofthe boundary value problems, for completeness we will include
some of the details involved in the general induction step. To that end, assume that
2<-_p<-_n-3, that mp> 1, and that given mlG[a +o), m mp_l-- 1,
and rap/l," ", rn, >= 1, there exists a unique solution of each
(m, 1, , 1, k, mp/, , mn) conjugate boundary value problem, where =< k < mp,
for (1) on a, +).

Under that assumption we will be concerned with establishing the existence of
solutions of (ml, 1,. ., 1, mp, mp/l," ", m,) problems by proceeding through 2n-p

inductive steps, wherein we induct on m,, mn_l,’", mp+, following the pattern in
the above parts of this proof. Now for each one of these 2"-p steps, there exist natural
numbers 1 =<jl <j2 <""" <j--< n-p, such that we are concerned with the (2 + 2-’ +

+ 2 + 2J)st inductive step or with the (2J. + 2- +. + 2 + 2J + 1)st inductive step.
(a) In the case of the (2Js + 2- +. + 2 + 2J)st inductive step, our concern is

with showing the existence of solutions of (rnl, 1,. , 1, rap, 1,. , 1, m,_j, 1,. , 1,
mn_A_, 1,’", 1, mn_j2 1,"’, 1, mn_j+l mn_j+2, mn) problems for (1), where
the reader realizes the significance ofthe entries in the n-tuple from previous arguments.

For this problem, in addition to appropriate assumptions from preceding steps
on rnp, rn,_j, , m,,_, m,,-,+l, , rn,,_l, our assumptions are that rn,> 1 and that
given rn a, +c), each (rnl, 1, , 1, rnp, 1, , 1, rn,,_j, 1, , 1, rn,,__, 1, , 1,
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mn-j2, 1," , 1, mn_jl+l m,-l, h) conjugate boundary value problem, where 1 -<
h < m,, for (1) has a unique solution on [a, +).

Given ml [a, +), let z(m) be the solution at the points Sl,"" ", S,_l, s,-1 of
the (m,l,...,1, mp, 1, ,1, m,_js, 1,. ,1, m,_j_, l,. ,1, mn_j2,1,. ,1,
m_j,+, , m,_l, m, 1) conjugate boundary value problem for (1) satisfying

z(si) Yi, 1 <-_ <-_ n 1,

z(s,-1) =0.

The set S= {r Rlthere is a solution y(m) of (1) satisfying y(si) z(si), 1 <= <- n- 1,
and y(sn)= r} is nonempty and open.

If we assume as above that S is not closed, and if ro, {rk}, with rk ’ ro, and yk(m)
are also as in our previous arguments, then it follows from (B) that yk(m)< yk/l(m),
for each keN, on (s,_, +). In complete analogy also, yk(S,--l)’+o, as k- +c,
and for some mo(S,S,+n-1], yk(mo)’+o, as k- +.

If u(m) is the solution at the points s:, s3," , Sp_, sp_l+l, Sp, Sp+l," ,
S_l,S, of the (ml+l, 1,...,1,1, mp-l, 1,...,1, rnn_j,l,...,1, m_js_,,1,...,1,
m_, 1,..., 1, m_,+l," ", m,_l, m) conjugate boundary value problem for (1)
satisfying

U(Si)’-’Z(Si) 2<-i<--p-1,

U(Sp_I+ 1) 0

u(s,)=z(s,), p<-i<-n-1,

u(s,)=ro,

then we can argue that, for some K N, u(m)-yK(m) has a generalized zero at sn,
a generalized zero at some no (s,, mo], and zeros at s, 2-<_i -< n- 1. This contradicts
(B), and it follows that S is also closed. For y S, the corresponding solution y(m)
is the desired solution. This completes this case.

(b) For the case of the (2+2-+...+2j+2l+l)st inductive step, we
are concerned with the existence of solutions of (ml, 1,..-, 1, mp, 1,..., 1,
m,_, 1,..., 1, mn-_l, 1,’", 1, m,_, 1,..., 1, mn_j,, 1,’", 1) problems for (1).

As in (a), in addition to appropriate assumptions on mp, m,_,..., mn_,
our assumptions are that m_l>l and that given m[a,+c), each
(ml, 1,’..,1, mp, 1,...,1, m,_.,1,...,1, m,_j_,l,...,1, m,_2,1,...,1, l,
m,-j/l, m_j/:, , mn) conjugate boundary value problem, where 1 <= < m_l for
(1) has a unique solution on [a, +).

Given m [a, +), let z(m) be the solution at the points s, , s__, s,_- 1,
Srl--jl Srl-jl/l Sn_2, Sn_ of the (ml, 1, , 1, mp, 1," , 1, mn_A, 1, , 1,
rn._s_,, 1,. , 1, rn._:, 1,. , 1, m._,- 1, 1,. , 1) conjugate boundary value prob-
lem for (1) satisfying

z(si) Yi, <= <= n -jl- 1,

z(s._j, 1) O,

z(si) Yi, n -jl <= <-- n 1.

If S={rR[there is a solution y(m) of (1) satisfying y(si)--Z(Si), l<-i<-n-1, and
y(s,) r}, then S is a nonempty open subset of R.
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If we assume S is not closed, and if ro, { rk}, with rk ’ ro, and Yk(m) are the standard
points and solutions, then yk(m)< Yk/l(m) on Is,, +), for all k N. Moreover, since
yk(Si) Z(Si), n --jl =< =< n 1, it follows from (B) that either

(i) yk(S,-j- 1) < Yk+l(Sn-j- 1), for each k N, if j is even, or
(ii) yk(Sn_g--l)>Yk+l(S,_gl--1), for each keN, if jl is odd.
Since the arguments for both cases are analogous, we may assume case (i) is the

situation. In this case, since ro S, it follows from Theorem 3 that yk(S,-g,- 1)’ +c,
as k +. Furthermore, it is again the case that, for some mo (s,, s, + n 1],
Yk (mo) ’ +c, as k +.

Now let u(m) be the solution at the points s2," ",Sp-,Sp_+l,
Sp, Sp/,...,sn_,s,, of the (m+l, 1,...,1,1, mp-l, 1,...,1, mn_,l,...,1,
m,_j._,, 1,. ., 1, m,_j2, 1,. ., 1, m,_j,, 1,. ., 1) conjugate boundary value problem
for (1) satisfying

u(s,)=z(s), 2<=i<=p-1,

u(s,_, + 1) O,

u(si)=z(s), p<=i<=n-1,

u(s,)=ro.

As with previous similar cases, there exists K 6 N such that u(m)-yK(m) has a
generalized zero at sn, a generalized zero at some no (s,, mo], and zeros at s,
2-<_i-< n- 1. This is a contradiction to (B), and we conclude that S is closed; hence
S R. Choosing y, S, the associated solution y(m) is the unique solution of (1) that
we sought. This completes case (b).

The proof is complete. [3

Remark. We remark here that the half-line a, +) is not necessary. In particular,
the results can be extended to a finite interval [a, b + n l, where b is the right-most
point at which conditions are specified, so that our application of Theorem 1 can still
be made in the arguments.
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Abstract. The singular perturbation problem e2u"=h(x, u, e), u(a)=u(b)=O is studied under the
assumption that h vanishes for some x a, hi. Uniform asymptotic approximations are obtained for solutions
exhibiting boundary layer behavior. Approximate Green’s functions are constructed to show existence of
solutions and verify formal approximations.
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1. Introduction. Elliptic singularly perturbed boundary value problems ofthe form

(1.1) e22u f(x, u, e), x

(1.2) u(x) =0, xOft,

where e is a small positive parameter, have been studied by Fife [2], van Harten [3]
and others under the following hypotheses:

(a) There is a smooth Uo so that f(x, Uo(X), 0)= 0 for x ft U oft.
(b) f(x, Uo(X), 0) > 0 for x
(c) )f(x, s, O) ds > 0 for x e 0f and A between Uo(X) and 0.
They have shown that, for sufficiently small values of e, problem (1.1), (1.2) has

a solution u with a boundary layer of width e along Oft and that asymptotic approxima-
tions of all orders can be constructed.

Recently, we have obtained equations similar to (1.1) while using regularization
methods for optimization problems that arise in the identification of parameters.
However, in these problems the function f vanishes identically for some x in the
domain so that hypothesis (b) is violated. Note that (c) is also violated if x happens
to be a boundary point.

In this paper, as a first step in analyzing such problems, we consider ordinary
differential equations

(1.3) E21,1 tt-" h(x, u, e)

with Dirichlet boundary conditions, where h(0, u, 0)= 0 for all u and x 0 belongs to
the domain of interest, and show that there is a solution with boundary layers at both
endpoints. The exact behavior of the solution will be obtained by constructing and
verifying a uniform asymptotic approximation. The analysis has some connection with
classical turning point theory for linear equations (see Wasow [10]). However, our
hypotheses rule out the possibility that solutions exhibit rapid oscillations. Cochran
[1] has given a method for constructing solutions for linear boundary value problems
under similar hypotheses.

In 3 we consider first the case when x 0 is in the interior of the interval. One
interesting aspect of the computation is that the regular expansion has a singularity
at x 0. Nevertheless, a composite approximation is easily constructed and is verified

Received by the editors August 24, 1987; accepted for publication May 2, 1988.
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by the use of an approximate Green’s function. We do not consider higher-order
approximations.

In the final section, we treat the case where x-0 is a boundary point. Despite
the fact that h vanishes at the boundary, it is shown that an integral condition similar
to hypothesis (c) suffices to obtain a solution with boundary layer behavior. We also
verify that a lowest-order approximation consisting of the reduced solution with
boundary layer corrections is uniformly valid. In contrast to the situation where
hypotheses (a)-(c) hold, the boundary layer at x-0 is found to be thicker than the
other one.

2. Preliminaries. In the following sections, we will use the method of approximate
Green’s functions introduced in van Harten and Vader-Burger [4] to show the existence
of solutions and to verify formal approximations. Consequently, this section will
summarize the results of [4] as they apply to (1.3) with Dirichlet boundary conditions

(2.1) u(a)=u(b)=O.

We will assume throughout that all functions are smooth enough to make the arguments
valid, but class C2 is sufficient in all cases.

Suppose a formal approximation A(x, e) has been obtained, in the sense that

(2.2) e2A’’- h(x, A, e)= E(x, e)= ((e ’)

for some a > 0 and all x [a, b] and A satisfies (2.1). Then

(2.3) L(v) eZv’’- hu(x, A, e)v

is the linearization of (2.2) about A and the residual nonlinear operator is given by

fo d2
(2.4) N(v) (l-s) s2 h(x,A+sv, e) ds.

Let denote the supremum norm on C[a, b].
DEFINITION. A function Gr (x, t, e) is said to be an "approximate Green’s func-

tion" for (1.3), (2.1) if it satisfies the following conditions:
(1) Gr C([a, b]2) and Gr is smooth except across the diagonal x t;
(2) The jump in Gr, at x satisfies

[Gr,]=t 1 + (e);

(3) There is a v > 0 so that

IL Gr (x, t)- 6(x- t)l dt 6/(e )

uniformly for x e [a, b], where 6 is the Dirac delta function;
(4) Gr satisfies Gr(a, t, e)=Gr (b, t, e)=0 for all t[a, b].
If Gr is an approximate Green’s function, we define an approximate right inverse

L;- for L by

(2.5) L-2u(x) 6r (x, t)u(t) dr.

The proof of the following theorem in [4] is based on a contraction mapping
argument.
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THEOREM 1. Suppose that A satisfies (2.1), (2.2), N and L- are given by (2.4),
and (2.5), respectively, where Gr is an approximate Green’s function, and

< P(2.6) I[NL-u- NL-uII () Ilu- u211

for u, II, u= , 0 t(), sufficiently small and fl e > O. If
(2.7) IIEII _<-min {fi(e)/4, fl(e)/16},
then for e > 0 sufficiently small, (1.3), (2.1), has a locally unique solution u(x, e) so that

Ilu(x, e)-a(x, e)] _-<4IL-] IIEII,
where is the norm of the operator L-[ as a mapping from C[a, b] into C[a, b].

This theorem with minor modification holds as well for a variety of perturbation
problems and Banach spaces.

Now the calculations in [3] imply that

NVl N2ll (p)[I v, v211
for p and e small, where p is independent of e, so (2.6) is true with/3 C/[L-I]. Then
(2.7) is satisfied if

(2.8) IIEII lL;-’l-0 as e0.

COROCCARV. If the error term E in (2.2) satisfies (2.8), thenfor small e, (1.3), (2.1)
has a locally unique solution u(x, e) so that

(2.9) Ilu-All--< 41L’I lIE II.
3. Problems with an interior singularity. Consider now the problem

(3.1) e2u’’= x"f(x, u)+ e2g(x, u, e),

(.3.2) u(- 1) u(1) 0,

where m is an even positive integer. More general problems could be considered; for
example, we could replace x by Ix]", where m is allowed to be odd. We will assume
the following:

(a) There is a smooth uo so that f(x, uo(x)) =0, -1 _-<x -< 1;
(b) f,(x, Uo)> k2>O, -lx<-l;

o(c) ,o_)f(-1, s) ds > 0 for 0 between Uo(-1) and 0;
(d) uo)f(1, s) ds>O for 0 between Uo(1) and 0.
The first step is to construct an approximation of the solution of (3.1), (3.2) valid

near x =0. If a regular expansion u Uo(X)+ eZu(x)-F is substituted into (3.1), we
find that

u(x) g(x, Uo, O)
(3.3) Ul(X

x"fu(x, Uo)

which is generally singular at x 0. We consider only the worst case, namely that
(e) F(x) u(x) g(x, Uo(X), 0) 0 at x 0.
To correct the singularity, we try as an approximation near zero

(3.4) Uo(X)+
with (=xe-2/("+2). If we put (3.4) into (3.1), we find that v satisfies the non-
homogeneous equation

(3.5)
d2v
d2 "fu(O, uo(O))v- F(O).
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To obtain matching with the first two terms of the regular expansion, we want a solution
of (3.5) so that

F(O)
(3.6) v(sc, e)’-- as :- +oo.

"fu (0, Uo(0))

Now let r/= (fu (0, no(O)) 1/(m+2) and write (3.5) in terms of the independent variable

dav F(O)
(3.7) dr/a- r/’v-f,(0 Uo(0))2/(m+a).

It is well known (see, for example, [11]) that the homogeneous portion of (3.7)
has the solution

(3.8) W(ll) -*’l/(m+2)k /’

for r/_>- 0, where K1/(m+a is a modified Bessel function; furthermore, w can be continued
to an analytic function defined for all ft. Note that w(-r/) is also a solution of the
homogeneous part of (3.7).

Define

F(O)((3.9) v(rt)=
Wr \f(0, Uo(0))

w(-rl) w(t) dt+ w(rl) w(-t) dt

where Wr is the Wronskian of w(rt), w(-rt):

Wr= -2w(0) w’(0) > 0.

Then v satisfies (3.7). Using the well-known asymptotic expansions of the modified
Bessel functions or the Liouville-Green approximations (see [7]), we easily obtain

(3.10)

for some constants Cl, C2. It is then straightforward to verify (3.6) by using (3.9)
and (3.7).

A formal composite approximation can be defined by

(3.11) a(x, , E) Uo(X)--E4/(m+2)
F(x) f(0, Uo(0))

v().
F(0) L(x, Uo(X))

We show in the Appendix that for any constant 6 > 0,

(3.12) eZa"-x’f(x, a)-eZg(x, a, e)= (E4((m+3)/(2m+5))

For large I:l, we have

a(x, e)= Uo(X)+
e2F(x) q-G(2)xmfu(x, U0(X))
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Define

(3.13) a(x)=
Uo(X)+ + A(x)ff iflxl >.5,x"L(x, Uo(X))

where A is a cutoff function on the interval [-1, 1] having the value 1 near x 0 and
having the value zero near x =-1 and x 1.

Finally, to obtain an approximation that is also valid near the endpoints, we
require boundary layer corrections of the form

B_ e --B_ ,0 +(

at the endpoints x 1 and x =-1, respectively. Since the construction of these correc-
tions has been given by many authors (see [2], [3], [9]), we refer the reader to these
sources for the details. The global approximation is

(3.14) A=+FB_I+(1-F)B1

where F is a cutoff function that is 1 near x -1 and is zero near x 1. Then A satisfies
(3.12) as well as (3.2).

The next theorem will demonstrate that A gives a uniform approximation of a
solution u of (3.1), (3.2) for sufficiently small e>0. Note that since A-uo(x)=
(e4/(’+2) near x =0, the theorem implies that the graph of u-Uo(X) has a small
"bump" as a result of the singularity at x =0 and the size of the bump increases
with m.

TI-IEOREM 2. Assume hypotheses (a)-(e). For e >0 sufficiently small, (3.1), (3.2)
has a locally unique solution u(x, e) so that

u(x, e)-A(x, e)= (E(lOrn+24/(2m+5)(m+2)))

uniformly in [0, 1], where A is defined by (3.14), (3.13), (3.9), and (3.8).
Proof The key element in the proof is the construction of an appropriate approxi-

mate Green’s function for (3.1), (3.2). Let h(t)=f/2(t, Uo(t)) for -1-< -< 1. We will
define Hm(x t, e) to be the solution of the problem:

(3.15)

e 2

dx:Z A 2xmHm t( x),

H,(-1, t)=Hm(1, t)=O.

Now W(-+-(h/e)2/(m+2)X) are independent solutions of the homogeneous equation.
Define

h(()/(+x) w(-()-/(+x) w((X/)/(+) w(()/(+x)w(_(/)/(+)
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so that hi, h2 satisfy the homogeneous equation, h vanishes at x 1, h2 vanishes at
x=-l, and

m+2
r/ as r/,

(__?.)--m/4 exp r/ as r/ -.
m+2

Then specifically we have

-Ce-(2m+2)/(m+2)hl h if -1 N x N N 1,

-Ce-’+)/’m+2)hlkke/ h if-ltx 1,

where C is a constant independent of e.
Let L be the linearization of (3.1) about A (see (2.3)). Then

2dH-xf.(x,A)H+e(eLH e
dx

2 d2Hm(3.18) =e A 2xmHm -F [A 2 -fu (x, A)]xmHm -F c(

tS(t-X)+{c(It--Xl)--f,,(X,’)[c(e4/(m+Z)v)+ B-1 + BI]}x"Hm

where is between Uo and A.
In a similar way, Ho(x, t, e) is defined to be the solution of

dHo
e dx----T--A2tmHo iS(t-x),

Ho(-1, t) Ho(1, t) O.

Note that the explicit formula for Ho involves only exponential functions. Now

LHo e
dx2 x’f,(x, A)Ho+ (( e 2)

2 d2Ho(3.19) =e
dx2 A 2t’Ho + [A t" f(x, A)x’]Ho+ O( e 2)

t(t- x) + t(lx tl)Ho-f, (/4/(m+2)V + B_ + B,)xmHo+ e(e2).
According to the calculations in [2], we can choose M_, M to be solutions of

(3.20) e2d2M_l( (x+l)) ( )dx2 -f -1, Uo(-1)+B_, ,0 M_,=f,,B_,
x+l

0 Ho

x L ,Uo(+ ,0 M=f ,0 No,

which vanish at x =-1, x 1, respectively, and satisfy

M ( e exp
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For M1 we have

LM1 e2Ma-f(x, A)M1

=f,,B1 ,0

A similar equation holds for
The approximate Green’s function is defined as follows:

(x, t, e)=A(t)Hm(x, t, e)+ (1-A(t))Ho+F(x)x()M_aGr
(3.23)

where t’ is a cutoff function defined on [0, ee] which is 1 near zero and is zero when
its argument is greater than 1, and 0 < c < 2/(m + 2).

Among the conditions for a function to be an approximate Green’s function, only
the third condition is not immediate. Using (3.18), (3.19), and (3.22), we have

L Gr-6(x-t)= A(t)[(lt-xl)-f..(6(e4/(m+2)v)+ B-a + B1)]x"gm

+ 1 A( t))[ e(lt xl) -f.. (e(e4/(m+=V) + e(e))x"

+((1-x)B1)+C((x+ 1)B_I)]Ho

+[(1 r(x))x((1 t)/e)

(3.24) -(1-A(t))]f,,Bl((1-x)/e, O)Ho

+ [r(x)x((1 + t)/e)

-(1-A(t))]f..B_l((1 +x)/e, O)Ho

+ (1 r(x))x((1 t)/e)[6(1 x) + t(e)]M

+ r(x)x((1 t)/e)[(x + 1)+ C(e)]M_, +
The following estimates are valid uniformly for x [-1, 1 and for all nonnegative

even integers m"

(3.25) It-xllxmgml dt
-1

--2m/(m+2)),(3.26) IH.I dt (e
-1

I(3.27) IvxmHm] dt (1),
-1

io(3.28) B ,0 Ho dt= transcendentally small.

We prove estimate (3.25) in Appendix B. The others can be established more easily.
It follows from these estimates that Gr is an approximate Green’s function.

Finally, from (3.26) we obtain

--2m/(m-t-2))]Gr[ dt (e
-1
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uniformly for x c [-1, 1 ], so

Iz-l] G(E-2m/(m+2)).
The result then follows immediately from the corollary to Theorem 1.

Remark. We can show by comparison techniques that u(x, e)-A(x, e)= G(e4)
uniformly for 0 < 8-<_ Ix[ 1, where is independent of e and e is sufficiently small.
We omit the details.

4. Problems with a singularity at the boundary. In this final section, we treat the
boundary value problem

(4.1) eZu’’= xmf(x, U)+ eZg(x, U, e),

(4.2) u(O) U(1) O,

where m is a positive integer and f satisfies the hypotheses of 3 with the exception
that the inequality in (c) is replaced by

(c)’ ,o(O) f(O, s) ds > 0 for 0 between uo(O) and O.
Once again, we anticipate boundary layer behavior at the endpoints, but the layer

at x 0 will be thicker than the one at x 1. The lowest-order approximation will
consist of the reduced solution Uo plus boundary layer corrections.

With sc xe -/(m+), we find that the first term in the boundary layer correction
at zero, O(sc), satisfies

(4.3) dsC2 sc"f(0, Uo(0) + (R)),

(4.4) {9(0)=-Uo(0), O(sc)o0 as sc-+oo.
Let A (t) =flu/-(t, Uo(t)).

LEMMA. The problem (4.3), (4.4) has a monotone solution (R)() for which, given
6 >.0, there is a C > 0 so that

(4.5) [O(s:)[ --< C exp ( -2A (0) +6m+2
,(+)/2)

for >-0.
Proof Suppose that Uo(0)<0; the other case is similar. We define a positive,

monotone decreasing function/3 (so), sc -> 0 by

(4.6)
2 (’+2)/2 f() /4 foa- 2 f(o, uo(O)+ s) as.

m+2

Note that/3(0) =-Uo(0),

(4.7)
d/3

and

--"/ 2 f(O, uo(O)+ s) ds

(4.8) d m(m-2)/24 Iod2- sc"f(0, Uo(0) +/3)- 2 f(0, Uo(0) + s) ds.

Furthermore, we can use an argument like the one given by Fife [2] for the case m 0
to show that for each > 0 there is a C > 0 so that

(’) <- c exp ( -2A (O) + 6

+ 2

for :>=0.
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Now (4.8) implies that/3 is an upper solution for (4.3), (4.4). In the case rn 1,
/3" is singular at : 0, but singularities of this type at the boundary are permissible.
Since zero is a lower solution, it follows that (4.3), (4.4) has a solution O(sc) satisfying
(4.5).

It remains to show that O is monotone decreasing. From (4.3), (4.5), it is clear
that O’(s)-0 exponentially fast as s o. Multiplying (4.3) by O’, integrating both
sides from to s and using integration by parts, we obtain

"5’() I o’o"

,mf(o, uo(O+Oo’ a,

Jo f(0, Uo(0) + s) as + mr"-’ f(O, Uo(0)+ s) as dr,

so hypothesis (c)’ implies that O’(:) # 0 for all :>=0, and the proof is complete.
The next theorem yields the existence of a solution having a boundary layer of

width e/"+2 at x-0 and a boundary layer of width e at x 1.
THEOREM 3. Assume hypotheses (a), (b), (c)’, and (d) are satisfiedfor the interval

[0, 1 ]. For all > 0 and sufficiently small e > 0, (4.1), (4.2) has a solution u(x, e) so that
u(x, e)-Uo(X, e) (e) uniformly for 6 <=x<-_l &

Proof. We consider the case that Uo(0) and Uo(1) are negative. Existence will follow
from the construction of upper and lower solutions for (4.1), (4.2).

An upper solution can be chosen to have the form

(4.9) Uo(X)+()+y +CF_,4/(m+2) V(),

where/3 is defined by (4.6), 3’ is a certain positive solution of

E
2 dZT
x2-f(1, Uo(1) + T) < 0, T(0) -Uo(1),

so that T’0 as e-0 for x < 1, and C is a positive constant to be determined. The
definition of V is similar to the definition of v in 3. Let k2/(’’/2) and let w()
be defined as in (3.8). Define

/, (m+2)/2\

(4.10) *(#)= # q/(=+2) },
where I is a modified Bessel function, and

v(= wr- ( (+( (t

where Wr is the Wronskian. Then V satisfies the equation

(4.11)
dV
dO2 OV= -1

and

It suffices to verify that (4.9) satisfies the requisite differential inequality near
x 0; see Howes [6, Thm. 4.1] for the verification near x 1.
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Substituting (4.9) into (4.1), using a prime to denote differentiation with respect
to x, and neglecting y, which is exponentially small, we have

xmf(x, tloh. fl + Cl?,4/(m+2) V() e2( Uo.__[3n .31..CE4/(m+2) Vn _it_ (E2)
xm[f(x, Uo(X)+ fl)--f(O, Uo(O) +/3)]+ x’f(O, Uo(O) + fl)- e2fl

(4.12) + xm[L (x, k2]fe4/(m+2) V+ k2xmV e 2 vn]cl4/(m+2) -4- ( E2)

(x"+1/3) + -m ( Io> x(m-Z)/2e 2 f(0, Uo(0)+ s) ds
2

+ 6(x’Ce4/m+2 V) + Ck4/’+-e2 + (e)
by the Mean Value Theorem, (4.8), and (4.11). Consider an interval 0 <- x <- De2/(m+2).
The second and fourth terms in the last expression in (4.12) are positive and dominate
the other terms on this interval for large enough C, so (4.12) is positive on such an
interval. Also, we can assume that

L X, bl -1
I" j " Ce4 +2 V k2

for x >- De2/(m+2).
For x De2/(m+2), the expression (4.12) is at least as large as

o Io t(xm+lfl) +-- xTM 2 f(O, uo(O) + s) ds
2

+ Ce’/("+z)[-e2 V"+ x"fu(x, "-) V] + e( e)
m -)/-e( J’/3 )1/2>= (X’+’ +-- XTM 2 f(0, Uo(0) + s) ds
2 o

-4- Ck4/(m+2) 82 -f- c( 82).
Note that the second term in the last expression dominates the first term for x << e 2/(m+4)

and/3 is exponentially small for x >> e2(m+2). Consequently, (4.12) is positive for all x
in a neighborhood of zero if C is large and e is small.

It is routine to check that Uo(X)- Ce4/(m+2) V serves as a lower solution for large
enough C. These calculations, together with the asymptotic behavior of V, complete
the proof for the case considered.

An approximation for a solution of (4.1), (4.2) is defined by

(4.13) A(x, , I x ) (1-1), =Uo(x)+r(x)O()+(1-r(x)),\,
where B is an appropriate boundary layer correction at x 1 and F is a cutoff function
which has the value 1 near zero and the value zero near 1. A straightforward calculation
yields

(4.14) e2A"-x"f(x, A)- e2g(x, A, e)= (8(2m+2)/(m+2)),
uniformly for x [0, 1 and A(0) A(1) 0. Of course, higher-order approximations
would involve terms such as the one in (3.11) to correct the singularity in the regular
expansion, as well as additional boundary layer terms.

We can verify the formal approximation (4.13) if hypothesis (c)’ is strengthened.
THEOREM 4. Assume hypotheses (a), (b), and (d) are satisfiedfor the interval [0, 1],

and
(c)" f(0, s)> 0 for s between zero and Uo(0).
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For all sufficiently small positive e, (4.1), (4.2) has a locally unique solution u (x, e so that

u(x, e)-A(x, e)= ff(e2/("+2))
uniformly for 0 <= x <= 1, where A is defined by (4.13), (4.3), and (4.4).

Proof. As in the proof of Theorem 2, we let A (t) =f/2(t, Uo(t)) and define H,,(t, x)
to be the solution of

2 d2H,,e dx----- A 2xmHm 3( X),
(4.15)

Hm(O,t)=Hm(1, t)=O.

Since m is allowed to be odd, the construction of Hm is slightly dif[erent from that
given previously. Let w be defined by (3.8), by (4.10), h2(s)= if(s), and

w((le)/+)
h,() w(s)-h((/)/+) h(s).

Then

s(m+2)/2
m+2

as s. With S--(A/e)2/(m+Z)x, hg_, h2 satisfy the homogeneous portion of (4.11), hi
vanishes at x 1 and h2 vanishes at x 0.

Then H,, is defined as in (3.17). Also, H0 is defined much as in the proof of
Theorem 2 with the obvious modifications needed to accommodate the interval [0, 1].
With L as in (2.3),

(4.16) LH,,=3(t-x)+{(lt-xl)-f,[FO+(1-F)B]}x"H,,,+(e2),
(4.17) LHo=(t-x)+(Y(It-xl)Ho-f,[F(R)+(1-F)Ba]xmHo+(e2).

The function

M 6(e -a exp (x- 1)/e)

is chosen as in the proof of Theorem 2 to be a solution of (3.21) that vanishes at x 1.
Mo is chosen to be a solution of

dZMo(4.18)
d2 "f,(O, uo(O)+O)Mo=fuO"Hm, Mo(0) 0,

so that

(4.19) IMo()l <= C exp
m + 2 ]

exp (-/x

for sc => 0 and some positive constants C and/x. A similar estimate will be valid for M/.
Such an Mo can be constructed in the following way. Note that hypothesis (c)"

implies that -0’ is a positive upper solution for the homogeneous portion of (4.18).
It follows that there is a positive function z(sc) which satisfies

"- f.(0, Uo(0) + O)z 0, (>_-o),

(0) -o’(0),
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and z--) 0 as :--). According to the Liouville-Green approximations, for any small
6>0thereisaC>0sothat

C-1 exp (- 2

m+2\ ) (2 )(h(0)+():(’+)/ _<--z()_< C exp --(A(0)-3):(’’+u)/2

for :_-> 0. Define

Mo(, =( -(s (,L,O(Hm(,, ,s.

Then Mo satisfies (4.18) and (4.19).
Now an approximate Green’s function is

(4.20) Gr(x, t, e) r(t)H,+(1 r(t))Ho+r(x) U Mo+(1-r(x))r
1

gl,
e /

where 0<a <2/(m +2).
The verification that Gr is an approximate Green’s function follows from (4.16)-

(4.19) and is similar to that given in the proof of Theorem 2. We also have that

IL-1l=(e-/(m+2)),
which together with the Corollary to Theorem 1 and (4.14) completes the proof of the
theorem.

Theorems 2, 3, and 4 contain all the basic ideas needed for investigating a
nonoscillatory semilinear, singular peurbation problem in which the right-hand side
vanishes at one or more points in the interval. In the following example, there are
three such points.

Example. Consider the boundary value problem

u" x’(-x)f(u)+ g(u),
u(-1)= u()=0.

Suppose there is a C #0 so that f(C)=0, (C)>0, oc f(u) ds > 0 for 0 between C
and zero, and g(C)# 0. Then the hypotheses of Theorems 2 and 3 are satisfied (with
appropriate translation of the x-axis) and the boundary value problem has a solution
u(x, e) if e is small enough. Fuhermore,

(1) near x and x l,
u(x, e) C 6(e/3) near x 0,

(e2) elsewhere in [- l, 1 ].

The boundary layers at x -1 and x 1 have width ez/3. We could construct a uniform
approximation for u(x, e) using the calculations of 3 and 4.

There is a relationship between the problems discussed here and turning point
problems for quasilinear equations (see [5], [8]). We will study these latter problems
in a future paper.

Appendix A. Verification of (3.12). For the sake of brevity, we write (3.11) as

(A1) a Uo+ e4/(’+)b(x)v().
Then

(A2)

ema’’- x’f(x, a) eZg em(u’ g)+ e2+4/(m+2)( bttv"-
2b f bi5 )E
2/(m+2)

.qt_
E
4/._.+2

xm[L(X tlo)e4/(m+2)b) -F G(8. 8/(m+2)t)2)],
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where the prime indicates differentiation with respect to x and the dot indicates
differentiation with respect to .

Now the asymptotic expansion for v in negative powers of begins:

(A3) v(),..,(u’-g)(O) m(m+ 1)(u-g)(0) --3m--4)
(mfu(O)

+ scz.,+zf2 (0) +

as sc- +c. If Ixl >> e2/(m+2), (A2) can be written in the form

(A4)

2 Ut me2+(4/(m+2)) m--1 2+(2/(m+2)))e -g)(x)+ ’(- +(- s

+ ezb (u’d-g)(O)m(m+ 1)
m+2fu(O

+ e(e2--2rn--4)--xrnfu(x Uo)e4/(m+2)b

m(m+l)(u-g)(O)]/:f(o)

+ e(Xme4/(rn+2)-3rn-4) ..Jf- e(xmeS/(rn+2)--2rn),

where f.(0)=f.(0, Uo(0)). Using := Xe
-2/(m+2) and

b(x)
u’(x)- g(x, Uo(X), 0) f(0, Uo(0))
u(0)-g(0, Uo(0), 0) L(x, Uo(X))’

we have

(A5) (A4) e( e4x-m-l) 1_ r( e4x--m) + e(e6x--2m--4).

It follows immediately from (A5) that

(A2) e(e4) if Ixl e a > o,

where 6 is independent of e, and

(A2) U(e2+2) + U(e (2+(=++2)/(m+2))) if 1 => Ix[ _-> Me (2-’)/(’+2),

where 2’ and M are any positive s-independent constants.
Finally, consider the case that Ixl--< -)//=). We have

(A2) eZ(u’-g)(x)+ e(e(2+4/(m+2))V) - e(e2+2/(m+2)/)) - e2b[iJ ’f,(O, Uo(0))v]

+ e(ex"v) + e(

which by (3.5) and the fact that b(0)= 1 yields

(A2) e(e2x) + e( e (2+4/(m+2)) V) -- e( e (2+2/(m+2))) -- e(e2xmv) + (e8/(m+2)XmV2)

(e(2m+6-)/(m+2)).

From the preceding calculations, it follows that the best estimate is obtained by setting
22’ (2- 2")/(m + 2), so that 2’ 2/(2m + 5). The uniform estimate

(A2) F( e (4m+12)/(2m+5))

is obtained, which agrees with (3.12).
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Appendix B. Verification of (3.25). We will show only that

(B1) It-xlxmg.(x, t, e) dt= (e2/(m+2))

uniformly for 0 <= x <= 1 since estimates over the other intervals are similar
Let M be a positive constant and consider first the case O<-x<= e2/(m+2). Using

(3.17), we have that the integral in (B1) is (except for an inessential constant multiple)

(()2/(rn+2))fO (()2/(m+2))e-(m+2)/(m+Z)Xmhl x (x- t)h2 dt

(B2)
x’h((A/e)2/’+2)x) x-/’+’

--l2/(m+2)E(Zm-2)/(m+2 2/(m+2) /2/(n+2)’ h2(s) ds

(e/m+)).
Next, for x > Me2/"+2) we have

Xmhl((A/e)2/(m+2)X)fotVte2/m+2) (() 2/(m+2) )E(Em+E)/(m+2 (X-- t)h2 dt

--Xm+lhl((A/F-’)2/(m+2)X)[IOW ](B3) X2/+)e:m/m+ h(s) ds+(1)

(e/+)).
Finally, from (3.16) we have

Xmhl((A/e)2/(m+2)x)fX (() 2/(m+2) )e(Zm+2)/(m+2 (X-- t)h2 dt
Me2

N (2m+2)/(m+2) (X- t)
Me2/(m+2)

exp -x (xe-(/(
e(m+2)

(4

(e /(+ tin exp (+/-x(+/) dt
e(m+2)

NC x
6 Me2/+z tin exp dt

e(m+2)

since m+)/ x+)/ (t x)x/2 for 0 x. Using integration by pas on the last
expression in (B4), we have that the first expression in (B4) is no greater than

C (3m+4)/(2m+g) (Me/(+- x) e(m+2 2 (Me/(+_x)x/
e 2xm/2 exp

e(m+2)

eZ(m+2)2( ( 2 2/(m+2) )xm/2))](B5) + 1 -exp (Me x
4x e(m+2)

(e/++/4)
if x=6(e/+2)-) and 0<6<2/(m+2).

The estimates (B2), (B3), and (B5) imply that (B1) is valid uniformly for x [0, 1].
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ON THE EXISTENCE OF SOLUTIONS OF A TWO-POINT BOUNDARY
VALUE PROBLEM ARISING FROM FLOWS IN A CYLINDRICAL

FLOATING ZONE*

CHUNQUING LUt AND NICHOLAS D. KAZARINOFF$

Abstract. Existence of one solution for a two-point boundary value problem arising from flows in a
cylindrical floating zone is proved using forward and backward shooting and the Schauder fixed point
theorem. If Q 2A Re, where A is the aspect ratio and Re is the Reynolds number, then the existence
theorem holds only for Q < 1.

Key words, nonautonomous two-point boundary value problem, nonlinear backward shooting, Schauder
fixed point theorem

AMS(MOS) subject classification. 34

1. Introduction. We consider solutions ofthe following nonautonomous two-point
boundary value problem (TPBVP) on [0, 1]:

(1.1)
(a) [*1(f,/*1),j,+Q[f(f,/*1),_*1(f,/*1)2]=fl*1 (’=d/d*1),

(b) f(0)=f(1)=0 and (f’/*1)’l,,=o=(f’/*1)’l,,=,-l=O.
This problem arises in the study of surface-tension induced flows of a liquid metal or
semiconductor in a cylindrical floating zone of length 2L and radius R. In dimensionless
coordinates (r, x), points ofthe cylinder are given by -1 <- x X/L<= 1, 0<= .1 r/R <- 1,
with free surface .1 1. The (x, r) components of dimensionless velocity (u, v) are,
respectively, u 2A3(Re)f/.1 and v -2A3(Re)f’/’1, where Re is the Reynolds number
(Q=2A Re), and A= L/R is the aspect ratio. Assuming that the dimensionless
pressure p is a quadratic function of x, we find that the r-component of the acceleration
equation in the Navier-Stokes energy system describing the flow of fluid and its
temperature in the cylinder becomes (1.1)(a). The physical boundary conditions reduce
to the conditions (1.1)(b) if we make the assumption that the free boundary is
time-independent but not "flat."

Numerical solutions of (1.1) have been found 1] for 0 <= Q <= 32.7 and Q _-> 1749
(see Fig. 1). At Q =0, the unique solution of (1.1) is .12(.12__ 1)/8. We prove existence
of at least one solution of (1.1) for Q [0, Qo), with Qo sufficiently small by applying
the Schauder fixed point theorem (see [2], where Lu et al. have used the same method
to study a simpler TPBVP). The nonautonomous nature of (1.1) makes the proof of
our main theorem longer, more complex, and more delicate than the proof of the
corresponding result, Theorem 2 of [2]. We are also able to give a crude estimate of
how small Q must be for our existence theorem to hold, namely, Q < Qo 1.0.

The solutions we have found all correspond to two-cell solutions on the left-hand
branch in Fig. 1; they all have f(*1)< 0 on (0, 1) with f’ vanishing just once there.
Thus u preserves its sign and v vanishes exactly once on (0, 1), which means that these
solutions give rise to but two flow cells, one in each half (x>0 and x <0) of the
cylinder. For some of the numerically found solutions on the right-hand branch, f
does change sign once on (0, 1). These solutions correspond to three-cell flows in the

Received by the editors August 3, 1987; accepted for publication (in revised form) May 26, 1988.
t Institute of Software, Academica Sinica, P.O. Box. 8718, Beijing, People’s Republic of China.
Department of Mathematics, Sate University of New York, Buffalo, New York 14214-3093.
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cylinder. The mathematical existence of such solutions, as well as the existence of
others, is still an open question.

2. A nonlinear operator T. Let g (f’/q)’. Then (1.1)(a) can be rewritten as

(2.1) g’ + [(1 + Qf)/ rl ]g Q(f’/ rl )2 ft.
We differentiate (1.2) once with respect to r/ and obtain the equation

(2.2) g"+[(l+Qf)/rl]g’-[{l+Q(rlf)’}/rl2]g=O (0< r/< 1)

to which we add the conditions

(2.3) lim g(r/)= g(O)= g(1)- 1 =0.

Let

= {fif cl[o, 1],f(O)=O,f’(O)=O,f(1)=O,-1/2<--_f(rl)<--O,

-_<--f’(r/)_--< 1, and Ilfll

and f"(0)=-2 s g( t) dt ds.

We carry out the above program for defining f* and Tf=f* in the next section.
In 4 we show that T(12)_ 12, T is continuous and T maps bounded subsets of 12

f(’o) g(t) dt ds
2

where Ilfll =max Ifl+max If’l, and the maxima are taken over [0, 1]. It is easy to
check that 12 is a nonempty, closed, bounded, convex subset of C110, 1].

Given any fe 12, find the solution g of the linear TPBVP (2.2)-(2.3), and let f*
be the solution of the TPBVP (f*’/rl)’=g(rle(O, 1)) with f*(0)=f*(1)=0. Then
define Tf=f*. Thus, given a Q e [0, Qo] for some Qo> 0, if we can find an fe l] for
which Tf=f, then f will be a solution of (1.1) with
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into compact subsets of 12. Having thus set the stage, in 5, we apply Schauder’s fixed
point theorem [3] and obtain our main theorem.

3. Some lemmas. We now consider the following backward initial value problem
on (0, 1):

(3.1) g"+[(l+Qf)/r/]g’-[{l+Q(r/f)’]/r/2]g=O with g(1)=l and g’(1)=a.

We multiply (3.1) by the integrating factor I(r/) exp { (1 + Qf(s))/s] ds}, integrate
the differential equation in (3.1) from 1 to r/, and obtain

(3.2) g’(r/)I(r/) {[l+Q(tf)’]/t2}g(t)I(t) dt+a.

In each of the eight lemmas below the following hypotheses are to be understood:
f, g is a solution of (3.1), and Q [0, 1).

LEMMA 1. If ot g’(1) <--_ O, then g’( r/ < 0 for all r (0, 1).
Proof. Observe that since f Q,

(3.3) 1 + Q(tf)’ 1 + Q(f+ tf’) > 1-Q(1/2+2t/3)>O
for all Q [0, 1] and all (0, 1). If g’(1)-<_0, then initially for < 1, g(t)->_ 1. Hence,
the integral on the right-hand side of (3.2) is negative as long as g(t)> 0, and so, we
claim, g’(r/)_-< 0 for all r/ (0, 1). If not, g’(r/o) > 0 for some r/o (0, 1), and there must
be a first zero r/1 > r/o of g’ (closest to one) for which g"(r/) < 0. But from the differential
equation (3.1) g"(r/1)>0. This is a contradiction, and the proof of Lemma 1 is
complete.

LEMMA 2. If g( r/o) 0 for some r/o (0, 1), then g( r/ < 0 for 0 < r/< r/o; that is, g
has no more than one zero and

lim g(r/) < 0.
,.o

Proof. Suppose not. Let r/o < 1 be the zero of g closest to 1 and let r/1 be the next
zero of g. Then there must be an r/2 (r/l, r/o) such that g(r/2)< 0 and g’(r/2)=0. To
see this we note that, since r/1 is the first zero of g less than r/o and g(1)= 0, g(r/)< 0
on (r/, r/o), g(r/2) is a local minimum of g and g"(r/2)> 0. However, the differential
equation in (3.1) implies g"(r/2) < 0 since g’(r/2) 0, g(,/2) < 0 and 1 Q(tf)’> 0. This
is a contradiction.

It remains to prove that lim,.o g(r/)< 0. We first observe that since g(r/o)=0,
g’(r/o) 0, for otherwise g=0. Then g’(r/o) > 0, and by (3.1), g"(r/o) < 0. Thus
g’(r/o) and g(r/)< 0 for r/< r/o and close to r/o. Moreover, g’(r/) remains positive on
(0, r/o), because g"(r/) < 0 wherever g’(r/) 0 for r/< r/o. Therefore, lim,.o g(r/) < 0
(the limit may be -). This completes the proof.

LEMMA 3. Let Q [0, 1) be given, f 12, and g(r/, a) solve the backward initial
value problem (3.1). Then there exists an ao>0 such that a> o implies an r/ (, 1)
exists at which g( r/, O.

Proof. Rewrite the differential equation in (3.1) as follows:

(3.4) g"= -[(1 + Qf)/r/]g’ + [{ 1 + Q(r/f)’}/

Let 31 satisfy the condition

(3.5) -(1 Q/3)al + (1 + Qllf l[)/ (1/2) < o.
Then for all a > 31 and r/ [1/2, 1),

-(1-Q/3)a/r/+g(1; a)(1 +QIIf[[)/()<o;
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hence, g"(1; a)<0. This implies that for
and g(r/; a) < 1. We claim g"(r/; a) < 0 as long as g’(r/; a) > a for r/ [1/2, 1). To see
this, we use (3.4)-(3.5) together with g’(r/; a)> a and g(r/; a)< g(1; a)= 1 to obtain
the following estimate: for

g"(r/; a)<-(1-Q/3)a/r/+g(1, a)(1 +Qllf[[)/(r/)2
(3.6) <-(1-Q/3)al+(l+Qllfll)/(1/2)2 (r/ [1/2, 1))

<0.

Then g’ increases as r/ decreases; hence, g"(r/; a) < 0 and g’(r/; a) > a for r/ [1/2, 1).
Using Taylor’s formula, for r/ [1/2, 1) we can write

g(r/; a) g(1; a)+ g’(1; a)(r/- 1)+ g"(; a)(r/- 1)2/2,
for some (r/; 1). From this and (3.6) we see that if ao max [al, 4], then g(; a) <0
for a > ao. Finally, since g(1; a)= 1, we conclude that g must vanish somewhere on
(-34, 1). The proof of the lemma is complete.

LEMMA 4. There is a nonempty set A such that A c (0, ao) and

0 -<limg(r/;a)<l foraA.

Proof We define two subsets of the real line as follows:

A ={a [g’(w; )_-<0 for some r/ (0, 1]},

A2 {a Ig(r/; a)=0 for some r/ (0, 1)}.

By Lemma 3, A2; and A is open since, by (3.1), g’(r/; a)0 if g(r/; a)=0. By
Lemma 1, A1, and A1 is also open since, by (3.1), g(r/; a)0 if g’(r/; a)=0. We
claim AfqA2=. Suppose not. First, we observe that it is impossible for g’(r/)<0
and the g(r/) 0 to hold simultaneously. If g(r/) vanishes farther from 1 than g’(r/)
becomes negative, then there must be a local maximum of g at a point r/1 where
g’(r/1) 0, g"(r/1) < 0, and g(r/1) > 0. This contradicts (3.1). If g’(r/) < 0 farther from
one than an r/< 1 exists where g(r/) 0, then g must take on a negative local minimum,
which also contradicts (3.1).

It is clear from the definitions of A1 and A2 that the complement (A1 [A A2) in
R of A A2 is not empty and (A1U A2) c (0, ao) where ao is defined in the proof
of Lemma 3 above. Let A (A1 (_J A2) c. Then for a A, g’(r/, a) and g(r/, a) are positive
on (0, 1). Therefore, limn,o g(r/) exists and 0 <_- lim,,o g(r/) < 1. This completes the
proof.

We next prove that if a A, lim,,o g(r/; a)= 0.
LEMMA 5. If lim,,o g( r/; a) exists and is finite, and, in particular, if a A, then

this limit is zero.

Proof Recall from 2 that for fO, f(0) =f’(0) =0 and f(r/) <0 on (0, 1). We
begin with (3.2). Suppose r/o> 0 is so small that

1/2< 1 +
Then the integral appearing on the right-hand side of (3.2) can be rewritten as

{[l + O( f)’]/ t}g( t)I( t)

(3.7) F()dt+ F(t) dt,
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Clearly, M(r/o)< 0. Since g(t)> 0 on (0, 1 ], for 0 <

g(t)I(t)/t2 dt>-_B(rl)(3.8)
2 ,o

where I(t) is defined at the beginning of this section. Note that f’(0) 0 and f(r/) < 0
on (0, 1) imply that given e >0 there exists an r/. r/x(e) > 0 such that

(3.9) -e <f(v)/v<O (v6 (0, 1)).

We rewrite the integral h(t) in the exponent for I(t) as

h(t) {(1 + Qf)/v) dv + {(1 + Qf)/v) dv

N()+lnt-ln+Q
v

Therefore, for 0 < <

(3.10) -Qe(-)<h()-[N(n)+ln t-ln n]< Qe(-).

Let min [o, ]. Then (3.8) and (3.10) both hold for 0< < . Therefore,

tN-(n, e) e+’ < I(t)<tN+(a, e) e-Qet(3.11)

where

N+(r/, e) (l/r/) e N(’)(+/-O’).

It follows that for 0< r/< r/2 the function B(r/) defined in (3.8) satisfies the following
inequalities:

(3.12) B(r/)< t-lg(t)N+(q2, e) e- dt.

Finally, from (3.2), (3.7), and (3.12), for 0 < < 2 we obtain the inequality

1 f" t-lg(t)N+(2 e) e-tdt+M(2)+g’(1).(3.13) S-(2, e)g’() e+"< ,
If we let 0 in (3.13) and lim,o g()= fl > 0, then the integral (3.13) approaches
-. Thus there is an *>0 such that g’() < 0 for 0< < *. This is a contradiction.
Consequently, lim,o g(; a)= 0. The proof of the lemma is complete.

LEMMA 6. ere exists only one a A such that lim,o g(; a)= 0.

Proo We prove this by contradiction. Suppose there exist two solutions gl()=
g(; al) and g2()=g(; 32) that approach zero as n % 0. Let g-g2=h. Then h
satisfies the differential equation

(3.14) h"+ [(1 + Qf)/]h’-[{1 + Q(f)’}/2]h =0

with h(1)=0, h’(1)=al-a20. Suppose al<a2. Then h()>0 and h"()>0 as
long as h’() < 0. Suppose that for some first point o (0, 1) (closest to 1) h’(o) 0.
Then it must be that h(o)>0. Then, by (3.14) we see that h"(o)>0, which is a
contradiction. Therefore, (a) g()<g() and (b) g()> g2(). Integrating (a) from
zero to and using our assumption that gl(+0) g2(+0) =0, we find that gl() < g2(),
which contradicts (b), and the proof is complete.
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The proof of Lemma 5 implies that not only lim,.og(r/)=0 but that r/g’(/)
remains bounded as r/ 0. We now show that, under the hypotheses of Lemma 4,
lim, .o r/g’( 0.

LEMMA 7. Under the hypotheses of Lemma 4, limno g’() 0.
Proof It is obvious that limno g’(B)I()0 exists and

0 lim g’()I() < a.
,o

Also, I()/ has a finite limit as 0. Hence, lim,o g’() exists and is nonnegative.
Suppose this limit is > 0. Then given e > 0 with 0 < e < , there exists an g > 0 such
that for 0 < < ,

v- e < g’() < v+e.

We divide these inequalities by and integrate from to . The result is

(v- e)[ln (n/n)] < g(n)-g(n) < (+ e)[ln (n/n)].
These inequalities imply that as O, g-, which is a contradiction. Hence,
lim o g’() 0.

Remark. If lim,o g() exists (including) and g’ has constant sign near B 0,
then all integral curves of (3.1) are asymptotic to either as 0, except for one
that approaches the origin.

We next obtain bounds for g and g’ on [0, 1].
LEMMA 8. If the hypotheses of Lemma 4 are satisfied and a A, then the solution

g of (3.1) satisfies the inequalities

(3.15) n +2q/3 g(n) n -q/3,

(3.16) (1-Q/3)+2o/3wg’()(l+2Q/3)-0/3

for all [0, ].
Proo Rewrite (3.1)"

(3.17) (2g’)’- (g)’- Q(fg)’= -2Ofg’.

We integrate (3.17) from zero to and apply Lemmas 5 and 6 (g(0) =0 and Wg’(W)l,=o
0) to obtain

(3.18) g’=[(l+Qf)/n]g-(2Q/) g’ dt (0< n < 1).

Since -Nf()N0 and g’() 0, using (3.18), we obtain the inequalities

(3.19) [(1-Q)/n]g()Ng’()N(1/n)g()+[2Q/(3)] tg’ dt (0< <1).

We apply integration by pas to the integral in (3.19) to find

(3.20) tg’ at= rig(n)- g at (0< n < 1).

Finally, combining (3.19) and (3.20) and using the positivity of g for a A, we obtain
the inequalities

[(1 -Q)/]g() g’() (1/)g()+[2Q/(a2)][g()] [(1 + 2Q/3)/]g,
namely,

(3.21) (1-Q)/g’()/g()(l+2Q/3)/ (0<<1).
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If we integrate (3.21) from r/ to 1 and exponentiate the result, we obtain (3.15). The
combination of (3.15) with (3.21) then yields (3.16), and the lemma is proved, l-]

4. Definition, continuity, compactness of the operator T. We recall the definitions
of f and T from 2. The domain f of T consists of the functions in C1[0, 1] for
which f(O)=f’(O)=f(1)=0, -<-f(7)_-<0, -=<f’(r/)_-< 1 and Ilfll--<. The operator
T is defined on f by Tf=f*, where f* satisfies the equation (f*’/)’= g, subject to
the boundary conditions f*(0)=f*(1)=f*’(0)= 0, and where g is the solution of the
backward initial value problem (3.1), found in the last section, with a chosen so that
g(0) 0 and on (0, 1) both g(r/) and g’(r/) are positive. We first prove Lemma 9.

LEMMA 9. If the hypotheses of Lemma 8 are satisfied, then the operator T is well
defined and maps any bounded subset of f into a compact subset of

4Proof. We first show that for Ilfll--<, as in the definition of f, T maps f into
itself. We integrate the equation (f*’/ r/ )’ g from zero to r/ and use the conditions
f*(0) =f*’(0)= 0 and obtain the results that

(4.1) f*’(r/) kr/+ r/ g(t) dt,

and

(4.2) f*(r/)=kr/2+ x g(t) at dx,

where

k -2 x g(t) dt dx =f*"(0).

Then, f*(1)=0. Differentiating (4.1), we find that

(4.3) k+ g(t)dt+,lg(q).

Since g is positive and strictly increasing on (0, 1), f*" has at most one zero on (0, 1),
and hence f* does not change sign on (0, 1). But f*"(0)= k < 0 and f*(0)=f*’(0)= 0
imply that f* is negative near zero. Thus, f*(r/)< 0 on [0, 1].

We now show that f* and its derivatives have the bounds necessary for f* to lie
in f and for T to have the property that if K I is closed and bounded, then the
closure, cl (T(K)), of T(K) is compact. From (4.3) we see that

(4.4) k <f*"(r/) < g(t) dt+,lg(rl)<2,

where

-k=lk]-<2 x dt dx

and

(4.5) -_-<k<0.
Using this result in (4.2), we obtain the inequalities

O>-f*( rl) >- 1/2krl >- k/2 >- -.
Thus

(4.6) If*(7)l,
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and, by (4.4)

(4.7) If*"(w)l 2.

Finally, using the above results in (4.1) we obtain the inequalities

(4.8) -<=f*’(’O) <-- 1.

From (4.6) and (4.8) it now follows that IIf*ll 1 +=. Therefore, if0_-< Q < 1.0=
Qo, then 1 Q(/f)’> 0, and the hypotheses of the previous lemmas hold. Thus g has
the desired properties, T is well defined, and T(I)_ O. It also follows that if K is a
closed and bounded subset of 1, then cl (T(K)) is compact. Suppose {f} is a sequence
of functions in K with images f* under T. Then ]f,*"l <--2, If*’l-<-1 and ]f,*l <-- on
[0, 1] for each i.

Therefore, {f*} and {f*’} are equicontinuous on [0, 1]. Hence, by the Arzela-
Ascoli theorem, there exist a subsequence {f,*i)} of {f} and a g cl (T(K)) such that
Ilf*,(i)-gl[ o as ic. Thus, el (T(K)) is compact. The lemma is proved.

Last, we prove Lemma 10.
LEMMA 10. The operator T is continuous.

Proof. By (4.2) and the definition of k, it is sufficient to prove that for any given
foe 1) and any e >0, there exists a 6>0 such that if IIf-foll < and f 1), then

maxto.11 (Ig(r/)-go(r/)l) < e, where g and go are solutions of (3.1) corresponding to
coefficients f and fo, respectively, that are positive and have positive first derivatives
on (0, 1) and that vanish at r/= 0.

Step 1. Since the estimates for g in (3.16) hold for any fO, we obtain from
(3.15) the estimate

(4.9) [g()-go(q)l<=2q 1-/3 (0 <- r/-<_ 1).

Then by (4.9), for 0 <- r/<= e,

(4.10) Ig( n go( n )l 2e -/3 =-

Step 2. Let r(r/) g() go(r/). Then, after performing some manipulation, we
find from (3.1) that

L[ r] -= r"+ [(1 + Qfo)/n ]r’- [(1 + Q(rlfo)’)/

(4.11) -(Q/r/2) (f-fo)(rig’- g) (f’-f)ng]

F(rl)

with r(0)= r(1)=0. Obviously, (4.10) yields Ir(e)l<el. We shall consider (4.11) on
[e, 1] and prove that rl is uniformly as small as we like on [e, 1] if f is sufficiently
close to fo and 0 _-< Q < 1. By Lemma 8, g and g’ are bounded independently off 1).

Thus if e* is any point of the interval

(4.12) O< e* < 1/2(1 Q)el,

then, if f is close enough to fo and 0 _-< Q < 1,

(4.13) (Q/e2)[max {[ng’l+[rlgl+[gl}]llf -foll <=(3+2Q/3)(Q/e2)l]f -foll < e*,

where the maximum is taken over [0, 1].
We may fix fo. By (4.13), if r is any solution of (4.11) on [e, 1] with r(1)=0 and

(4.14) L[r]- e* < L[r]+ F(n) < L[r]+ e* (e _-< r/_-< 1).
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Let r denote the solution of L[ r] + e* 0 satisfying r+(1) 0 and r+(e) r(e), where
L[r] -F and r(0) r(1)= 0. Then by (4.14) the standard comparison theorem applies
to (4.11) and yields

r rl <-- r n <= r+ rl

for r/ [e, 1].
Step 3. It remains to prove that both [r+(r/)[ are small. Fix r so that [r(e)[ < 81

We shall use (4.12) to show that Ir+()[ < e on [e, 1]. To see this consider the problems

L[v]+-e*=O withv(1)=0andv(e)=r(e).

These are solved by r+.
If there exists a point x/ (x_) in (e, 1) for which r+(x/)> 1 (t-(x_)> el), then

there must be a point y/ (y_) in (e, 1) at which one or both of r/ and r- take their
maximum value, namely, either r/’(y+)=0, r/"(y+)<0, and r+(y/)> el, and/or
r-l(y_) O, r-"(y_)< 0, and r-(y_)> el. But we also see from (4.12) that one or both
of the following hold:

Hence,

r+"(y+) +/- e* {[ 1 + Qfo(y+) + Qf’o(y+)y+]/y2} r+(y+),

>(1-Q)el/y2,

> (1-Q)el.

r+"(y+/-) > (1 Q)e,-(+e*) > 0;

that is, one or both of r+"(y+)> 0. This is a contradiction. If there exists a point at
which r/ (r-) is less than -el, we argue similarly, and again we obtain a contradiction.

In summary, for any given el > 0, if we choose

6 e*/{3 + 2Q/3)(Q/e2)},

where e and e* satisfy (4.10) and (4.12), respectively, then forf 12 and IIf-fol[ < 6,
we see that [g(q)-go(q)]<el for all 7 [0, 1]. But then, by the estimates (4.1)-(4.3)
for f* in terms of g, it follows that [If*-fo*[[ can be made as small as we please if f
is sufficiently close to fo and Q [0, 1]. This proves the continuity of T. [3

5. The main theorem. The set 1), defined in 2 is a nonempty, closed, bounded,
convex subset of C1[0, 1] with the usual norm (llfll is the sum of the maxima over
[0, 1] off and f’). We have shown that the operator T:fO is continuous and maps
bounded subsets of f into compact subsets of 11; that is, T is compact. Therefore, we
may apply the Schauder Fixed Point Theorem to T on 1 and conclude that there
exists at least one fixed point f= Tf of T. This fixed point is a desired solution to
the TPBVP (1.1a), (1.1b). We state this result as a theorem.

THEOREM. For 0<--_ Q <= 1, there exists a fl for which the two-point boundary value
problem 1.1 has at least one solutionf Further, on (0, 1 ): 1/2 =< f(r/) < 0, -< f’(r/) _-< 1,
and --<f"(r/) _-< 2.

Remark. We observe that the/3 for which the above-described solution exists is
given by

/3 2g’(0) Qf"(0)2 g’(1) + 1 Qf’( 1)2.
We can easily obtain crude bounds for/3 from Lemma 7 and the bounds on f"

given in the theorem" for 0_<- Q < 1.0, Qf"(0)2 _-</3 _-< 1 + g’(1), or 2(1 +Q) _->/3 _-> -4Q.
For Q 0, the upper bound is sharp: if Q 0,/3 2. But as Q is increased from zero,
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the upper bound becomes progressively worse when compared to the numerical results
(see (Fig. 1). The upper bound 1.0 on Q in our theorem falls far short of 32.7, the
actual numerically found upper bound for existence of solutions having the properties
indicated in the theorem. Recently, R. Seydel of the University of Wiirzburg, Federal
Republic of Germany, has informed the second author that he has found a third branch
of solutions of (1.1), connecting the two branches in Fig. 1 and running between points
not too far from their nodes.
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Abstract. Results are obtained for the problems of constructing and characterizing scalar-valued poly-
nomial statistics having constant regression on the mean of a random sample of Wishart matrices. The
construction procedure introduced by Heller [J. Multivariate Anal., 14 (1984), pp. 101-104] is generalized
to show that certain polynomials in the principal minors of the sample matrices have zero regression on
the mean. The zero-regression polynomials are characterized through expectations involving certain matrix-
valued Bessel functions of Gross and Kunze [J. Funct. Anal., 22 (1976), pp. 73-105]. It is shown that the
zero-regression property characterizes Wishart distributions within a wide family of mixtures of Wishart
distributions.
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1. Introduction. Suppose that X1, X2,’", Xn are independent, identically dis-
tributed m m random matrices, each having the Wishart distribution W, (E, N) with
positive definite (symmetric) covariance matrix E and N degrees of freedom. A
scalar-valued polynomial statistic P(.X), .X =(X1,’’’, Xn), is said to have constant
regression on L X1 +" + Xn if the conditional expectation

(1.1) E(P(.X)IL): fl
almost everywhere, for some constant/3. Without loss of generality, we may suppose
/ =0, in which case the polynomial P(.X) is called a zero-regression polynomial In
this paper, we consider the problems of constructing and characterizing zero-regression
polynomials.

In the classical case, Lukacs and Laha [8] have obtained necessary and sufficient
conditions for a quadratic polynomial statistic to have zero regression. Their results
have been presented, within the more general context of characterizations ofprobability
distributions, by Kagan, Linnik, and Rao [7]. Although these problems were originally
motivated by a purely academic desire to determine the theoretical distribution of the
parent population from hypothetical properties of a particular statistic, recent applica-
tions [9] include the construction of testing procedures.

Recently, Heller [4] has constructed zero-regression polynomials for the Wishart
distribution by appropriately generalizing the methods of [8]. Her results are among
a small number that have extended the classical developments to the setting of matrix
distributions.

The main tool used in [4] is the hyperbolic differential operator of Herz [5]. Using
more complex operators, we generalize (in 2) the construction procedure of [4]. As
a consequence, we find that certain polynomials in the principal minors of the sample
matrices are zero-regression polynomials.

Section 3 presents several characterizations of zero-regression polynomials using
unconditional expectations. The main result characterizes zero-regression polynomials
through expectations involving the matrix-valued Bessel functions of Gross and Kunze

* Received by the editors July 15, 1983; accepted for publication (in revised form) May 4, 1988.
f Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903. The research of
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[2]. This result presents a new and unexpected link between harmonic analysis and
multivariate statistical theory; further, it demonstrates the full complexity of the
zero-regression problem in higher dimensions.

Following the results of [4], [8], a natural question is: Given that a polynomial
P(.X) has zero regression on L, is the underlying distribution necessarily Wishart? We
obtain a partial answer, showing that if the parent distribution belongs to a wide class
of Wishart mixtures, then the distribution is necessarily Wishart if P(.X) is any one
of a family of polynomials. In particular, this class of polynomials contains all the
examples constructed in [4].

As a final comment, we remark that since the homogeneous zero regression
polynomials with fixed degree form a finite-dimensional vector space, it would perhaps
be more useful to determine the dimension of the space along with a "natural" basis.
These problems have been solved by Kushner [14].

2. Construction of zero-regression polynomials. A partition K (kl, k2, , k,,) is
a vector of nonnegative integers, with kl->-k2->...-> k,,. For any complex number t,

where

m( )i: k

F(t+j)
(t)j=

F(t)
j:o, 1,2,....

Further, define the multivariate gamma function [5], [6] by

1 ( 1 )t--(i-Fro(t)--- 7t’m(m--1)/4 H r 1) Re (t)>1/2(m- 1).
i=

For any symmetric rn rn matrix T (tij), we define

[T[- [I IT,[ ’-’/’, k,+,=0,
i=1

where Ti is the ith principal minor of T, and[. denotes the determinant. With the
matrix T, we associate a matrix of differential operators

where g0 is Kronecker’s delta. Whenever the variables of differentiation are clear from
the context, we denote O/OT by D; further, we shall use the notation

[Ol- II Ioi] ’-’+’
i=1

where D is the ith principal minor of D. For example, if K (4, 2, 0,..., 0), then

02( 02 02) 2

IDl-Ot2---7 cgtll Ot22 4a72
The operator IDI--IDI(,,,,...,,) is the hyperbolic operator of Herz [5].

If a random matrix X1 has W,,(E, N) distribution, then it is known that the
characteristic function of X1 is

qS(T) := E(eitr(TX’)) lI-2iTZ! -v/2,
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where T is a symmetric matrix. Our first result determines the effect ofthe IDIK operators
on b (T).

PRoPosrrION 2.1. ID]K0(T)= ik(N/2)](1/2Z-1- iT)-I]O( T), where k= k - k2--

In the course of proving Proposition 2.1, we will use the following result by
Bellman 1].

LEMMA 2.2 (Bellman). Let Z be a complex, symmetric, m xm matrix with
Re (Z) > 0 (positive-definite symmetric). Then,

e-rZ)lXlt-lXl (t)Fm(dX
x>o

with absolute convergence for Re (t) > p 1, p (m + 1)/2.
Proof of Proposition 2.1. Let

C (12ZI/F(N/2))-
be the normalizing constant for the Wishart density. Then,

IDIKq(T) CIDIK Ix eitr(rx) e-1/2tr(V-X)lxl(N-m-1)/2 dX.
>0

Since

ID[ eitr(Tx)-- iklxlK e itr(TX),
then

IDI4(T) Cik Ix e-tr’/zr’-’-’T)Xlxl-’-l)/zlxl,, dX.
>0

Applying Lemma 2.2 and simplifying completes the proof. [

If K=(kl,"’,k,) and A=(/1,...,l,,,) are partitions, we define K+A=
(kl+/,,""" ,km+l,).

THEOREM 2.3. Let {aij}i,j=l be real numbers. For any two partitions , A define
b, (N/2)(N/2)/(N/2)+.

IfX1,..., Xn is a random sample from WIn(Z, N), then the polynomial

P(.X) a,tlx,l Ixl,, b,alX,l+]
ij

is a zero-regression polynomial
Proof A necessary and sufficient criterion [4] for a polynomial P(.X) to have zero

regression on L is that

(2) E(e tr(TL)p(x. )) 0

for all symmetric T. To apply (2) to the polynomial (1), we shall use the following results"

IDI,,,(T) ikE(e tr (rX)lxl),
IDIIDI(T) ik+*E(e tr(TX)lxllXl),

where k kl+’" + k,, ll +’" + l,,. Then, applying (2) to (1), we obtain

E(eitr(TL)p(x. )) i-k-! E E ars((T))"-a

[(I DI 4, T))(I DI,4, T))- bK,,b T)I DI +,4, T)].
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However, from Proposition 2.1, we also have

(I D[,)(IDI) b., DI+ 0,
and hence P(,X) has zero regression on L.

The construction given in Theorem 3.2 leads to a generalization of the results in
[4]. To recover the zero regression polynomials of [4] from our result, we need only
set K A (1"); this shows that

(3) P(,X) Z Y a,j[[xillxl-b,lXil 2]

has zero regression on L, where

b, (N/2)(l)(N/2)(,)/(N]2)().

3. Characterizations of zero-reression polynomials. This section characterizes
zero-regression polynomials through several unconditional expectations, including
generalizations of (2). First, we need to introduce notation and results pertinent to
Fourier analysis on compact topological groups; an introductory account of this theory
is given in [12] and [13].

Let G be a compact (Hausdorff) group. A representation p of G is a continuous
homomorphism of G into the group of invertible linear transformations on a complex
vector space Vo.

A representation p is irreducible if the only proper invariant (under p) subspace
of Vo is {0}, the trivial subspace: Since G is compact, then Vo is necessarily of finite
dimension, say do Further, we lose no generality in assuming that the irreducible
representations of G are given by unitary matrices.

Two representations Pl and p2 are unitarily equivalent if there exists a unitary
matrix u such that Upl(g)--p2(g)u for all g in G. The notion of unitary equivalence
defines an equivalence relation among the representations of G. We denote by G the
set of equivalence classes of irreducible representations of G. G is called the dual of G.

Let dg be the unique Haar measure on G, normalized so that G has total mass
one. If f" G- C is continuous, the Fourier transform of f is defined by

p(f) f f(g)p(g) dg, p
.I

The Fourier inversion formula then states that

(4) f(g) E do tr (P(g)*o(f)), g G,

where * denotes the transpose of complex conjugates. The sum in (4) is over a set of
representatives for the equivalence classes in G, one for each class.

Next, we specialize to the case G SO(m), the special orthogonal group. The group
G consists of all m x m orthogonal matrices g having determinant one.

Definition 3.1 [2], [3]. For symmetric m x m matrices S, T,

Jo(S, T)= f eitr(g’SgT)p(g) dg. sO(m)

is the generalized Bessel function of order p.
The generalized Bessel functions were introduced and studied in [2]. In the jargon

of [2], [3], Jo(S, T) is the generalized Bessel function of order t9 arising from the
two-sided action of SO(m) on the space of symmetric matrices.
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Note that Jo(S, T) is the Fourier transform of the function g--->e itr(g’sgT), g
SO(m). Further, Jo (S, T) is a do x do matrix. The Fourier inversion formula (4) shows
that for fixed S, T,

(5) e itr(g’sgT)= do tr (p(g)*J,(S, T)).
peg

Since the function g-> e itr(g’sgT) is infinitely ditterentiable, the series (5) converges
uniformly on SO(rn).

Now, we can state the main result of the paper. As before, L= XI+’’ .+X,,
where the Xi are independently and identically distributed Wishart matrices. Also, the
polynomial P(.X), .X (X1,’’’, X,), has zero regression on L.

THEOREM 3.2. The following conditions are equivalent"
a P X. has zero regression on L;
(b) E(eitr(TL)p(L)P(X. ))=O for all polynomials p(L) and symmetric matrices T;
(c) E(p(L)P(X. ))-0 for all polynomials p(L);
(d) E(P(X. )J,(T, L))=O for all p6(SO(m)) and symmetric T.
Proof In 2, we noted that the zero-regression property is equivalent to

(6) E(e tr (TL)p(x )) 0

for all T. Then, it is immediate that (a) implies (b) since

E(e’tr(TL)p(L)P(X. )) =p E(e P(X. )).

Further, (b) implies (6) trivially, so that (a) and (b) are equivalent. To see that (c)
implies (6), note that e itr(TL) can be expressed as an absolutely convergent series,

eitr(TL)-- E q(T)P,(L)

where A is a countable index set, and p and q are polynomials for all a. Taking
expectations, we find that for T sufficiently close to the zero matrix,

E(eitr(TL)p(x )) E q(T)E(p(T)P(X. ))=O
a

where the interchange of summation and expectation is permitted by the Dominated
Convergence Theorem. As a function of T, the left-hand side of (6) is analytic and is
zero in a neighborhood of the origin; hence it is identically zero. Since (b) implies (c),
then we have established the equivalence of (a), (b), and (c).

Finally, we prove that (6) is equivalent to (d). First, Fubini’s theorem and the
definition of Jo(S, T) show that

E(P(X~ )Jo(S, T))- E(etr(g’TgL)P(X. ))p(g) dg.
.IsO(m)

Therefore, (6) implies (d). Conversely if (d) holds, then by the Fourier inversion
formula (5) and the Dominated Convergence Theorem,

E(etr(g’TgL)P(X. ))=2 do tr(p(g)*E(P(X. )Jo(T L))) 0,
p

for any g in SO(m) and symmetric T. Hence (d) implies (6), and this completes the
proof. ]

On reviewing the proof of Theorem 3.2, we note that nowhere do we use the fact
that the X are Wishart matrices. Therefore the result holds for any symmetric matrix
distribution, as long as the various interchanges of sums and integrals remain valid.
In particular, it holds for the multivariate beta and F distributions [6].
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To end this section, we make some remarks on the generalized Bessel functions.
The spherical Bessel function is

Jo(S, T) f e tr (g’SgT) dg,. sO(m)

which corresponds to the trivial one-dimensional representation p(g) 1. When m 2,
it can be shown using the techniques of [3] that

J0(S, T) eitr(S) tr(T)/2jo(A(S)A T)/2)

where Jo(’) denotes the classical Bessel function of the first kind of order zero, and
A(S) Is1- s21 where sl and s2 are the two eigenvalues of S. For any odd rn-> 3, it has
been shown [11] that Jo(S, T)= oFo(iS, T), where oFo(’," is James’ hypergeometric
function of two matrix arguments. For even rn-> 4, Jo(’,’) can be again related to
oFo(’, but the result is more complicated. For general p the evaluation of the matrix
elements of Jp ($, T) requires powerful machinery from the theory of harmonic analysis
[2], [3]; however, we also remark that for the case m 2, J,(S, T) can be computed
explicitly using the techniques of [3].

4. A characterization of the Wishart distribution. Both here and in [4], it has been
shown that the polynomial (3) has zero regression on L= XI+’’ "+Xn. Given the
converse, that (3) has zero regression on the sum of an independently and identically
distributed sequence of random matrices, we wish to determine whether the underlying
population is necessarily Wishart. From the proof of Theorem 2.3, we observe that the
polynomial (3) has zero regression on L if and only if the characteristic function
dp( T) E e tr(TX)) satisfies the differential equation

(7) (I DI (T))-- b( T)IDI=(T),

for all T. Therefore, it is enough to find all solutions of (7) that are simultaneously
characteristic functions.

Consider the class of characteristic functions b(T) of the form

(8) 6(T)= fH [I-2iTEI-N/2 d,(E)

where ,(.) is a Borel probability measure on the hypersurface H {E" E is positive
definite and I1 1}. A random matrix with a characteristic function of form (8) may
be regarded as a "covariance mixture" of Wishart distributions; these mixtures have
arisen [10] in the context of hyperspherical distributions. We now show that the zero
regression polynomial (3) characterizes the Wishart distribution within the class of
Wishart mixtures typified by (8).

THEOREM 4.1. Let XI, , Xn be a random samplefrom a population with charac-
teristic function (8). If the polynomial P(X. in (3) has zero regression on L, then X1 has
a Wishart distribution.

Proof. Since P(.X) has zero regression on L, then (7) holds. Applying the ID[ and

DI operators to b(T) in (8) shows that

(9) 1I-2iTl -N+2/ d,(,) lI-2iT,l -N/ d,(,)
H

fH 1I-2iTEI-N+4/ d,(E),
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for all symmetric T. By considering discrete approximations to these latter integrals,
it is evident that (9) implies v(.) to be the Dirac measure at some "point" o.
Consequently, X1 WIn(N, Eo).

Stephen Matron has kindly remarked that the above conclusion concerning v(.
can also be obtained by working with moment generating functions rather than
characteristic functions. Indeed, the generating function analogue of (9) is

(9’) II- 2 T;I -(+2v2 dv() II 2 T2.I -rv/2 dv()
H H

f,_, 1I-2T2.1 -+4v2
and this holds for all T in a sufficiently small neighborhood of the zero matrix. The
Cauchy-Schwarz inequality guarantees that the left-hand side of (9’) is never larger
than the right-hand side. Then, the conclusion that v(. is Dirac follows immediately
from the criterion for equality in the Cauchy-Schwarz inequality.

Finally, we remark that results similar to Theorem 4.1 can be obtained for the
general polynomials constructed in Theorem 2.3.

Acknowledgments. I am deeply grateful to Kenneth Gross for his patient explana-
tions of harmonic analysis in general, and the generalized Bessel functions in particular.

REFERENCES

[1] R. E. BELLMAN, A generalization of some integral identities due to Ingham and Siegel, Duke Math. J.,
23 (1956), pp. 571-577.

[2] K. I. GROSS AND R. A. KUNZE, Besselfunctions and representation theory, J. Funct. Anal., 22 (1976),
pp. 73-105.

[3] K. I. GROSS, W. J. HOLMAN, III, AND R. A. KUNZE, A new class ofBesselfunctions and applications
in harmonic analysis, in Proc. Symposia in Pure Mathematics, XXXV, American Mathematical
Society, Providence, RI, 1979, pp. 407-415.

[4] B. HEELER, Use of the hyperbolic operator to find a scalar statistic which has constant regression on the
mean of a sample of Wishart matrices, J. Multivariate Anal., 14 (1984), pp. 101-104.

[5] C. S. HERZ, Besselfunctions of matrix argument, Ann. of Math., 61 (1955), pp. 474-523.
[6] A. T. JAMES, Distributions of matrix variates and latent roots derivedfrom normal samples, Ann. Math.

Statist., 35 (1964), pp. 475-501.
[7] A. M. KAGAN, Y. V. LINNIK, AND C. R. RAO, Characterization Problems in Mathematical Statistics,

John Wiley, New York, 1973.
[8] E. LUKACS AND R. G. LAHA, Applications of Characteristic Functions, Griffin, London, 1964.
[9] G. S. MUDHOLKAR AND C. C. LIN, A simple test for normality against asymmetric alternatives,

Biometrika, 67 (1980), pp. 455-461.
[10] D. ST. P. RICHARDS, Hyperspherical models, fractional derivatives and exponential distributions on matrix

spaces, Sankhy. Ser. A, 46 (1984), pp. 155-165.
[11] ., Solution to Problem 84-1: An integral on SO(3), SIAM Rev. 27 (1985), pp. 81-82.
[12] G. WEISS, Harmonic analysis on compact groups, in Studies in Harmonic Analysis, J. M. Ash, ed.,

Mathematical Association of America, Providence, RI, 1976, pp. 198-223.
[13] M. A. NAIMARK AND A. I. STERN, Theory of Group Representations, Springer-Verlag, Berlin, New

York, 1982.
[14] H. B. KUSHNER, Dimensions of spaces of homogeneous zero regression polynomials, J. Multivariate

Anal., 22 (1987), pp. 245-250.



SIAM J. MATH. ANAL.
Vol. 20, No. 3, pp. 511-532, May 1989

1989 Society for Industrial and Applied Mathematics
001

HOPF BIFURCATION IN THE PRESENCE OF
SPHERICAL SYMMETRY: ANALYTICAL RESULTS*
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Abstract. This paper considers a one-parameter family of vector fields equivariant under the orthogonal
group O(3), with an invariant fixed point. Hopf bifurcation of this family is studied assuming 0(3) acts on
the eigenspaces belonging to each purely imaginary eigenvalue as an 2 representation. The dynamics are
then reduced to a ten-dimensional center manifold, and the normal form of the vector field is explicitly
given up to fifth order. The five different types of bifurcating periodic solutions, predicted geometrically by
Golubitsky and Stewart, are derived analytically: a family of axisymmetric solutions, two types of rotating
waves (one rotating at twice the speed of the other), a family of standing waves and a family of tetrahedral
waves.

The stability conditions are given for all these solutions. These stabilities depend on the three coefficients
appearing at cubic order in the normal form and on one combination of three coefficients occurring at fifth
order. All solutions can be stable except for the fastest family of rotating waves. The slower rotating waves
and the axisymmetric solutions may be simultaneously stable. Finally it is shown that a family ofquasiperiodic
solutions may bifurcate directly from the invariant fixed point together with the periodic solutions.

Key words. Hopf bifurcation symmetry’breaking, spherical symmetry

AMS(MOS) subject classifications. 58F, 58C

1. Introduction. Systems possessing a priori a spherical symmetry frequently occur
in physics, particularly in hydrodynamics (see, for instance, self-gravitation convection
problems [3], and the evolution of the shape of a gas bubble in a liquid [16]). Such
phenomena obey a system of partial differential equations of evolution type, which
may be written in the form of a differential equation:

(1) dU_ (A, U)
dt

in a suitable functional real space E (see [10] for a precise formulation in hydro-
dynamics. Here U(t) may stand for various physical quantities at time t: the velocity
vector field of fluid particles, temperature, location of a free surface, etc. Moreover,
A Rk characterizes all the parameters of the underlying physics. In this mathematical
frame, spherical symmetry means that (A, commutes with a representation of the
orthogonal group O(3), i.e.,

(2) (, o)= (, u)
for any element / of the representation of 0(3) on the space E. Let us assume that
we know a steady solution of (1) invariant under 0(3). We take it to be the origin in
E. So, we have:

(3) (,o)=o.
We assume in the following that this solution is marginally stable when A equals

zero. More precisely, the spectrum of the linear operator a Dug(A,. is divided
into two parts: one part, denoted by Eo, lying on the imaginary axis; the other lying
strictly to the left side of this axis. In a neighborhood of A 0, the center manifold
theorem implies that the dynamics of (1) near zero in space E is asymptotically
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described by the trace of the vector field (1) on a center manifold Vo. This manifold
Vo has the same dimension as Eo and is both locally invariant and locally attracting
in a neighborhood of U 0. A complete modern proof of this theorem may be found
in 19] for vector fields in finite-dimensional spaces. For evolution problems described
by partial differential equations, see 11] or an easy adaptation of 19], which may be
done by using, for instance, results reviewed in II of [10]. This theorem is proved
in an easier way for maps (see, for instance, [14], [9]), but then an adaptation for
vector fields is needed (see also V.4 of [9] for partial differential equations). The
manifold Vo may be expressed in the following form"

(4) U X + (h, X), (0, 0) 0, Dx(O, O) O,

where X belongs to the subspace Eo invariant under o and corresponds to the part
Eo of the spectrum. In the problems considered, especially in hydrodynamics, this
subspace is generally finite-dimensional. Therefore, after projection on the manifold,
we are concerned only with a finite-dimensional differential system:

(5)
dX

F(, X),
dt

where X(t) Eo, F(A, 0) 0.
The linear operator Lo DxF(O, 0) is the restriction of o to Eo, so its entire

spectrum is located on the imaginary axis. Moreover, the equivariance (2) of $; remains
valid for the new vector field on Eo, since a theorem of Ruelle [18] shows that we can
find (I) such that

(6) F(A, yX)= ,F(A, X),

(7) (A, 7X)= /(A, X),

where /is an element ofthe representation F of O(3) on Eo. Straightforward consequen-
ces of (6) and (7) are" (a) Lo commutes with every element of the representation F;
(b) the eigenvalues of Lo may have a large multiplicity; and (c) Eo may be large-
dimensional. Hence even for simple generic bifurcations of codimension 1, numerous
solutions may bifurcate with complex patterns.

Using geometrical arguments from Lie group theory, Golubitsky and Stewart [7]
have considered the "simplest" case of a Hopf bifurcation in the presence of 0(3)
symmetry: they assumed that Lo possesses a pair of eigenvalues +ito associated with
the decomposition of the complexified space E denoted hereafter by Eo:

Eo V@V,

where the representation of 0(3) on V (and V) is absolutely irreducible. Because of
this assumption, the above-mentioned authors showed the emergence of branches of
bifurcated solutions in each two-dimensional space corresponding to some specified
symmetry. The method of restricting the study to subspaces of minimal dimensionality
was previously used by Iudovich [12] to search analytically for steady solutions in
B6nard convection. The geometric arguments developed in [7] do not say anything
about the existence of other solutions (periodic or quasiperiodic), and do not show
explicitly the stability of the specific periodic solutions.

Our purpose is to obtain more insight into these questions by studying the
amplitude equations for a specific case. The case we investigate is mathematically the
simplest leading to multiple solutionsamong them one possessing an interesting
tetrahedral symmetry. We note that nonstationary solutions might also be found in
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cases of mode interaction when the only eigenvalue of Lo is zero, its multiplicity being
high enough: 5 in [3], 8 in [20].

The paper is organized as follows. In 1 we derive the form of the differential
system (5) on the center manifold To. Unlike the steady bifurcation case [8], the
irreducible representation 2 of 0(3) does not possess a simple expression for the
Hopf problem on the subspace Eo. This, as well as the dimension 2(2/+ 1)= 10 of the
differential system (5), requires us to make use of rather technical results in this section.
Consequently, we have only summarized the essential features of the calculus to get
the form (24). The following section reviews and describes explicitly the five time-
periodic solutions predicted in [7]: one axisymmetric solution, two rotating waves
solutions (one type rotating twice as rapidly as the other), one standing wave solution,
and one tetrahedral wave solution. We look exhaustively for their stability and show
in particular that the "fastest" rotating wave solution is always unstable and that
several solutions may be simultaneously stable. All the stability conditions may be
expressed with three coefficients from the third order and only one combination of
coefficients from the fifth order. In the last section we investigate the possible existence
of quasi-periodic solutions directly emerging after a codimension 1 bifurcation, together
with periodic solutions.

2. Normal form of the amplitude equations.
2.1. The basic problem. Our purpose is to find, when A is near zero, how to

describe the asymptotic dynamics of the solutions of (5) whenever Eo can be written
in the form

Eo VV,
where V, of dimension five, possesses an irreducible representation 2 for the group
0(3). Recall that F commutes with this representation.

Each real vector of Eo may be decomposed as

m-’+2

(8) x E

where the :m (m =-2,-1, 0, 1, 2) are eigenvectors of Lo for the eigenvalue ito. This
decomposition differs slightly from that of [7]: Golubitsky and Stewart write their
hypothesis on a real basis corresponding to the real and imaginary parts of our vectors.
It follows from this that the problem now reduces to that of finding vector fields
depending on complex amplitudes x, (j -2, -1, 0, 1, 2) that satisfy (6), i.e., after
ditterentiation, the following relations:

or

DxF(A, X). JkX JkF(A, X), k 1, 2, 3,

DxF(A, X) J+X F(A, X),

(9) DxF(A, X) J_X J_F(A, X),

DxF(A, X) J3X J3F(A, X),
where -/J1,-iJ2,-iJ3 are infinitesimal generators corresponding to rotations about
each coordinate axis, and

J+/-=J + iJ.
Remark. Only two of the three relations in (9) are independent, since if F

commutes with rotations about two coordinate axes it commutes with the rotation
about the third axis.
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To derive the general amplitude equation consistent with (9), we must consider
the fundamental relations of the irreducible 0(3) representation 2. In the following
paragraph, we briefly review these properties without proving them. We refer the reader
to [6] or [15] for details.

2.2. Irreducible representation 1 = 2 of the orthogonal group. The linear operators
J3, J+, J- act on the canonical basis {:m, m --2, --1, 0, 1, 2} as folfows (see pp. 24-25
of [6]):
(10) J3,, ms,,, J-:,, =/3-,,,sere-I, J+:m mm+l
where tim /(2- m)(3 + m) and rn {-2, -1, 0, 1, 2}. Similarly (since f+ -J_ and
3 --’)"

(11) J3m=-mm, J+rn=-_mrn_l, J_m=-flmm+l

In Appendix 1 we describe the action of any finite rotation in this representation.
Let us point out here the special case of a rotation of angle r about the axis ox:

(12) Rox( Tr), _,,
and that of a rotation of angle 0 about oz:

(13) go(O)m=e-".
The reflection S through the origin possesses two possible representations" Id and -Id.
The choice between these two possibilities depends on the particular physical problem.
The natural representation on spherical harmonics (-Id) corresponds to the identity
when 2. It turns out, however, that the other possibility just modifies the symmetry
of the solutions but not the dynamical system itself. In 2.3 we suppose the natural
representation holds" straightforward modifications belonging to the other case are
left as an exercise for the reader.

2.3. Normal form of the vector field on the center manifold. To analyze the ampli-
tude equations, we must put them into normal form. The basic result, obtained by
Elphick et al. [5], indicates the existence of a nonlinear change of variables (close to
the identity) such that the normal form of F commutes with the one-parameter group
exp (Lot). After differentiation this property may be put into a more convenient form"

(14) DxF(A, X). LoX LoF(A, X),
where we recall that the action of Lo on the canonical basis is

(15) Lo ito Idv.
Relation (14) is, however, only applicable up to an arbitrarily large but fixed order.
Indeed, it is known that normalization of a vector field cannot be done to all orders,
due to problems of convergence. The degree of the polynomial F must first be fixed
(large N); then the neighborhood of zero, where an estimate o(llxll") on the
higher-order terms still holds, is fixed. This is not the case for the properties (9) of F
that are valid exactly, due to the fundamental equivariance (2) of the system and to
the results of 18]. From now on, we will say that a property is verified "up to fiat
terms" if it is verified on polynomial F.

2.4. Computation of the normal form. General approach. To determine the most
general expression for F compatible with (9) and (14) let us decompose F(A, X). This
yields:

(16) F(A, X)-- E Fm6m at" Fmm,
m=--2
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where each component is explicitly expanded in the power series

(17) F =E a,,---2
P

with P (P-E, P2, q-E, q2).
The equalities (9)3 and (14) then select those a that verify the resonant conditions:

2

(18) E J(p-)=m,

2

(19) E (P ) 1.
j=--2

Remark 1. Since we are looking for a polynomial F, we do not distinguish between
the type of conditions generated by (9)3 and (14).

Remark 2. The consequences of (9)1 and (9)2 do not give such simple relations
since J+, J_ are not diagonal operators on the canonical basis.

The general form of F is computed in two steps. First we determine F-2. In
addition to (18) and (19), (9) implies that the normal form must satisfy

(20) DxF_2 J+X O.

Assume this calculation is done: then we easily obtain F_ and Fo thanks to (9)2:

(21) flF_ DxF_2 J_X,

(22) floF0 DxF_I" J_X.

Now, instead of using J_ again to obtain F, F2, we use a shocut based on the
equivariance under the rotation Rox(). This gives F and F2, since (12) and (16) lead
to

(23) F(A, gox()X)= F_(A, X).

Other relations from (9), (18), (19) are then automatically satisfied and the most general
normal form is thus found.

2.5. Computation of F_. To exhibit F-2 it is possible to use the pedestrian way
of examining by increasing degrees the monomials (17) in (20) and eliminating those
incompatible with (9), (18), and (19). This methodalthough conceptually simple
can, however, hardly ever be applied beyond the third order because of the exponential
growth of the number of monomials involved. (For the third-order there are 5,000 for
only three vectorial resonating terms.) Fuhermore it does not yield a general result
on the form of F_2. This dicult question has been solved using Lie theoretic tech-
niques: Cerezo 1 shows, for instance, that the polynomial function F_2 may be written
as a linear combination of 43 polynomials, the coecients of which are invariant
polynomials of the group 0(3)x SO(2) (generators J3, J+, Lo). At order 7, 23 of the
43 terms are present in F_2, and it is necessary to go to the thieenth order to find
all the possible terms. It would be rather tedious to reproduce these results (the
interested reader should consult [1] where a thorough study of this matter is given).
Here we give only the expression truncated to the fifth order: we must go to this order
to analyze the degeneracy occurring in the study of stability of some of the bifurcated
solutions.

In what follows we denote by i + (A) the eigenvalue of the operator x, which
peurbs i when A is different from zero. All the coecients in the vector field F(A, X)
are functions of A, but just the dependency in A of the linear term is explicitly written.
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As a matter of fact, the nonlinear terms are supposed to be nonsingular for h -0. This
means that only codimension 1 bifurcations are considered and justifies the replacement
of , by/zr (bifurcation parameter). The complete calculation yields the following for
the vector field F:

F(A, X) [ko +/z + alXl2 + d,IXI4 + d2lSl(X)l2] + b + d41XI2)S,(X)
(24) +(c+ da]XJ2)C(X)+ dSI(X)(X)+ d6S3(X)BI(X)

+ dTS2(X)I(X)+ d8S(X)B2(X)+ dgM(X)+ O(IxlT),

where we denote again by F and X the following vectors (to simplify notation)"

F= (V_2, F_,, Fo, F, F2), X (X_2, X_I, X0, XI, X2).

The mapping Y is defined in C by

Y (Y-2, Y-l, Yo, Y,, Y2) Y (fi, -Yl, rio, -Y-,, fi-2).

In equality (24), there appear six 0(3) scalar invariant quantities ]X[ 2, S(X), g(X),
S2(X), S2(X), S3(X) as defined below (in the full normal form of F there also appear
S3(X) and another real invariant of degree 4 (see [1])):

Ixl2= Z [xl2,

1
s,(x) x_,x,- x-x_,

+x_(_l.

_
+x.(-_-

_
+

S3(X) x-3x_xox + 3 (xx+x_x) -6x_xox.

To avoid lengthy expressions, let us now introduce the operator Y in C
defined by

Y (Y, Y, Yo, Y-, Y-).

This operator represents Ro() (see (12)). We may now define:

c(x=(c_, c_, co Cl c, (x -_, __,, g,
with C(2)= C_(X), B(2)= B(2,(X), and

1o+ X_lXOl+x-x_ Ixol + Ixl + Ixl

C_(X) Xl +xox+x_xo+2x_xo_

x_ X_ll+ Ixol+lxl +21x]
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Co(X (X21.2 + X2_1.9’_2) + (X_2Xl.- + X_ lX2.,’l) + X_2X2.,"0

+ 2 x_,x,o- Xo[41x_zl 2 + Ix-,I = + 31xol + IXll 2 + 41x12],

B(l)(x) V ()2-)-)l

B(X) 2.,-1.2 .o-,,

(x) 2XoX2

g(x) lx_l- IX_l[ -IXol- IXl + lxl,

BT(X) 3
(x-x__)+ (Xo, X_lO),

B(X) x-o+ Xo2+ X-l

Finally, we obtain

M(X)=(M_2, M_I, MO, MI, M2),

with

where

and

M_(X) =/V/()),

M-z(X) D-:zQ-z,
M_(X)=D_Q_z+D_zQ_,,

Mo(X) DoQ-2+ 2 ./2-2 D_Q_ + D_zQo,

1
Do(X)=-- D_2(2), 1

Qo(X)=--- Q__(2),

Q_2(X) )lxo -- x_,.0 -- (x,.)-2 - x_2)_ 1)

Q_I(X) (]Xl[2 -IX_l]2) + (Ix=l 2

+ o 3X_2Xl-- x_Xo

)l(Xg X_IX 2X_2X2 -]- ,2(%/rX_lX2 XoXl),

)3 x _2x_2xo -t-_l X--lXo X--2XlD-I(X) :-2

_1
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It is worth noting that (a) only odd degrees appear in (24) because of condition (19),
and (b) only three terms are needed to describe F up to the fourth order. Nine
additional terms must be included (dl, d2, d3,"" ", d9) to improve the expansion up
to the fifth order. Moreover, in polynomial coefficients of d6, , d9 new types ofterms
{S2(X), S3(X), BI(X), BE(X), M(X)} occur, which do not exist up to third order;
hence it is not possible to guess them starting with the knowledge of the cubic terms.

2.6. Effective dimension of the system. The amplitude equation (5) actually depends
on eight rather than ten variables. If we express the amplitudes in polar form:

(26) xj rj e%, -2 _-<j <_- 2,

then conditions (18), (19) imply that, in (5), the phases @ appear only inside three
linearly independent combinations:

(27) 1 + P-1 2fro, /2 + if-2- 2fro, 2-1 fro- -2.
An immediate consequence of (27) is the following remark. After a change of variables

(28) x=ye’’,

where the parameters % are given arbitrarily, the new system remains autonomous
when these parameters satisfy

(29) toj =/3 +ja, j -2, -1, 0, 1, 2, where a,/3 are real.

The "fiat terms," however, do not satisfy this property since we use (19) to derive (29).
If we search for a global property we have only to take into account (18). Instead of
(29) this leads to

(30) to =ja, j -2, -1, 0, 1, 2, where a is real,

and then the system is again completely autonomous.

3. The five predicted bifurcated solutions. Symmetry and stability. In this section
we explicitly derive the five solutions geometrically predicted in [7] and we study their
stabilities. Those five branches of solutions for 2 share the following feature. The
vector space remaining invariant under the action of the spatio-temporal symmetry
group attached to each branch is two-dimensional. Hence we search for solutions
reducing (5) to a system of the same dimension.

3.1. Axisymmetric solution. If x =0 for j =-2,-1, 1, 2, then (18), (19) lead to

F,=0 for m -2m -l, l, 2.

In fact, the nonzero monomials correspond to terms such that

rn 0, Po- qo 1.

Hence (5) reduces to (apart from "flat terms"):

dxo_ Xo(Ixol=).(31)
dt

Truncation at fifth order F(A, X) in (24) gives

(32) dxo
dt

Xo( ito + ,u, + x(l[xo] 2 + x(lxol4)
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with

()
X =a---

X
(2) d +

4
d5 d3 2 d6-1- dT) ds.

Generically this leads to a standard Hopf bifurcation. The time-periodic solution reads
as follows"

(33) Xo ro ei(’+’), xj =0 (j 0),

where ro, Oo (index (respectively, r) denotes imaginary (respectively, real part)) are
given by

(34) (2).4 -1- O(ro6) 0,IXr + Xl)r2o + ar "o-- Oo oo + txi + Xl’)r + Xl2)r+ O(r6o).

In space E, the bifurcated solution (33) takes the following form (up to an arbitrary
phase corresponding to the choice of time origin and taken here to be zero):

(35) U(t) ro ei’’o+ ro e-i’o+ (h, ro eitjo + ro e-i’o).

The structure of the solution obviously indicates its axisymmetric nature. Every rotation
about oz,

Roz(O)=e-iJ3,

leaves the principal part of U unchanged (Roz(O)X X) because of (13). The complete
invariance of U then directly follows from (7):

Roz(O)U(t)=U(t).

Except for this subgroup of 0(3), the symmetry Rox(Zr) is the unique rotation acting
as the identity on (35) (use (12) instead of (13)). Since we have

Rox(zr)Roz(O) Roz(-O)Rox(r),

we can conclude that 0(2) is the symmetry group of U. Hence this solution is nothing
else than the axisymmetric solution of [7].

The stability of (35) is investigated by linearizing system (24) about (35) and by
using the property stated in 2.6. Let us introduce variables po, Po, Yj as follows:

iwot(36) Xo (ro+ Po) e(’’+) Xj yj e j O.

The stability study then relies on an autonomous system that may be divided into three
uncoupled subsystems. We write only the principal parts, since these are sufficient for
determining the orbital stability. We obtain

(37) dpo_ 2X,)rpo, dqo_ 2Xl)ropo,
dt dt
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(38)

(39)

dy-i + c r2o(Y-1 +.1)
dt dt -+ ?. r(y-1 Jr- Pl),

y_2 [ ff e ( d8 d4 1 2ds))ro4](-) ro+ 2 d6+ (d3+

[( g) ( +d4 (6+3d-7) 1 ) ]+372 - rg+ 2a8 2- -(d3+2d5) r

-y-2 - r+ 2d8+--- (d6+3dT)-(d3+2ds) r’

[ ( C) ( d4 l ) ]
We specify the fifth order terms in the expression (39) to remove the degeneracy of
the eigenvalue zero present in the system truncated at third order.

The subsystem (37) generates the following eigenvalues:

(40) 0.1 2xl)ro+ O(r), 0"2=0.
The eigenvalue 0"2 0 is the usual one related to the translational invariance in the
choice of time origin for the Hopf bifurcating solution.

From system (38) we obtain the following eigenvalues:

(41) 0"3=(br+2Cr)rg+O(r’), 0"4"-0.

These eigenvalues are double since the system (38) may be decomposed into a system
in (Y-i, Yl) and in its complex conjugate. The emergence of the double eigenvalue
0"4=0 just relies on the 0(3) invariance of F. As a matter of fact, there is a F-orbit of
axisymmetric solutions generated by the action on the solution (35) of the rotation
group. An infinitesimal rotation as written in Appendix 1 induces the emergence of
Y-i and Yl components. This explains classically the presence of the double zero
eigenvalue in (38). It may seem contradictory that a three parameter family of axisym-
metric solutions generates only a multiplicity of two; the "third" zero is actually taken
into account by translational invariance.

The system (39) with (y_2,)72) components exhibits a linear operator of the
following form:

the eigenvalues of which are written for (39) as

r+/- ar + x/IBI2- a.
This leads to the following eigenvalues:

(43) 0"5 ( br cr) r+ O(r), 0"6 Ar+ O(r)

where

(44) A= 3d8r x/"( d6r -F d7r) q- bi cix//3
b,- CcrX/2X/ [3d8,-x/(d6i

q- d7i)].

The reader should note the necessity of expanding F up to the fifth order to get a
nonzero value for 0"6. Obviously, such an effort would have been hopeless for 0"4. The
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number of zero eigenvalues actually coincides with the expected number given by
Golubitsky and Stewart [7] using group-theoretic arguments.

Collecting (40), (41), and (43), we obtain three sufficient conditions for the axisym-
metric branch to be stable orbitally"

a--- Cr < O,

A<0.

Note that the first condition means that this branch must bifurcate supercritically.
Let us summarize the above results as a theorem.

THEOREM 1. In the invariant subspace {x O, ]Jl rs 0}, axisymmetric time-periodic
solutions of (I) bifurcate. e F orbit of axisymmetric solutions is (orbitally) stable if
the bifurcation is supercritical and if the coecients of F in (24) satisfy three additional
inequalities (see (45)), one of them bearing on a combination A of coecients of terms

of degree
Remark. Generically, conditions (45) are necessary for orbital stability.

3.2. The first rotating wave and the standing wave solution. If x 0 for j -1, 0, 1,
then (18), (19) lead to nonzero monomials for F when

2(p2 q2) 2( P-2 q-2) m,

P2 q+P-2 q-2 1;

hence F 0 for m =-1, 0, 1. Moreover, we have

(46) F_2(A, x)

because of Ro() invariance of the field F (see (12)). Truncated at fifth order, the
system (5) reduces to

d
r-2+ r)2+(d2+d5)r_2r222dtX_2 x_2[im++a(r2+r)+d( 2

-{b+c+ (d4+d3)(r2+ r)}r],
(47)

d r_2+r)+d,(r2+r)+(d2+d5) rdt x2 X2[

{b+c+(d4+d3)( 2r_E+r)}r].

This structure is similar to that observed for a Hopf bifurcation in the presence of
0(2) x SO(2) symmetry (see, for instance, the Couette-Taylor problem treated in [2]).
A classical result then indicates that this leads to two kinds of periodic solutions:
rotating waves for which either x_2 or x equals zero, and standing waves for which

3.2.1. First family of rotating waves. Let us consider the periodic solution of (47)
such as r_2 0. The other possible choice r2 0 is just a different element belonging
to the same F-orbit. Thus, we obtain"

(48) x-2 O, x2 r2 e(’+),
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with

(49) tXr + arrl + dlrr42 + O( r6) O, to2 to + Ix, + a,r + d,,r+ O(r).

Clearly, if z(t) denotes the time shift operator, then the solution X(t) given by (48)
satisfies the identity (see (13))

Roz(O)r(-20/to_)X= X.

Since Roz(O) and r(t) commute with (see (7)) we obtain as well:

(50) oz(O)(-o/,o)u= u.
This identity is the characteristic feature of a rotating wave with two waves about oz.

To study its stability, we proceed as in 3.1. Suppressing the terms beyond the
third-order we obtain (using obvious notation):

dp.._.2 2arr2p2 do2
dt dt

2air2p2

dy-2 dyo
(51) at -(b + cv/-) ry_2

dt
-2 cr22yo

dyl dy_ _cx/-r22y_d-’-"=0’ dt

Hence we obtain seven simple eigenvalues:

0- 2arr+ O(r), o’2= -(b+ cx/)r+ O(r),

(52) 0-3=e2, 0’,=-2 X/k-2 cr+O(r2), O’5=1’4,

6 -ci+ o(,), 0-7 0-6.

The eighth eigenvalue 0-8=0 is of triple multiplicity: it corresponds to the 0(3)
invariance, since an infinitesimal rotation on (48) generates a component in y (not
considering the one in Y2), while the zero eigenvalue due to the choice of time origin
still corresponds to rotations about oz.

Conditions for stability of this family may be summarized by

(53) at<O, cr>O, br+CrV>O,
where the first condition means that the branch must bifurcate supercritically to be
stable.

3.2.2. Standing waves. Let us now consider the time-periodic solution (46) such
as Ix-=l-Ix=l. This yields"

(54) x2- r2 e

with

(55)
/zr + (2at- br CrXf)i -F"X?) -F" O(62) O,

(3) ’4to2 to+/x,+(2a, b,-c,x/)22+X, ,2+O(26),

where

X
(3) 4d, + d2 + x/-d5 2(d4+ x/d3).
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The frequency a32 differs from the previous one OJo of the axisymmetric solutions only
at the order/z O()]. By a time shift and an appropriate rotation we can suppress
the phases: 2 -2 0 in (54). This solution remains completely invariant under the
symmmetry Rox(’n’) and by the composition of a rotation of angle zr/2 about oz with
a translation in time of a half-period:

(56) Rox(Tr)U= U, Roz(r/2)z(zr/t2)U= U.

We easily recognize the symmetry subgroup predicted in [7] for the standing wave.
The two standing waves first predicted turn out to belong to the same group orbit.

To compute the stability we proceed as in 3.1 by changing variables with adapted
notation:

(57) x+/-=(+p:) e(’r’t++/-p x=ye’:’’ j=O, 1 -1

We then obtain the following linear system:

d
d- p:2 2(at- br- cv/-)p:2+ 2ap+/-2,

d
d"- 0+/-2 2(ai bi cv/-) 2p:2 + 2a2p+/-2

d
(58)

dt
y- by_ + b2,

d
dt
y 22Y- +2,

d-Y= b-c 22+A2 Yo+ b-c

with

A=2 (d4+2v/d6+2 d7- d3-2 ds-4ds),
B A 4(3d8 x/(d6 q- dT)).

Hence the eigenvalues of (58) are the following:

(59)

tr, 2(2a b c,v)f+ O(f),

r3 2b+ O() (double),

tr5 -4A+ O(6)

r2 2(b + c/’))+ O(J),

o’4 2 ( b,. c,.) + 0(),

(A defined in 3.1), r6 0 (quadruple).

The last eigenvalue is quadruple because of dependency of orbits on four parameters:
three of them originate from the action of the orthogonal group, and the remaining
one from the arbitrary choice of the temporal phase. Furthermore, we can easily see
that an infinitesimal rotation acting on (54) does not generate a Yo component. This
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solution is then stable if

2at < br + cv/ (supercritical bifurcation),

b < min -Gx/-, c ,0

A>0.

(60)

Let us summarize the results of 3.2 as a theorem.
THEOREM 2. In the invariant four-dimensional subspace {xl X_l Xo=0} the

subsystem (47) satisfies an 0(2) x SO(2) equivariance that leads to the two classical types
of bifurcating time-periodic solutions: rotating waves and standing waves (see [2]). The
F-orbits of these two solutions are (orbitally) stable if (i) they bifurcate supercritically;
(ii) the usual conditions for stability on cubic coefficients of F in (24) hold in the
four-dimensional subspace, and (iii) one additional inequality holds for rotating waves
(see (53)) while three additional inequalities hold for standing waves (see (60)), one of
them depending on the combination A (see (44)) offifth-order terms of F.

3.3. Second family of rotating waves. If xj =0 for j -2, 0, 2 then (18), (19) lead
to nonzero monomials for F,, when

Pl ql P-1 + q-1 m, Pl ql + P-1 q--1 1.

This implies F, 0 for rn =-2, 0, 2, and (up to "flat terms") as for (46)"

F_I(A X)= X_I ff’(A IX_ll 2, IXll,
(61)

F,(, x)- x,(, Ix, =, Ix_,l=).

Hence, truncated at third order, the system (5) reduces to

dtX_l=x_l ioa+tx+ a c 1+ a-b-c r

(62)

dtX=X i++ a-b-c r_+ a-c

We can proceed as in 3.2. We obtain the following rotating wave solution:

(63) x_ =0, x r ei(,’+z,),

with

(64)
IX + ( ar Cr ) r21"F O r O

tOl OO + tZ, + ( a, c,) r21+ O(r41).

By the same reasoning used in 3.2.1 we can show that

(65) Roz(O)’r(-O/tol)U-- U.

This invariance is different from that of the rotating wave of the first kind since (65)
implies that this new wave rotates approximately twice as rapidly as the previous one
(,o,-,o 0(r)).
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(66)

The stability is governed by the following system (truncated at cubic terms)"

dt Pl 2 a c rEpl
dt

(1 2 a c rlPl,

dt
y- -bry_,

de
y c ry_,

d Yo c ryo+ crfi2, d fi2 e rfi2 + eryo,

from which the following eigenvalues can be exhibited:

0.1=2(a-c)r+O(r41),
(67) 0"3 I’2, 0"4 --C rl

2 -t" O(/’14), 0"5 ’4,

0"6 C + " r21 + O( 4/’1)

0.z -br+ O(r),

0"7 ’6, 0"8 0 (triple).

For the reason already stated, the zero eigenvalue of the rotating bifurcated branch is
triple. This branch, however, is generically unstable (if cr is nonzero).

Now it is natural to investigate the standing wave solution given by
X_ ei(dht+q’-) x ei(t+4q)

with

(68) txr+(2a-b-cV%2 +O(4)=O, g),=O)+la,,+(2a,-b,-c,’v/g)fZ +O().
This solution actually belongs to the family spanned by the rotating wave (54) found
in {} 3.2.2 since the rotation transforms (see Appendix 1) X (:, 0, 0, 0, :) into X’=
(0, i_, 0, i:, 0). We can now sum up these results as a theorem.

THEOREM 3. In the invariant four-dimensional subspace {x-1--Xo-X2---O} the
subsystem (62) satisfies an 0(2)x SO(2) equivariance as in Theorem 2. The rotating
waves rotate approximately twice as rapidly as the ones of Theorem 2. Their F orbit is
always unstable. Standing waves belong to the same F-orbit as those of Theorem 2.

3.4. Tetrahedral waves. If xj 0 for j 1, 0, 2 then (18), (19) lead to nonzero
monomials for F, when

pl q 2(p_2 q-2) m, P ql +P-2 q-2 1.

This implies Fm= 0 for m =-1, 0, 2 and (up to "flat terms") as in (46)"
F_2(A, x)= x_2/3_2(X, Ix_=l =, IXll=),

(69)
El(A x) Xl,(, Ix_2l2, IXll2).

Furthermore, equivariance of F with respect to a rotation such as (see Appendix 1)"

(70) O=a, 0,=-rr/2, q2=-rr/2,

where

2 1
sin a =--x/, cos a

3 3

leads to the following condition for F defined by (69)"

(71) /1 (A, Ix-d=, 2lx_=l =) _=(A, Ix_d =, 21x_d)
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due to the fact that the rotation (70) leaves invariant the vector

X (1, 0, 0, x/, 0).

Suppressing terms higher than sixth order, we have that the governing system takes
the following form:

d-- x-= x- ito+ i + ar+(a-c’/)r+ d(rl + r-)

-x/-d3r2(r2 + r22) + 3 d6r]
(72)

r_2+ a -c
dt

x, x iw++(a c) r+d(r+r)2

rr_2+(r-2r2)2

where (71) is clearly satisfied.
System (72) possesses three different kinds of periodic solutions: those rotating

waves found in 3.2.1 and 3.3, and a solution such as

(73)

This relation is then valid up to arbitrary order, as can be proved by (71). Thus we obtain

(74)
x=e
x_2 ei(6+-z),

with

]r -[- (3at 2Crx/)72 + [9d, + 6x/-(d6 d3)] 4+ O(6) 0,
(75)

03 to +/z, + (3a,- 2c,x/-) 72 + [9d,, + 64g(d6,- d3,)] 4 + O(6).
The phases ql, -2 may be eliminated by an appropriate rotation composed with an
adequate choice of the time origin. Note that the solution x-1 =x/x2, xj=0 for
j =-2, 0, 1 belongs to the same torus of solutions as (74)" just rotate the angle r about
OX.

The symmetry of the solution with $-2 $1 0 is of the form expected from [7]:
a tetrahedral type solution. This means that once a rotation of angle 27r/3 about oz
is combined with a time translation of the third of a period, the principal part X and
therefore U itself remain invariant. More explicitly, (43) implies

Roz(27r/3)X =j2X, j e2ir/3
and since

’(27r/3a3)X =jX,

it is easy to deduce

(76) Roz(2r/3)r(2r/3)U= U.

The remaining three ternary axes of this solution are shown in Fig. 1" kl is located
along oz; k2 belongs to the xoz plane and makes an angle a with k (a is defined in
(70)). The axes k and k4 are obtained from k2 by rotation of 27r/3 about k. The
solution U remains invariant under the combination of a rotation of angle 27r/3 about
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FIG. 1. Ternary symmetry axes kl, k2, k3, k4) of the tetrahedral waves.

the axis ki followed by a time translation of a third of the period. Let us introduce the
rotation Gi that transforms k into ki"

(77) G Roz(-go,)Rox(-a),

with

(78) tp2=-Tr/2, tp3=-Tr/2-2r/3, q4=-Tr/2-4r/3.

Then the rotation of angle 27r/3 about k takes the following form:

(79) G G,Ro=(2zr/3)G7, .
It is clear that G; acts like Roz(2r/3) on X (x-2, 0, 0, fx_2, 0). The bisectors of the
ternary axes correspond to binary axes: for instance, the bisector of (k, k2) denoted
by ks is such that the symmetry

(80) Rk(Tr) G"Roz(’rr)G"-1, where G"= Roz(r/2)Rox(-a/2)

leaves X invariant. This concludes the symmetry analysis and shows that this solution
is the tetrahedral one predicted in [7].

The study of the stability yields (using obvious notation):

d ^2

dt P-E=
[2ap_2+ 2x/(a cx/)p]r

d
at
p [2x/(ar- crx/)p-2 + 2(2a- cv/-)p,]r

d
(81)

at Y
[ex/)7+ ,x/y_ + 2C’yE]r,

d
d- y-’ cv/)7+ (-2b + cx/-)y_ + bx/y2] ?2,

d
at Y2= [2c)7+ bx/y_ + (cx/--b)yE]r
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where equations for phases are omitted. The eigenvalues are now"

r 2(3a- 2Gx/),?2 + O(4),

tr2 2Gx/-?2 + O(4) (triple at this order),

(82) or3 (-3b + cx/-) ? + O(4),
0-4 0-

r 0 (quadruple).

The eigenvalue ors is quadruple because of orbital stability (as for standing waves).
The others yield the following conditions for stability"

3ar 2Gx/- < 0 (supercritical bifurcation),
(83)

Cr <min "(b" O)
Let us sum up these results as a theorem.

THEOREM 4. In the invariant four-dimensional subspace {x_ Xo=X2=O} the
subsystem (72) possesses three types of time-periodic bifurcating solutions" (i) the two

different families of rotating waves found in Theorems 2 and 3, and (ii) a solution such
that Ix,l- 4 lx_=l, which possesses the tetrahedral symmetry indicated by Golubitsky and
Stewart in [7]. The F orbit of this solution is stable if the bifurcation is supercritical and
two additional inequalities are realized on the cubic terms of F (see (83)).

3.5. Summary of results. In the plane (br, Cr) Fig. 2 shows the domains of stability
of the various periodic solutions depending on the sign of at. Despite the relatively
large number of solutions, Fig. 2 is rather simple and the various domains just overlap
on a small part of this plane (for ar negative). One condition of stability is the usual
result of supercriticality; nonetheless, this condition is not sufficient since the second
family of rotating waves is proved to be always unstable. The first family of rotating
waves and axisymmetric solutions may be simultaneously stable if A and ar are negative.

Cr cr

case (i) case (ii)

FIG. 2. Stability domains of the periodic solutions: case (i) at<0 case (ii) at>0. ///tetrahedral waves;
\\\ axisymmetric solution/f A < 0;///standing waves of A > 0 (axisymmetric solution if A < 0)" rotating
waves (first family).
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This is not the case for standing waves or axisymmetric waves because of A. Note that
the fifth order terms appearing in (5) with nine coefficients play a role in the stability
study by means of the single combination A of three of them (d6, dT, d8). Finally we
note that pictures of all five waves are given in Montaldi, Roberts, and Stewart [16].

4. Quasiperiodic solutions. Here we look for the possiblity of bifurcations leading
to quasiperiodic patterns. As a matter of fact, the differential system may exhibit such
behavior at the onset of instability since it is eight-dimensional: five amplitudes
and three phases 01, 02, 03 appear in (5) which may be rewritten as:

(84)

-f,,(r_2, r-l, ro, rl, r2, 01, 02, 03),

g,.(r-2, r-l, ro, rl. r2, 01, 02, 03),

where

03 2P_1- qo-

Steady solutions 01, 02, 03, r,,( 0) may be found in (84) if

(85)
fro(r-2, r-l, ro, rl, r2, 01, 02, 03)= 0,

g,,(r-2, r-l, ro, rl, r2, 01, 02, 03)= (.ore, m =-2,. ,2,

where

all the w,, being close to w + L[, i. These pulsations satisfy the relations (29) for a pair
(a,/3). If a and/3 are not rationally related, the solution is quasiperiodic with two
basic frequencies /3 (close to o) and a very small. Unfortunately, it is hopeless to
consider the full system (84)mor (85)msince it is much too complicated for us to find
analytical solutions. One method for avoiding such difficulties is to consider special
cases. Systems (47), (62), and (72) have a feature in common with the 0(2)x SO(2)
invariant problems where a Hopfbifurcation is present since if, respectively, br + Cr’f
0, br 0, or cr 0, it is impossible to determine at cubic order which are the observable
time-periodic solutions. (The standing as well as the tetrahedral waves cannot be
computed). Such situations are common for codimension 2 problems. They can be
treated as in the Couette-Taylor example [4], [13]. Higher-order terms (fifth and
seventh order) must be computed to describe the form and stability of these solutions.
We will not discuss these cases here because we only consider codimension problems.

Another possibility relies on the analysis of a lower-dimensional subsystem. For
instance, requiring the x, x_ amplitudes to be zero will lead to the reduction of the
system (84) to the following:

(86)

dr --fro(r_2, ro, r2, 0), rn =--2, O, 2,
dt

dqm
--gin(r-2, ro, r2, 0),

dt
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where
0 200- 0-2- 02.

Hence, every set {r-2, ro, r2 (all # 0), 0} satisfying

(87)
f,,(r-2, ro, r2, 0)=0, m=-2, 0,2,

2g0- g-2- g2 0,

where g2(r, O) is different from g-2(r, 0), corresponds to a quasiperiodic solution of
(86) with two basic frequencies. Clearly, r2 must differ from r-2; if not, we would
show via (23) that f_2(r, O) (respectively, g-2)=f2 (respectively g2), which means that
the solution is periodic.

System (87) truncated at the third order takes the following form:

c rg+(a-b-cx/-)r

+-rgr -b+c cos0- -b+c sin0 =0,
2

rE [ + (a b c)r_2 + (a 2 )c rg+ arr

+-rgr_ -b+c cos0- -b+c sin0 =0,
2

(aa

+ a -2 c (r_ + r)+ (2a-b-c)rg

+ r2r_2 [(-b + c) cos O + (-bi + ci) sin O ] =0,

(-b,+c)(rg-r-r)(1-cosO)
-b + c

2rr_
(r+2rr_) cos 0

rr_+ ro(r + r)]
2rr_

From this, we easily draw an equation for 0 alone. Once this equation is solved, we
obtain to, r, r_ from

c+ aB(O)

(89) _
A(O)r, +A n(O),

where

(90)

B(O)

A(O)
(-br + crx/) cos 0 (-bi + cx/) sin 0

2(b + c;,/)

br + C V/ b+ C V["6 "Ji- b + Cr 3/2 2
COS

2 19 (-b, + c 3v/2 2 sin2 0

4]’ b+ cvr6 cr
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The equation for 0 then turns out to be"

(-b, + c,){2A(O)[1- B(O)]+cos O[4a2 ’-- B]}
(91)

(-b,. + Cr) sin O[4A2 + B] O.

The left-hand side of (91) is an odd polynomial function of degree three in (sin 0, cos 0).
This implies zero, two, four, or six solutions coupled in pairs (0, 0 + r). Relations (89)
show that only one element in each pair of solutions of (91) is acceptable. Let us show
the existence of solutions when it is assumed that

-bi + ci 0.

Under such hypothesis (91) simplifies to

(92) sin 0(4A2(0)+ B(O))=0.
Only zero or 7r are possible choices. As a matter of fact, we can assert that 7r is
impossible because of (89). While 0 0 is a solution provided

b,.]-cr/,-c,.x/-/4[ if cr > 0,
(93)

b,. ]- c,.x//4, cx/-[ if c < 0,
for br in this open set, it is clear that the quasiperiodic solution still exists for -b + cx/
near zero. Since this condition is not related to a "classical" codimension 2 problem
(indicated above) we may assert that the direct bifurcation to a quasiperiodic solution
is general here in a "large" open set in the parameter space.

Acknowledgments. We thank P. Chossat for his helpful remarks and we gratefully
acknowledge A. Cerezo for taking time to derive the general form of the equivariant
vector field F(A, X) (see [ ]).

Appendix 1. Representation of a finite rotation. We indicate here the representation
l= 2 of a finite rotation correcting some misprints in [6]. In the canonical basis a
rotation defined by the Euler angles 1,0,

R(tpl, O, tp2) Roz(q2)Rox(O)Roz(vl)
is represented by a 5 x 5 matrix T such that

T,,,(,, 0, 2)= e-im: e-’m’u,(O),
where u, (0) satisfy:

mn Unm
1

u_,_(0) u,(0) u_,(+ 0) = (1 +cos 0),
u_,o( o uo,( o -u_,_(O) u,,(O) u_,(+ O) U-l,( + O) - sin 0(1 + cos 0),

1
u_,_(o)=ul,(o)=u_,(+o)=(cos O+cos o-),

cos 0 sin O,

1
Uo,o(0) (3 cos 0 1 ).
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An infinitesimal rotation takes the following form"

1 + 2i(ql + P2) -iO 0 0
-iO 1 + i((, + q:,2) -i3x//20 0
0 -ix//20 1 0
0 0 -ix//20 -iO

0 0 0 1 2i(pl + p2)
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BIFURCATION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF A DELAY-DIFFERENTIAL EQUATION WITH DIFFUSION*

MARGARET C. MEMORYf

Abstract. A scalar delay-differential equation with diffusion term in one space dimension, where the
diffusivity D is a bifurcation parameter, is considered. The center manifold theory and the method of
Lyapunov-Schmidt are used to describe two bifurcations from spatially constant solutions as D decreases.
By modifying the equation the order of these bifurcations can be reversed. Then the existence of a compact
attractor for a class of such equations is shown and the structure of part of the attractor for the modified
equation is investigated. It is known that the solutions are globally L2-bounded; bounds on the solution
operator from one intermediate space to another are constructed to obtain an attractor in the We’2 sense.

Key words, delay-differential equation, small diffusivity, population model, bifurcation, periodic orbit,
attractor
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Introduction. In this paper we consider

--u(t,x)=Du(t,x)- +/x u(t-1 x)[l+u(t,x)] t>0, x(0, Tr)
Ot Ox2

(1)
0

u(t, x) =0, x =0,
Ox

Throughout the paper/x will be in a neighborhood of zero.
Without space dependence, the equation becomes

(2) d--’ u(t) 2 /x u(t- 1)[1 + u(t)],

which has been proposed by Hutchinson 10] to model certain plant-eating populations;
it is obtained after a change of variables from a delayed logistic equation. The value
of/x depends on the delay and the growth rate of the population.

The constant zero solution of (2) is seen to be stable for/x > 0 by analyzing the
eigenvalues ofthe linearized equation. Chow and Mallet-Paret [4] use integral averaging
to show that a supercritical Hopf bifurcation occurs at /x =0 (where the linearized
equation has a pair of eigenvalues +i7r/2) and find the approximate form of the
bifurcating periodic solution for /x >0. Stech also takes (2) as an example in [13],
where he uses the bifurcation function to study Hopf bifurcations for functional
differential equations.

With the addition of a diffusion term, we allow the population density to vary in
some domain l-l, imposing no-flux boundary conditions. We want to investigate the
effects of diffusion on the long-term behavior of solutions by considering two questions.

First is the local problem. Given a solution of (2) and its stability properties, what
are its stability properties as a solution of (1)? In 2-4, we will build on the work
of Yoshida [15] and Morita [12] to deal with this question for the zero solution and
the periodic solution arising in the Hopf bifurcation. Morita shows that, for fixed

* Received by the editors June 3, 1987; accepted for publication (in revised form) June 29, 1988. This
material is based on research supported by a National Science Foundation Graduate Fellowship, and on
the author’s Ph.D. dissertation at the Division of Applied Mathematics, Brown University, Providence,
Rhode Island.

" Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487.
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/x > 0, this periodic solution is unstable for D less than a certain Do. We will show
that there is a D > Do at which another Hopf bifurcation from zero occurs, resulting
in an unstable, spatially varying, periodic solution. We also show how to destabilize
the original periodic solution (as D is decreased) before this bifurcation occurs by
adding nonlinear terms in u(t 1) to (1).

Second is the global problem. How can we use these local analyses to say something
about the global structure of solutions? Hale has shown in [7] that if a retarded
functional differential equation has a compact attractor, then the corresponding
diffusion equation has, for large enough D, a compact attractor with this same structure.
Here we are interested in how the attractor changes as D decreases toward zero. In

5 and 6, we show the existence, for arbitrary D > 0, of a compact attractor for a
class of equations including (1). We then consider the modification of (1) noted above,
for which destabilization of the original periodic solution precedes the second Hopf
bifurcation, and determine the structure of part of the attractor for this equation.

1. Previous results. The phase space for (1) is C([-1, 0], X) for an appropriate
Banach space X of functions from [0, r] to R. We write u, C([-1, 0], X) where
u,(O)(x)=u(t+O,x), -1=<0=<0, x[0,r]. With the interpretation of "02/0x2’’

depending on the choice of X, (1) becomes

020
u(t, x) D u(t, x)+f(Ix, ut(" )(x)) x (0, 7r),

Ot Ox2

()
o
u(t,x)=O, x=O, r
Ox

with initial condition Uo(’)(’) C([-1, 0], X) given. Yoshida [15] proves existence
and uniqueness of solutions of (3) if X W2’2(0, r). (This is a special case of his
general result for domain cR".) In addition, he makes the change of variable
U(t, x) 1 + u(t, x) to get positivity of solutions in this new variable. (We will use this
in 3.) Calling W/2--’{/) W2’2(O,q’g)’OU/Ox:O at x=O,r}, we work in C=
C([- 1, 0], W2).

First we investigate the stability of the zero solution of (1). The eigenfunctions of
-O2/Ox (considered here as a densely defined operator on L:(0, 7r)) are w,,(x)= cos nx
with corresponding eigenvalues n 2 for n->_ 0. Linearizing (1) about zero and looking
for solutions eX’w,(x), we obtain a sequence of characteristic equations

(4.n) , + + l e + Dn =0, n_->0.

Yoshida shows (using a result in Hale [9]) that for < 0 and any D, all roots of all
the equations (4.n) have negative real parts, so the zero solution is stable.

Note that (4.0) has a pair of roots +i-/2 when =0. (This is the characteristic
equation for (2).) We can use Hale’s result to show that all other solutions of (4.n)
for each n have negative real parts.

Therefore if we fix D and increase , the origin is stable until x 0, when it loses
stability in exactly two directions as a spatially constant periodic orbit grows out of
it. Yoshida proves (using the Center Manifold Theory and Chow and Mallet-Paret’s
averaging scheme) that this orbit is stable for in some interval, say , e (0, 1).

Changing our point of view slightly, we think of fixed and decrease D. In terms
of the population model, this means the animals move more slowly in II. We might
therefore expect spatial inhomogeneities to persist, with solutions of (1) no longer
approaching those of (2). We have already seen that if < 0 the zero solution is stable
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for any D: the origin cannot be destabilized by decreasing the diffusivity. We turn our
attention to small/z > 0 and the possible destabilization of the periodic orbit.

Morita considers this question for a class of problems in [12]. He treats (1) (for
f c Rn) as an example and shows that for any/z > 0 there is a D D(/z) for which
the spatially constant periodic orbit is unstable. He uses the Lyapunov-Schmidt method
(see, for example, [3]) to compute explicitly one of the characteristic exponents y of
the periodic orbit as a function of/x and D. For small/z > 0, he is able to choose D
small enough so that 3,(/z, D) > 0.

Here we summarize Morita’s results for (1), putting them in a slightly different
form. First it is necessary to locate the periodic orbit arising in the Hopf bifurcation.
We seek a solution y(t,e)=e cos tot + O( e 2), where to=to(e), of (2) with/z =/x(e).
(The phase space here is C([-1, 0], R).) On applying the Lyapunov-Schmidt method,
we obtain

y(t, e)= e cos tot +e2 cos 2tot q-e2 sin tot-I- O(e3),
7r 1

o() + O(e),
2 20

37r--2
(,)-- ,:’+ O(e).

40

In practice, we change variables s tot (where to is to be determined) and look for
2r-periodic solutions. The phase space is still C([-1, 0], R), where vs,,(O) v(s+ toO),
-1_<0__<0.

The stability of p(t, x, e) -= y(t, e) as a solution of (1) is investigated by linearizing
(1) about p and seeking solutions evtv(t) cos nx, where v has the same period as p. If
v(t) is required to have minimal period 27r/to(e), applying the Lyapunov-Schmidt
method leads to an equation connecting D and the characteristic exponent y. By
scaling y y2e2-O(E3), D DEe2, we obtain a quadratic equation for y. If O2n2>
7r/20, the roots Y2 are negative or have negative real part. If On2= "tr’/20 one root is
zero, and if 0 < OEng-< 7r/20 it becomes positive. Note that if n 0 the characteristic
exponents obtained are those for y as a solution of (2), that is, one trivial exponent
and one negative one, so it is only necessary to consider n > 0. The periodic solution
p must therefore be unstable for D < D*(/x), where/z(e) is given above and D*(/x (e))
7re2/20. It will lose stability in more directions across each of the approximate bifurca-
tion curves in Fig. 1. (Recall/z (e).)

D

FIG. 1. Bifurcation curves for destabilization of the periodic orbit.
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2. Second Hopf bifurcation. To study the small solutions of (1) it is certainly
necessary to keep track of what is happening at the origin. For fixed/ > 0 and large
enough D, the origin has a two-dimensional unstable manifold. Does the origin also
become less stable as D is decreased? We can see what is going on more clearly by
linearizing (1) about zero and expanding in eigenfunctions ’.n=o un(t)cos nx. The
equations decouple, and we have

d
u"(t) -Dn2u"(t) + I u"( 1)

for each n->_ 0. Consider each (5.n) to be a separate delay-diiterential equation, and
consider the stability of the origin as a solution of (5.n).

For the equation (t) -au(t) bu(t- 1), we have the situation illustrated in
Fig. 2.

\ oriain
riginunstable "

FiG. 2. Stability of the origin. FIG. 3. Hopf bifurcation curves.

For (5.0) we know that the origin is unstable (with two-dimensional unstable
manifold) for Ix > 0 and that no other bifurcations occur at the origin for the/x’s we
are considering.

For (5.n), n >= 1, we fix /z > 0 and find D D() marked in Fig. 2, where the
origin loses stability. We look for pure imaginary roots A +/- i/3,/3 > 0, ofthe characteris-
tic equation

A + +Ix +Dn =0.

The real and imaginary parts give

0=Dn2+ + cosfl, fl= +x sin.

We expect close to -/2, so let fl -/2 + . The second equation above gives
The first equation then gives Dn2 r/2 7x/2 for small
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Going back to the full equation (1), we again have a set of approximate bifurcation
curves shown in Fig. 3, across each of which the already unstable origin loses stability
in two more directions.

Consider the first of these bifurcations, when D r/z/2. We do not have a Hopf
Bifurcation Theorem for equations for the form (1), but we can use the Center Manifold
Theory to reduce the equation to a two-dimensional one where the Hopf Bifurcation
Theorem holds. Yoshida [15] proves the existence of a local two-dimensional integral
manifold at the origin, for fixed D and depending on/x close to/zc where the equations
(5.n) have exactly one pair of pure imaginary roots. We have been holding/x fixed
and decreasing D, but the bifurcation curves are such that fixing D and increasing/x
is equivalent. For any D, our/xc 2D/r is positive, so (5.0) has a pair of roots with
positive real part. This means the center manifold will not be attracting.

Note that we could also use Carr’s Center Manifold Theory for infinite-dimensional
systems (see [2]), which requires a semigroup formulation of the problem slightly
different from Yoshida’s. Using Carr’s work we get a two-dimensional center manifold
depending on/z and D in a neighborhood of the bifurcation point.

Either way we know a Hopf bifurcation occurs as D decreases through D rtz/2,
and we have only to determine whether a periodic orbit grows out of the origin or
collapses onto it. The calculation proceeds as follows.

Substituting u(t, x)= ,=o u(t) cos nx into (1) and calling a 7r/2+/x gives

du(t)=-au(t-1)-au(t)u(t-1)dt - " u"(t)u"(t-1)’
n=l

d
ul( t) -Du( t) au( 1) cu(t)ul(t 1)- aul( t)u( 1)

dt

Ol n--1 Ol-- ’. u (t)u (t-1)-- u"(t)u"-(t-1),
n=l n=2

(6.p)
d
d- up(t) -pDuP( t) auP( 1 )- au( t)uP( 1 auP( t)u( 1)

Ol p. n( U
Ol +p-- up- t) (t-1)-- E u (t)u (t-l)

2 =1 n=l--- u"(t)u"+P(t -1), p->2.
2 =1

We are looking for a periodic solution of the form

u(t)=be2+ecosvt+ E b, e2cosvnt+ E ce2sinvnt+O(e3),
=2 =2

uP(t)=bge+ E bP e2cOsvnt+ E cPesinvnt+O(e3), pl,
n=l n=l

with v= rr/2+ Vo+ vle+/*282+0(83) for fixed small >0 and D=
Do+ De + D2e= + O(e3).

As before, we rescale time s vt and rewrite the equations for qP(s)= u P(t). We
will substitute the desired solution into (6.p) and compare coefficients. We only need
to determine the sign of D2. (We expect the amplitude of the periodic orbit to be
approximately proportional to the square root of the Hopf bifurcation parameter, so
we expect D 0. The calculations confirm this.) To do this it is sufficient to consider
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(6.0)-(6.2) only, retaining terms through O(e-) in (6.0) and (6.2) and through O(e3)
in (6.1). In fact, we require the O(e3) term only in the coefficients of sin s and cos s

in (6.1).
Note that DE, along with the other constants, depends on . Since /x is small,

though, we retain only the O(1) term in/x. In addition, we expect ’o to be small as a
function of/z, so in the calculation we drop all powers of ’o higher than the first.

The calculation is lengthy, but we eventually find DE < 0, so a periodic orbit grows
out of the origin as D is decreased (or, equivalently, as is increased). Note that
neither the origin nor the bifurcating periodic orbit is stable, since the two-dimensional
center manifold containing them is not attracting, but the origin loses its stability in
the center manifold to the periodic orbit.

3. Direction of bifurcation. We now return to the bifurcation from the spatially
constant periodic orbit at D D*(/x). Since the bifurcation occurs when a real charac-
teristic exponent becomes positive, we expect bifurcating periodic orbits rather than
an invariant torus. A calculation similar to the preceding one will allow us to determine
whether the bifurcation is super-, sub-, or transcritical.

We look for the bifurcating periodic solutions

z(t,x, e)=e cos vt+e(a+bcos vt+csin vt) cosx+O(e2)

of (1) with/z =/x (e) and D D(e), where v v(e) is close to to (e) computed earlier.
(Recall that the spatially constant periodic solution p(t, x, e) loses stability in the
spatial direction w(x) cos x.) We substitute z(t, x, e) into (1), expanding in eigenfunc-
tions cos nx and collecting coefficients of cos mvt, sin mvt. The computation is essen-
tially an extension of the previous one, with two principal differences.

First, /z is a function of e rather than a fixed quantity, so /z(e)=/./2e2- O(e3)
must also be found. Second, the form of the periodic solution (actually, solutions) to
be found is z(t, x, e) ,=o u" (t) cos nx where

0E2 3),u(t)=be2+ecos’t+ , b,eEcos’nt+ cn sin,nt+O(e
=2 =2

u’(t)=ae+be2+(be+btl e2 cos ,t)+(ce+c’e2)sin, ,t

+ b, eE cos vnt + ’. c eE sin vnt + O(e3),
n=2 n=2

uP(t)=bPoeE+ bP.eEcosvnt+ . cP, e2sin,nt+O(e3),
r-----1 r-----I

with ,(e) 7r/2+ ,2e2+ O(e3) and D(e)= D2e2q-O(e3).
Here we outline the computation showing that two periodic orbits grow out of

the spatially constant one as D decreases through D*(/). As in the original Hopf
bifurcation calculation, we rescale s vt and call q (s) u (t).

Substituting into (1), we first collect coefficients of cos x. In no case do we need
to retain terms higher than O(e3). We find that the constant term of q(s)= O(e4)
and, in particular, a b 0. The cos 2s and sin 2s terms of the coefficient of cos x
give b and c in terms of b and c. We use this information to simplify the cos s and
sin s terms, which will be used later.

Next we look at coefficients of the spatially constant term, obtaining boo 0 from
the (time) constant term and expressions for b2 and c2 in terms of b and c from the
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COS 2S and sin 2s terms. We use these in the cos s and sin s terms to get

1 3 1 3
u2= 20 40b-c+-bc’

37r-2( 3b2 1 ) r+6
/x2-

40
1+- +-c2 + bc.

2 2 40

Note that if b c 0 then we get the original spatially cOnstant periodic orbit with
the proper values for/x2 and 92 to2.

Finally, the coefficients of cos 2x give bo2 0 from the constant term and expressions
for b22 and c22 from the cos 2s and sin 2s terms. Returning to the cos s cos x and
sin s cos x terms obtained above, we use this new informations to get

157r r37r 9r b3 77r bEc+ bcE+ c3DEc =-- b- 160 16---- 160 160

217r +5r 37rzr 37r b3d- b2c bc-- CO2b - b
160 160 160 160

Now write c-fib. Multiplying the first equation by b and the second by c and
subtracting, we obtain

b2 8(/3 -3)
34 4fla 6flE 4fl 9

as long as the right-hand side is defined and nonnegative. When/3 > 3 we will get two
periodic orbits corresponding to the positive and negative choices of b.

We then find

D2__
7r bE 4

1+/32 120 20 160

Note that/3 =/30 3 gives D2 7r/20 as expected.
Finally, we write b2 and/x2 as functions of/3 and

U(p, )
and compute

dfl + /x(/3)] <0 at/3=3.

4. Reversing the order of bifurcation. Recall that we would like to study the
structure of all the small solutions of (1) as D is decreased. If e is fixed with
/x ((37r-2)/40)e2, we have analyzed two bifurcations: a Hopf bifurcation from the
already unstable origin at D (Tr/2)((37r-2)/40)e2, and a destabilization of p(t, x, e)
at D 7re2/20. Note that since not all the characteristic exponents of p have been
determined, we do not know if p is stable until this bifurcation point. In any case, we
would like to guarantee that p(t, x, e) becomes unstable before the second Hopf
bifurcation as D is decreased. We could then study a simpler structure. We will now
see that by modifying (1) we can reverse the order of the two bifurcations we have
studied, so that we can consider the first destabilization of p (whenever it occurs)
without considering any complications caused by bifurcations from the origin.
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(7)

The new equation, suppressing dependence on x, is

u(t) u(t)- + [u(t- 1)+hu
Ot D--x2 tx 1)][1 + u(t)],

OU
O, x O, "n’,

Ox

x (O, r),

where h is a constant to be determined. In the next section, h will be considered
another parameter. Existence and uniqueness of solutions of (7) in C([-1, 0], W2)
follows as in Yoshida [15], as does positivity of U(t)= 1 + u(t).

We now extend the previous calculations to (7). The linear part of the equation.
is unchanged, so we still expect a Hopf bifurcation at/x 0. To determine the direction
of bifurcation we seek 37(t, e) e cos tot + 0(62) for new functions /. (e) and
w=w(e). We find w2=-1/20 as before and .(t,e)=y(t,e)+O(e3), but /z2

(37r 2)/40- 37rh/8. We will consider only h < (37r 2)/157r so/z(e) -/XEe + O(e3) >
0 for small e > 0 and the direction of bifurcation is unchanged.

Next we look for characteristic exponents of/(t, x, e)-)7(t, x) as a solution of
(7) as described in 1. The computations are largely unchanged, and for 0<_ h <
(37r-2)/157r we again find one exponent becoming positive as D decreases through
7fez/20. Note the difference here is that/[2,2 is smaller for (7) than for (1): the periodic
orbit destabilizes for larger D, as a function of/z, in (7) than in (1), even though D
is the same as a function of e.

The direction of bifurcation here is also unchanged.. Repeating that calculation,
we find that/3o, the value of/3 giving the single spatially constant periodic orbit at
the bifurcation point, depends on h. For the values of h we want to consider (see
below), /3 </3o(h) gives two periodic solutions, but we find in this case that
d-/ dfl-) D(flo( h ), tx > O.

Finally, we look at the second Hopf bifurcation from the origin. The bifurcation
point depends only on the linear part of the equation, so for (7) also it must occur at
D(/x) r/x/2.

Repeating the computations for the direction of this bifurcation, we find that, for
h > 0, D2 is still negative and the direction of bifurcation is the same.

We have seen that, for (7),/(t, x, e) undergoes bifurcation at D 7re2/20 and the
second Hopf bifurcation from zero occurs at

7r [37r-2 37r hie2D-
2 40 8

if h < (37r-2)/157r. Ifwe choose (37r- 6)/157r < h < (37r-2)/157r,/ must lose stability
first as D is decreased.

5. Existence and upper semicontinuity of the attractor. In this section we formalize
the notion of looking at "all the small solutions" and show that this is possible for
(7) and, as a special case, (1). We will prove the existence of a maximal compact
attractor in C C([-1, 0], W) a compact set in C that is invariant and attracts
bounded sets under the solution map and that is maximal with respect to these
properties. (A set attracts under S(t) if for any 6 > 0 there is a tl such that S(t)
is contained in a 6-neighborhood of for > tl.)

There are results on compact attractors for equations of many different types (see
Hale [6] and the references therein). According to Billotti and LaSalle [1], we can
prove the existence of a compact attractor for our case by showing that the solution
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map is a C-semigroup on C, is compact for t> 1, and is point-dissipative. (S(t) is
point-dissipative if there is some bounded B c C that attracts points under S(t).)

To show that the solution map is point-dissipative, we will start with a result of
Luckhaus [11] for equations of the following form (suppressing dependence on x)"

a__ 02
:-u(t)-u(t)<g(u(t) u(t-r)) xe(O,l) t>0,
at ax2

(8)

a
u(t)=0, x=0 and l, t->0,ox

u(t)=Uo(t), e [-7., 0],

u(t)>--O, t>=O,

where g" 2._> satisfies
(i) g(u,v)<u, u, ve+;
(ii) limx_.g(Au, Av)/A =-oo, u,v+.

We will see below that (7) can be put in this form. The theorem states that, for any
solution u with Uo LZ[0, l],

lim II. t," )11 < K

for some constant K K (g, l, 7.) independent of Uo. (The proof in 11] seems to give
only li---,_. Ilu(t,, )ll= < K, but we will see below that the L bound follows from the
L2 bound.) Note that this implies the solution operator is point-dissipative in
C([-7., 0], L[0,/]).

Based on this result, we have the following theorem.
THEOREM. If UOE L2[0, l] and u is a solution of (8) with equality holding in the

differential equation, and g satisfies (i) and (ii) and is a polynomial in u and v, then

li-- Ilu(t," =,= < K6
t-o3

for some constant K6 K6(g, l, 7’) independent of Uo.
Proof We suppose throughout that u is a solution of (8) and Ilu(t)ll2<2K for

=> to. To simplify the notation, we take
Let T(t) be the solution operator for

at axz=0, xe(0, rr), t>0,

-0, x O, 7.r.
Ox

We will get a bound on T(t)" LZ[0, r]- Wl’Z[0, ’] and use the variation of constants
formula to get a W’ bound on u. Then a similar procedure will give the Wz’z bound.
The two steps are required to get sufficiently sharp intermediate estimates.

Let b e Lz(O, r) with Ob/Ox 0 at x 0 and r so b ,=z b,, cos nx. Then r(t)b
n2,=o b, e- cos nTx, and

r(t)bll <= , b. + , n e1,2 X b(1 + n2) e-2"’ 2 2b2 -2.,

=0 =0 =0

For given > 0, we find the n for which n z e-z’2’ is maximum:

(9
(n2 e_2.2,) 2n e-2n2t 4n3t e-2n2t 0

On
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gives n 1/x/ if this is an integer. In any case n2 e-2"2<-_ e-/2t, so we have

giving

C
T(t)bll ,,= bll=

for 0_--< _--< 2z, say, for some constant c.
We first use this estimate to verify the L bound on u in 11]. We can use condition

(i) on g, the nonnegativity of u, and the positivity of T(t) for _-> 0 to write

O-u(t) - r(t-to)u(to)+ r(t-s)u(s) ds,
0

pointwise in x. Since W’2 is continuously embedded in C[0, -], we have for some Cl

Ilu(t, ")ll<-Ilr(t-to)U(to)ll/ [Ir(t-s)u(s)llds
to

--< Clll Y( t- to)U( to)ll 1,=+ rill r( t- s)u(s)ll , ds
to

<-(cc,/#t+/-to)llu(to)ll=/ cc,/ tgT-zS-s Ilu(s)ll= ds
to

<= (cc/x/t- to)(2K)+ 2ccx/t- to (2K)

_-<K for to+r<-t<-to+2r.
The argument may be repeated with to replaced by to+ nr for each n => 1, and

thus, taking K2= max {K, 2K}, we have Ilu(t)ll=<g= and Ilu(t)ll<g= for t=> to+r.
Since g(u(t), u(t-z)) is a polynomial, we have IIg(u(t), u(t-))ll<g and

Ilg(u(t), u(t-r))ll=<K3 for t=> to+2r and some constant K3. The variation of con-
stants formula gives (using the equality in the differential equation)

Ilu(t)ll ,=_-< IlT(t-(to/2r))U(to/2)ll,=

+ [IT(t-s)g(u(s), u(s- r))lll,2 ds
to+2-r

<-(Cl/X/t-(to+2r))K2+2cV’t-(to-2r) K3 for to+2r_-< t_-< to+4r,

8o [lu(t)ll ,2--< K for to / 3’-< -<_ to / 4r, giving, as before, Ilu(t)[] 1,2-<- K4 for ->_ to + 3r.
We now bound T(t) as an operator from W’2 to W2’2"

IlT(t)bll 2
2,2 b2,,(1 +/12"-/14) e-2n2t

n=0

2b2 -2n2t=< Z b2,, +2 2 nZ(n ,,)e
rl=0 n=O

2 2 2We know E 2 and Y,:o n b < Ilblll,=,,=o b, =< Ilblll,_ and we have from above that
n 2 e-2n2 1/2et, so

C2T(t)bll=,2<--- Ilbll 1,=

for 0 =< =< 2r and some c2.
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Next note that since Ilu(t)ll,=g for >- to+3r we have IIg(u(t), u(t- ))11,=
K5 for >= to + 4z and some K5 depending on K4 and g. As above, we use the variation
of constants formula to get Ilu(t)ll=,=_-< K6 for to+ 5r=< t=< to+6Z and some K6. Repeat-
ing the argument with to replaced by to+ m- we get Ilu(t)ll=,=-< g6 for >- to+ 5z.

For any solution u, then, there is a tl such that Ilu(t)ll,<-g6 for t>=h, so
lim ,-.oo u(t)II =,=--< K6 independent of Uo.

We now put (7) in the form (8). Let a=(cr/2+ix)(l+h) and rescale time t--> t/a.
Rescale space x-->x/D/ax. Change variables U U(t)= 1 +u(t) and V= U(t-a) to
get

0U 02U U[1 l+3h 3h V2 3h V3
ot Ox2 1, +---- V+ l+h l+h

x (0, x/a/D r),

U
-0, x=0 and /a/D

Ox

We have already noted U -> 0.
Since -(1 + 3h) V/ 3hV2- 3hV < 0 for h _>- 0 and V> 0, hypothesis (i) on g is

satisfied. It is easy to see that (ii) is satisfied also.
Next we need to show that S(t; h, Ix), the solution map for (7), is a C-semigroup

on C and is compact for > 1. We proceed in two steps. First, using the work of Travis
and Webb [14] we show L(t; IX), the solution map for the linearized equation

u(t) Du(t) + IX u(t- 1), x e (0, or)
at 0X2

u(t) =0, x =0, 7r,
Ox

is a C-semigroup on C and compact for > 1. Then, using the variation of constants
formula, we extend the result to S(t; h, Ix).

The map T(t), now considered an operator on W2, is easily seen to have the
bound IT(t)l=<l, so by Propositions 2.1 and 3.1 in [14], L(t; Ix) is a C-semigroup
on C.

From Example 5.2 (changing the boundary condition) and Lemma 5.3 of [14],
we see that T(t) as an operator on L2(0, or) is compact for > 0. Because T(t) is also
continuous from L2(0, 7r) to W2’2(0, 7r) for > 0, T(t) is compact on W for > 0.
Proposition 2.4 of [14] gives L(t; Ix) compact on C for > 1.

From Proposition 1.1 of Yoshida [15], we know S(t; h, Ix) is defined on C and
continuous in t. Setting

g(u,(.);h, Ix)=- +Ix u(t-1)u(t)- +Ix hu(t-1)[l+u(t)],

we have

S(t; h, Ix)ck=L(t; Ix)dp+ L(t-s; Ix)Xog(S(s; h, Ix)tk; h, Ix) ds.

The following lemma is quoted in Yoshida [15]"

If u, v W2’2(0, r), then uvs W2’2(0, w) and Iluoll-<-cllull" Ilvll.
Therefore g(.; h, Ix) maps C to W2’2(0, or) and is locally Lipschitz. An application of
Gronwall’s inequality, as in Corollary 2.2 of Travis and Webb [14], gives S(t; h, Ix)ok
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continuous in b. The semigroup property clearly holds. S(t; h,/z) is compact for > 1
because L(t;/x) is compact.

We have shown the existence of a maximal compact attractor, which must contain
any equilibrium points, periodic orbits, and orbits connecting them. The attractor for
(7) thus contains all the orbits we have studied, plus any connecting orbits. It may,
however, contain other invariant sets not yet identified. The structure ofthe full attractor
is, in fact, an open problem even for (2), the equation with no space dependence.

Next we will show that the attractor for (7) does not change too abruptly as D
is decreased. This will imply that, for h close to and greater than (37r-6)/157r and
D in a small enough range, there are no orbits connecting the spatially nonconstant
periodic orbit arising in the second Hopf bifurcation from the origin and the periodic
orbits arising in the destabilization of the spatially constant periodic orbit.

In practice, we will increase/z rather than decrease D. This is equivalent for the
bifurcations with which we are concerned, since the bifurcation curves are nearly
straight lines.

We prove that the attractor , for (7) (with fixed h) is upper semicontinuous in
; that is

where

3(d., .o) - 0 as/x -/Xo for each

3(1, ) sup dist (y, ).
y.

This means that in some sense the limit of , is inside SOlo. To do this, it is enough
to show (Cooperman [5], quoted in Hale [8]) that S(t; h,/x) is continuous in/z (from
the variation of constants formula) and that there is some bounded c C such that

c for all/z in a neighborhood of
To put (7) in the form (8) this time, fix/z >/Xo and set a=(’rr/2+tz)(l+h) for

each/x in a neighborhood of/Zo. Rescale and change variables as before to get

l+3h 3h V2 3h V3]-<U 1
l+h

V+
l+h l+h

if/x =</x. The eventual L2 and L bounds on U are thus independent of/z. The
estimates and constructions of the other bounds above are all continuous in x, so we
can find a constant K such that

lim lu,(’,

for any solution u of (7) with /z in a iven neighborhood of/Xo. Therefore , is
contained in the ball in C of radius K centered at the,origin for each /z in this
neighborhood, and , is upper semicontinuous at/-o.

6. Structure of the attractor. Fix h close to and greater than (37r-6)/157r and
fix D. Suppose that, for (7), the bifurcation from the spatially constant periodic orbit
that we have discussed occurs at/x =/x* and the second Hopf bifurcation occurs at

+ +
/x =/x Note /x </x The pictures below illustrate the part of the attractor we are
interested in for various values of/x; they may be thought of as two-dimensional
representations of a half-period map. For /x <-/x* we have the origin, the spatially
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FIG. 4. Local structure ofthe attractorfor FIG. 5. Local structure of the attractor for p* < t.t <-- +.

FIG. 6. Local structure of the attractor for I > tz +. FIG. 7. Possible connecting orbits.

constant periodic orbit, and the orbits connecting them, which make up a two-
d-,dimensional center manifold shown in Fig. 4. For *</.-</x we add the two new

periodic orbits shown in Fig. 5. Note that no connections are between the origin and
the new orbits, because the origin has only a two-dimensional unstable manifold, which
must lie entirely in the subspace of spatially constant functions. For +<, we add
at least the periodic orbit arising in the second Hopf bifurcation, as shown in Fig. 6.

We are interested in the existence of connecting orbits (represented in Fig. 7 by
dashed lines). These connections may be formed through other bifurcations for larger

d-
/x, but they cannot exist for all small /z >/x because this would violate upper
semicontinuity of the attractor at/x +.
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A SHADOWING LEMMA WITH APPLICATIONS TO SEMILINEAR
PARABOLIC EQUATIONS*

SHUI-NEE CHOW,t XIAO-BIAO LIN,t AND KENNETH J. PALMER

Abstract. The property of hyperbolic sets that is embodied in the Shadowing Lemma is of great
importance in the theory of dynamical systems. In this paper a new proof of the lemma is presented, which
applies not only to the usual case of a ditteomorphism in finite-dimensional space but also to a sequence
of possibly noninvertible maps in a Banach space. The approach is via Newton’s method, the main step
being the verification that a certain linear operator is invertible. At the end of the paper an application to
parabolic evolution equations is given.

Key words, hyperbolic, exponential dichotomy, Shadowing Lemma, pseudo-orbit, Newton’s method,
parabolic evolution equation

AMS(MOS) subject classifications. 34C35, 35K22, 58F15

1. Introduction. Let f be a diffeomorphism from Rk into itself. Given an initial
point, the iterates off and its inverse generate a sequence of points Xn+l =f(xn). Then
{xn}nz is called the orbit through Xo. A sequence of points {Yn}z is called a
g-pseudo-orbit offiflyn+l -f(Y,)l <-- for all n, where t > 0 is a constant. The Shadowing
Lemma says that if S c Rk is a hyperbolic set for f then for every e > 0 there exists
8 > 0 such that every t-pseudo-orbit (Y,}z in S is e-shadowed by an orbit {x,},z
of f, that is, Ix,-Y,I -< e for all n. This lemma was first stated and proved in Anosov
[1] and Bowen [3] under slightly different conditions. Several different proofs were
given later in Conley [4], Robinson [15], Guckenheimer, Moser, and Newhouse [6],
Ekeland [5], Lanford [10], Shub [16], and Palmer [14].

A g-pseudo-orbit can be thought of as an orbit generated numerically by a
computer. If this orbit is in or near a hyperbolic set for f, the Shadowing Lemma
implies that an orbit for f can be found near such a "noisy" numerical orbit for an
arbitrarily long time. In fact, Hammel, Yorke, and Grebogi [7] showed how we may
apply the ideas of the Shadowing Lemma to prove that "noisy" numerical orbits are
actually near real orbits for a finite but fixed time even in the nonhyperbolic case. In
[12], Palmer showed that the complicated behavior of the orbits of a diffeomorphism
near a transversal homoclinic point can be explained by the sole use of the Shadowing
Lemma. This has been generalized by Blazquez [2] to infinite-dimensional systems
generated by parabolic evolution equations.

When considered abstractly, the problem of finding a shadowing orbit can be
approached by Newton’s method for finding zeros of functions. To see this, let X be
the Banach space of all bounded Rk-valued sequences x {x}nz with the usual sup
norm and define ff:X X by ((x)), =x,,-f(x,,_l), where ((x)) denotes the nth
element of the sequence (x) X. Thus x {x,} is an orbit off if and only if (x) 0
and y {y} is a g-pseudo-orbit if and only if (y)II -< , The Shadowing Lemma says
that iff is hyperbolic and there exists a good approximate ( sufficiently small) solution
y of the equation 0, then there exists a solution x near y.
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Technology, Atlanta, Georgia 30332. The work of the author was partially supported by the Defense
Advanced Research Projects Agency.
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For an analogue in the continuous time case, consider the abstract ordinary
differential equation in a Banach space X"

(1.1) + Ax f(x, t),

where A is linear and f nonlinear. A typical example of (1.1) is the nonlinear heat
equation. Suppose the real line R is partitioned as R= LJ,z[’,-1, r,] and each
x.(t):[r._l, ’,] X is an approximate solution, that is,

2,,(t) + Ax,(t) f(x, (t), t) + h,(t),

where h.(t) and g, are the error terms. The problem is to find an analogue of the
hyperbolicity condition to guarantee that there exists a solution of (1.1) which, for
each n in Z, is close to x,(t) in the interval

In this paper, we will show that a Shadowing Lemma may be derived using
Newton’s method and that the lemma is applicable to the just-mentioned situation
(see 6). Because of the applications, we will work with C maps in Banach spaces
that are not necessarily ditteomorphisms. In fact, we consider a sequence {f,},z of
mappings rather than a single mappingf We set up the problem abstractly in a Banach
space of sequences and apply a variant of Newton’s method. The key tool is Lemma
3.2 in which we show that a certain linear operator is invertible (in the finite-dimensional
case, this can also be proved by the perturbation theorem for exponential dichotomies
in Palmer [13]). Lin has proved a similar lemma in [11], where the application is to
a problem in ordinary differential equations. Here Lemma 3.2 is proved by an iteration
method, which means, we believe, that it could be implemented on the computer.
Newhouse [6] also used an iteration process but it is rather more involved in that at
each step it uses the intersection of the stable and unstable manifolds.

Finally we should mention that as this paper was being written Walther sent us
the preprint [18] where he proves the Shadowing Lemma for noninvertible maps.
Stoffer [17] has also proved such a theorem. Both of these authors use the methods
of Kirchgraber [9], which are quite different from ours.

2. Definition and statement of the Shadowing Lemma. What we are going to prove
is a "nonautonomous" Shadowing Lemma for a sequence f, :X, X,+l(n Z) of C
maps. Here X, is a Banach space with norm l" Ix,. (or simply l" if no confusion should
arise). Assume S, c X,, n Z, is invariant under f, in the sense that f,(S,)= S,+.
Also we assume that f,(x), Df,(x) are bounded and continuous in a closed z-
neighborhood O, of S, uniformly in x O, and n Z.

We want to define what is meant by saying {S.}.z is hyperbolic. First there is a
splitting into closed subspaces

(2.1) X,,=E(x)E(x)

for x in S,. We require this splitting to be invariant in the sense that

Df.(x)E.(x) E.+,(f.(x)), Df.(x)E,(x) EnU+l(fn(x))

for all x in S., and also continuous; that is, if P.(x) is the projection with range E(x)
and nullspace E".(x), P.(x) is continuous in the operator norm, uniformly with respect
to x S. and n Z. In terms of P.(x), the invariance of the splitting is equivalent to

(2.2) Df,,(x)P,,(x) P.+l(f.(x))Df.(x)

for all x in S,. We also assume that Df,(x):E(x) E+(f,(x)) is an isomorphism
with a (bounded) inverse (Df,(x))-: E+(f,(x)) E(x).
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Second, we require that there exist constants K >= 1, 0=< A < 1 such that for any
finite sequence x., x,.+l =f,n(Xm), Xm+2 =f.+l(X.+l), ", X. =f._l(X._) with Xm Sm
and any integers n => m,

]Dfn(xn)Dfn-(xn-1) Dfm(xm)Pm(xm)l <- KA "-’+1,
(2.3)

]Of.(x.)-Of,+(x+)- Of.(x.)-l(I-P+(X.+l))[ <- KA--,-+1.

Also we assume that IP(x)l--< K, [I-P.(x)]-< K for x S., n Z.
An orbit for {f.}.z is a sequence {x.}.z with x. X. and X.+l =f.(x.) for all

n Z. If 6 > 0 is a constant, a sequence {y.}.z with y. X. is said to be a &pseudo-orbit
for {f.} if

]f.(y.)-y.+l]<=6
for all integers n. A sequence {x.}.z with x. e X. is said to e-shadow {y.}.z, y. e X.,
if

for all n Z.
THE SHADOWING LEMMA. Let {X.}, {f.}, {S.}, n Z, be defined as above and

satisfy all the properties listed above, that is,
(i) S. is invariant under f.;
(ii) There is a closed A-neighborhood On of S. such that fn(x) and Df.(x) are

bounded and continuous uniformly with respect to x in On and n in Z;
(iii) {Sn}.z is hyperbolic.
Then there exists eo > 0 with the property that if 0 < e <-_ eo there is e > 0 such

that if {Yn}, Y. S, is a -pseudo-orbit for {f.} then there is a unique orbit {x.} which
e-shadows {Yn}.

To prove the Shadowing Lemma, we will use some facts about linear ditterence
equations and a variant of Newton’s method for solving nonlinear equations.

3. Facts about linear difference equations. For each integer n let An :Xn --> Xn+l be
a bounded linear mapping. Denote by (n, m)(n >= m) the transition matrix for the
linear difference equation

x,, A,, xn Xn Xn FI Z,(3.1)
that is,

A,., n > m,
P(n, m)

/, n=m.

Equation (3.1) is said to have an exponential dichotomy if there is a projection
valued function P. Xn --> Xn and constants K -> 1, 0-< A < 1 such that

(3.2) alp(n, m)P, P.(n, m) for n_>- m,

(3.3) loP(n, m)P, <= KA for n -> m.

Moreover, it is required that P(n,m):A/’(P,.)-->A/’(Pn) (A/" denotes nullspace) be an
isomorphism. Then for n >= rn we define I,(m, n):AZ(P.)--> A/’(P,.) as the inverse of
P(n, rn) AZ(P. --> A;(P. and require that

(3.4) loP(m, n)(I- P.)I <= KA"-" for n -_> m.

It is clear from the definition of hyperbolicity that the following lemma holds.
LEMMA 3.1. Let {Sn}nz be a hyperbolic set for a sequence fn :X.--> X.+I of C

mappings. Then if {xn } is an orbit of {fn with x. S.for all n, the linear difference equation
u,,=Df(x,,_,)u,,_,
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has an exponential dichotomy with projections P, P(x,) and constants K, A, the projec-
tions P(x) and the constants K, h being those defining the hyperbolicity of {S}.

We denote by IIX, the Banach space of bounded sequences x {x,},z, x, s X,,
with norm

Ilxll II{x}ll sup Ixlxo.
nZ

If sup,z IA, < oo, we can associate with the linear difference equation (3.1) the linear
operator L’IIX, --) IIX, defined by

(Lx),=x,-A,_lX,_l.

It turns out that if (3.1) has an exponential dichotomy then L is invertible. Now in
the proof of the Shadowing Lemma we are confronted with a linear difference equation
for which the existence of an exponential dichotomy is not obvious. For this reason
we need the following lemma.

LEMMA 3.2. Assume sup.z IAI < o. For each n Z let Q. be a projection such
that [Q.[ <- K, [I- Q.[ <- K and [Q.+IA.(I Q.)[ _-< , [(I- Q.+)A.Q.[ <- . Suppose also
thatfor all n sZ [A.Q.I<-_A and that (I-Q.+I)A.:W(Q.)--> r(Q.+I) has an inverse B.
with [B.(I-Q.+I)[<-_A. Then if 8KA _<- 1, 88<_- 1 the operator L:IIX. -->IIX. defined by
(Lx). =x.-A._lX._ is invertible with [[L-][ =<2K + 1.

Proof First we show L is onto. To do this we define the linear mapping S :IIX. -->

IIX. by (Sh). Q.h.-B.(I-Q.+)h.+I. Then S is bounded with [[S[[-<K +h and
for all n

I(LSh). h.I IQ,,h,, B,,(I- Q.+l)h.+l- A,_,{Q,,_,h,,_,- B._I(I- Q,,)h.}

I-Bn(I Qn+l)hn+l- An-lQn-lhn- + QnAn-lBn-,(I- Qn)hnl

since (I Q,,)A,,_IB._I(I Q.) I Q.

I-Bn(I Qn+,)hn+l- An-,Qn-lhn-1 + QnAn-I(I- Qn-1)Bn-l(I- Qn)hnl

IB=(I- Q.+,)[ [h.+,[ + [A._,._,[ [h._,[

+ O.A.-,(I 0.-,)11B._,(I (2.)11h.I

A (2 + ) Ilhll

Hence ILLS- III -< 1/2 and so LS has an inverse T with TII--< (1 -ILLS- III)-’ -< 2.
Then ST L is a right inverse of L with

L’ -<- Sll TII --< 2(K + A _-< 2K + 1.

All that remains is to show that L is one-to-one. First note that for all x X,,

I(I- Q,,)xl IB,,(I- Q,,+,)A.(I- Q.)x

<-AI(I-Q.+,)A,(I-Q,)x[

so that

(3.5) I(I Q,,+I)A.(I- Q.)xl >- A-’l(/- Q,,)xl.
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Suppose L is not one-to-one. Then there exists a nonzero bounded sequence {xn}
in IIXn such that xn A._lX.-1 for all n. Suppose that for some n

(3.6) I(I-Q)xl>lQxl.

Then, using (3.5),

I(I- Q/)x/l-IQ/x/zl I(I- Q+I)A,xnl-IQ.+la.x.I

I(I- Q.+)A.(I- Q.)x.I-[(I-

-IQ.+A.Q.xI -IQ.+A.(I- Q.)x.[

A-’I(I O)xI- lxl- KAlxl- lxl
(A-’-4-2KA)I(I-Q.)x.I sincelx.[2l(I-Q.)x.[

71(I-Q)x.I.
This implies that I(I-Q+)x.+l>lQ+x+[ and that [(I-Q+)x.+[

71(I-Q.)x.[. So if (3.6) holds for some n.= m, it holds for all n m and

Ixl g-l(I- Q)xl K-7"-I(I Q)x[

g-7-lxl.

Thus Ix.[ as n , contradicting the boundedness of {x.}.
Hence it must be that IQxl 1(I-Q.)x.[ for all n and then

IQ.+,x.+,l

[Q.+A.Q.x.[ + IQ.+A.(I-

Now there exists some m such that QxO. Then for all nm, Qx
2--]Qx as n -. Again this contradicts the boundedness of {x}. So L
must be one-to-one.

4. Newtoa’s metho for solving nonlinear euatioas. In this section we prove the
following variant of Newton’s method for solving nonlinear equations.

PROPOSITION 4.1. Let X be a Banach space, U X an open subset and " U X
a C mapping. Let y be a point in U such that D(y)- exists and let eo > 0 be chosen
so that

(4.1) llP(x)- P(y)] (2P(y)-’ ][)-’

for IIx-Y o, Then if 0 < e <-_ eo and

(4.2)

the equation

(4.3) (x) =0

has a unique solution x such that IIx-y I[--< .

(y)ll e(211D(y)-’ II)-’,
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Proof. We write

(x) ;(y) + D;(y)(x-y)+ (x).
When IIx- yll, IIx- y]l -< eo,

n(x)- n (x=)II- II(x)- (x=)- D(y)(x-

(4.4) N D(x2+ O(x x2) D(y) dO IIx,- x=ll

(2 D(y)- II)- IIx x=ll,
using (4.1).

We can rewrite (4.3) as

x y- D(y)-{(y)+ (x)} := T(x).

For 0< e eo, we define B {x X" Ilx-yll e} and show that T is a contraction
on B. The proposition will then follow immediately from the contraction mapping
principle.

Note first if x B then

T(x)-Yll IID(Y)-{(Y) + w(x)}ll
IID(Y)-’II{e(211D(Y)-II)-’ + (211D(Y)-II)-IIx

=e/2+llx-Yll/2
e/2+e/2= e,

where we have used (4.2) and (4.4) with x x, x2 y. Hence T maps B, into itself.
Moreover if x, x2 B then, using (4.4),

T(x)- T(x=)II IID(y)-{W(x)-
IID(Y)- (211D(Y)-ll)-’llx- x=ll

=1/211x-x211,
Thus T is indeed a contraction on B and the proof is completed.

5. Proof of the Shadowing Lemma. We need three lemmas for the proof.
LEMMA 5.1. Let X be a Banach space and let P, Q" X X be projections such that

lel, IQIK, en if IP- QI < I/2K, the operator J= PQ+ (I- P)(I- O) is invertible
with I1-1 (1-2Kle- Ol)-’. Moreover, J((O)) (P), J((Q)) (P).

Proof

So J is inveaible with I1-1 1 -IJ tl )-’ 1 2Kle Ol )-’. Clearly J (Q)
(P), J((Q))= (P) and equality follows from the inveibility of J. So the proof
of the lemma is complete.

Now by assumption IDf.(x)l is bounded in a closed A-neighborhood O, of S,,
uniformly in x O, and n 6 Z. Let this bound be M. Then

IL(x)-L(y)I MIx- yl
for x S,, y X,, and Ix Yl A. This fact is used in the following two lemmas, which
make precise a statement of Guckenheimer, Moser, and Newhouse [6] that in the
Shadowing Lemma it is enough to shadow a 6-pseudo-orbit for the sequence of
mappings {f,+-i of,+ of,},z.
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LEMMA 5.2. If {y.}.z is a g-pseudo-orbitfor {fn} with Yn Snfor all n, then {Y.k}
is a g(1 + M+...+ Mk-’)-pseudo-orbit for {fnk+k-, fnk+, fnk}.Z"

Proof. We prove by induction that

ly.+,-(fnk+,-, f.k+, fnk)(ynk)l <- g(1 +M +’’" +
for 1 <-- --< k. Since {Yn} is a g-pseudo-orbit, it certainly holds for 1. Assuming it for
i-> 1, we prove it for i+ 1 as follows"

ly.+,+ (fnk+, fnk+l f.k)(Ynk)l
--<--ly.+,+ f.k+,(Ynk+,)l + If.+,(y.+,) fnk+,((f.k+,- f.k)(Y.k))l
<_ + Mly.+,-(f.+,_ f.)(y.)l
_--< g+Mg(l+M+. .+M’-1) g(l+M+. .+M’).

LEMMA 5.3. Let {Yn} be a g-pseudo-orbit for {f.} with y. S., and let {x.} be an
orbit of {f. } such that {X.k}e-shadows {Y.k }, k >- 1 being fixed. Set e, max { e, g }. Then
if e,(1 + M +. +Mk) <- A, {Xn} e,(1 + M +" + Mk)-shadows {y.}.

Proof Note first that

lY.k+l f.(X.)l <= lYnk+l f.(Y.)l + If.(Y.)
<- g + Me <- el(1 + M).

Then we show by induction, as in the proof of Lemma 5.2, that

ly./,-(f./,_l.O.., of.)(x.)l <- e(1 + M +... + M’)
for l<-i<-k.

Proof of the Shadowing Lemma. Let k be a positive integer such that 16K3A k __< 1.
We first prove the Shadowing Lemma for the sequence of maps Fn =fnk/k- fnk
and hyperbolic sets {S.k}. If we define to(r/) sup {IDFn(y) DF.(x)[" x e Snk, Y e X.k,
lY xl--< n. n e Z}. it follows from the uniform continuity and boundedness of Dfn that
to(r/) 0 as r/--> 0. Then we choose eo > 0 so that eo < A and to(eo) -< 1/(4K + 2). Also
if we define o(n)=sup{llP.(y)-P.(x)ll" xS.,yX.,ly-xl<=, nZ} it follows
from the uniform continuity of P(x) that a3(r/)0 as r/0. Then given 0<i<=eo,
we let gl > 0 be such that gl -< A, (4K + 2)g <= g, 8MkKto(gl) --< 1, 4Kto(g) <- 1. (Note:
M is defined before Lemma 5.2.)

Now suppose {)Tn}.z is a g,-pseudo-orbit for Fn with )Tne Snk for all n. We show
the existence of a unique orbit of F. that g-shadows {y.}. First we apply Lemma 3.2
to A. DFn(.n), 0n Png()Tn). For all n, IAI--< Mk, IQI--< K, II- QI--< g. Also by the
hyperbolicity, IA.Q.I<-KX for all n and An(I-Q.)" N(Qn)N(P(n+k(F.(fin))) is
invertible with inverse having norm bounded by KA k. Using the invariance property
of P,,,

IQ.+A.(I- Q.)I I[P(+,)k()Tn+,)- P(.+l)k(Fn(fi.))]An(I- Q)I
-<-to(gl) MkK <- 1/8

and, similarly, I(I- Qn+)AnQ.I -< 1/8. Also since 2Kto(gl) =< 1/2 it follows from Lemma
5.1 that

J. Qn+,P(n+,)k(Fn(Y.))+(I- Q.+,)(I-P(n+,)k(Fn(fi.)))
is invertible with I11-<_ (1 -2K,o())- _-<2 and that J. (c(P.+(F. (y.))) (Q.+).
Hence

(I- Q.+)A.(I- Q.) J.A.(I- Q.)" ;( Q.)--> (Q.+)
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is invertible with inverse B, satisfying lB,[ <_-2KA k so that lB,(I-Q,)I <--2K2hk. Thus
the conditions of Lemma 3.2 are satisfied with X, instead of X, and 2K2hk instead
of h. So if we define L: 1-I,=_ X,k I],=_ Xnk by

(Lu), u,-A,_,u,_, u,- DF,_,(y,_)u,_,

L is invertible with IIa-’ll-<_2K / 1.
Let U be the open set in I],_ X,k consisting of those {x,}, x, X,k satisfying

sup, [x. fi, < A. Then we define " U I],=_ X.k by

((x)).=x.-F._,(X._l).
is C with (D(x)h), h, DF,_,(x,_,)h._. L D()( {y,}) is invertible with

IIL-’ll =<2K + 1. Condition (4.1) is satisfied by choice of eo and since II(Y)ll =< ,-<-
/(4K + 2), condition (4.2) is also satisfied with t instead of e. Then it follows from
Proposition 4.1 that there exists a unique {,} in I]._ X,k such that (x)=0
and I1-11 -< . That is, {,} is the unique orbit of {F,} such that ]g. -fi, =< g for all n.

Now let 0 < e =< eo and let 8 correspond to (1 + M +. + Mk)-e. Set ;
(1 + M+. .+ Mk)-8l and let {y,} be a -pseudo-orbit for {f.} with y, e S, for all n.
Then {fi,},z, with y, Y,k, is a 15-pseudo-orbit for {F,} by virtue of Lemma 5.2. So
there exists a unique orbit {,} of {F,} which g-shadows {ft,}. Then we define X,k .,
n Z, and each X,k+, 1 =< =< k- 1, n Z, in the obvious way so that {x,},z is an orbit
for {f,}. It follows from Lemma 5.3 and the fact that max {g, ;} g that {x,}e-shadows
{y,}. {x,} must be unique because {X,k} e-shadows {Y,k} and there is a unique such
orbit because e =< Co.

6. Application to parabolic evolution equations. Consider the following parabolic
evolution equation

(6.1) + Ax f(x, t)
in a Banach space X with norm I" I. Suppose A is a sectorial operator in X (see Henry
[8] for general reference in this section) with Re tr(A) > 0. We can define the fractional
powers As’(As) --> X, 0-< a -< 1, and then X (As), the domain of As, becomes
a Banach space with the graph norm

We also assume that fe CI(X x R, X) and that f and Dxf: X x R--> (Xs, X)
are Lipschitzian in x and locally HSlder continuous in t. Under these conditions the
initial value problem

+ Ax f(x, t), x(to) Xo
has for all (Xo, to)e Xx R a unique solution

x(t; Xo, to)e C([to, T),X) cl((to, r),x)f) C((to, T), (A)),
where to, T) is the maximal interval of existence. We denote the solution map of (6.1)
by T(t, to)(Xo)- x(t; Xo, to).

Let S c X x R be a forward invariant set for (6.1), that is, if (Xo, to)e S then
T(t, to)(Xo) is defined for all ->_ to and (T(t, to)(Xo), t) S. This means that T(t, to)Sto S,
for all t_-> to, where St {x X’(x, t)e S} is the t-section of S. We say S is hyper-
bolic if:

(i) For x e S,, e R, there is a splitting

(6.2) X=E,(x)ET(x)
which is invariant, that is,

DxT( t, to)(x)E ,o(X) E(T(t, to)(X)),
(6.3)

DxT( t, to)(x)E ,o(X) E ’(T( t, to)(X))
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for all x S and t, tour with -> to, and also continuous, that is, if P,(x) is the
projection with range E(x) and nullspace ET(x), Pt(x) is continuous uniformly with
respect to x St, R. We also assume that D,,T(t, to)(X)" E to(X) E’(T(t, to)(X)) is
an isomorphism with (bounded) inverse

(DxT(t, to)(X))-" ET(T(t, to)(X))- Ergo(X).

(ii) There exist constants K _-> 1,/3 > 0 such that for x Sto and t, to R with _-> to,

IDxT(t, to)(x)P(x)le<xo.x.) <= K e-’-’o
(6.4)

I(OxT(t, to)(X))-(I-P,(T(t, to)(X)))lex,x-< g e-’-’o.
Now we want to define pseudosolutions of (6.1). Let U.z[Z.-1, z.]=R be a

partition of R with inf{z.-z._: n Z} z> 0. Then, if is positive, we say the
sequence {x.(t)}, [z.-1, ’.], n Z is a &pseudosolution of (6.1) if for all n

x.(. e C([Z._l, %], X) fq C((%_1, %), X) f-) C((z._,, z.), (A))

and

(6.5) sup {Ih.(t)[: z._ <- .} ,, Ig.[ -< ,
where h. C([r._, z,,], X), defined by

(6.6) h.(t) .(t) + ax.(t)-f(x.(t), t)

is the residual error and

(6.7) g,, =x,,(r,,)-x,,+l(r,,)

is the jump at -..
If e is positive, a solution x(t) of (6.1) is said to e-shadow the 6-pseudosolution

{x.(t)} if x(t) is defined for all and [x(t)-x.(t)l<=e for r._<-t<-r., nZ.
THEOREM 6.1. Let A, X, X, f(t, x) be as above and suppose S= X x R is a

forward invariant hyperbolic set for (6.1) such that f(x, t). and Dxf(x, t) are bounded
and Lipschitz continuous in a A-neighborhood 0 of S in X’x R.

Let {x,,( t)}, %_ =< -< %, n Z, be a 6-pseudosolution of (6.1) such thatfor ’l’n_ <--

7". and n Z, x. t) is in a &neighborhood of St in the X norm.
Then there exist eo > 0 and a positivefunction i( e ), both depending only on A,f "

inf. (-.- z._), such that if 0 < e <-eo and 6 <-6(e), there is a unique solution of (6.1)
that e-shadows {x. (t) }.

For the proof of Theorem 6.1, we need a lemma.
LEMA 6.2. Let the hypotheses of Theorem 6.1 hold and let M be the bound for

xf( t, x) in O. Let x( t) be a solution of (6.1) in S and let y( t) be a solution ofthe initial
value problem

(6.8) fi + ay f(y, t) + h( t), y( to)

for to, to + 2r], where I- X( to)l =< and h C([ to, to + 2z], X) with sup Ih(t)[ <_- .
If (y(t), t) Ofor [to, to+2Z], then there exists a constant C >- 1 depending only on
A and M such that ly(t) x(t)[ <= C6 on [ to, to + 2z].

Proof Our assumptions on A imply the existence of positive constants C1, C2
and a such that for t-> 0

le-atl(x..x ,,) <= C eat, le-a’lse(x,x o) <= Czt e"’.



556 S.-N. CHOW, X.-B. LIN, AND K. J. PALMER

Now z(t) y(t) x(t) satisfies the integral equation

(t) e-A(’-’(to)+ e-a(’-{f(x(s)+ (S), s)--f(x(s), S)+ h(s)} ds.
o

Then for to -< <- to + 2r,

Iz(t)l,<-_C e’-’o,+ MC2(t-s) e z(s)lds+ C2(t-s) e"’-S)6ds.

It follows from an inequality in Henry [8, Lemma 7.1.1, p. 188] that Iz(t)l < c
for to =< =< to + 2-. The proof is completed.

Proof of Theorem 6.1. The hypotheses on A and f, Lemma 6.2, and Henry [8]
imply that there exists a closed Al-neighborhood O1 of S in Xx R such that for
(x, to) O,, T(t, to)(X) is defined for to -< -< to + 2- and both T(t, to)(X) and D,,T(t, to)(X)
are bounded and continuous, uniformly with respect to (x, to) O1 and [to, to+ 2r].
(These functions have ranges in X and (X, X), respectively, and the continuity
is with respect to these norms.)

Without loss of generality we may assume that 0 =< - -< r, ’,-1 -< 2- for all n. We
first consider the case where h,(t)= 0 and x,(t) S, for all and n. Then if we let
be X for all n and f, be T(r,, r,_l):X X the domain of f, contains a closed
Al-neighborhood of S._, in which f, and Df, are both bounded and uniformly
continuous, uniformly with respect to n Z. From the hyperbolicity of S with respect
to (6.1), we see that {S._,},z is invariant (f,(S._,)c S.) and hyperbolic for
with projections P._,(x) and constants K, e-. Hence conditions (i), (ii), (iii) of the
Shadowing Lemma hold. Set y, x,(r,_,), n Z. Then y, S,._, for all n and

If. (y.)-y.+,] Ix. (’.)- x.+,(r.)] -< 6.

So if0< e _<-e, and 6 <= 61(e) (e, and 6,(e)correspond to eoand 6(e)in the Shadowing
Lemma) there is a unique solution x(t) of (6.1) such that Ix(’.-1)-x.(’._,)],. <--e for
all n.

Now we consider the general case. We suppose 0<e <-Co=1/2 min {A, e,} and
6-<6(e)=min{(2C+l)-’6,(e/2C),e/2C}. Let {x.(.)} be a 6-pseudosolution as in
the statement of the theorem. Since for all n, x.(’._l) is in a 6-neighborhood of S.,,_,,
we can choose y. in S,,_, so that ]x.(r._,)-y.]<-6. Then let g.(t) be the solution of
(6.1) satisfying g.(r._l)=y.. By Lemma 6.2 with to=r._,, x( t) .( t), h( t) h.( t),
y(t)=x.(t) we have

I.(t)-x.(t)l<=C
for ’,-1 -< -< ,. This holds for n Z. Moreover,

(6.9) <- (2C + 1)6 =< 61(e/2C).
Hence {g.(t)} is a 61(e/2C)-pseudosolution of (6.1) with g.(t) St for all and

n, where e/2C < el. It follows from the first part of the proof that there is a unique
solution x(t) of (6.1) such that

(6.10)

for all n. Then for all n

<-e/2C+6.
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By Lemma 6.2 with to ’n-1, x(t) n(t), y(t) x(t) and e/2C + 6 instead of 6 (note"
C(e/2C+)=e/2+C<A), we deduce for z,_<- t<= z,, nsZ that

Ix(t)-x,(t)l <= e/2+ C6 <= e.

That is, x(t) does e-shadow the 6-pseudosolution {x,(t)}.
Let Y(t) be another such solution. Then for all n

I(.-1) .(.-,) --< I(.-,) x.(._,)l + Ix.(._,) z.(._)1
<=e+6<=3e/2<e,

where for all n, using (6.9),

If. (z. (._))- z.+(.)l Iz. (.)- z.+(.)l
<=6(e/2C)

<-_6(3e/2).

(Note: we assume without loss of generality that 6(e) is nondecreasing in e.) That is,
the sequence {Y(z,_l)} is an orbit of {f,} that 3e/2-shadows the 6(3e/2)-pseudo-orbit
{:,(z,_)}, where 3e/2 < e. But by (6.10), {x(z,_)} is another such sequence and so
it follows by uniqueness that Y(-,_I)= x(z,_) for all n. Hence x(t) is unique.
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QUENCHING FOR SEMILINEAR SINGULAR
PARABOLIC PROBLEMS*

C’. Y. CHANT AND HANS G. KAPERt

Abstract. Let fbe a real-valued function that is nondecreasing and continuously ditterentiable on [0, c)
for some finite c (c>0), satisfying the conditions f(0)>0 and lim f(u) =o. This article is concerned
with positive solutions u of the semilinear singular parabolic differential equation u, u,,, + (b/x) u,, +f(u),
b < 1, on a bounded interval (0, a), which satisfy the initial condition u(x, 0) =0 and the boundary conditions
u(0, t) =0 and ux(a, t) =0. Let I1" denote the sup-norm over the interval [0, a]. It is shown that a solution
u quenches (i.e., there exists a T < such that lim,_.T.,<r Ilu,(., t)ll =o) if Ilu(’, t)ll tends to c from below
as approaches T. Furthermore, there exists a critical length a* such that u may exist for all > 0 if a < a*,
but ]lu(’, t)ll tends to c in finite time if a > a*. A numerical method is given to compute a*. An upper
bound for the quenching time T is obtained. An example is given to illustrate the results.

Key words, semilinear singular parabolic equation, nonlinear heat equation, quenching, quenching time,
critical length, numerical method

AMS(MOS) subject classifications. 35K20, 35K55

1. Introduction. The concept of quenching of the solution of a nonlinear heat
equation was first introduced by Kawarada [8], who studied the following problem:

(1.1a) u, Ux,, + (1 u) -1, (x, t) (0, 1) (0, T),
(1.1b) u(x,O)=O, x(0,1), u(0, t)=0, u(l,t)=O, t(0, T).
The solution u of (1.1a, b) quenches if there exists a T < o such that

(1.2) lim u,(., t)II .
t--> T,t<T

Here, II" denotes the sup-norm over the interval [0, 1]. The value of T is referred to
as the quenching time.

If the solution u of (1.1a, b) quenches at some finite time T, then

(1.3) lim u(., t)II 1.
tT,t<T

Kawarada has claimed that (1.3) implies quenching of the solution of (1.1a, b). If this
claim were correct, it would follow that the conditions (1.2) and (1.3) are equivalent
and either can be taken to define quenching. However, Kawarada has assumed without
justification that a function I, constructed in the course of the proof, satisfied the
heat equation on curves s<)(t) for arbitrarily close to the quenching time T. Hence,
Kawarada’s claim needs to be reexamined. Furthermore, it would be desirable to
extend Kawarada’s claim, if true, to nonlinear heat equations with a general forcing
term f. Since Kawarada has made use of the explicit expression f(u)= (1- u) -1, the
extension of his proof is not obvious.
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In his investigation [14] of (1.1a, b), Walter has adopted (1.3) as the definition of
quenching. The same definition has been adopted by Acker and Walter [1], [2], who
have studied the solutions of the general equations

(1.4) ut Ux,, +f(u), (x, t) (0, l) x (0, T),

u, Uxx +f(u, u,,), (x, t) (0, 1) x (0, T)

subject to the initial and boundary conditions (1.1b). The results of [1] and [2] imply
that there is a critical length l* such that a solution u exists globally (i.e., for all > 0)
if < l*, but u quenches if > l*. Results on the behavior of the solution of (1.4) and
(1.1b) at l* were given subsequently by Levine and Montgomery [11].

An upper bound for l* for the problem (1. la, b) can be inferred from Kawarada’s
article [8], viz., l*_-< 2x/ 2.8284. Walter [14] has shown that the critical length l* for
(1.1a, b) is in the range 1.5303_-</*_-<1/2r-1.5708. The exact value of l* has been
identified by Acker and Walter [1] as 2Mx/, where M is the maximum value of
Dawson’s integral, F(x)=e-’2o e dt, on the interval (0, ) (cf. [15, 7.1]). The
numerical value of l* is 1.53030416 (to eight decimal places).

Further results and references on the phenomenon of quenching for solutions of
nonlinear equations can be found in the survey article by Levine [10].

In this article we will study the semilinear singular problem

(1.Sa) u=Ux,,+(b/x)u,,+f(u), (x, t) (0, a) (0, T),

(1.5b) u(x,O)=O, x(0, a), u(0, t)=0, u,,(a, t)=O, t(0, T).

Here f is a real-valued function that is nondecreasing and continuously differentiable
on the interval [0, c) for some c > 0, satisfying the conditions f(0) > 0 and limu_cf(u). The constant b satisfies the inequality b < 1. If b =0, then (1.5a, b) reduces to
(1.1a, b) with l-2a, because the solution of (1.1a, b) is symmetric about x =1/21. We
remark that if f(0)=0, then u- 0 is the only solution of (1.5).

Throughout this article we use the abbreviation 1 (0, a) (0, T). We always
assume that T is maximal. We use the symbol L to denote the differential expression
Lu=uxx+(b/x)Ux-U,.

The transformation u(x, t) v(z, t), where z 1/4x2, reduces the degenerate elliptic-
parabolic expression zvzz+1/2(l+ b)vz-v, to Lu. This degenerate expression arises in
probability theory; it has been studied by Brezis, Rosenkrantz, Singer, and Lax [6] for
b >-1. Also, the stochastic process described by the expression 1/2Vz+1/2(b/z)vz-vt,
which has been studied by Lamperti [9] for b > -1, reduces to Lu on the transformation
u(x, t)= v(z, t), where z 2-1/2x.

The existence of unique solutions of nonhomogeneous problems for the linear
differential expression L has been studied by Alexiades [3], [4] and by Alexiades and
Chan [5]. In particular, it follows from Alexiades [4] that initial boundary value
problems described by equations of the form Lu g(x, t), where g is a given function
on , and the initial and boundary conditions (1.5b), have unique classical solutions
if b<l.

In 2, we prove that the (unique) solution u of (1.5a, b) quenches at some finite
time T iflimt-T,t<T Ilu(., t)l]- c. This result proves and generalizes Kawarada’s claim;
our method of proof is, however, different from Kawarada’s. In 3, we establish the
existence of a critical length a* and show that a* is determined by the solution of the
corresponding steady state problem. Picard’s iteration scheme gives a strictly monotone
sequence of functions, which converges upwards to the minimal steady state solution.
We also give a procedure to compute a*. In 4, we obtain an upper bound for the
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quenching time T by solving a singular Sturm-Liouville problem and using a com-
parison result. In 5, we illustrate our results by considering the special case f(u)=
(l--u) -1.

2. Quenching. In this section we prove that (1.5a, b) has at most one solution.
This solution is necessarily positive (i.e., nonnegative and nontrivial) and nondecreasing
in each variable separately. Assuming that the solution exists before quenching time,
we show that it quenches at a finite time T if the value of u at a approaches c, the
critical value of f, as tends to T from below.

LEMMA 1. The initial boundary value problem (1.5a, b) has at most one solution u.
This solution has thefollowing properties: (i) u (x, t) > 0 for all (x, t) LJ ({a } x (0, T));
(ii) u (x, t) is a strictly increasing function of for each x (0, a ]; (iii) u (x, t) is a
nondecreasing function ofx for each (0, T).

Proof Let ul and u2 be two distinct solutions of (1.5a, b) and let y Ul- u2. Then
y satisfies the differential equation [L+f’(rl)]y=O in II for some r/ between ul and
u2, the initial condition y(x, 0)=0 and the boundary conditions y(0, t)=0 and
yx(a, t)=0. Since f’(r/) is bounded above, the uniqueness of u follows from the strong
maximum principle and the parabolic version of Hopf’s lemma (cf. [13, 3.2, 3.3]).

(i) Because f(0)>0, we have Lu+f(u)-f(O)<O in [l, so [L+f’(rl)]u <O for
some r/ between 0 and u. It follows from the strong maximum principle and the
parabolic version of Hopf’s lemma that u > 0 in f U ({a} (0, T)).

(ii) For any h(0, T), let Uh be defined in Oh=(0, a)x(0, T-h) by the
expression Uh(X, t) U(X, + h) and let y Uh U. Then [L+f’()]y =0 in Oh for some

" between u and Uh. On the parabolic boundary Op-h of ’h we have y(x, 0)>0,
y(0, t) =0, and yx(a, t) =0. The inequality y > 0in Ih follows from the strong maximum
principle and the parabolic version of Hopf’s lemma; hence, u(x, t) is a strictly
increasing function of for each x (0, a).

(iii) For any e (0, a), let 1 (e, a) x (0, T). As in the proof of part (i), we show
that the solution u of the (regular) problem

(2.1a) Lu -f(u), (x, t) ,
(2.1b) u(x, O)=O, u(e, t)=0, u.x(a, t)=O,

is positive in U ({a} (0, T)). (Here, U.x denotes the partial derivative of u with
respect to x.) Differentiating (2.1a) with respect to x, we obtain

[L+f’(u)-b/x]U,x=O, (x, t) e f.
It follows from (2.1b) that U.x(X, 0)=0, U.x(e, t)>-O, and U.x(a, t)=0, so the strong
maximum principle implies that U,x > 0 in f. It also follows from the strong maximum
principle and the parabolic version of Hopf’s lemma that u is strictly monotone
increasing as e decreases. In particular, we have 0 < u < u in lie. Since u is bounded,
lim_o u exists; we denote it by Z. Thus, Z,->_ 0 and 0< u-<_ Z-<_ u in 12.

For any tre (e, a), let 11 (tr, a)x (0, T). We consider the solution u of the
(regular) problem

t.u -f(u), (x, t)

u(x, 0)=0, u,(cr, t)= u(o’, t), U,x(a, t)=0.

Let L* denote the adjoint of L (defined with the appropriate adjoint boundary
conditions) and let R*(:, r; x, t) be its Green’s function (cf. [7, 3.7; Chap. 5, Problem
5] and [12, 6.2]). We take u u and v(, r)= R*(:, -; x, t) in Green’s identity,

vLu uL* v VUx UVx + b/x)UV]x uv)t.
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Integrating over the domain (or, a) x (0, t- 8), where 8 is some small positive constant
less than t, using Green’s theorem, and letting 8 tend to zero, we find

u(x, t)= R*(, z; x, t)f(u(,, r)) d dr

+ (, ; x, u(, , (x, )e a.
Since R*(,r;x,t)>0 for (,r) e(,a)x(0,) (cf. [7, 3.7]), it follows that
R(, r; x, t) 0. Because u and f(u) are nondecreasing as e decreases, it follows
from the monotone convergence theorem that

Z(x, t)= R*(, r; x, t)f(Z(, )) dd

+ (, ; x, z(, r, (x,

Thus, LZ -f(Z) in . Since is arbitrary it follows that LZ -f(Z) in . Also,
Z(a,t)=O and Z(x, 0)=0. Because ONuNZNu in , it must be the case that
Z(0, t)=0. Since u is unique, we have u Z; hence, u
TOM 2. Suppose that the function f is such that

(. f(u u .
if
(2.3) lim u(a, t)= c,

tT

for some finite T, then the solution u of (1.5a, b) quenches.
Proof The proof is by contradiction, where we assume that (2.3) holds, but

[[ut(’, t)[[ remains bounded as u(a, t)tends to c. (We recall from Lemma l(iii) that
Ilu(’, t)ll- u(a, t).)

By assumption, there exists a constant M such that u, (x, t) <_- M for all (x, t) l’l,
the closure of El. Hence,
(2.4) Uxx+(b/X)Ux=X-b(XbUx)xM--f(u), (X, t) f.

Because u is a nondecreasing function of each argument and u(a, t) tends to c as
t- T, there certainly exists an open rectangle Q- (:, a)x (r, T) with :> 0 such that
f(u) >_- 2M in Q. Then

(2.5) 2x-’(x’Ux)x <- -f(u), (x, t) Q.

If b<0, it follows that 2(xu),)(XUx)x <--f(u)ux/a -2’. On integration from to a we
find

u2(, t) > f(u) du, e (% T), u(,t)

As approaches T, the integral grows beyond bounds, because of (2.2), so the same
must be true for the (nonnegative) quantity Ux(, t). If b _-> 0, then it follows from (2.5)
that 2U),x <= -f(u). Since u) ->_ 0, we have

u(a, t)

u(, t)>- f(u) du, t(% T).. u(,t

Again we arrive at the conclusion that u(:, t) grows beyond bounds as tends to T.
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Since f is nondecreasing and u is nonnegative, we have f(u)> 0. The inequality
(2.4) therefore yields (xbu,)x <= Mxb in f/. It follows on integration from some point
x to : that

ux(x, t)>=x-b{bU:,(, t)--[M/(l + b)](l+b--x+b)}, b # -l,

u,(x, t) >= (x/)u(, t) Mx In (/x), b -1.

A second integration from zero to : yields

u(, t)>
u(’ t) M2 ( 1 ) b -I
1-b l+b 1-b

1 1
u(, t)>-- Ux(, t)--M2,

As tends to T, these lower bounds become arbitrarily large, so it would follow that
u(:, t) becomes aribtrarily large. But now we have a contradiction, because u(:, t) is
less than u(a, t) and the latter quantity tends to the finite limit c.

3. Critical length. In this section we establish the existence of a critical length
and show how the critical length can be determined.

THEOREM 3. If T o and there exists a constant C (0, c) such that u(x, t) <- C
for all (x, t) 1, then u(., t) convergesfrom below to a solution Uofthe singular nonlinear
two-point boundary value problem

(3.1) U"+(b/x)U’=-f(U), xe(0, a), U(0)=0, U’(a)=0.

The convergence is uniform on [0, a ]. Furthermore, u < U on (0, a (0, c).
Proof Since the homogeneous problem corresponding to (3.1) has only the trivial

solution, Green’s function G(x; y) for (3.1) exists. A direct computation gives

(1--b)-lxl-b, O<--x<-- y,
G(x; y)= (l_b)_ly_b, Y <--x<--a.

Let F denote the function

(3.2) F(x, t)= ybG(x; y)u(y, t) dy, (x, t)e

If u satisfies the initial boundary value problem (1.5a, b), then Green’s identity yields

(3.3) F(x, t)=-u(x, t)+ ybG(x; y)f(u(y, t)) dy.

According to Lemma l(ii), u is strictly increasing in for x e (0, a]. Since f is
nondecreasing, the integrand in (3.3) is monotone nondecreasing with respect to . It
follows from the monotone convergence theorem and the continuity of f that

lim F,(x, t)=-lirri u(x, t)+ ybG(x; y)f(lim u(y, t)) dy.

From (3.2) and Lemma 1 (ii) we infer that limt_oo Ft(x, t) >= O. We claim that the limit
is exactly zero. If the limit were (strictly) positive at some point x, it would follow that
F(x, t) would increase without bound as tends to infinity, so u would reach c in a
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finite time, contradictory to the assumption that T is infinite. The identity (3.3) implies
that

lim u(x, )= yba(x; y)f(lim u(y, )) dy.

That is, lim,_.oo u(x, )= U(x). The uniform convergence follows from Dini’s theorem.
Lemma (i) and (ii) imply that U > 0 on (0, a ]. Furthermore, L +f’( r ]( U u)

0 in 1 for some *7 between U and u; U-u>O at t=O, U-u=O at x=O, and
U’- u,, 0 at x a. Hence, U u > 0 for 0 < x =< a. l]

THEOREM 4. Let u denote the solution of the problem (1.5a, b), where a is replaced
by a + a for some constant a > O. If lim,_.o u (a, t) c, then u quenches.

Proof. Assume that u does not quench. Let y= u-u. Then [L+f’(q)]y=O in
f for some r/between u and us. Furthermore, y(x, 0)=0, y(0, t)=0, and yx(a, t)>=O
by Lemma 1 (iii). Therefore, u,,-> u in f.

Let e and to be positive numbers, chosen so thatf(z)>=(4e/a)(2/a+31bl/a)+ a 2

for z[c-e,c) and u(a, to)>=c-e. Let S denote the domain (a,a+a)X(to,).
By assumption, us exists for all > 0; in particular, it must be the case that u, < c

in S. It follows from Lemma l(ii) and (iii) that u >= c-e on the parabolic boundary
OpS of S. Consider the function z, defined by the expression z(x,t)=
c-e+(x-a)(a+a-x)(t-to) on S. Clearly, z=c-e on pS. Furthermore,

Lz +f(z) >-_ -2( to) + (b/x)[2(a x) + a ]( to)

-(x-a)(a+-x)+(4e/)(2/a+3lbl/a)+2, z[c-e, c).

The lower bound is nonnegative in (a, a + a) (to, to+4e/a2). It follows from the
strong maximum principle that u,, > z in this domain; hence, the (nonstrict) inequality
u>=z holds at the point (x, t)=(a+a/2, to+4e/a2), where z assumes ,the value c.
But now we have a contradiction, since u,, < c everywhere in S. I-]

Theorem 3 implies that there exists a critical length a* such that u exists on [0, a]
for all > 0 if a < a*. The critical length a* is determined as the supremum of all
positive values a for which a solution U of (3.1) exists; if U(a*) exists, then u(a*, t)
exists also. According to Theorem 4, u quenches if a > a*.

We now give a procedure to compute the critical length a*. Let a < a* and let
Uo=0 on [0, a]. We construct a sequence { U,}nN by defining Un as the solution of
the boundary value problem

U+(b/x)U’,,+f(U,_,)=O, x(O,a), U,(0)=0, U’,(a)=0.

In terms of Green’s function G, we have

(3.4) U,(x) seG(x; )f( U_()) d, n 1, 2,....

The sequence is well defined.
THEOrtEM 5. The sequence { U,}, t converges monotonically upwards to the minimal

solution U of the boundary value problem (3.1). This minimal solution satisfies the
inequality U < c on [0, a].

Proof Since f(0) > 0 and G(.; ) > 0 in f, it follows that U > 0 on (0, a]. From
Lemma l(ii) and Theorem 3 it follows that 0< U < c on (0, a]. Sincef is nondecreasing,
we have (U-U)"+(b/x)(U-U)’<-_O; furthermore, (U-U)(0)=0 and (U-
U)’(a) =0. The positivity of Green’s function then yields the inequality U> U on
(0, a]. Similarly U > U2> U on (0, a] and, by induction,

(3.5) 0<U,<U,+<U<c on(0, a], n=l,2,....
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Hence, there exists a function V(x) such that lim,_. U, V. The integrand in (3.4)
is nondecreasing with respect to n and integrable, so it follows from the monotone
convergence theorem that V satisfies the equation

V(x) bG(x; )f( V()) d.

Hence, V is a solution of (3.1). It follows from (3.5) that V is minimal, l-]

We have implemented this result in the following algorithm to determine a* for
a given b < 1. Starting with an estimated value A for a* and taking Uo 0, we compute
U, by means of (3.4). The integration is done by dividing the interval [0, a] into N
equal subintervals; we use the IMSL library subroutine ICSCCU (cubic spline interpo-
lation in single precision) to interpolate the function U,-1 at the N+ 1 subdivision
points, the subroutine ICSEVU (cubic spline evaluation in single precision) to evaluate
U,_I in the integrand, and the subroutine DCADRE (single precision Romberg integra-
tion) to do the integration. In this way we obtain U,(x) at the points x=:i, i=
2,. ., N+ 1 of the subdivision. If U,(a) < c and max {U,(:i)- Un_l(i)’, i=
2, 3,’’ ", N + 1} < 0.5 x 10-d (for a desired accuracy of d decimal places), we claim
that u exists globally; if U,(a)>= c, we claim that u quenches. In the latter case, we
decrease A by a small positive amount, to obtain a new estimate of a*, and repeat the
procedure, until we find that u exists globally. We then use the method of bisection
to determine a value a** such that u exists globally for a =< a**, but u quenches for
a > a**. We then claim that a*= a** to the accuracy prescribed.

4. Quenching time. It remains to obtain an upper bound for the quenching time
T. Consider the singular Sturm-Liouville problem

(4.1a) --x-b(xbwt)t-- A2W, X (0, a),

(4.1b) w(0) =0, w’(a) =0.

The general solution of (4.1a) is w(x)=x[clJ(Ax)+c2Y(Ax)], where Cl and c2 are
arbitrary constants, A > 0, and J and Y are Bessel functions of the first and second
kind, respectively, with v =1/2(l-b) (cf. [15, 9.1]). The eigenvalues A 2 of (4.1a, b) are
found from the equation J_l(Aa)=0. If j-i denotes the first positive zero of J-l,
then the smallest positive eigenvalue is A 2= (j-l/a); the corresponding eigenfunction
is xJ(Ax).

Any function z that satisfies the differential inequality

(4.2) Lz >= -f(z), (x, t) ,
and the initial and boundary conditions z(x, O)= O, z(O, t)= O, Zx(a, t)= 0, is a lower
bound for u, by virtue of the strong maximum principle and the parabolic version of
Hopf’s lemma. We will seek a lower bound of the form

z(x, t) xJ(j_x/a)g( t).

According to (4.2), we have

(_!) f(xJ(J-lx/a)g(t))
(4.3) g’(t)+ g(t)<--_

xJ(j_lx/a)

The expression in the left member is independent of x. Since we are looking for a
lower bound, we may take the infimum of the expression in the right member with
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respect to x; the infimum exists, because v > 0. Let G(g(t)) satisfy the inequality

G(g(t)) <- inf {f(xJ(j-lx/a)g(t)) ]xJ(j_lx/a
x [0, a]

Then we can determine g as the solution of the initial value problem

(4.4) g’(t)+(j_l/a)2g(t) G(g(t)), t>0, g(0)=0.

Here, the initial condition comes from u(x, 0)=0. As the function xJ(j_ix/a) is
nondecreasing on [0, a l, it attains its maximum at x a. Denoting this maximum by
m, we have m aJ(j_). Thus, an upper bound t for the quenching time is found
from the equation

(4.5) mg(tl)=C.

is

5. Example. We illustrate the results of the previous sections for f(u)= (1- u)-.
By Theorem 2, u quenches as u(a, t) tends to 1. In this case, the inequality (4.3)

g’(t)+ g(t)<=
x"J,,(j,,_lX/ a)[1 x"J,,(j,,_x/ a)g( t)]

It follows from (4.4) and elementary calculus that

(5.1) g’(t)g( t--- + ()2 { [mg(t)(1-mg(t))]-4, O<g(t)<=(2m)-1,
(2m)-1 < g(t) _--< m-where g(0) 0. The differential equations can be integrated by a separation of variables.

Let to denote the time when g(to)= (2m)-. Integrating the first of the equations (5.1)
from zero to to, we obtain

(5.2) to 4 tan- 4

-(j--l) ln[1-\2a/’’ J"
Next, integrating the second of the equations (5.1) from to, we obtain

(5.3) g(t) (2m)-1 exp 4- (t- to)

According to (4.5), an upper bound tl of the quenching time is given by mg(tl)-- 1.
Using (5.3), we find exp {[4-(j_/a)2](tl to)} 2, from which we obtain

In 2
(5.4) tl to + 4-(j_l/a)"

1.We deduce from (5.2) that 4-(j_/a)>O. Hence, u quenches when a>j_l.
In particular, when b=0, v=1/2 and J_l/2(z)=[2/(rz)] 1/2 cos z, so j_l/Z=1/27r. Thus, u

TABLE
Critical length a* forfour values of b.

b v 1/2j,,_ a*

0.40000 0.30000 0.58570 0.57840
0.00000 0.50000 0.78540 0.76515

-0.40000 0.70000 0.96140 0.92314
1.00000 1.00000 1.20241 1.12927
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quenches if a > 1/47r. This result agrees with Waiter’s conclusion [14] that l*-<1/27r for
(1.1a, b). The solution quenches for a =1/2r; (5.2) and’(5.4) give the following estimate
for the quenching time: tl 7r/6x/+ln (24/3/x/) 0.67719 (to five decimal places).

Using the procedure of 3, we have determined a* to five decimal places for
various values of b. We started the algorithm with the estimate A j_1-0.11" of a*,
since we already knew that u quenched if a > j-l. The results are given in Table 1.

We note that 2a* 1.5303 (to four decimal places) if b 0, in agreement with the
result of Acker and Walter [1] for the initial boundary value problem (1.1a, b).

Acknowledgment. The authors thank Professor Man Kam Kwong for helpful
discussions.
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GLOBAL SOLUTIONS AND LONG-TIME BEHAVIOR TO A
FITZHUGH-NAGUMO MYELINATED AXON MODEL*

PEI-LI CHENf AND JONATHAN BELL’:

Abstract. A class of problems of the following form is considered:

u, uxx gu, x R\Z,

ut=ux(n+,t)-ux(n-,t)+f(u)-w, x=nZ,

w tru 7w, x n Z.

In particular, the existence of solutions to the Cauchy problem is proved and the time evolution of solutions
to the problem is studied. Such a system models an infinite, myelinated axon with discrete, excitable nodes
spaced unit distance apart, and the model dynamics are of Fitzhugh-Nagumo type.

Key words, myelinated axon, Fitzhugh-Nagumo, reaction-diffusion equation

AMS(MOS) subject classifications. 35A05, B40, 92A05

1. Introduction. There has been considerable analytical work done on axon
models. Much of this work has been done on models representing an unmyelinated
axon that leads to a reaction-dittusion equation, for conservation of current, coupled
to one or more ordinary differential equations. A particular form of model that has
proved tractable to work with is the so-called Fitzhugh-Nagumo model (see, e.g., [7],
[9] and references therein). Particular questions addressed analytically have been the
existence and stability of action potentials (traveling wave solutions), as well as various
long-time behavior of the solutions.

Myelinated axons, which are much more prevalent in human anatomy than
unmyelinated axons, have also been modeled, but analytically such models have been
studied much less. Some asymptotic behavior has been considered in the simplest
models in [2]-[4]. In such axons their membranes are wrapped in a sheath of
lipoprotein, which insulates most of the axon. There are, however, intervals along the
axon where gaps, called nodes of Ranvier, appear in the sheathing. This allows a
conducting path to the excitable membrane of the axon. Myelination allows the axon
to conduct pulses by exciting only a small percentage of membrane, thus permitting
transmission at greatly reduced energy expenditure and higher speeds than comparably
sized unmyelinated axons.

In this paper we analyze a myelinated axon version of the Fitzhugh-Nagumo
model having the following form:

(1.1) ut Uxx gu, x R\Z,

(1.2) ut=[Ux],,+f(u)-w, x=nZ,

(1.3) wt cru 3’w, x n Z.

Here u represents the transmembrane potential, and w is a "recovery" variable usually
associated with long timescale ionic processes. The first equation represents diffusion

* Received by the editors October 26, 1987; accepted for publication (in revised form) July 27, 1988.

f Department of Mathematics, State University of New York, Buffalo, New York 14214.

t The research of this author was partially supported by National Science Foundation grant DMS-
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of potential in the myelinated segments, while equations (1.2)-(1.3) represent the
dynamics at the nodes. The myelinated segments are scaled to have unit length, and
the nodes are located at the integer values along the axis. Here [Ux]n means
lim-.o+ { Ux n + e, t) Ux n e, t), andf( u is a current-voltage relation to be specified.
Parameters g, tr, and , are positive constants.

In 2 we prove the existence of solutions to the Cauchy problem for (1.1)-(1.3)
via Hilbert space methods. The arguments used in 2 are similar to those used by
Cosner in [5], who has studied a boundary value problem without the recovery process
being included. In 3 we study the long-time behavior of a class of problems of the
form (1.1)-(1.3). In particular, we show via Lyapunov techniques when u -> 0 as --> oo
and when u--> Q(x) 0 as t->co, where Q(x) represents an excited state of the axon.

2. Existeace. Consider problem (1.1)-(1.3) with (u, u (., t), w),=o ((x), , h),
where (x) is continuous and bounded on R and limx_.n (x)- @(n). Here g, o-, and
y are fixed positive constants and f(u) is assumed to be extendible to a function on
C which, if viewed as a function of two variables, is considered C. In the usual
FitzHugh-Nagumo case, f is taken to be the cubic f(u) bu(1 u)(u a), b > O, and
a c (0, 1). Below our approach is to set up the appropriate machinery and show that
the hypotheses of the Sobolev Existence Theorem are satisfied.

We define a linear operator A" X-> H by

A(u, v, w) (-Uxx + u, ([-Ux]j + vJ)z, (wJ)z), u(j, v j.

Here

H= {(p, q, r): pc L2(R\Z), q c 12([), rc 12([)}

with the inner product

((p,, q, r,), (P2, q2, rE))n f p,E+ZZ(qilt_+ri)
\z

and

X {(p, q, r) H: p’, p" L2($kZ), p’ is absolutely continuous on

(j- 1,j) for eachj Z, ([P’]j)z /2, lim.j p(x)= qJ}.

H is a complete complex Hilbe space and X is dense in H. For the analysis we need
another subspace in H, namely

Y {(p, q, r) H: p’ LE(kZ), p is absolutely continuous

on (j- 1,j) for eachj Z, lim.j p(x) qJ}

with the inner product

((P, ql, rz), (P2, q2, rE))y [ (pE+pi)+z(q{+ r{F).
kz

It follows that

with

I1(., w)ll. I1( , w)ll forany (u, v, w)c Y.
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We first show that A has a bounded inverse, so that A is closed (since dom A X
is dense in H). This is equivalent to solving

(2.1) A(u,v,w)=(p,q,r)H, (u,v,w)X

with II(u, v, w)ll. --< gll(P, q, r)ll, for some constant K.
To solve (2.1) we first obtain a generalized solution in Y and then show that such

a solution must belong to X.
When we choose a (p, q, r) H, for any (x, y, z) Y, since

((x, y, z), (p, q, r)), =< II(x, Y, z)ll. II(p, q, r)llH -<-II(x, y, z)ll . II(p, q, r)llH,

((x, y,z), (p, q, r))H defines a bounded linear functional on Y, so by the Riesz
Representation Theorem, there exists a unique (u, v, w) Y such that

(2.2) ((x, y, z), (u, v, w))r ={(x, y, z), (p, q, r)),.

Thus, for any given (p, q, r) e H, we define B H --> Y c H by

B(p, q, r)= (u, v, w).

By (2.2),

Therefore

liB(p, q, r)ll:-- ((u,

--< II(u,

liB(p, q, r)ll -II(P, q, r)ll,+.

liB(p, q, r)ll

IIB[I <= 1; that is, B is bounded.
It remains to show that B maps H into X and that any solution (u, v, w) to (2.2)

in X satisfies A(u, v, w) (p, q, r) H.
To prove B maps H into X, the analysis in [6, 1.15] can be used to conclude

that ul(a.b) H2[(a, b)] for any a, b with j- < a < b <j, j Z. This occurs provided
(u, v, w) Y satisfies (2.2) for a given (p, q, r) H, and there exists a constant C such
that for any q C[(j-1,j)], we have

j--l,j)

The inequality (2.3) is essentially the inequality (15.6) in [6, 1.15].
Choose q C(R) with supp q c [a, b]c (j- 1,j), and let qs (Ok)z, 7 (lk)z

be such that qsk= /k =0 for all k; then

and (2.2) yields

(2.4)

Hence, by H61der’s inequality,

f(j--
l,j)

’a’= I,
j--l,j)

u’a’ =< (ll(p, q, r)ll. +liB(p, q, r)ll.)lloll,-t<-,,>
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since (p, q, r) is given and B:H H is bounded, this establishes (2.3). Therefore,
u"l(a,b)L2(a, b) for any [a, b]c(j-l,j). By taking complex conjugates in (2.4), we
have

-f u"=j q’’-f (p-u)
a,b) ia, b) a,b)

for any q C[(a, b)]. By choosing a suitable q and by (2.2) we also can conclude
that u", u’ L2(R).

Since C is dense in L2, for any h LE[(a, b)],

(-u")h (p-u)h;
a,b) a,b)

therefore,

hence

u" p u or u"+ u p on(a,b);

-u"+u =p on (j-l,j)

-u"+u=p on \Z;

this is the first equation of (2.1).
Since L2[(j 1,j)]c L[(j 1,j)] it follows that u’ is absolutely continuous on

(j 1, j) and that

u’(b)-u’(a)= f(o,b)u" forany(a,b)(j-l,j).

Let a-j-1 or bj to see that u’(j-1+) and u’(j-) are well defined. Next we
verify the last two equations in (2.1).

Let (wj, yj, 0) be such that yk.=3jkj and wj=(1/h)xj-h,2) on (j-h,j), wj=
--(1/h)xj,2+h) on (j,j/h), and w’-0 otherwise, where h>0 is arbitrary. Then w=
(1/h)(x-j+h) on (j-h,j), w=-(1/h)(x-j-h) on (j,j+h), and w=0 otherwise.
It follows that (w, yj, 0) Y, and (2.2) yields

j-h,j) j-h,j) j,j+h) j,j+h)

(2.5)

Noting that

(j-h,j)

(x-j-h)p+q.

j,j+h)

and I(1/h).i_h,g)(x-j+h)wl<=[._,.)lwlO as hO for any w/2(R), we may let
h 0 in (2.5), to obtain the equation

u’(j-)- u’(j+) + v-i q,
which is the second equation of (2.1).
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Choose (0, 0, zj) Y, with z;= 8jk, substitute this into (2.2), i.e.,

((0, O, z), (u, v, W))y ((0, O, z2), (p, q, r))n

hence w= r, and so we have the third equation.
Thus B is a map from H to X, and for any (p, q, r) H, B(p, q, r)=(u, v, w),

(u, v, w) satisfies (2.3) and AB(p, q, r)= (p, q, r) and also by the construction we have
BA(u, v, w)= (u, v, w) for any (u, v, w)c X.

Since B A- is a bounded operator defined on all of H, X dom A is dense in
H, B is linear, and n II- 0, so n I1,, n and a I1,, n , n ;:. a is a
closed, bounded operator, so we have proved the following lemma.

LEMMA 1. The operator A defined by A(u, v, w) (-U,x + u, (-[u,,]j + V)z, (W)z)
with dom A X is a closed operator from X to H with A-l: H H bounded.

To apply semigroup theory to our nonlinear problem, we need to show that the
operator A satisfies

(2.6) II(A -A)-’II c/(1 +IAI) for Re A --<_0

for some constant C > 0, where denotes the operator norm on B(H). Let 0(A) c C
be given by

O(A) {(A(u, v, w), (u, v, w))n "(u, v, w) dom A, II(u, v, w)ll.- }

and let

F cl (0(A)), a=c\r.

Choosing II(u, v, w)ll 1, we have

(A(u, v, w), (u, v, w)). =I (u"+u)a+,z((-[u’]+v)OJ+wff)
\z

In (lu’12+lul2)+’zu’(J+)a(J+)-’zu’(J-)a(J-)
\z

-z [u’]:" + :z(Io:l= + Iw"l=);

here u’ Ux, u" Uxx. Since

u(j+) u(j-) v for (u, v, w) X

and

then

u’(j+)- u’(j-) [u’],

(A(u, v, w), (u, v, w))n IR (lu’l=+lul=)+’z(lol=+lwl-)
\z

II(u, o, w)ll II(u, o, w)ll 1.

Now 0(A) [1, oo) and F[1, oo), and A=C/F is connected in C since A-IB(H)
and A has deficiency zero on A. Later we will use the following lemma, which appears
in [5], and which is a special case of Theorem 3.2 of [8, Chap. V].
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LEMMA 2. Suppose that A is closed and A is connected. For A A, A- A has nullity
zero and constant deficiency. If the deficiency ofA- A is zero, then A is contained in the
resolvent set ofA and

(2.7) II(A A)-lll 1/dist (A, F)

where dist (A, F) is the distance from A to F in C.
By (2.7) for Re A <_-0, if we suppose A --a + bi, then we can easily conclude that

dist (A, F)=> (1 +A)/2; hence A satisfies (2.6).
To prove the solution of (1.1)-(1.3) exists, we rewrite (1.1)-(1.3) as follows"

(2.8)

and let

u,-Ux,+u=(1-g)u,

v Ux]j + v v +f( v) w,
w+ w (1 y)w + rv,
(u, v, w)l,_-o (, q,, n),

F(t, (u, v, w))=((1-g)u, (v+f(v)-W)z ((1-7)wJ+o’v)z).
Then (2.8) can be written abstractly as

d
(2.9) d--(u, v, w)+A(u, v, w)= F(t, (u, v, w)),

(u, v, w)l,__o (o, q,, n).(2.10)

Here we require that

(2.11) (o, q, r/) 6 dom A X.

Next, we use the following lemma (see the Sobolev theorem in [6]) to prove
(2.9)-(2.11 has a solution.

LEMMA 3. Let A be a closed linear operator on a Banach space E such that (2.7)
holds. Suppose that F(t, p) is a function on [0, To] E such that for some constants
a, rl (0, 1) and for any R > 0 there exists a constant C(R) for which

(2.12) [IF(tl,A-pl)-F(t2, A-p2)HE<=C(R)[ltl-t2ln+llpl-p2llE]

for all q, t2 [0, To], pl,p2E with IIpll, Ilpll <R, Then for any podom (A) and
each R> IIaPoll, there exists a t*= t*(R, IIaPoll)>0 such that the problem

(2.i3) dP+Ap=F(t,p), p(O) =po
dt

has a unique solution in [0, t*]. Furthermore, if there exists a constant R’> 0 such that
for any solution p of (2.13) in [0, T1 ], T1 <- To, we have

IIAplI < R’,

then we may choose R > R’ and thus apply the local existence assertion to [0, t*], t*, 2t*],
and so on until [0, To] is exhaustedl

Since the operator A in (2.13) was shown to be closed on X and to satisfy (2.7),
we need only establish (2.12) for the function F in (2.9) to conclude the local existence
of a solution to (2.1). Let

(Xk, Yk, Zk) A (uk, vk, wk) for k 1, 2.
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If II(u, , w)ll, < R for k 1, 2, then

lYI IlYII, II(x, Yk, Zk)lln <- IIA-[IR;

so

(2.14)

Then

(2.15)

since

II(x, 0, 0)11. II(x, y,

I1(0, y, 0)11 II(x, y, z)ll.,

I1(0, 0, z)ll. II(x, y,

From (2.14) and (2.15)

(2.16)
IlF(,A-(u, v, w,))-F(t2, A-"(u2, v2,

<-(ll-gl/C,(R)/ll + 3,1 +,r)llA- II(u,, v, w=)-(u=,/)2, w2)llH.

Hence we have the local existence of a unique solution to (2.9)-(2.11).
To obtain the global existence we must bound IIA(u, u, w)ll, for any solution

P (u, v, w) to (2.9)-(2.11). It is sufficient to bound II(u, v, w)ll,, and II(u,, ,, w,)ll,
since, if II(u, , w)ll,, -<- M, then I1 _-< M and

If(v)l -< sup If’(y)llvl.

Hence f(v:i) is bounded provided suPlyl__<M [f’(y)[ is bounded.
Now the idea is to construct a Lyapunov function and prove that II(u, v, w)ll

and II(u,, o,, w,)ll are bounded. Let

E(t)-(ll(u, o, w)ll + II(u, v, w),ll)/2,
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If we only consider that u, (VJ)z, (WJ)z are real functions, then

E’(t)=I (uut+ututt)+"z(vvt+vvJ+wJw+ww’)

In u (Uxx gu) + ut (uo,t gut)

+ z{V[Ux,]j +/’(v)l vlz- wv+ v[ux] +f(vJ)v- wv
(2.17) y]w[ +vw y]w[2 + vw}

2 2(u+gu2+ut+gu)

+Ez{f’(v)l vl2 +f’( Ov)l v + ( 1 wv+( 1 vw
r((w) + (w))}

=11+1:2,

where

II (UEx 4- gtl
2 4- tlxt 4- gu,2),

12 Ez{f’(J)l1= + (- 1)wv 3,[ wl:2 +f’(0)l12+ (- 1)v:w 1 wl=}.
Suppose there exists a positive constant k > 0 such that

(2.18) sup (f’(y))= kl
y

then

I2 N Ez{kl(lVl2 + Ivl2) + (- 1)(vJw + v{w)}.
By Cauchy’s inequality, we can find another constant k > 0, which makes

hence

which implies

(2.19)

for some constant A.

E’(t)<=k2E(t),

E(t) <_ AEk

Since we have already proved the local existence to (2.9)-(2.11) in [0, T1] for
T1 <-To, by (2.19) we know that II(u, v, W)IIH, II(u. v. w).ll, are bounded in [0, To].
Hence there exists an R’> 0such that ]]A(u, v, W)IIH < R’ for any solution of (2.9)-(2.!1)
in [0, To]. By using Lemma 3, (2.9)-(2.10) have a unique global solution in [0, To].
Since To is arbitrary, we have the following theorem.

THEOREM. If (qo, 00, qo) X and condition (2.18) holds, then the problem (2.1)
has a unique solution (u, v, w) Xfor all > O.

3. Long-time behavior of solutions. Suppose u(x, t), wl(n, t) is the solution of the
following system:

(3.1) u, Ux,, gu, x \Z,

(3.2) u, [u,,],, + F(u) w’, x n Z,

(3.3) w, tru yw x n Z.
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Here g, tr, and y are positive constants and F CI(R) satisfies the condition that there
exists an interval (a, fl) and a constant B>0, such that B<-F’(y)<O whenever
y(a,).

Let Q(x), wE(n), for xR and nZ, be such that (Q,(QJ)z,(W2J)z) (QJ=
lim,,_ Q(x)) is a solution to the stationary problem

(3.4) Qxx(X) gQ(x) o, x R\z,

(3.5) [Qx(n)],+F(Q(n))-w2=O, x=nZ,

(3.6) crQ(n) ,w(n) 0, x n z.

We discuss the existence of such solutions in the next section.
Define

V(x,t)=-u(x,t)-Q(x),

W(n, t) =- w(n, t)-w2(n),

and

o(t) I v: + vx) dxl2,
\z

E(t) [f (V2+aV2x)dx+,zb(W2+trV2)]/2,
\z

where

a =min {I’--Y--}cr’ and b -ag+lcr
Suppose u, w 1, Q satisfy the following:

(i) u(x, t) is Ca in x R\Z, CO in x e R, and C in g+; u, is CO in x ; Q(x)
is C inxg\Z, Co inxR; wl(n,t) is Cin tR+foreaehnZ.

(ii) There exists a 8>0 such that -B<-F’(y)=<-a<O whenever y
(a + 8/2, fl 8/2), the steady-state solution Q(x) (a + 8, fl 8) and u(x, 0) satisfies
lu(x,O)-Q(x)l<8/2.

(iii) E(t), (d/dt)E(t) are uniformly convergent on , and suppose

{E(0)} ’/2 < 8q’-/(2K),

where K is a constant satisfying

sup lu(x, t)-Q(x)[ <- K{Eo(t)}’/2

(see [1, Lemma 5.15]).
In 2 we have shown that if the initial data lies in X, so does the solution. In

this section we desire a bit more smoothness to the solution, as given by (i). We suppose
that given smooth enough initial data, that the resulting solution will be sufficiently
smooth, then we can conclude the following theorem.

THEOREM. Ifu(x, t), B’l(n, t), and Q(x) satisfy the above conditions, then u(x, t)
Q(x) uniformly on as t-oo, and w(n, t)-. wE(n) uniformly on Z as too.
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Proof. By (2.1)-(2.3) and (2.4)-(2.5), V(x, t) and W(n, t) satisfy the following

where

where 0= O(x, t)(O, 1). Now consider (d/dt)E(t):

E’(t)= f (VV,+aVxVx,) dx+,z[bWWt+o’bVV]
/z

=z [V(V-gV)+aV(Vx-gV)x] dx

+bW(V-W)+bV([V]+F’((x))V- W)},
where (3.1)-(3.3) has been used, and

(x)=Q+O(u-Q).

We can put this in the following form:

E’(t)=-f (V+V+aVx+aV) dx-Ez{([Vx],, V)+h([Vx],, W)},
z

ax2

(x, y) ----+ aF’(sC)xy+ trb(-F’())y2,

ax2

h(x, y) axy- byy2.
2

If lu(x, t)- Q(x)[ <- 6/2 and Q(x)e(a+6, b-6), then by (ii),

-B<__F’()<__-al<O;

so

Since a min { y/tr, 1, 2/B},

aB a(-F’())
2 2

hence

(x, y) is positive definite, and there exists a p > 0 such that

(x, y) >- p(x2 + y2) forall (x, y) e N.

equations:

(3.7) Vt V,,x gV, x \Z,

(3.8) vt-[Vx],,+F’(Q+O(u-Q))V- w, x=n6z,

(3.9) Wt o’V- yW, x n z
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Similarly, since

there exists a q > 0, such that

aby aT(ag + l

20"

a2(ag+l) a2

2 4’

h(x,y)>-_q(x2+y2).

Therefore

E’(t)<=-Ia [(ag+l)VZ+gV2+aV,] dx-z{p(V2+aV)+q([Vx]2+ W2)}
\z

<---g f (V2+aV) dx- y_,z{pV2+qW2}.
/z

Choose a constant rl > 0 such that

ag + 1) rl ag + 1 r r<-- p, < q,
20" 2 =g"

Then we have

E’(t)<-_-rE(t).

Now we claim that

R(x, t) IV(x, t)l [u(x, t) Q(x)l-<- 6/2 for all R+.

By the initial condition, R(0, t)<‘5/2; so suppose there exists a t*>0 such that
R(Xo, t*)> ‘5/2 for some XoR. Define T=inf{t>0: R(x, t)> ‘5/2 for some xR}.
Since R(0, t) < ‘5/2 and R(xo, t*) > ‘5/2, this T1 exists, and R(x, t)-< ,5/2 whenever
< T. This means

Q(x)+ O(u(x, t)- Q(x)) (a + ‘5/2, b ‘5/2);

SO

F’(Q(x)+O(u(x, t)-Q(x)))<=-a <O forall t< T.
This implies

and so we have

On the other hand,

E’(t)<=-rE(t) forallt<T1,

E T) - E (O).

sup R(x, T) <- K{Eo(T)}’/
x

<= KIv-d{E( T)}’/2

<= K/v/-d(E(O)}’/ < ‘5/2.
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This contradicts the assumption R(xo, T) -> 8/2. Therefore, such a point (Xo, T) does
not exist, and so

R(x, t) [u(x, t)- Q(x)]-< 8/2 for all +, x .
Also

With

F’(Q(x)+O(u(x,t)-Q(x)))<--a<O forallx, t+.

d
dtE(t)<-_-rE(t) foralltl+

we have E(t)-O as too, and since supxR[u(x,t)-Q(x)[<=K{Eo(t)} /2, we have
u(x, t)- Q(x) uniformly on R, as - oo. Since

ag+l [w(n, t)-w2(n)[2<-{E(t)}1/2 forall nZ,
2r

w(n, t)- w2(n)= Q(n) uniformly on Z as .
This completes the proof.

As an example, consider the function

f(x) x(x a)(1 x) where 0 < a < 1 and x [0, 1 ].

Now

f’(x)=-3x2+2(l+a)x-a, f"(x)=-6x+2(l+a).

The root off"(x)=0 is x= (l+a)/3 and so we have

max f x)
3 Oxl

l+a--a
3

Also, f’(O) -a < O, f’(1) -1 + a < O. The two roots of f’(x) 0 are

a l+a+(l+a-a)/
X=l+a+(l+a2--a)l/’ X2=

3

If we choose F(x)=f(x) in the theorem, then F’(x)< 0 whenever x (0, x) or
x (x2, 1), and, in fact,

-max{a,l-a}F’(x)<O on (0, x) U (x2, 1).

Hence we have the following corollary.
COROLLARY. If we choose the function F(y) y(y a)(1 y), 0 < a < 1 and y

[0, 1], andfor the interval (a, b)= (0, x) or (a, b)= (x, 1), then we have u(x, t) Q(x)
uniformly on as t, and wl(n, t)(g/7)Q(n) uniformly on z as t.

If (a, b) (0, x), it is the subthreshold long-time behavior. If (a, b) (x, 1), it is
the superthreshold long-time behavior.

4. Steady-state solutions. It remains to show the steady-state solution exists in the
intervals (0, x) or (x, 1).
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Considering u as a function of x, then (1.1)-(1.3) becomes

(4.1) Uxx-gu=O, xR\Z,

(4.2) [u,,], +f(u)--- u =0, x n 6 Z
Y

where now we take the case f(u)= u(u-a)(1- u). In the steady-state case w is given
by w(n)=o’u(n)/%

From (4.1), the general solution is

u(x)=[vj+, sinh x/-(x-j)+vj sinh x/(j + 1 x)]/sinhx/-,
j<=x<=j+l, j6Z,

(4.6) (1-a)2>4
cr
--+ 8G(cosh v/ 1).
Y

or, equivalently,

If a, or, and y satisfy (1-a)2>4(cr/y), since limx_,o(x/sinhx)=l, lim,_,o
cosh x 1, by (4.6) we can find a small gb > 0, such that y(x)=0 has two roots
C2g whenever 0 < g < gb.

In this case, (4.1)-(4.2) has two solutions:

(4.7)

(4.8)

where

and

Q,g(x)=C,gR(x),

Q2g(x)=CgR(x),

R(x) [sinh x/-(x -j)+sinh x/(j + x)]/sinh v/if,
j<=x<=j+l,

0 < Gig < C2g < 1.

where v u(j), j Z. Letting G x//sinh (x/if), we have

[Ux]n G(/)n+1-2 cosh X/Vn + On-,).

Substituting this expression in (4.2), we obtain

(4.3) vj+ 2v .4-l)j_ --1-- F Dj 0

where F(v) {2(1-cosh x/)+ ((vj- a)(1-v)-o/y)/G}v.
First, we consider {v} as a constant solution of (4.3), i.e., v c > 0 for j Z.
Then (4.3) becomes

(4.4)
o-
-+ 2G(cosh v/if 1) (c- a)(1 c).

Let c x in (4.4) and consider the function

y(x) x2- + ce )x + K
where K a + 2(cosh x/--1)G+ or/3’-Then the two roots of y(x)=0 are

(4.5) x/.(,) (1 + +/- ((1 + )-4)’/:)/2.
To have two distinct, real roots, we must have

(l+a)2>4K
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Next, we use this result to see whether there is a solution Q(x) of (4.1)-(4.2)
satisfying the corollary in 3.

Example. If we choose a 2/3, r/3"= 1/40, and g is small enough, there exists
a Q2g(x) that lies entirely in (x2, 1).

To show this, we see that

x2l=z/3--(l+a+(1
(5 + x/’ff)/9

0.8495279.

From (4.5), since or/3’ 1/40, we have

X1/40,g() (/ (0-- 8G(cosh x/-- 1))1/2)/2.

When g 0,

X,/40,O (]) > 0.88603 > xzl =z/3

hence we can choose g small enough such that

Xl/40,g () > X2la =2/3
That means there exists a g*>0 such that the above inequality holds whenever
0-<_g<g*. Let

Cg -o - X 4o g -then

and

Cg (0, ) (x2[=z/3, I),

Q(x) Cg (o, ) (sinh x/(x -j) + sinh v/(j + 1 x))/sinh x/,
is a solution of (4.1)-(4.2).

Since

min Q(x)=Q(j+)jx<=j+l

(+0,
there exists a g. satisfying g*=> g. > 0 such that

min Q(x) > x21=2/3 whenever 0_-< g-< g..
j<=x<=j+l

Since

max Q(x) Q(j) = Q(j + 1) Cg (426, ) < 1,
j<=xj+

we can conclude that

Q(x) [x21=2/3, 1]

whenever a 2/3, or/3’ 1/40 and 0 < g < g..

for all x R

j<=x<=j+l
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THE CAUCHY PROBLEM FOR THE KORTEWEG-DE VRIES EQUATION
WITH MEASURES AS INITIAL DATA*

YOSHIO TSUTSUMIf

Abstract. The Cauchy problem of the Korteweg-de Vries equation is considered with measures as initial
data. Global weak solutions are constructed for any bounded positive Radon measure on R.

Key words. Korteweg-de Vries equations, Miura transform
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1. Introduction and a main result. In this paper we consider the Cauchy problem
for the Korteweg-de Vries equation

(1.1) ut + Uxxx 6UUx O, > O, x ,
.) u(O, x)= ,(x),
where/z(x) is a bounded positive Radon measure on .

Many papers cover the global existence of solutions for (1.1)-(1.2) (see, e.g., [1],
[2], [4]-[8], [10]-[13], [17]-[18], [21], and [24]-[29]). Roughly speaking, the methods
used to solve (1.1)-(1.2) can be divided into two categories. One is the inverse scattering
method (see, e.g., [4]-[7], [10], [14], [17], [21], [24], and [25]) and the other is the
energy (or L2-theory) method (see, e.g., [1], [2], [11]-[13], [18], [22], and [26]-[29]).
Recently, the smoothing property of solutions for (1.1)-(1.2) has attracted many
mathematicians and (1.1)-(1.2) has been solved for irregular initial data. In [10], by
the inverse scattering method, Kappeler shows that if the initial datum/z (x) is a real
measure defined on the Borel sets on and satisfies the decay condition at infinity

(1.3) I_oo (1 /lxl) dl,l(x) <, N-->3,

then (1.1)-(1.2) has a global classical solution (see also Murray 15] and Sacks [21]).
Here I/z denotes the absolute variation of/z. On the other hand, by the energy method
Kato [12] and Kruzhkov and Faminskii [13] showed that if the initial datum is in
L2(), then (1.1)-(1.2) has a global solution. In this paper we will prove the following
theorem.

THEOREM 1.1. Let tz(x) be a positive Radon measure on such that

(1.4) d/x(x) <.
Then (1.1)-(1.2) has a global weak solution u( t, x) such that

(1.5) u(t,x)sL2((O, T)x(-R,R)) forany T,R>O,
(1.6) u(t) L(O, oo; H-’()),

(1.7) f[ (-uq,-UOxxx+3U2qx) dtdx:O, tp C(,n’o),

(1.8) u(t)->tz in H-I() (a.e. t->+O),
where ro (0, o0) x .

* Received by the editors February 11, 1988" accepted for publication August 24, 1988.
f Faculty of Integrated Arts and Sciences, Hiroshima University, Higashisenda-machi, Naka-ku,

Hiroshima 730, Japan.
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In Theorem 1.1 the condition of the positivity of/x(x) is a little strong, but the
decay condition at infinity of the initial measure requires only the boundedness of the
initial measure, that is, (1.4). If we use the inverse scattering method to solve (1.1)-(1.2),
such a decay condition with weight as in (1.3) seems to be indispensable. On the other
hand, the energy method cannot directly be applied to (1.1)-(1.2) with the initial datum
not in LE(R).

Our proof is based on the energy method due to Kato [12] and Kruzhkov and
Faminskii [13] and the Miura transform

(1.9) u Vx + v2.

It is well known that if v(t, x) is a smooth solution of the modified Korteweg-de Vries
equation

(1.10) v,+vxxx-6v2vx=O, t>0, xR,

then the function u(t, x) given by (1.9) is a solution of (1.1) (see, e.g., Miura [17]).
Accordingly, we can expect that if for the initial measure/z a solution Vo(X) L2(E)
exists that satisfies the equation

(1.11) Vox + v =/z in H-(),
then (1.9) transforms the solution of (1.10) with v(0)= Vo into the solution of the
original problem (1.1)-(1.2).

Recently, many mathematicians have treated the existence problem of solutions
for the related nonlinear evolution equations with measures as initial data. For example,
McKean [16], Osada and Kotani [20], and Sznitman [23] study the existence and
uniqueness of solutions for the Burgers equation

u, + UUx ,U,x, x , u(O, x) c(x),

where ,, c > 0. In [15] Liu and Pierre study the existence, uniqueness, and asymptotic
behavior of solutions for the equation with no dissipativity and no dispersivity

ut+f(u)x=O, x6, u(O,x)=6(x).

In [9] Giga, Miyakawa, and Osada show the existence of solutions for the two-
dimensional Navier-Stokes equation with measures as initial vorticity. In [3] Brezis
and Friedman study the existence and nonexistence of solutions for the semilinear
heat equation

u, Au + up O, x ", u(O, x) c,(x),

where c > 0 (see also Niwa [19]).
Our plan in this paper is as follows. In 2 we present two lemmas needed for the

proof of Theorem 1.1. In 3 we give the proof of Theorem 1.1.
We conclude this section with some notation used in the paper. We abbreviate

LP(ff) and H"(R) to Lp and H", respectively. We often use the notation D=O/Ox.
For T_-> 0 we denote the set (T, c)x by 7r7-. For a positive T and a Hilbert space
H, Cw([0, T]; H) denotes the set of all weakly continuous functions from [0, T] to H.
We put

A exp [- 1/ { 1 + x2)} ], 2 + x < 1,
(1.12) p(t,x)=

O, t+x2>-_1,
where A is a positive constant such that2 p(t, x) dt dx 1. For e > 0 we let p(t, x)
e-2p( e -1 t, e-ix).
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2. Lemmas. In this section we give two lemmas needed for the proof of
Theorem 1.1.

We first show the following lemma concerning the solvability of the Riccati
equation.

LEMMA 2.1. Assume that t(x) is a positive Radon measure on satisfying (1.4).
Then there exists a solution u(x) in L2f Loo of the equation

lg 47 U2
I in H-1(2.1)

such that

]lulled--< I d/.(x), ]]ul].oo<__ 2 I dl.,(x).

Proof. We divide the proof into two steps.
Step 1. We first show Lemma 2.1, when/(x) is a nonnegative and C function

on R with compact support. Then, we may let supp/(x) c [a, b] for some a, b.
We consider the following initial value problem:

(2.2) glx 47 glE lLg, x 6 ff, u a O.

By the unique local solvability theorem of the ordinary differential equation, we have
the unique local solution u(x) in C of (2.2). In addition, since/., (x) -> 0, the comparison
theorem shows that as long as the solution u(x) exists, u(x) is nonnegative for x_-> a.
Since/(x)- 0 for x _-< a, the solution of (2.2) exists for x _-< a and

(2.3) u(x) =0, x<-a.

We next prove by contradiction

(2.4) O<- u(x) <- supp x/i(x), x >= a.
x>a

We assume that an Xo exists such that Xo> a and U(Xo)> suppx>_a x//.(x). Then we put

(2.5) Xl- inf (x >- a; u(y)> supp x//., (x) for xl < y < Xo.
x>_a

We note that unless/(x) identically vanishes, then x < x0. Formulae (2.2) give us

(2.6) u, -u2 +/ < 0, xl < x -< Xo,

which implies

(2.7) u(x) > U(Xo).

On the other hand, the definition of xl and the continuity of u(x) give us

(2.8) supp x// (x) u(x) < U(Xo),
x>-a

which contradicts (2.7). This shows (2.4).
Formulae (2.4) imply that the solution u(x) of (2.2) exists for x _>- a. Since/(x) 0

for x _-> b, we have

(2.9) u(x)- u(b){u(b)(x-b)+ 1}-, x_>- b.

Formulae (2.3) and (2.9) show

(2.10) u L2 Loo,
(2.11) u(x) -> 0 (x --> +oo).
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Therefore, integrating (2.2) on R, we have

(2.12) Ilull- fa IX(Y) dy.

In addition, by (2.2) and (2.12), we have

(2.13) [[DU[[L’--<--[lu[[2+ fa Ix(y)dy<=2 fa (Y) dy.

Integrating (2.2) on [z, x], we have

(2.14) lu(x)llu(z)l+ u(y)2 dy+ (y) dy.

Letting z- in (2.14), we obtain

Thus, u (x) is the desired solution of (2.1).
Step 2. By the assumptions of (x), we can choose a function sequence

{f,(x)} c C() such thatf, 0, Ilf, [[ d(x) andf, in H- (n ). For each
f,, Step 1 gives us the solution u,(x) of the equation

Dn + 2.=f. inH-

(2.17) Ilu.ll J d(x),

(2.18) IlDu"llc-<-2 I d(x),

(2.19) Ilu"ll-<2 I d(x).

Formulae (2.17)-(2.19) and the standard compactness argument show that a sub-
sequence {u,k(x)}c {u,(x)} and a limit function u(x) exist such that

(2.20) u L2 L,
(2.21) u, u weakly in L2,
(2.22) u, u ,-weakly in L,
(2.23) u, (x) u(x) a.e. on

(2.24) Du + u2= in H-,

These complete the proof of Lemma 2.1.
Remark 2.1. The solution of (2.1) is not necessarily unique. For example, when

(x) a(x), for -m c-1 all the functions u(x; c) defined by

(.6) u(x. c)={ (c+ )/{(c+ )x+c}’1/(x+c), x<0,

are the solutions of (2.1).

(2.16)

satisfying
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We next consider the Cauchy problem ofthe modified Korteweg-de Vries equation

(2.27) v, + vo,x -6v2v, O, > O, x R,

(2.28) v(0, x) Vo(X), x .
We have the following result.

LEMMA 2.2. For any Vo L2 there exists a solution v( t) of (2.27)-(2.28) satisfying

(2.29) v(t)Cw([O, oo);L2)f’lL2(O, T;HI(-R,R)) forany T,R>O,

(2.30) ff (-vot VOxxx + 2v qx) d, dx O, o( ,, x) C(Zro),

(2.31) v(t)- Vo in L2 (t-+O),

(2.32) o(t)ll,. o11,., t->0.

Since the proof of Lemma 2.2 is essentially identical to that of Theorem 7.1 in
[12] and Theorem 2.1 in [13],we omit the proof of this lemma.

3. Proof of Theorem 1.1. In this section we prove Theorem 1.1. For that purpose,
we only have to give the following proposition.

PROPOSITION 3.1. Let Ix(x) be a Radon measure on satisfying (1.4). We assume
that for Ix(x) there exists a solution Vo L2 of the equation

(3.1) Dvo+ V2o Ix in H-.
By Lemma 2.2 we can construct the solution v(t) of (2.27)-(2.28) for the above Vo. We
put

(3.2) u Dv + v.
Then u(t, x) is the solution of (1.1)-(1.2) satisfying (1.5)-(1.8).

Proof. Let q(t, x) C(Tro). We set

eo=supp (T>0; q(t, x) =0 on [0, T] x}.

Let e be a constant with 0<e<eo/4 and let y=eo/2. For the solution v(t) of
(2.27)-(2.28) we put

(3.3) v(t,x)=p*v=II p(t-s,x-y)v(s,y)dsdy, (t,x)Trv, 0<e<y/2.

We note that for each (t, x) Try

(3.4) p(t-s,x-y)C(Tro), 0<e<y/2

as a function of s and y and that v(t,x) is in C(zrv) for 0<e< 3//2. We put
2u Dv + v. Then we have

(3.5)
)ue + D3u 6uDu (D+2v)

0
tg, + D t)e -6p * (v2Dv)

2+6(D+2v)(p * (vDv)-vDv), (t,x)e r.
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By (3.4) and (2.30) we conclude that the first term at the right-hand side of (3.5)
vanishes identically. By (3.5) and integration by parts we have

ffr (--UeCpt--UeCPxxxd-3U2eCpx)dtdx

(3.6) =6 If, {p,(v2Dv)-v2Dv}(-Dq+2vo)dtdx

Since (2.29) and the Gagliardo-Nirenberg inequality (see, e.g., [30, Thin. 10.1 in Part
]) imply that v L6oo(Trv) we obtain

(3.7) Dv, Dv in Loo(rv),
2 /)2(3.8) v in L2o(rv ),

/)3(3.9) v in Lo( Try ),
4 /)4(3.10) v in Llo(rv),

2as e +0. Since u Dv + v and the support of q is compact and included in
(3.7)-(3.10) give us

(3.11) u u in Lo(rv),
2 2(3.12) u u in Lo(rv),

(3.13) II, (p*v3 -v)(Do (,oDv-vDo) dtdx-O,

as e +0. Therefore, letting e +0 in (3.6), we obtain by (3.11)-(3.13)

(3.14) ff(-uu,,-uOx+au2o)dtdx=O.
Since q is an arbitrary function in C(Tr0), (3.14) shows (1.7). Formulae (2.29) and
(2.32) imply (1.5)-(1.6), and (1.8) follows directly from (2.29) and (2.31 ). This completes
the proof of Proposition 3.1. l-1

Now Theorem 1.1 follows immediately from Lemmas 2.1, 2.2, and Proposition 3.1.
Proofof Theorem 1.1. Let/x(x) be a positive Radon measure on N satisfying (1.4).

Then by Lemma 2.1 we have the solution Voe L2f"1L of (3.1). For the above Vo we
obtain by Lemma 2.2 the solution v(t) of (2.27)-(2.28). Proposition 3.1 implies that
the Miura transform (3.2) translates v(t) into the solution u(t) of (1.1)-(1.2) satisfying
(1.5)-(1.8). This completes the proof of Theorem 1.1.

Remark 3.1. The uniqueness of solutions satisfying (1.5)-(1.8) is an open problem,
and it seems to be a very interesting one. When/x(x) (x), we have many different
solutions of (3.1), as stated in Remark 2.1. For the different solutions of (3.1), there
exist different solutions of (2.27)-(2.28). Does the Miura transform then translate all
those different solutions of (2.27)-(2.28) into only one solution of (1.1)-(1.2) or not?
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SOMMERFELD DIFFRACTION PROBLEMS WITH THIRD KIND
BOUNDARY CONDITIONS*
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Abstract. This paper continues earlier work on diffraction problems with first and second kind boundary
conditions. New operator theoretic difficulties appear for third kind conditions corresponding to different
behavior of the Fourier symbol matrix of the boundary operators at infinity. Compatibility conditions force
another function space setting in order to obtain closed operators. Then well-posed problems can be solved
by explicit Wiener-Hopf factorization using Khrapkov’s method, which also yields the asymptotics near
the origin.

Key words, diffraction problem, Wiener-Hopf operator, factorization, matrix function, Helmholtz
equation
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1. Introduction. From the physical point of view, third kind conditions often make
more sense than Dirichlet or Neumann conditions do [21]; for instance, think of the
electromagnetic theory where impedance boundary conditions on a screen represent
finite as opposed to perfect conductivity. We consider the problem of finding

U E

(1.1) ulae Hi(a+/-), ll+: x2<0,

(A + k)u 0 in fl,

where Im k>O holds and the Dirichlet data Uo ul.=+/-o and the Neumann data
: Ou/Oxlx= satisfy//1 +0

+ u-(+a +
all//O + a12Uo + al3 14//1 h on R+,

(1.2)
a21//0 + a22//0 + a23//1 + a24//; hE on I+,

and
+Uo-U=0 onlY_,

(1.3)
+

//1--Ul =0 onN_.

The constants k, ajtE C and the functionals hj H-1/2(l+) are given.
The transmission conditions (1.3) may be replaced by the assumption that

(A+k2)u=0 also holds across the negative Xl half-axis, u: H/2= H/2() is a
+ --1/2consequence of the trace theorem and U H makes sense for solutions of the

Helmholtz equation. Those are represented by the potential ansatz [20]

(1.4)
U(X1 X2

--1 ) --x2t(Fe,,,{e’’ tff(:)l_(x2)+e a-()l+(x2)}
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and we refer to the notation of [20]. In particular, t(:)- (:2_ k2)1/2 denotes the usual
square root function with branch cuts along s +/-k +/- i-, --_> 0; 1+/- are the characteristic
functions of R+/-, and the Fourier transformation F is defined by

(1.5) a(:) Fx,u(xl)=f eiXu(xl) dx

The present paper generalizes the impedance and the reactance problems [10],
[11], [14] as well as the mixed type Dirichlet-Neumann problem [7], [13], [17]. The
first two examples lead to "the usual square root singularity" Vu const/Ixl/ at x 0,
which is also well known from Sommerfeld’s half-plane problem [12], [16]. Surpris-
ingly, the final example is governed by V u const/lx[3/4, and we find V u const Ixl/-
with 8 (0, 1] in a somewhat wider class of problems [21]. Now which type of a
singularity is usual and which one is exceptional? We will answer this question at the
end, because it relates to the question of whether a certain bounded Hilbert space
operator A (L2(R)2) admits a "general Wiener-Hopf operator factorization" A
A_A+ with respect to the projector 1/. [4], [18], [19], into bounded (8=1) or
unbounded (0 < 8 < 1) operators A+/-, respectively.

While problems with first and second kind conditions [21] lead to the discussion
of factoring a one-parameter family of function matrices, as was done by Daniele’s
method [3], we obtain here one four-parameter and one six-parameter family of
normalized function matrices (apart from the decomposing systems). The correspond-
ing two-media problems with different wave numbers in f+/- can be treated by analogy
to [20], [21]; their functional analytic structure is similar and a fixed point principle
can be used, the details of which are not repeated here.

The key lemma for factoring the 2 x 2 symbol matrices tr tr_tr+ into upper/lower
holomorphic function matrices with algebraic behavior at infinity is known from
Riemann-Hilbert problems as Khrapkov’s method [8], [9]. In general it applies to
matrix functions depending on : of the form

(1.6) O" "-/Zl R1 -I-/./,2R2

with rational function matrices Rj and (factorable) scalar functions/zj. All our Wiener-
Hopf matrices are of this type, since they are rational in t(s) -(:2_ k2)1/2.

2. The Wiener-Hopf system. We define the boundary operators (on the whole
axis) as

B+/- F-1
trn+/- F" H1/2 H1/2

_
H1/2 H-1/2

(2.1)

O-B+ O-B_
a21 + a23t a22- a24t]’ -t -t

where F-it F" H1/2- H-1/2 is a bijection.
PROPOSITION 2.1. Afunction u solves problem , ifand only if it can be represented

by (1.4) where

satisfies the Wiener-Hopf system

(2.3)
\f] fl h2"
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W acts on the subspaces /.+1/2([]+) of H+l/2 functionals supported on + as a bounded
linear operator

F-!(2.4) W= l+ O’’ F"/.1/2([+) X --1/2(+) H-,/2(+)2
with the Fourier symbol matrix

(2.5) tr O’B+O’B_ O’B+
-1

Proof The representation formula (1.4) for H solutions of the Helmoltz equation
+ + UT--is known [20]. The (classical) substitution fo= Uo -Uo, fl- Ul

+F-t F(-uo-u) is given by the bijection B_. The transmission conditions (1.3)
yield fo 6/-1/2([+), fl 6 -I/2(R+) and (1.2), (1.4) imply (2.3). The mapping properties
of W and its representation (2.5) are obvious.

Conversely, a solution of (2.3) yields (1.2), (1.3) for the substituted functions u
in (2.2), which can be inserted into (1.4).

+ +For brevity we put go Uo + u, gl u + u and obtain the transmission conditions
(1.2) in the form

(2.6)

ozjlfo+txj2go+ozj3fl+txj4gl=hj one+, j=l,2,

This leads to

-ajl + aj2
fo + al + a______2 go + -a3

+ aj4
fl 31-

aj3 -" aj-4
2 2 2 2

(2.7) tr --1( tl t14t2 --a12 + a13 t)
21 t24 t2 --t22 + 023t/

Remark 2.2. Writing cr in the form (1.6), which we will use for the (function
theoretic) factoring, we obtain

11 t13 t14 t12(2.8)
t21 t23/ t24/2 22/

and conditions like det RI 0, etc., become most important.
On the other hand, it is known that the principal part of the symbol

t14t t13 +(2.9) o- O-p + o’,,
t24t t23/ 7 21 --a22/

is responsible for functional analytical properties of W where conditions like det Crpr # 0
become important. So we expect several particular cases, which must be discussed
separately and start with the latter aspects.

PROPOSITION 2.3. The operator W in (2.4)-(2.5) is equivalent to (coincides up to
invertible factors with) the "lifted" linear bounded operator Wo defined by

Wo 1+. F-ltro F: L2(+): L2(+)2,

(2.10)

( t--1 0) (ttro= 0 t-
tr

0

tll t14t

)t+ a2 024t + a23t

with t:() ( + k) 1/2.
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Proof See [21, Thm. 2.1 ].
PROPOSITION 2.4. For any choice of the coefficients aj, W is not Fredholm--as an

operator into H-1/2(+)2 (see (2.4)).
Proof The statement is equivalent to the assertion that Wo is not Fredholm. But

this is a direct consequence of (2.10) where

(2.11) det O’o(-Oe) -det tro(+Oo)

since tro C()22 (see [15] or [21, Thm. 2.1]).
Therefore the function space setting must be modified, if we want well-posed

problems. We restrict our considerations to nondegenerating stable symbol matrices,
which are physically most important. Problem and the operator W are said to be
of normal type, if

det tr(:) 0, : ,
(2.12)

[det O’()]+1= o(11), -, +/-oo

hold with d 0, +1 (see (2.7)).
The case d =-1 corresponds to a pure Dirichlet problem, so Uo are known on

N+, but this basic Sommerfeld problem has been completely solved before (see [20]).
So we center on the other two cases: d 0, where one condition is of the first kind
(O23 O24-" 0 a23 a24 without loss of generality) and the other is of second or third
kind; or the case d 1, where both conditions are essentially different in the principal
part. It is convenient to ,abbreviate the coefficient matrices

(2.13)

Ol o12 013

O21 0/22 O23

Of13 O14/O2
O22 O21/

O0 O
O/24/

LEMMA 2.5. The following three assertions are equivalent"
(i) Problem is of normal type with d 1 or 0;
(ii) There hold det tro# 0 on R and (d 1)

1 (a13(2.14) det O -- det
a23

or (d=0)

(2.15)

a14]\ - det trp # 0
a24/

rank O 1, det a2 0

(and c23 a24 0 without loss of generality);
(iii) The boundary operator B+ acts bijectively as

(2.16) B+ F-1 1/2 H1/2 1/2 1/2-dtrm.F’H x -H- xH

Proof. This is a consequence of

(2.17) O’-1 O’B O’1+--p@t)( -a22-1- O23t O12--O13t)
__O21 + 24 all Ol14t]

(see (2.7)), where p is polynomial of degree three or two, respectively. Thus (2.12) is
equivalent to the fact that tr

-1 does not degenerate and has maximal order at infinity.
The rest of the proof is obvious.
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3. The Fredholm property of W, case d 0. First we study the case d 0 character-
ized by (2.15) and assume a23 024--0 without loss of generality. Problem leads to
a discussion of the Wiener-Hopf operator

w= + . ./(/) x -’/(+) H-’/(+) x H’/(+),
(3.1)

= (all_ ,4t a,3_ al2/_,)21 --22/-
(see (2.4), (2.7), (2.16)). This turns out to be completely different from the operator
in the case d 1, but very similar to the type of operators that appear in connection
with first and second kind conditions [21 and correspond to the subscase all a12 0
(i.e., dropping lower-order terms) in (3.1).

THEOREM 3.1. The operator Wdefined by (3.1) (instead of (2.4)-(2.5)) is Fredholm
with index zero, if and only if

det or(sO) 0, sc ,
(3.2)

014022 /O13a21 [0, 1]
are satisfied. Otherwise the range ofW is not closed in H-1/2([+) H1/2(+) (unless
r =- 0 holds).

Proof Lifting W on L2(+)2 (see (2.10)), we now obtain equivalence to

Wo 1+" F-ltro F
(3.3)

%= 0
r

0

ll t14t

t+ t_
021 t-

012--t2_ Ce13t

022

and the Fredholm property of Wo is equivalent to [21, Thm. 2.1]

(3.4)
det ro(sc) O, s e ,
det [pttro(-Oo) + (1 -/z)cro(+Oo)] O, /x [0, 1].

Since t_/t+ - + 1 at +c, the last assertion may be rewritten as O14022 (1 2/x )2013021
0,/z [0, 1]. The winding number of det Cro() vanishes automatically, since

(3.5)

det ro(sc) - O14022 O13021

det ao
t(:)

det a2 det o-(sc)

is an even function of s. This yields Ind W Ind Wo =-ind det tro= 0.
COROLLARY 3.2. For W in (3.1) to be Fredholm, it is necessary for problem to

be of normal type (compare (3.2) with (2.15)).
COROLLARY 3.3. The set ofparameters %1 where W is Fredholm is characterized by

the following three conditions: first,

(3.6a) det O 13t21- O14022 O,

(3.6b) O14022 # 0;

second,

(3.7a)

(3.7b)

det ao: 01122 012021 0 or

det ao 0, -det a2/det ao F {r -1 (:), : };
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and third,

(3.8)
O13021 0 or

O14t22
a13a21 # 0, h [0, 1].

O13021

leads to conditions (2.6) of the form

(3.10) fl+-go=h, fo=0

and therefore

(3.11)

a= Co al
1 0 0

Thus we have a normal type problem with d =0 and the Wiener-Hopf system
decomposes All assertions (3.6)-(3.8) except (3.6b) (because of a4=c22=0) are

.F-1satisfied for reasonable K (2/K F) Consequently W 1/ tr. F is not Fredholm
in the sense of (3.1), but it obviously maps 1/2(R+)x/.r-l/2(R+) into /-/2(+) x
/2(+) where it is invertible (see [14]). This means two compatibility conditions
must be satisfied in order to obtain a well-posed problem. The first one, h -/2(/),

+-u=0/is obvious and the second, h2 Uo /2(/), is implicitly contained in (3.9a).
Example 3.6. The mixed Dirichlet-Neumann problem [5], [13], [17]

(3.12) u-= h H-/2(R+), u-= h2 n/2(+)
leads by way of (2.6) and (3.1) to

(3.13)

0 0

a=-1/2 1/2

o’=
2 -"

(The very last condition includes (3.6).)
Remark 3.4. The special case all o12 0 of first and second kind conditions

corresponds to (3.7a) (see [21, Thm. 2.1]).
Let us note how to proceed when (3.6)-(3.8) are violated.
(1) For O4a22--0, one or two compatibility conditions must be satisfied in order

to get a well-posed problem; see the following example. It is easy to treat all these
cases by analogy.

(2) det a2 =0 or -det a2/det ao F leads to a problem of nonnormal type. We
may introduce weighted spaces, as in the theory of singular integral operators [15],

+ +but those cases seem not to be of great physical importance (e.g., Uo and U are given
on +).

(3) If A (0, 1) holds, replace H by Wp’ spaces with p 2, such that the symbol
becomes p-regular [15, Chap. V] and the Wiener-Hopf operator is dosed.

Example 3.5. The reactance problem 10], 14]
+ u (=Uo) one+(3.9a) Uo
+(3.9b) Ul u + Uo h H-/2(+)
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The conditions (3.6)-(3.8) are satisfied with det ao=0 and A =-1. W is Fredholm
with index zero. It is even invertible in the sense of (3.1) [21] for all the above-mentioned
data hi, h2.

4. The Fredholm property, case d 1. In the case d 0 we had to replace one data
space H-1/2(+) by H1/2(R+), since the order of a boundary condition was not
maximum. Now another modification becomes relevant.

LEMMA 4.1. If det 41 # 0 holds, the compatibility condition

(4.1) tx24hl 014h2 E/.it-1/2(R+)

(instead of H-1/2(+)) is necessary for the problem to be solvable.
-1, and obtainProof We simplify the Wiener-Hopf system (2.3), premultiply by a

the system

(4.2)

I7,(fo__1 .F-l..F(fo) (1)\fl] + \A /2 =a
h2

O12
O11 --T-

O22--t+ O21

with the same space setting (2.4). The Wiener-Hopf equation due to the first line reads

F-1 -1(4.3) dllfo+fl-dll+ Ffl ]1-- tx24hl tXl4h2.
det al

If fo and f represent the Dirichlet and Neumann data jumps on x2 0 of a solution
of problem , then the trace theorem and embedding yield flE-/2(/), foe
i7t/2(+) -/2(+), 1/. F-lt-lFf E H1/2(+) -1/2(+), which implies (4.1).

THEOREM 4.2. Let det a # 0. Then

(4.4) ,./.1/2(+) X/_-1/2(+) ...)/-1/2(+) >(H-1/2(+)

defined by (4.2) is a Fredholm operator with index zero, if and only if
det tr()

(4.5) det (:) 0, :Edet c1

holds, i.e., if and only ifproblem is of normal type (d 1).
Proofi For simplicity we assume that 41 is the unit matrix. Note that W maps

into a different space than W (see (2.4) and Proposition 2.4).
First we use an idea of [14] for replacing the tilde space on the right of (4.4),

extending it to treat coupled systems. We know from the Sommerfeld (Dirichlet)
problem [:20] that

(4.6) Ws 1+. F-1 -1" F"/-1/2(+) _.> H1/2([+)
is a bijection with

.F-1(4.7) W W-it+ El+ t_. El

where l" H/2(/)-> H1/2 denotes any extension onto the axis. So we transform the
system (4.2) (dropping the tildes) by substituting

(4.8) u+ Wsfl E H1/2(I+)
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and applying Ws to the first equation, which becomes

(4.9a) all Wsfo+ u+- al_ Wsu+ Wshl.
The second equation is unaltered except by the substitution (4.8):

(4.9b) -l+F-lt Ffo+ a21f0-- a22U+ h2.
In operator notation, we obtain equivalently

, fo =I+’F-’ "F fo
U+ \O21- __C22 ] U+ h2 ]’

(4.10)
I. X l/2(R+) x H1/2(R+) Y= H1/2([+) x H-1/2(R+).

Now consider the extension of W:

(4.11) I/" .# /..rl/2(+) X L2(+) -> ’= L2(+) x n-1/2(+),
which is also linear bounded (see the orders in (4.10)). Next we show the statement
for if" instead of

The lifting procedure leads to the equivalent operator

lgZo 1+. F-lto F" L2(+)2- L2(+)2,
(4.12)

whose symbol matrix is in C()22, continuous at infinity, and we get

det #o t-1 det " -1 det c
(4.13)

O12 _].. O21 O12021 alia22
z

Thus the Fredholm propey of Wo is equivalent to (4.5) (see [15]). Fuher we obtain

(4.14) Ind o -ind det o -arg det #o()[+=_= 0

since det #o is an even function.
Finally we prove that the kernels and co-kernels of W and W have the same

dimensions. Because a solution of (4.10) for a given function in Y is automatically
in X, we obtain ker W ker If this is finite-dimensional, a complement X of ker
W in X is dense in a cpmplement X" of ker W in X. Thus the image WX WX
is dense in WX, since. W is continuous. A finite-dimensional complement of WX is
a complement of WX.

Remark 4.3. The above result reflects the fact that -1/2(+) H-/2(+)_ is dense
but not closed. For normal type problems, the images of W, W, and W are closed but
the image of W is not. So it is surprising that the corresponding (unlifted) symbols
are simply connected by constant factors,

0)(, 0)12 22 12 11 12

although the lifted symbol matrices are generalized factorable or not, respectively,
because of the Fredholm criterion. This shows that function-theoretic factorization
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(with just algebraic behavior at infinity) and generalized matrix factorization (related
to the function spaces) are quite different--although relatedmtopics.

COROLLLAR 4.4. Condition (4.5) is violated, ifand only if one of the characteristic
numbers

(4.16)
1 )2 1/2

2

is situated on the curve { t(), R}. In the special case 511522=0 these numbers
simply read A+ 12, h_= c21.

Example 4.5. The impedance problem 11 ], 14]
+

(4.17)
Ul + puo hi on R+,

u-- iqu h2 on +,

yields the coefficient matrix

t11 I ( i(p-q)/2(4.18) c ".
i(p+q)/2

t24
i(p- q)/2 0

and symbol matrices

iP-q
2

t=
.P+q

2

(4.19) ’=r=/.p+ q
1-iPtql,
-iP

2
q J

[ p--q
1

p+q
I 2tt+ 2t

0"0 I

The system decomposes if and only if p =q holds; the above matrices are then
antidiagonal. In any case the determinant of the lifted symbol has the nice form

(4.20) det to 1-----i(p+q)-Pqt2 ( i--Pt )(11 i--qt )
and does not vanish for positive impedances p, q.

5. Explicit factorization. In this paper we always have the lifted symbol matrices
ro PC()22, which are piecewise continuous with at most one jump at infinity. We
briefly recall some facts from linear operator theory. It is well known [15], [21] that
the Fredholm property of

(5.1) Wo 1+. Ao 1+. F-’o’o F" L2(1+)2--> L2({+)2
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is equivalent to the existence of a generalized factorization

(5.2) O’o(:) O’o_(:)
:-i

Oo+(:)

with Kj 7/and

-1(5.3) O’o+, O’o+ L2(I, p), p() (:2+ 1)-1/2
and (5.2)-(5.3) are furthermore equivalent to the conditions (3.4).

The subcase of a right canonicalfactorization of tro C()22 is characterized by
tro+/- C()2 and corresponds to a factorization of the bounded convolution operator
Ao(L2(R)) into bounded operators Ao+/-=F-lo’o+/- F and C according to the
diagonal Fourier symbol matrix in the middle. In general Ao+/- and Ao- F-ltro+/--I F
are unbounded, but combinations like Aff_l/ Ao_ represent bounded operators, if the
factors are taken from a generalized factorization.

A continuously invertible Wiener-Hopf operator Wo and thus a well-posed prob-
lem corresponds to a factorization (5.2), where K1 :=0 holds. But the partial
indices j cannot be obtained from considering det tro(sC), which only gives Ind Wo
-1-2 =-ind det O’o. So we really need an explicit generalized factorization of the
form (5.2)-(5.3) for the decision about invertibility. The inverse then reads

--1(5.4) Wff1= Ao-.l+ Aft_ F-10-o+.- FI+ F- O’o_ F

and yields a corresponding formula for W- or I-1 with immediate consequences
for the asymptotics (the case K 0 appears here only, if we switch from L to Lp

theory; see [21]).
We are going to factor explicitly the symbol matrices (3.3) and (4.2) in standard

form according to the normal type cases d 0 with six parameters and d 1 with four
parameters, provided the assumptions (3.2) and.(4.1), (4.5), respectively, for the
Fredholm property are satisfied. According to situations, which are different in the
operator theoretical or function theoretical sense, the representation splits up into
many cases.

The first step for finding a right canonical or a generalized factorization consists
in an application of the following theorem by Khrapkov [9], which is mostly equivalent
to a simpler version (a 1, c=0) presented independently by Daniele [3], [8] and is
connected to ideas of Heins [6] and (ebotarev [1].

THEOREM 5.1. Let G C()2x2 be a matrix function of the form
(5.5) G=alI+a2R
where aj are scalar functions and R is a polynomial matrix of commutant form

(-c(,) a(,))(5.6) R(:)
b(:) c(:) : R(C).

Abbreviate the determinants by

(5.7)
-det R c2+ ab g2f,

det G a- ag2f

where f, g are polynomials and g() 0 for (we usually want f to have minimal
degree, i.e., g contains all square factors apart from those that vanish on ).
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Furthermore, let det G 0 on R and let

1 al + a2gxf
(5.8) r log

_
+ r+

al a2gv/-f

be an additive decomposition into functions r+/-, which are holomorphically extendable
into the upper/lower half-plane C" Im 0 and continuous on C, respectively, where
any consistent branches are chosen. Analogously, let

(5.9) det G 7-7+

be a multiplicative decomposition, i.e., a (function-theoretical) factorization and also

(5.10)
1 1 1

g g- g+

according to the poles, i.e., g() 0 in C.
en a factorization of G into lower/upper holomorphic function matrices reads

G G_G+,
(5.11)

{gcosh(r,i+sinh(r, }G=7
g gf

R.

ProoZ See [9] for the choice g 1; the modified result is then obvious [8].
Remark 5.2. (1) For factoring matrices of the form (1.6) R +R we first

can try to factor R RI_R+ (or R) and to consider R_(I+R2RR-+)R+where the middle factor can be rewritten in the Khrapkov canonicalform [8]

IXlI+IXT=IXlI+-(T+ ) +-- (T- )
(5..12)

all + a2R,

( t:z:z
--t21 --t12)./ll

For our purposes the factorization of rational matrices [2], [22] is straightforward.
(2) R is of commutant form (5.6), if and only if R2=-det R. ! holds, i.e.,

R-1= -R/det R for regular matrices.
(3) If y21 are also upper/lower holomorphic, then the inverses of (5.11) yield a

(right) factorization G-1-- G-1G_ up to rational scalar factors, since G+/- commute
with each other and

2(5.13) det G+= ),2g:/g+/-.

(4) The Khrapkov formula (5.11) simplifies essentially, iff= 1 holds. A factoriz-
ation of

(5.14) a + a2g tx Ix-ix+, al a2g

which are assumed to be nonzero on the line due to det G 0, then yields the simpler
formula

g+/- g+/-

For our symbol algebra (matrices which are rational in t) the algebraic behavior at
infinity is obvious. The only difficulty is that the numerator g: destroys the desired
holomorphic properties of G-1. In some cases this leads to the middle factor of (5.2).
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(5) In general, if the degree of f is higher than two, the factors G+/- increase
exponentially. Based on the above existence results for generalized factorizations, it
can be proven that the following trick of Daniele [3], [8] helps to obtain algebraic
behavior. Split a polynomial matrix of the form plI +pER into factors with the same
exponential behavior as we found in G+/- using Khrapkov’s method, and split the same
matrix, once more elementary with algebraic behavior. Combining appropriate factors
we obtain a factorization of G with algebraic growth; see 9, for instance.

(6) Further tricks to reduce the algebraic growth degree are already known from
[21]: split oit diagonal matrices as shown in (5.2) or polynomial matrices with a
constant determinant such that the increase of G+/- matrix elements are cancelled
simultaneously; also see 6.

(7) The symmetry observed in the first remark (exchange the roles of R1, R_, if
both are invertible) leads to an alternate factorization, which is equivalent to the
modification G_G+ =(det R)-I(G_R)(RG+) of (5.11), and yields factors

(5.16) G’ g+/-f+/-"’2 cosh fz+/- R +gf sinh fz+/- I

We are now going to use these ideas in a discussion of the above-mentioned class
of parameter-dependent problems, which are listed in the order of growing complexity.

6. The ee d--0, II. We continue considering the matrix o- in (3.1),
assume (3.2), and start the factoring procedure for the case 13 0. First write o-
in the Khrapkov canonical form (5.5) as

(I11 3)tr= {alI + aER},
O21

Ofl 1012- t12021 2t22
O13Of21 O21

2c14 t2
o 11022.__._ct___lEa21.

013 013021 /

(6.1) R
b

c 1
al l+2t, a2 ,

see (5.12). Therefore, put

-det R c2 + ab c2 + 4At2

(6.2)

=(0111012_20l.__.120121.2O13021 /

O14022+4 (72 k2) =f;
O13021

see (5.7) where the characteristic parameter A--O14022/t13Of21tC\[0, 1] from (3.8)
appears (the casef- 4A:2 is not excluded). We look at the asymptotic behavior of (5.8):

c+,ffal+a2Vrf=l+-l+v/-,
2t

(6.3)
1 a1+a2, 1 l+v/

" log log.
al- a2xf 2x/t 1 -x/-

The Wiener-Levy theorem yields that - is a Wiener algebra element, the Fourier
transform of an Ll-function. Using the Hilbert transform projectors, we obtain the



SOMMERFELD DIFFRACTION PROBLEMS 601

additive decomposition r r_ + r+ where

(6.4)
() r()+ arc

+V- -2
log 2s

27ri 2v/
log

sc -’
see [21, (3.8)]. This implies

l+x/1
x/fr+/- log sgn : log I1,

2 27ri 1 -v/
(6.5)

where

exp (xfr+){ O(:+/-/2)’
o(11/_),

(6.6) 6 Re
1

log
+

iTr 1 x/ (0, 1].

The orders of (these candidates for a generalized factorization) to+/- read (see [21, (4.4)])

(6.9)

ord &o_ (!(+1)
\(+ 1)

ord Co+ \(8 + 1)

1/2(t- 1))1/2(8-1)

1/2(- 1))1/2(8-1-1)
Remark 6.2. Therefore, &o &o-to/ does not represent a generalized factorization

of O-o PC([)22 (where only orders less than 1/2 are allowed (cf. [21, Lemma 4.1])).
But the inverse factor matrices are also lower/upper holomorphic; see (6.7) and Remark
5.2(3).

COROLLARY 6.3. A generalized factorization of cro is obtained by putting

(6.10) tro= ,ro-,o+ o- U4- -:/vq- ’o+

(6.8)

from Khrapkov’s Theorem 5.1 and consequently

It follows that we have the same operator theoretic situation as in [21] (see
formulas (3.13) there), which corresponds to the subcase al a2 =0, i.e., taking into
account only the principal part ofthe boundary operator, in which case the factorization
was more explicit due to an evaluation of r+/- in (6.4). Referring to those considerations
we mention only the main results.

COROLLARY 6.1. Let tr be given by (3.1), dettr(sc)#0, O13021#0 /--

a4a/aaa2 [0, 1]. With the notation (6.1)-(6.6), we obtain a (function-theoretical)
factorization of G a I + a2R G_G+ into lower/upper holomorphic function matrices
with algebraic behavior at infinity given by

(6.7) G (1 + A)l/4 cosh r I+
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(cf. [21, 4.4]), since the asymptotics are governed by the principal part analogue with

(6.11)

(1/2(1 -t)ord ro_ \1/2(1 )

/1/2(t- 1)
ord tro+ \1/2(1 i)

1/2(t 1

1/2(t- 1))1/2(1 t)

Thus the corresponding translation invariant operators Ao+/- F-1
tro+/- F are bounded on

L2(2), if and only if t 1 is satisfied, which corresponds to A (1, oo).
COROLLARY 6.4. Under the same assumptions the following statements hold:
(1) The lifted Wiener-Hopf operator Wo 1+- Ao 1+. F-tro. F" L2(+)2->

L2(+)2 is invertible as

(6.12) W= Aol+" A1

(defined on a dense subspace, if 8 # );
(2) The Wiener-Hopf operator W in (3.1) is invertible as

(6.13) W-I= F-ltr. FI+. F-trS. Fl

with any extension from H-1/2(+)x H/2(+) into H-/Ex H/2 (e.g., odd in the first
and even in the second place; see [5, 20]), where (6.7) gives

(1, a3) ( )
(6.14)

(1o-+ -/V’X +"

(3) ProMm g i wd! pod for h H-/(I+) and h /-//(1+). Th olution i
given by (1.4), (2.2)-(2.3), (6.13)-(6.14), (6.7), (6.1)-(6.4), which yield direct a priori
estimates

(6.15) u I,+11,_,.<,* const. {11 h, II,_,-.,+ + hll,_,.,+}.
COROLLARY 6.5. Furthermore, the asymptotics of thefirst derivatives of the solution

at the origin is given by

(6.16) Vu(x, x2) const X/Xl2 +x2 /2-

where =Re[ (iTr)- log((1 + x/-)/(1 x/) )] (0, 1] providedthe data hi. are sufficiently
smooth. We find a square root singularity similar to Sommerfeld’s half-plane problem
[12], [16], [21], if and only itS= 1 holds.

7. The case d 0, lXl3ff21 ----0. Here we find decoupling systems and give only some
hints on how to proceed (cf. [20]). Starting with (3.1)-(3.2) and a21 0, which implies
O14022 0, we may apply a simple factorization rule for triangular matrices (see.J8,
formula (1.5)]),

(7.1)
t_p_ t_p_r/_ t14t+0+

o O22 0
t_ t+l
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o11 o12
q 1 q_q+, a3-,

Olat
(7.2)

t/q,
r/- H .

t__

H FI. F- denote the Hilbe transform projectors (see (6.4)) and all elements
are in the Wiener subalgebra corresponding to the indices. Note that does not
vanish on due to det # 0; its winding number is zero, since is an even function,

--1and thus are also holomorphic in C.
Considering the orders, ord t 1/2 and therefore

(7.3) A_A+=F-_F F-+ F:H/2xH-/2-L2xL-H-/2xH/

as linear bounded and inveible operators (see (7.1)), it is obvious that the lifted
factorization (drop t in (7.1)) consists also of bounded inveible operators according

1 2to o C()2 and the inverse symbol matrices -o are also holomorphic in C.
CoozzAv 7.1. In this case is well posed for any data h H-/(+), h2

H/(+). W has a bounded inverse as in (6.13) and Vu-const. (x+x)-/ holds
near the origin.

Considering finally the case a3 0, which also implies 1422 0 for W to be
Fredholm, we can write

61 cgl4t
12 1 12 12c[21

11 Olat 0
O22 22(7.4)

22a22 0 1 a2

which leads to a quite similar result after factoring the triangular matrix as before
in (7.1).

8. The ease d = 1, aaaa=0. We have to factor the matrix # in (4.10)"

(8.1)

#=

\t21- --a22

0
I + O11a22 --O12022

O21 --O22 O21/ O11021 --O12021/

considering first the case a21 # 0. In Khrapkov form (5.5) the term in braces reads

G aI + a2R,
2

O11022 012021 a2(8.2) al =1 + 2aE1t 2021

R
b 2alia21

--2012022
t2--(allO22"" a12021)

Further, we put

-det R c2 + ab

(8.3) t4--2t2(allOt22 + O202l)+(Otlla22-- ce2al)2
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This contains a square factor, if tllO/12t21a22--0 holds, and then it is even of the
form

(8.4) -det R (t2 -i- det aa)2 g2
with f= 1 where the Khrapkov method works most effectively (see Remark 5.2(4)),
unless the subexceptional case o2 k2q: det a is given, since real zeros have to be
put into the f (see Theorem 5.1).

However, in the case aa2a22 0, # decomposes, and we again easily get similar
results to 7 with a bounded operator factorization, the usual square root singularity,
etc. This is not repeated here. But note that the decoupling of the system (in contrast
to other cases like Example 3.5) does not imply a modification of the function space
setting (4.11) and (4.10). (H-1/2([+) cannot be replaced by -,/2(+).)

Another more complicated problem occurs for a2 =0 and a11012022 0 where
the system does not decouple, but the constant matrix in (8.1) becomes singular. So
we write

+7\-t 0--O22
(8.5)

t-_ _t2_ I+ 2
O12t --6g22t+

and the term in braces reads in Khrapkov form

G aI + a2R,

(8.6)

(8.7)

al,az2/ \t+ 0 Z

1 1
a 1

2at
t2 O11022) a2--

2a2t
-c -(t + ala22)

R
b -2a22t t2 + all 22

Now, following the factorization method of 5, we obtain

-det R c + ab a a22) g2
with f-= 1, if we first consider the case k2+ t11022 C\[0, (x3). Further we have to set
(see (5.14))

1 t ( c12
u a a2g=1- -CellCe_)=-

(8.8)

=-= (t++)=detG,
12 12

g() 2__ k2
ffllff22 (_ 0)(+ 0) g-()g+()

with o k+ C+. Note that the bounded factors of _+ are unique up
to a constant, since they are Wiener algebra elements. Formula (5.15) yields the
factorization G G_G+ into lower/upper holomorphic matrix functions

1 (,+,o(1 t_w_)i + 1 (6-= ’o (-o)
+

(8.9)

G+= o(l+t+w+)I+(+o)(1-t+w+)R

al at- a2g 1,
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We conclude

(8 10) ord G+/-=
1/2

_1/2

according to a cancellation of two terms of order 1/2 in the last place. We can see from
(4.12) and (8.5) that the lifted factors are bounded, since

_1/2

hold. But this does not give a right canonical factorization, because the factors
in G destroy the desired holomorphic propeies of the inverses.

Choosing the value of the factor +() at o such that 1- t++ vanishes at
o, we may split off a scalar (-o)/(+ o) from G+, and it follows that the

remainder matrix has a holomorphic inverse in C+. It can be shown that this determina-
tion of _+ yields 1 +(t__/) =0 at = -o, such that a factor (+ o)/(
can be split off in G_ and cancels the previous one.

This together with (8.11) leads to a Nctorization of the (unlifted) symbol matrix
_#+ into

e_= 0 -t 1- I+_ 1+ R

(8.

e+= (l+t+w+)I+ (1-t+w+)R
t+ 0

(with t k) and the usual situation of a bounded operator factorization and the
square root singularity.

The remaining exceptional case in this section is a=0, aaa0, =k+aa[0,). Here we have two real double zeros in (8.7). We can use the
Khrapkov factorization formulas (5.11) with g 1 and

-k(8.13) a -aa -.
The idea is [8] to compensate for the exponential behavior ofG at infinity by factoring
a polynomial matrix of the form

(8.4) Q=+R

with rational coefficients b such that the factors have the inverse asymptotics.
The following more impoant case uses a similar argument, so we refer to analogy

here.

9. The case d = 1, # 0. Now we continue from (8.3) writing -det R
f since it contains no square factor except the factor in the special case of

(9.1)

where we abbreviate

(9.2)

k4h- 2k2A2q- A21 0

/1 011022- 012021 det t

2 011t22 - 012t21
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In order to apply the Khrapkov formulas (5.11) to (8.2), we compute

2 4(9.3) al+a2x/f 1+ [A1 +/-( --’2&2t2+A21)l/2]
2a21t

with A +A2 according to the headline assumption. This yields

al+a2,ff’l, a a2 v/-f as:-+/-o,
021

(9.4) det G a- a2f t._,
021

x/dt G y_ y+ -/21 1/2 t+/2

due to a factorization in the Wiener algebra. Further,

1 a+a2vf --O21(9.5) r log
al a2x/-f"--t2 logt r_ + r+

holds, where

+/-() = ()+/--- d
(9.6)

Cl+o 1

with a constant c (cf. [23]).
From the Khrapkov formulas (5.11) (with g+/- 1), we see that the factors

{ sinh (1/2v/fr+/-))G+ y+ cosh (1/2fr+/-) I + R

(9.7)

7 exp ( Re c,ll +e

increase exponentially in general.
POOSTO 9.1. ere exists a polynomial matrix G’= a’ + aR with Khrapkov

factors that behaves at infinity like G up o the scalar factors , ie., there holds the
same formula (9.6) for .

Proo We consider the ansatz

with a constant C. For factoring we have

1 a+ai 1 C-t+C=log log

(9.9)
1
tlog 2t.

Abelian theorems for the Hilbe transformation [23] lead to (9.6), again provided C
is chosen suitably (which involves elliptic integrals).
ToM 9.2. In the case d 1, 0, a factorization of G in (8.2)

with algebraic behavior at infinity is given by

(9.0) G=G’G_G2-1GTG..
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(The polynomial matrix can also be put at another place between the factors.)
Proof. Matrices of the form G= a1I+ aER with a fixed commutant R form a

commutative algebra. In particular, G-1 (det G)-l(alI- a2R) holds (if det G 0)
and the Khrapkov factorization of GG’-1 coincides with the product of the two single
factorizations after a rearrangement of the factors. Therefore, (9.6) and the preceding
result yield a cancelation of the exponential increase, and the stated algebraic behavior
at infinity holds.

Remark 9.3. Unfortunately, the explicit representation ofthis factorization is quite
complicated in general. So we do not work out the procedure of constructing a
generalized factorization of c. But the main questions are already answered. First, we
may directly use the classical Wiener-Hopf procedure for applications starting with
(9.10) to get an explicit solution. Second, the type of the singularity is known to be
the same as for the principal part problem; for instance, set a12 0, and see 8.
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A GENERAL CONVERGENCE RESULT FOR A FUNCTIONAL
RELATED TO THE THEORY OF HOMOGENIZATION*

GABRIEL NGUETSENG"

Abstract. The convergence, as e $0, of the functional F()=aN u(x)(x,x/e) associated with a
given L function u with support in a fixed compact set is studied. The test functions (x, y) are continuous
on R rv x RN and periodic in y. A convergence theorem is proved under the weaker assumption that u
remains in a bounded subset of L2. Finally, the use of multiple-scale expansions in homogenization is
justified, and a new approach is proposed for the mathematical analysis of homogenization problems.

Key words, partial differential equations, homogenization, convergence, functional, periodic
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1. Introduction. The mathematical analysis of homogenization problems for partial
differential equations (see [1], [9]) utilizes the functionals of the type

F(q)=l,u(x)qtx,) dx(f abounded open set in N).

The function u is, say, in L2(O) and is (or depends on) the solution of a partial
differential equation on f with coefficients e-periodic (i.e., periodic with period e in
each variable). The test function (x,y) is continuous on l)xN ( denotes the
closure of f) and, for fixed x, the function y (x, y) is periodic (with period 1 in
each variable).

Let us bear in mind that for such a function, i.e., , the associated sequence
()>o, with (x)=(x,x/e) for x, converges to the function

x - @(x) f (x, y) dy in L2(ll)-weak
Y

as e,O

(see, e.g., 1]), where Y- ]0, 1[ N.
In view of convergence studies in the theory of homogenization two distinct

situations may be considered"
(i) The sequence (u) is assumed to contain a subsequence, still denoted by (u)

for simplicity, that converges strongly to a function Uo in L2() as e , 0 (e.g., u H(II),
0f smooth, and (u) is bounded in H(I’I)). Hence, the corresponding sequence (F())
converges to the integral Uo(X)(x) dx.

(ii) The more difficult situation, which we study here, is that in which the sequence
(u) only remains in a bounded subset of L:(f). We may surely extract a weakly
convergent subsequence, but we do not have any classical argument that allows us to
pass to the limit in F(V) for the corresponding subsequence. Indeed, for the conver-
gence of the scalar product of two sequences in L2([), we classically need strong
convergence for at least one of them.

Several aspects of this situation arise in homogenization. Let us point out two
particularly interesting aspects:

(1) u is some derivative of a function v (i.e., u =Ov/Ox) that is the solution
of a boundary value problem considered in the framework of homogenization, and
the sequence (v) is bounded in H(fl) (see 6). In general, this is typical of the

* Received by the editors December 17, 1986; accepted for publication (in revised form) April 26, 1988.
f Department of Mathematics, University of Yaounde, P.O.B. 812 Yaounde, Cameroon. This work was

partially supported by the University of Yaounde, Cameroon.
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so-called regular homogenization problems; that is, the class of the homogenization
problems associated with a formal expansion (of the solution) of the type

(1.1)

where the leading term Vo, which does not depend on the local variables y-x/e,
"ignores" the local effects.

For the study of convergence, i.e., lim v v0 as e $ 0, which is one of the main
objects in homogenization, we possess a method, the so-called Energy Method (see
[i], [9]), that solves most of the problems of the above type. However, it does not
exhibit the weak limit of the gradient Ov/Oxi, i- 1,..., N (that is, concretely, the
local behaviour of v), which is interesting from the physical point of view.

(2) u is the solution of a boundary value problem whose formal analysis (in the
framework of homogenization) is based on an asymptotic expansion of the type

with a leading term depending on the local variables y x/e. The leading term is
affected by the local effects and, consequently, there is no hope of extracting a strongly
convergent subsequence from (u). Here, the Energy Method becomes inoperative
and, to our knowledge, there is no systematic way of proving convergence for related
homogenization problems, referred to as singular homogenization problems (see [4],
[5], [7, Chaps. 7, 8] for typical examples of this). Although we do not consider that
question in this work, we believe the study of singular homogenization problems
requires an appropriate approach that should be based on an extensive analysis of
functionals of the type

Our basic result is the proof of a convergence theorem for the functional F()
aN u(x)(x, x/e) dx (u having its support in a fixed compact set) under the weaker
hypothesis that the sequence (u) remains bounded in L2. There is no need to assume
the possibility of extracting a strongly convergent subsequence.

Next, based on the above result, we give a complete justification of the use of
multiple-scale asymptotic expansions (such as 1.1 or (1.2)) in the theory ofhomogeniz-
ation: Assuming that u L2(fl), with u bounded in the L2 norm, Theorem 2 gives
the leading-order approximation to u (in (1.2)). If u lies in HI(fl) and is bounded
in the H norm, Theorem 3 gives the next-order approximation to u. Theoretically,
the higher-order approximations are naturally given by similar theorems provided that
u H2() with u bounded, u H3() with u bounded,.. however, that is quite
labourious.

Finally, we propose an alternative way of proving convergence in homogenization.
Our approach is carried out on a classical problem (to arrive at a correct understanding
of a method, we prefer to start with a classical example). Nevertheless, we anticipate
that its flexibility and its "spontaneity" make it more adaptable for unusual problems
than the often very fastidious Energy Method. Indeed, the reader familiar with the
so-called natural multiple-scale asymptotic method [1] will easily realize that our
approach is nothing but its mathematical version. Furthermore, as we shall see in 6,
our approach exhibits the local behaviour of the solution. This is not accessible to the
Energy Method, whose basic ingredient is strong convergence.
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This paper is organized as follows. In 2 we present some general notation and
preliminaries. Section 3 is devoted to our basic result, the case of the whole space RN.
In 4 we give a more pragmatic version (in view of the theory of homogenization) of
the above result, which takes into account more realistic test functions, in 5 we prove
a convergence theorem for the gradient Ou/Oxi, i= 1,..., N (i.e., for a functional
F() with Ou/Oxi in place of u). In practice, such a result furnishes the next term
(i.e., Ul(X,X/e) in (1.2)) in the asymptotic expansion of the solution u, while the
leading term is given by the theorem in 4. Thus, the use of multiple-scale asymptotic
expansions of the form (1.2) (or (1.1)) is rigorously justified in homogenization.

Finally, in 6, we present a new approach for the mathematical analysis of
homogenization problems.

We will be concerned solely with vector spaces over R although our result and
arguments are still rigorously valid in the complex case--providing some minor
modifications are made. The only measure considered in this work is the Lebesgue
measure.

2. General notation and preliminaries. Let ON(Nc,N->I) be the N-
dimensional Euclidean space. Points inN are denoted by x (xl, , x) (the global
variables) or y- (Yl,"" ", Y) (the local variables related to periodicity). The cube

Y=]0,1[=]0,1[x...x]0,1[ (Ntimes)

is considered in the system of the local variables, with closure ’-[0, 1]s.
By a Y-periodic function we mean a function on N that is periodic with period

Y (i.e., with period 1 in each variable yi).
Generally speaking, if E is a set (e.g., or any open set in Rv), we denote by

C(E) the space of continuous functions on E, by J[(E) the space of those functions
in C(E) with compact suppos (contained in E), and by (E) the subspace of [(E)
made up of C functions.

In connection with the periodic structure, let us introduce some specific spaces.
Cp() (or, for simplicity, Cp) denotes the space of functions w C(), w

Y-periodic.
L(s) (or L) the space of Y-periodic functions in Lo(), which is a Hilbe

space with the norm

w w[ dy
Y

Y{(IN; L2p) the space of continuous functions on (the Euclidean space of the
variables x) with values in Lp and having compact supports.

L:( :Lp) the space of measurable functions u(x, y) on l xN such that for
almost all x the function y --> u(x, y) belongs to L, and [.R" Y lu(x, y)12 dx dy <. We
endow this space with the norm

1/2

lu(x, y)12 dx dy

L2(RN Lp), thus equipped, is a Hilbert space.
Finally, y((N Cp) denotes the space of continuous functions on with values

in Cp and having compact supports. We provide the vector space Y’(N; Cp) with its
natural topology: the inductive limit topology determined by the spaces {r (N; Cp)
(K ranging over the compact subsets of [N), where

{:(’, Cp) { c (’, Cp)’, supp K}
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is a Banach space with the norm

I1 11 sup sup
xK (x,y)N xlN

(note that Cp, provided with the L norm, is a Banach space).
In 3 we will need a very useful result from Bourbaki [2, Prop. 5, p. 46]: Let

Y(N)(R)Cp denote the subset of ff{(s; Cp) consisting of all functions of the form
v@ w (@ denotes the tensor product), v (respectively, w) ranging over a finite subset

of () (respectively, Cp). Then {(S)@Cp is dense in ff{(; Cp).
Finally, for fuher needs, let us keep in mind the well-known result that asses

that ff{(; Cp) is dense in L2(; L).
In the sequel we will put, for simplicity,

c.).
3. Basic result. A convergence theorem. In all that follows, e, with e > 0, denotes

a real sequence destined to tend to zero, and Ko is a fixed compact set in N (Ko does
not depend on e). Next, we introduce L:o(), the space of all functions in L:Z(N)
having their (compact) supports in Ko.

3.1. Statement of the theorem. Idea of the proof.
THEOREM 1. Let u L2Ko(RN). Suppose that there exists a constant c > 0 such that

(3.1) Ilu[It.2--< c for any e.

Then there exist a subsequencefrom e, still denoted by efor simplicity, and afunction
Uo in L2(IN; Lp) such that

(3.2) Iau(x)(x,)dxIaN Y
Uo(x,y)(x,y)dxdy

as e 0, for all in
Remark 1. Instead of the cube Y ]0, 1[ u, if we consider a parallelepiped Y

s ]0, ai[(ai>0), Theorem 1 remains valid provided the right-hand side of (3.2) is
multiplied by 1/I YI (1YI measure of Y).

We now give the idea and the main steps of the proof. The first step is to show
that a subsequence (still denoted by e for simplicity) can be extracted from e such
that for w Cp the sequence uw converges in L2-weak as e $ 0, where w (x) w(x/e).
Thus, given a function w in Cp, there will exist Zw in L2(R) such that, as e + 0,

(3.3) f uwvdx zwvdx for all

Next, our task is to extend (3.3) (with the same subsequence e) to all functions
in yCp (see 2 for the definition of Y’p). Indeed, note that the integrand on the left of
(3.3) is nothing but u(x)(x, x/e) with (x, y)= v(x)w(y). It is then reasonable to
hope that (3.3) could be generalized to all functions in Yfp. To this end, we first establish
that for any in Y{p a real number Fo() exists such that

This will be obtained from (3.3), because Y(N)(R)Cp is dense in Y(p (see 2).
Finally, the last step is devoted to the characterization of the right of (3.4).

3.2. First convergence result. Our goal in this section is to obtain (3.3) for any w
in Cp. To begin, let us establish two elementary (but fundamental) lemmas.
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LEMMA 1. Let Ko be the above compact set. Fix r>0 and set H=
{x RN’, d(x, Ko) < r}, where d denotes the Euclidean metric. Thenfor e < eo (eo a suitable
constant) there exist a natural number n (depending on e and afinitefamily e Y+ ki), 1 <-_
i<= n, with ki 7IN (7/ is the set of all integers) such that

(3.5) Ko c e( + k,) H.
i=l

Proof. For arbitrarily fixed e, we may express RN (the space of the variables x)
as the union of all the e "+ k), k 7/N. Since Ko is compact, a finite family e "+ k),

1, , n, exists such that Ko intersects each e( Y+ ki) and Ko is contained in their
union.

Now, for each i(l<-i<-n), let xe(Y+ki). Then d(x, Ko)<=
d (x, e( Y+ k) f’) Ko) -< diam e( Y+ k) e diam Y (diam denotes the diameter). Hence,
by putting eo r/diam Y it follows that for e < eo the union of the sets e(Y+ k) is
contained in H, which completes the proof.

LEMMA 2. There exists a constant Co> 0 such that for e < eo (eo is the constant in
Lemma 1) we have

for all u in LEro(R) and all w in Lp.
2Proof. Let u L:0(Rs), w Lp. By H61der’s inequality we have

u(x)w dx _-<llull = w dx

Next, by the preceding lemma, let e(Y+ k) (1 =< i=< n) be a finite family satisfying
(3.5) for e < eo. Then

IKo i=1 (Y+ki)

2

By change of variable, x e(y + k), and use of periodicity we have

Ie( Y+ki)
dx e I w(y)l dy.

Y

It follows that

IKo 2

But, thanks to (3.5) we have en =meas (.J
i=1 e( ’+ k)=<meas H (note that n depends

on e), from which the conclusion follows (with, e.g., Co (meas H)l/2).
Remark 2. For e < eo we have

IKo 2

dx Vw L.

As an immediate consequence of Lemma 2, we have the following proposition,
which plays an essential role throughout the rest of this section.
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PROPOSITION 1. Letf Lo(RN) (fmay or may not depend on e). Then for e < Co,
a unique function f LEp can be assigned to f such that

f(x)w dx= f(y)w(y) dy Vw in Lp,
y

Remark 3. The correspondence ff defined above is linear.
We are now in a position to prove the main result in this section. First, we must

give some notation used frequently in the sequel.
Given w in L we denote by w the e-periodic function in Lo(u) defined by

(3.6) w(x) w().
Also, if p we put

(3.7) ’(x) (x, ).
It is clear that yt.(v). Moreover, if the support of is contained in K (a compact
subset of ), then the support of lies in K for any e.

The aim now is to prove the following proposition.
PROPOSITION 2. Under the assumptions of Theorem 1, a subsequence (still denoted

by e) can be extractedfrom e such thatfor any w in Cp w independent ofe), the sequence
uw converges in L2-weak as e , O.

Proof (i) We begin by fixing a (nontrivial) function a in ([u), a independent
of e. Next, fix x inu and consider the function s -->f(s) a(x- s)u(s), which belongs
to L:o(l u). By Proposition there exists, for e < Co, a unique function y --> z (x, y) in

L such that for any w in L we have

that is,

a(x-s)u(s)w(s) ds= I z(x, y)w(y) dy,
y

(3.8) [(uw) * a](x)= | z(x, y)w(y) dy,
Y

where denotes the convolution product.
Moreover, again by Proposition 1, we have

(3.9) IIz (x, <c0 l (x-s)u (s)l= ds

Observe that the function (uw) a lies in () and has its suppo in a compact
set that does not depend on e.

Thus, by (3.8) (valid for all x) we assign to u (for e < Co) a unique function
2x z(x) [i.e., x z(x,. )] from u to Lp, with (3.9).

(ii) For fuher needs we now study a few useful propeies of the function z
thus constructed. To summarize, let us show that z L2( u’, L). It suffices to check
that z (u; L) (see 2 for notation). Clearly the function z has compact suppo;
then it remains to show continuity. For this, fix x in u. Let h. Consider the
function s [a(x + h s) a(x- s)]u(s), which lies in Lo(U). If we replace in (i)
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the function s a (x s)u (s) by the above function, the associated analogue of z (x)
is, according to the above process, exactly z(x+h)-z(x) (see Remark 3). Hence,

I[z(x+h)-z(x)llL2(y)<-_Co ,[a(x+h-s)-a(x-s)12lu(s)]2ds
which is the analogue of (3.9). Observing that the right-hand side is majorized by
CCo sup ]a(x+ h-s)-o(x-s)] (c is the constant in Theorem 1) and, fuahermore, a

being uniformly continuous on s, we deduce that IIz(x+ h)-z(x)ll=( clhl, for
all h , which shows continuity.

Thus, z L2(; L). Fuhermore, by (3.9) we have

(3.10) z =( c (c > 0) < o
(where the constant c does not depend on e).

(iii) Finally, by (3.10) we can extract a subsequence from e, still denoted by e,
such that z z in L2(s’, L)-weak as e0. Therefore, for each v ff{(s) and each
w L we have

e(x,y)w(y)v(x)dxdyz(x,y,w(y)v(x)dxdy,g
so that, using (3.8) combined with Fubini’s theorem, we have

From now on, e denotes exclusively the subsequence extracted above. By (3.11)
we finally show that for each w in C, the sequence uw converges weakly in L(N)
as e 0 (that is, e is the desired subsequence in Proposition 2). For this purpose, let
w be arbitrarily fixed in C. Since w e L, we have uw e L. Fuhermore, we evidently
have I1 I1 c (c > 0), for all e. Therefore, we can extract e’ from e such that

(3.12) u,w’ z in L-weak as e’0,

so that, the transformation v v * being continuous from L into itself,

I [(u’w’)*a]vdx f (Zw *a)

for all vY{(u). By comparison with (3.11) we necessarily have

(3.13) (Zw * a)(x)= [ z(x, y)w(y) dy a.e. in

Now, since w is the same function as in (3.12), let e" be another subsequence
from e such that u,,w" z in LZ-weak as e"+0. Following the above process once
more, we obtain

(3.14) (z a)(x)= f z(x, y)w(y) dy a.e. in

By subtracting (3.14) from (3.13) we have

(3.5) (z-Zw),=o

from which it follows that z Zw. Indeed the distributions (represented by the L
functions) a, z-Zw (respectively) have compact suppoas, i.e., they lie in ’(u), the
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subspace of ’(RN) formed of distributions having compact supports. But, since the
vector space ,(RN) endowed with the convolution product is an algebra without zero
divisor (see [8]), (3.15) implies Z’w-Zw =0.

We have just established that for any subsequence e’ such that u,w’ converges
weakly in L2, the corresponding limit does not depend on e’. That is, the sequence
uw converges weakly in L2. The proof is complete. []

3.3. Extension of the first convergence result. Here and throughout the rest of 3,
e denotes the subsequence involved in Proposition 2. Then, by that proposition, a
unique function Zw L:z is assigned to each w in Cp such that (3.3) holds. In other
words, if we put

(3.16) (x, y) v(x)w(y) for V fff(N) and w Cp

and Fo()= zwvdx, we have n udxFo() for any in Y(p of the form
(3.16) (see (3.7) for the definition of ’). This property is, clearly, what we call the
first (or primitive) convergence result.

The aim in this section is then to extend the above property to all of Y{p.
LEMMA 3. Let be fixed in ?Tfp ( independent of e). Then the sequence e-

au dx is Cauchy.
Proof Let Y{p. Let r/>0. Since the set Y{(RN)(R)Cp is dense in Y(p (see 2),

there exists some , in Y{p, , =. v(R)w [v y{(RN), w Cp], with I finite, such
that the supports of both and , lie in a fixed compact set K = RN that depends
only on , and

(3.17) suaP
where c is the constant in (3.1).

On the other hand, we evidently have for all e

(3.18) sup I(x)-(x)l sup II(x)-(x)ll.

Now, consider el, e2, destined to decrease independently. By a routine technique
we have

Uete dx

U,aI .
But (3.17) combines with (3.18) to give

l’ u.(xlt;’-’) dx

Hence

2 dx

-_<- for i= 1, 2.

u2qt2 dx-
[N

elIelr/ dx
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Now, thanks to Proposition 2 we observe that for v in ’/’(RN) and w in Cp the sequence
eaN uvwdx is Cauchy. Therefore, since aNUdx=Y,,RNUV,WT, the
sequence e jan u, dx is Cauchy as a finite sum of Cauchy sequences. So we have, dx[ 0 as el , 0 and e2, 0, and the conclusion follows from
the arbitrariness of r/.

This brings us to one of the central preliminary convergence results in this work.
PROPOSrrION 3. For any 7(p ( independent of e) there exists a unique real

number Fo() such that

as 0.

3.4. End of the proof. Characterization of Fo. The aim in this section is to show
that the above transformation -> Fo() is the restriction to ’/’p of a continuous linear
form on L2(RN ’-L,). More precisely, we must check that there exists a unique Uo in
L2(R’, L2p) such that

Fo() f Uo(X, y)(x, y) dx dy V in ff{p.
Ny

Since /’p is dense in L(; L2p) and the transformation Fo() is linear, it suffices
to establish that there exists a constant c > 0 such that

(3.19) IFo()l =< cll]]t.,aN Y V in ’/’p.

In this connection, fix in Y’p ( independent of e). Then dx] 
c($o I,1= dx)/ for all e, where c is the constant on the right of (3.1).

By Proposition 3 and the fundamental property

Ko Kox Y
I (x, Y)[ dx dy as e $0 (see 1),

assertion (3.19) follows immediately. The proof is complete. I-!
Remark 4. The function Uo has its support in the set KoxS (or Ko, if Uo is

regarded as a function from R to L).
4. The leading-order approximation. A convergence theorem. In what follows,

denotes a bounded open set in the Euclidean spaceN (of the variables x, , x), ll
independent of e. We denote by 7/’(fl; C,) [respectively, fff()] the set of all restrictions
to of functions in ff{p [respectively, {()]. We also introduce the space L2(O; L),
which is a Hilbe space with the norm

[[u[l,) lu(x, y)l= dxdy

The aim in this section is to establish the following theorem.
THEOREM 2. Let u L2(I). Suppose that there exists a constant c > 0 such that

(4.1)

(4.2)

Then a subsequence (still denoted by e) can be extractedfrom e such that, letting e $ 0,

u,t dx --, uo(x, y),t,(x, y) dx @
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in 0f(l); Cp), where Uo L2(I-I; L2p). Moreover,

(4.3) uvw dx--> Uo(X, y)v(x)w(y) dx dy Iv
1 xY

2in ?K(II) and all w in Lp.
Proof Property (4.2) is straightforward by Theorem 1 and Remark 4. As for (4.3),

we begin by taking in (4.2) test functions of the form (x, y)= v(x)w(y) with v
Y((12), w Cp. We obtain as e $ 0,

(4.4) u,vw dx --> Ia Uo(X, y)v(x)w(y) dx dy
xY

for all v Y{(fl) and all w Cp.
2 2Next, we must extend (4.4) to all functions w in Lp. Fix v in Y’(I)) and w in Lp.

Let (wn) be a sequence from Cp (dense subspace of L2p) such that w,--> w in L2p as
2n--> oz. Utilizing the fact that the transformation z--> z is continuous linear from Lp

to L2(12) (see Remark 2), we have

(4.5) IIwZ- CollW -
(Co and eo are the constants in Lemma 2 with Ko l-l).

Now we write

Ve<eo

(4.6)

and estimate each of the first two integrals on the right-hand side separately (use (4.5)).
This yields

IJe VWe dx Ii Y
UoVW dx dy

UeVWe dx InY UoVW. dx dy

for all n and all e < eo (where c is constant with respect to both e and n).
Finally, let r/> 0. Choose in (4.6) the natural number n so that ClllW,-

Then letting e $ 0 and using (4.4), it follows that the limit of the left-hand side of (4.6)
is bounded from above by r/. The desired conclusion then results from the arbitrariness
of .

Remark 5. Let u be as in Theorem 2. First, let us observe that, by weak compact-
ness, we may assume that in addition to (4.2) and (4.3) in Theorem 2, the subsequence
e satisfies the following property.

There exists u e L(fl) such that u --> u in L2(fl)-weak. Next, taking w 1 in (4.3)
we easily obtain u(x)=y Uo(X, y) dy (u is the mean value of Uo). It follows that Uo is
(uniquely) expressible in the form

Uo(X, y) u(x) + o(X, y) with f o(X, y) dy O.
Y

f. uvw dx f. UoVW dx dy

-w,) dx+ UoV(W, w) dxdy
xY

+ f. uevw. dx f. r
Uovw. dx dy
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So assume there is a subsequence from (u) that converges strongly in L2(-) as
e $ 0. Then an easy computation yields o-0; that is, the leading term Uo in (1.2) does
not depend on the local variables y. In other words, if the leading term depends on
y, i.e., to 0, then (u) never contains a strongly convergent subsequence (see 1).

5. The next-order approximation. A convergence theorem.
5.1. Notation and preliminaries. We denote by C the subspace of Cp formed of

C functions, Hp the subspace of L2p formed of functions w such that Ow/Oy, L2p for
1,. ., N (the derivatives obviously being taken in the distribution sense).
We provide H with the norm

Ilwll,,’(  Ilwll  (  +
Lz(y)

which makes it a Hilbert space.
Sometimes it is more convenient to consider, instead of H, its closed subspace

1.eH, wdy=O

on which the norm

i-- L2(Y)

is equivalent to the above H-norm.
We will need the following lemma.

N
fiwi dy 0 for allLEMMA 4. Let f=(f),fL2p(l<-i<-N). Assume that i=Y

w=(wi) in (C)N such that div w-0 (where div w= Ow/Oyi). Then there exists a
unique function q Hlp/R such that f Oq/Oy for 1,. , N.

Lemma 4 is the "periodic version" of the well-known result concerning the
solvability of the equation grad q =f for f given in (Loc) N (see, e.g., [10]). See, e.g.,
[6, Appendix] for the proof.

5.2. A convergence theorem (next-order approximation). We are now in a position
to prove the main result in this section. In what follows, denotes a smooth bounded
open set in R (f independent of e). As in the preceding sections, e (e > 0) denotes
a sequence tending to zero.

THEOREM 3. Let u H(f). Suppose that there exists a constant c > 0 such that

(5.1)

Then a subsequence (still denoted by e) can be extracted from e such that, as e $ 0,

(5.2) u --> u in H(fl)-weak,

(5.3) Ouvdx--> (x)+ (x, (ylv(x) dxdy,
OXi Y

Y

i= 1,’.., N; for all in L2p and all v in Y{(,), where u L2(fl; Hp/).
Proof By virtue of (5.1) we can extract a subsequence such that (5.2) holds.

Moreover, by Theorem 2 there exists z L2(fl; L), 1-< N, such that

(5.4) Ouvdx z(x,y)(y)v(x) dxdy as e0
OXi xv

2for all in Lp and all v in X().
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It remains to show that there exists U E L2(; Hp/I) such that

zi(x, y)=xi (X) (x, y) fori=l,...,N.

So let () be a vector function in (C) satisfying div 0. Then for v in (fl)
we have

NBy Leibniz’s formula and the fact that div =0 (note that E= O/Ox 1/e(div ))
it follows that

i=l OXi

By the Rellich theorem we may assume that the above subsequence e satisfies the
fuher propeay

u, u in L2()-strong,
so that, letting e $0 and recalling (5.4), we obtain

i=l xY

for all e (C), dive=0, and all ve N(). Hence we have for almost all xe

,.= z(x, y)- (x) *(y) dy 0 for * e (C), div * 0.

It follows by Lemma 4 that there exists a function u from to H/N such that

Ou OUl(X)
a.e. ina(i=l,.’.,N).(5.5 

Finally, from (5.5) we can easily show (e.g., by Lusin’s characterization [3]) that
u is a measurable function from to H/N (obtained from appropriate norm defined
in 5.1). Furthermore, again by (5.5) we have

and the conclusion follows.

6. A new approach in the theory of homogenization. Classically, the mathematical
analysis of homogenization problems proceeds in two steps [1]. The first step, which
is formal, derives, for example, from two-scale asymptotic expansions of the form

X
u(x)= uo(x, y) + eu(x, y) +. y=-,

E
(6.1)

Uo, U,-’’, Y-periodic in y.

More precisely, we postulate that the solution u of a given problem (associated
with a partial differential equation with coefficients e-periodic) is similar to (6.1). Next,
introducing (6.1) into the given problem yields a sequence of problems that determine
/’/0, /’/1,
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The second step consists of rigorously proving the convergence of the preceding
homogenization process, i.e., we must find some suitable topology in order that
lim u u0 as e 0. This validates the above formal calculations.

In this last section we propose an alternative approach. More precisely, we
introduce a new asymptotic method for the mathematical analysis of homogenization
problems. The method is quite straightforward. There is no need to postulate the
existence of the functions Uo, ul in (6.1), since by Theorems 2 (or 1) and 3 such
functions are available for a suitable subsequence from e.

Our approach is illustrated by a regular homogenization problem. Nevertheless,
the basic ideas can easily be extended to problems of the singular type.

6.1. Setting of the problem. In all that follows, unless otherwise specified, the
summation convention is used.

Let 12 be a smooth bounded open set in RN (the space of the variables xl, , XN)
with boundary 0f. Let aij (1-<_ i,j <= N) be given functions defined on RN (the space
of the variables Yl," , YN) and subject to the following conditions:

(6.2) au L, au Y-periodic, au aj.

There exists a > 0 such that the following holds for almost all y"

(6.3) a(y): _-> c [:1 V:= ()

(where the summation convention is utilized) with
Finally, let f L2(f), and for each e >0 let u be defined by

ue nl(),

(6.4)
0 (Ouau =f in f
Ox Oxj /

u 0 on 01

where a(x)=au(x/e) (see (3.6)).
Clearly, from (6.2) (the first assumption) and (6.3), we see (6.4) uniquely deter-

mines u.
Our aim is to find lim u as e $ 0. In other words, we must study the homogenization

problem associated with (6.4). Note that this problem has been solved in [1], where
the results of the formal analysis were made rigorous by applying the Energy Method.
As mentioned in 1, we propose an alternative approach that should be more flexible
and thus more adaptable for the study of unusual problems.

6.2. Description of the method. First, observe that u, the solution of (6.4), satisfies

(6.5)
uH(f),

dx= Inj’zdx Vve H(,.Q).

Next we estimate [lu Taking the particular test function v u and using
the boundedness and the coerciveness (from (6.3)) of the bilinear form in (6.5), we
obtain
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Hence, the hypotheses of Theorem 3 are fulfilled. We can extract a subsequence still
denoted by e for simplicity such that

(6.6) uu inHo(f)-weak ase$0

and, for all W L, v Y{(I)),

(6.7)
Ou.vdx (x)
Ox y +-y (x, y) (y)v(x) dx dy,

j=l,’’ ",N,

where u L2(f; HIp/R).
Derivation ofthe local problem. In (6.5) we take test functions of the form v ew%h

with wHp, (fl). Then, noting that Ow/Oxi=l/e(Ow/Oyi), where of course
(Ow/Oy,)(x)=Ow/Oyi(x/e), we are led to

Ia u--- () Ia u--- w 4’ dx e Iafw4’ dx"a ij
Oxj

49 dx + e a Ox Oxi

Now we propose passing to the limit as e 0. It is easy to check that both the
second term on the left and the term on the right tend to zero. Hence,

a Ox
CdxO.

On the other hand, choose in (6.7) ao(Ow/Oyi) (summation) with w e H. By
the above result we are finally led to

v
a(Y)

Ou

(x)+-y (x, y) (y)(x) dx dy 0

for all w Hp and all fi(l-l). Hence the following holds for almost every x in f"

(6.8) f [ (x) +Ou, lOWY (x,y) (y) dy=O VweHp.

Equation (6.8) is exactly that obtained by the formal method using multiple-scale
asymptotic expansions (see 1 ]). It associates with the relation u(x, ) Hp/l to give
the so-called local problem, which permits us to express u in terms of u. Evidently
u satisfies, for fixed x,

(6.9)

.)

ou f ow
-Oxj (X)

Y
ao dy Vw e,l

which is an elliptic variational problem for u(x, ), admitting one and only one solution.
We should stress that, contrary to the classical method, the resolution of the above

problem does not concern us since u has been constructed in Theorem 3. We only
observe that u is unique (i.e., independent of the subsequence extracted above) as
soon as u is well determined.
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by

(6.10)

Now we calculate u in terms of u. Following [1], let X (j 1,. ., N) be defined

f OX Ow
akh

V Oyh Oyk

Ow Hp
dy= ady Vw.

y Oyk

Then, from the preceding remarks, we see that u is given by

(6.11) u(x, y)= -Oxj (x)xJ(Y)"

Indeed, the function on the right-hand side is the solution of (6.9).
Remark 6. It is not difficult to verify that the equation in (6.10) can be written

under the form

(6.12) a(x y, w)=0 Vw Hlp/R

where a(.,.) is the bilinear form that figures in (6.10), and yj( l <-j <- N) are the
coordinate functions.

Derivation ofthe global (or limit) problem. The point now is to derive the boundary
value problem satisfied by the global limit u. This is straightforward. Choose in (6.7)
the particular function ai, and in place of the v’s consider the derivatives Ov/Oxi,
with v 2(fl). Hence, summing over i,j on both sides of (6.7) and using (6.5) yields

I aj(y) [ Ox (X) +OUl ] Ov

Y -y X, y -xi X dx dy fv dx,

which by (6.11) becomes

tij aih
OX------ dy O__U_U O___v dx fv dx

where , g ao(y) dy. But it is easy to check that

a, a,, dy a (y,. x y).
Y Oyh

On the other hand, by (6.12) we have easily that -a(yi, x-yj)=a(x’-Y,,X-y)
(note that the form a(.,. is symmetric). From all that we deduce the problem for u:

uH(),
(6.13) Ia Ou o_ ax= I.fvax VvH(),qo

Oxj Ox

where

(6.14) q a(x’-Y,, XJ- y).

The constants q are the so-called homogenized coefficients. They satisfy the
ellipticity condition

qiji >- cll=(c > 0) v Rv (see [1])
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SO that u is uniquely determined by (6.13). Consequently, the subsequence e in (6.6)
and (6.7) may be replaced by the whole sequence from which it was extracted.

Thus, we have proved the following homogenization theorem.
THEOREM 4. For each e > 0 let u be the solution of the boundary value problem

(6.4). Then, as e $ O,

(6.15)

j 1,..., N, for all q L2p and all v {(), where u is the solution of the boundary
value problem

Oxi
qij f in f

u =0 on

qo given by (6.14), and xk(k 1,’’ ", N) given by (6.10).
Remark 7. The usual homogenization theorem [1], [9] does not involve (6.15).

This property obviously follows from (6.7) and (6.11).

6.3. Concluding remarks. We have just proposed a new asymptotic method for
the mathematical analysis of homogenization problems. The method is straightforward
and quite natural. Note that, although we have chosen a problem of the regular type
for a detailed analysis, our approach is essentially based on Theorem 1, which requires
only the weaker assumption that u remains bounded in L2. So it is reasonable to
assume the above idea can be successfully extended to a more general situation involving
problems of the singular type.

Acknowledgment. The author thanks the referees for their kind advice.
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Abstract. Using techniques from the theory of contraction of Lie groups, a version of the Shannon
sampling theorem appropriate to Cartan motion groups is proved. This work has possible applications in
digital signal analysis.
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1. Introduction. The Shannon sampling theorem for the real line R may be stated
as follows.

THEOREM A. Letf L2(R) have Fourier transformf(u)= 1/27r f(x) e-ix dx, and
suppose that f is supported in I-S, S]. Then

f(x)= 2 d,,(x

where d.(x)= ks(x-(n/2S))= 1/2Ss ei(-("/2s)) du.
us, knowledge off at the points n/2S, n =0, 1,. ., allows reconstruction off

everywhere, by use of the kernels ks.
The obvious generalization of this theorem to L2(R2) holds, where the two-

dimensional Fourier transform is considered. However, we do not wish to pursue
this line here. Rather, we want to discuss a version of the sampling theorem appropri-
ate to the Fourier-Bessel transform off L2(R2), which is given by considering f as
a linear combination of F.(re) .(r)e". The Fourier-Bessel transform of F. is
given by

where

/3. (Re’)= 2ri"

cb.(R) b,(r)L(Rr)rdr.

(Here, J denotes the nth Bessel function.)
The following theorem is due to Kramer [9].
THEOREM a. Supposef L2(R2). If o f(re*) eg" dO =0 for Ikl - M and if there

is Ro 0 such that for all k, k(R)= 0 whenever R Ro, then
M

f( re ieh e ik4 fk (tk..) Sk,. (r)
k=-M n=l

where Sk,.( r) 2tk,.Jk r)/ t2k,. r2)Jk+ tk,.) ). In these expressions, (tk,.)= are the zeros
of the Bessel function Jk.

Kramer’s theorem applies not only to expansions in Bessel functions, but also to
a number of other special function expansionsmsee Jerri [6, 3] for a full discussion
ofthese generalizations. Analogues ofTheorem B may be obtained for these expansions,
but the above version will suffice to explain the background to the present paper.

* Received by the editors February 24, 1987" accepted for publication (in revised form) July 5, 1988.
This research was supported by the Australian Research Grants Scheme.

" School of Mathematics, University of New South Wales, Kensington, New South Wales, 2033,
Australia.
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Theorem B is somewhat unsatisfactory in certain respects. First, from a practical
point of view, the data are rarely presented at the zeros of the Bessel functionsmthese
are hard to locate, too. Secondly, the sampling must be at zeros of different Bessel
functions for each component fk of f. Thirdly, the comparatively neat form of the
kernel Sn (r) is obtained by using rather particular properties of Jk not shared for other
special functions; the kernels obtained by Jerri [7] are much more complicated.

I would like to propose here an alternative theorem based on the Fourier-Bessel
transform in R2 (and more generally on the Radon transform in R n) but in which the
sample points are spaced equally. Of course, we can no longer expect to match f
exactlynit is known that the classical Shannon sampling is the only way to do that.
However, the L2 difference between the reconstructed function and f can be estimated
uniformly in the spacing.

Our general theorem applies to the Fourier transform on a motion group (Theorem
2.1). A corollary (Theorem 4.2) deals with the Radon transform on the tangent space
of a symmetric space. For the purposes of comparison, we present here the simple
case of R2 considered relative to the rotation action of S0(2). This is a direct analogue
of Theorem B where the sampling is done at equally spaced points (grid l/A) and f
is reconstructed to within 0(l/h).

THEOREM C. Let f satisfy the conditions of Theorem B. Then

where

f(re’)= Y e (;)ikb (2n+ 1)hx r, k +0
n----1

h , r, -- J(Sr)J S S dS, and 0 <- --.
2

The final section of this paper details some applications of these abstract theorems
to the theory of signal processing.

2. Preliminaries. Let (G, K) be a Riemannian symmetric pair of the compact
type. (We will recover Theorem C in the case G S0(3), K S0(2).) Then [4] we may
write g k + V, where V is a vector space complement for k in g, and we may form
the Cartan motion group associated with (G, K). This is the semidirect product V> K
of V by the adjoint action of K. Of particular interest will be sampling for functions
on V>K which are bi-K-invariant--these are in bijective correspondence with func-
tions on V which are K-invariant. In the special case of (G, K) (S0(n + 1), S0(n)),
this will amount to an approximate sampling theorem for rotationally invariant func-
tions on R, i.e., for the n-Hankel transform on R/.

Central to our analysis will be techniques from [2], where an approximation
theorem for matrix coefficients was obtained [2, Thm. 2]. The map 7rx" V>K-> G
defined by 7rx(v, k) =exp/x k generalizes the map R--> T" r--> e it/x, and gives the
structural link between the groups which enables us to "transfer" harmonic analysis.

I can now explain the idea behind the proof of Theorem 1. Consider the following
proof of Theorem A, which has been attributed to Kolmogorov.

Let f LIOLE(R) and suppose that suppf_[-S, S]. Then f(x)=ss f(w) e iw" dw. For each x we may expand w eiWX in a Fourier series on [-S, S],
obtaining

eiWX= E d,(x) e i("/2s)w,
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where d.(x) is as in Theorem A of the Introduction. Substituting back in, we have

f(x)= 2 d.(x) f(w) ei("/2s)w dw= 2 d.(x)f
n

The idea is to generalize the above proof, replacing R by V>K and [-S, S] by
the group G, via the contraction map

A set of irreducible representations of V>K of full Plancherel measure may be
described as follows (cf. [1], [8]). Choose a maximal Abelian subalgebra a of V, and
let M be the stabilizer of a in K. Given 0 a*+ and/ acting in ./-/ we have a
representation p,,, acting in

K, {h L(K, ./-/): i(m)h(km) h(k), m M, Vk K}

by (p,,(v, k)h)(ko)= e*(Adk’))h(k-ko).
For f L( V >K ), we define f(p,,,) B(H,,,) by

(f(p.)h)(ko)= I I ei’(Adk’V) h(k-lko)f(v, k) dudk.
v K

The Plancherel formula for V>K (cf. [7]) then states that forf C(V>K)

f(x)= 2 d, Tr(f(P,,4,)P,,4,(x)) I] dp(H)ddp,
/ze/ a*)

where P/ denotes a set of reduced roots for G on a.
Given/z M, we set

f(x) Tr (f(p.,4,)O,4,(x)) I-I 49(M,)
a*)+ P+

(The f are the analogues of the F, in 1.)
Let P denote the set of K-class one weights of a in a*. We may now state our

version of the sampling theorem.
THEOREM 2.1. Let f LI(VK) and suppose that
(i) s.,upp f c_ {P.,4," =< R}
(ii) f(P.,4,) has finite rank as an operator on H. .,4,.

Then f=. d.f., and each f. may be approximately reconstructed by, for v
korle V,

f.(v, k)= 2 d.,t 2 K ’*’’’e rt, f,.,e,, ko-, k +0
eP r,s,t,g=O

Here, for a suitable choice of basis for .K, (specified below),

tx,A Ii), (fl..(X))r.s (P.,i,/x(X))t,e dx

and

f,,.,e.,(x) | f(P.,4,).,(P..4,(X))e,, 1-I 49(H,,) dqb.
4,I<__R P+

The 0(1/A is uniform on compact subsets of V > K.
This theorem will be proved in the next section.
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3. Proof of the theorem. Before giving the proof, we will need some lemmas.
Letf LlfL2(V>K) and suppose suppf_ {p,.,: Itl_-< R} S,R. We then have

f(x)= [ Tr (f(p,,)p,,(x)) I-[ b(H,) db.

We may write xe V>K as x=(v,k)(ve V, keK) and using the fact ([3]) that
each K-orbit in V intersects a+ in just one point, we may write v- kofl, fl a+, and
ko e K. Our first lemma enables us to "pass fl from the group to its dual." We identify
a and a* by the Killing form (,).

LEMMA 3.1. Let d a, fl a*, I-* ll, k, ko K. Then

p.,(ko, k)= p.(kob, k).

Proof. This is simply a matter of looking at the definition of p,,,.
Using this lemma, we may write

(1) f(ko, k)= J Tr (f(p.,)p,,(koch, k)) H ch(H)

In order to analyse the trace, we choose an orthonormal basis for .K as follows
(cf. [1, 4]). Take a sequence 1, 2"’" of vectors in the lattice P of K-class one
vectors in a*/ such that

tj=

+ t*The vectors + 0n /-* Zj=I flj define integral weights and hence representations
o’,,, of G acting in

//,,,n {f C(G): (i)f(gt)= e’(*n’tf(g); (ii) Xf=O VX 7+}.

(Here /+= 0) g.)
oeP+

The images ./-/,.,,,[/ form an ascending union of subspaces that are dense in K,;
we denote by R- R,n the restriction map f->fl:. We choose an orthonormal basis
{ui} for K,, which is compatible with this structure in the sense that there exists a
sequence i(1), i(2). such that u(j), u(),..., ui(j+l)_ is an orthonormal basis for

For A B(./-/,), we will denote by A, the components of A with respect to this
basis, i.e.,

A, (Attr, Us)L2(K).
The assumption that f(p,.,) has finite rank implies that there exists M N such

that for all b,

f(p.,),, 0 V r, s >- M.

Thus
M

(2) Tr (f(p,,)p,,,(kob, k)) Z , (P,,)r.s(P,,a(ko6, k))s,r.
r,s=l

In order to demonstrate our estimate, we need an approximate identity on V> K.
LEMMA 3.2. For each > O, there is a nonnegative function K Coo(G) with the

following properties

i) supp K,

_
r(V>K)
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ii) is rapidly decreasing on G
iii) I(,5,A---AdimV(K,()7"t’A) is an approximate identity for L2(VK) as 0 and

iv) For all and for all e>O, there exists o>0 such that whenever < o,
[r,a(p.,,),*(v,k)-(p.,.)r,(v,k)l<O(1/A)+e (as A -) forall r, s 1,. .,Mforall
and for all v.

Proo Let B V be an Ad(K)-invariant set such that exp is one-to-one on B.
Choose a nonnegative (and nonzero) C function on V which is Ad(K)-invariant
and supposed inside B. Let (h).o be a nonnegative approximate identity for K (see
[5], 25.47).

Set =o log and let be defined by (g)=(@hg)(?(g)). (Note that
is one-to-one on BxK, cf. [2, 3].) Here, I denote by ;@h the function (v,k)-
;(v)h(k).

Since C, its Fourier transform is rapidly decreasing. An easy calculation
shows that

The latter is clearly an approximate identity for L(VK); in fact, letting (v)=
h dim v(v/h), we have

((d @h)* f)(v, k)= ff da(v-v)h(kT’k)f(v, kl)dv dk.

To prove (iv), we calculate in the same manner that
(.)(, p.,),.(v, k)=(; e’’ (v)h, u,(k- ko), u(ko))H.

By a suitable choice of , we have h. Ur arbitrarily close to u in .. On the
other hand, . e’k’(’)(V)=d * e’()(kov), and we calculate that . e’((v)
ei’ v (Vl) e-’’’ dVl.

Since we are integrating over a bounded set B, we see that
0(1/h). This gives (iv).

LEMMA3.3. For all g G, M, a*+ and l s, r M,

* (p.,6@;),,(g)= de Tr(d()(p.,6@;).,)’()(g).

Proo This holds since C(G).
We next summarize, in a form convenient to the present aicle, some results from

[1] and [2].
LEMMA 3.4. Let , + where a P_ and fl P+. en for all a*

--1(P..i6 ),.,.() 0 unless a

Proo Let T be a maximal torus in M. Then (p.,6@;1), transforms as
under the left action of Tl. On the other hand, p,q(g) transforms as X under left
action of T. Thus unless a = we have ohogonality.

LEMMa 3.5. ere is a constant M=M(A,R) such that whenever ]fl/h-6]<
Ah (fl P, a*+) and (v, k) BR,

M

Proo This follows immediately from [2, Thm. 3].
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(3)

Hence

M[(])./3(’rrx (t). k t.e p..g. v. k ,,e <

If we take into account the definition of K,.x (see Theorem 2.1), Lemma 3.6
follows immediately from (3).

LEMMA 3.6. For 1 <-- , s, r, <--_ M,

(p,, Tr- s,r( o’, ,,e K ’S’"e o’, )
where "0" depends on R and M.

Now

Now Lemmas 3.3 and 3.4 give

(/ g (p/z,,)r,s r;’)(r, (koCh, k)). d Tr {#((r)((p.,),.. r’)^(tr)(r(cr,(kob, k))}
oeG

sin M,d,

/3P t,=0
(((r.)((p.,).s zr’)^(o-,.)),.etr.(zrh (ko4), k))e.,.

Furthermore, by Lemma 3.3 of [2]

(4) [,dim v((Ko.a.x),(pg,n)r,s)(kodp k)-(K. [(p,.,),.s r’])(zrx (ko4), k)), <0().
(Note that the first convolution in (3) is in VK whereas the second is in G.) Equation
(4) holds uniformly for [4’[ < R.

From (3) and (4) we deduce

(5) ’p,,.,(koc/), k)r.-( * (p,.,). "rr-l)(zr (ko4), k)), < O()

(p,.6 r;1).(o-,.),.e | (p,.6 (zrl(g))). (o’,.(g)),.e dg
G

and by [1] Lemma 3.3, this is equal to

1 1

B

where B, { v, k V K
Now according to (3), the latter expression is, to within 0(l/A), equal to

aim v (O.,(X))s,r(O.,/.(X)),,e dx

which is by definition K,a t,

We may now prove Theorem 2.1.

Proof of the theorem. By (1) and (2), we have

r,s=l [R

Using Lemma 3.2 (iv), we have
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By (3.2)(iii), for each e > 0 we may choose a finite subset Po of P, independent
of A, such that

I(K8 * (p,n)r,s "trl)(Tr’x (koCh, k))
(6)

E d., E (8(r.,)((P.,.)r,s 7r’)^(cr..))(Tr(kob, k))e,,l< e.
P t,

Now, Lemmas 3.5 and 3.6 allow us to approximate ((p,), l)(,)t, to
within 0(1/A), uniformly for fl Po, by

and cr,.(Tr(koc,k))e., to within 0(l/A), uniformly for/3 Po, by

(8) (p.,3/x(kock, R))e,t.

Finally, from [1, (3.3)] and Lemma 3.5,

(9)

for l_-<t, u<-M.
Combining (6) with (5), (7), (8), and (9), we have

(10)

,dim V(K ,’IT;1)^(plz,/A)t,u

K’S’’e(n,)(p.,.)e,,(kodp k)

By (3.2)(iv), we also have

]/dim V(K 7l.-l)^(p,/A)t,ul_. 0(1
This fact, together with (3) and (10) gives

min (M,d,,)

fl P r,s,t,’=O

So, given e > 0 we may choose )to such that h > ho
min (M,d,13)

(x) E
r,s,t,g=O

The assumptions on f guarantee thatf is rapidly decreasing. Hence for each s, r, t,
and the sum

is finite. From this it follows, since e is arbitrary, that

min M,d,13)
A(x)- E E

O P r,s,t,g=O
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4. Corollaries and complements. To obtain a more precise analogue ofthe sampling
theorem, we would need also

where K, is independent of r, s, t, and ’, and 8 denotes the Dirac delta. This would
yield (for x (ko*7, k))

f(x)= 2 d.,/K, rh f ko,ke+

Unfounately, such a condition does not hold for K r’,’’. Neveheless, K’’’ is
"approximately" diagonal. Consider the right action of K on (p.).,. We have

(p,),,(x) (p,(x),

(p,()(-’ .), (. )).

It follows that K’’’= 0 unless ur and u, have the same K-type. It is similar for
u, and u. Our choice of basis thus implies that there is n(i) such that r and
(respectively, s and ) both lie between n(i)+ 1 and n(i+ 1).

In the special case (G, K)=(SO(3)), SO(2)), we have n(i)=i, and thus K is
diagonal.

COROLLARY 4.]. For Euclidean motion group M(2), the sampling theorem takes
te form

nN r=l

where

f(x) (f(S)p(x)),S dS

and

Kr(n, t) - Jr(S’rl)Jr(Sb)SdS.

(As usual, the J’s denote Bessel functions.)
By making certain restrictions on the function f we may also obtain simpler forms

of the sampling theorem. In particular, if f is bi-K-invariant f has rank one" we may
suppose that f(p)r,s 0 unless r= s =0. For this case ur= us 1, the identity on K;

p,,#,(v, k)oo [ ei’/’(k-’v) dk J(r/), where v kor/.

The argument on K-types given above shows that " ,s,,,e, 0 unless/z 1 and r s
:-0. Thus we see that

g’--Kz--AdimVII3, J(’0)J() I’Iaep+ ck(H,,)dck.
THEOREM 4.2. Let f be bi-K-invariant on G. Then
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COROLLARY 4.3. Let f be a K-invariant function on V. Then

With this corollary, taking (G, K)= (SO(n + 1), SO(n)), we recover the case of
even spacing for the n-Hankel transform on R.

5. Applications. In this section we should like to mention two possible applications
of the above theorems in the area of image processing and signal analysis. We will
restrict ourselves to exploitation of Corollaries 4.1 and 4.3, although it is clear that
the method would work more generally. Even in these special cases, work remains to
be done to implement the sampling in any practical situation. However, we believe
they indicate the relevance of the theory presented here to the.real world.

Example 5.1. Image reconstruction in the plane. In many applications, there is
interest in reconstructing a two-dimensional picture from a two-dimensional set of
data points that are equally spaced along radial lines at angles 01" 02"", trk, for
instance. As examples, we mention problems in geophysics 10], in radiology (the fan
beam problemmsee [3]) and in radar (see [11]).

Corollary 4.3 may be applied in this context to give an approximate reconstruction
technique: if the points are spaced at distance 1/A apart, and if the function f is
Fourier-Bessel band limited, then in polar coordinates, we have

wherefr(r/, O) Jf(rl, b) e-ir4" db _irtr
e and K is as in (4.1). Standard Shannon samp-

ling may then be applied in the angular variables, giving

f(rl, O)= , ,(2n+l) Kr(rl,)e-i(-nN k

This represents approximate reconstruction of f from its values at the points
(hi;t, 0).

Example 5.2. Digital signal processing. Another scenario in which our results
may be applied is that of a one-dimensional signal of which the n-Hankel transform
is known to be band limited, and which is being sampled at equally spaced time
intervals. This typically arises when signal sampling is done by a digital processor.
Corollary 4.3 then enables us to write

f(x)= 2 dK. x, f +0
k=O

where dk (2k + n -2)(n + k-3)!/(n -2)!k! is the dimension of the space of harmonic
polynomials of degree k in R and where Ka is as in Corollary 4.3. Again, this.shows
how to recover f to within 0(l/A) from evenly spaced data points.

Acknowledgment. The idea for this paper occurred to me during a seminar given
by I. Kluvinek. I gratefully acknowledge this source of my inspiration.
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Abstract. Turcotte, Spence, and Bau [Internat. J. Heat Mass Transfer, 25 (1982), pp. 699-706] contains
conjectures concerning the equation

V"=(V2-A(1-X2))/2

with boundary conditions V(- 1) V(1) 0, where A is a nonnegative parameter. For large A an appropriate
asymptotic expansion results in a version of the first Painlev6 transcendent, namely Y" y2_ s)/2 seeking
a solution such that Y(0)=0, Y(s)’--x/ as s->o. This was studied extensively by Holmes and Spence, who
conjectured that there are only two solutions. In this paper proofs of these conjectures are provided. During
one of these proofs it is shown how a computer language for symbol manipulation, such as MACSYMA,
can be used in a mathematically rigorous analysis.

Key words, boundary value problems, MACSYMA

AMS(MOS) subject classification. 34B15

1. Introduction and statement of results. In [2] Turcotte, Spence, and Bau have
studied the problem of vertical flow of an internally heated Boussinesq fluid with
viscous dissipation and pressure work. For the steady state flow under appropriate
assumptions they have obtained the following boundary value problem for the velocity
V as a function of the scaled position x, where the walls of the vertical channel are
at x=+l:

(1) V"(x) (V(x)2- A(1 x2))/2,

(2) V(1)= V(-1) 0.

Here A is a nonnegative parameter. They have studied separately the cases A -0,
A small, A intermediate, and A large. In the latter cases their numerical observations
have led them to conjecture that as A increases the number of solutions of (1)-(2)
increases without bound.

In studying the case A large, they have found it necessary to match an inner
expansion near the walls x + 1 with an outer solution valid in the interior. (The outer
solution is simply V +x/A(1 -x2).) They have found the appropriate inner variables
near x=-l to be

s=(l+x)/e, Y=ezV
where e =(2A)-1/5. In terms of these variables the lowest-order terms of the inner
expansion have been found to satisfy the equation

(3) Y"=(y2-s)/2

with boundary conditions

(4) Y(O) =0, Y(s)---x/- as

This problem has been, in turn, studied extensively by Holmes and Spence [1].
They have obtained several interesting results, which are summarized in 3. However,
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they left unanswered a key question that we address in this paper, namely, the number
of solutions of (3)-(4) that match the outer solution Y= +v/ at +c. We show that
there are exactly two such solutions. This had been conjectured by Holmes and Spence
on the basis of extensive numerical calculations. We give two proofs of this result.
One relies on detailed (four decimal place) estimates of the solution while the other
uses a symbolic manipulator (MACSYMA) to determine the number of zeros of certain
comparison polynomials and thereby implement the previous method with less effort.
The steps using MACSYMA are discussed throughout the. more standard proof. Note
that the result using MACSYMA is rigorous, because all computations using rational
arithmetic are exact. We make crucial use of Sturm’s theorem on the number of roots
of a polynomial in a given interval [3]. We also investigate the behavior of solutions
of the original problem (1)-(2). In Theorem 1 we prove the conjecture made by
Turcotte, Spence, and Bau.

Our results are the following theorems.
THEOREM 1. Let N(A) denote the number ofsolutions of (1)-(2). Then N(A)o

as Ao.
THEOREM 2. The differential equation (3) has exactly two solutions such that

Y(0) =0 and Y(s)-x/ as s-o. For one of these solutions, say Y+, Y’(0)>0, while

for the other, say Y_, Y’(O) < O.
See [1] and [2] for the implications of these results.

2. Proof of Theorem 1. This is by far the easier of the two results to prove. We
will show, in fact, that there are, for large A, many solutions of (1) that are even
(V’(0)- 0). The proof begins by describing the behavior of a particular solution of
(1). Let V denote the uniquesolution of (1) such that V’(0)-0 and V(0)--f.

LEMMA 1. The solution V increases monotonically to infinity at a finite blowup point
XA > 1. Further, "> 0 on (0, XA).

Proof. We consider the energy functional

E x
/’’’ /" /" /’ - A/"
2 2

so that

and E decreases as long as V’ is positive. Note that E(0)=0. If there is a first point
where ’" 0, then at that point E is positive, which is a contradiction. The rest of the
conclusions follow readily.

We now use a "shooting" method to obtain solutions of (1)-(2). It seems best to
"shoot" backward from x 1. Therefore let V0 denote the unique solution of (1) such
that V(1)= 0 and V’(1)=/3. We will show that for large A there are many values of
/3 such that V(0)=0, which will prove Theorem 1.

LEMMA 2. If fl O, then V3 is negative on [0, 1).
Proof. In this proof, V denotes Vo. By differentiating (1) it is seen that V"’(1) A >

0, so that in some interval to the left of 1, V < 0. Suppose that there is a first positive
xl to the left of where V 0. Let F be the energy function defined by

V
F=(V’)2-+AV-Ax2V.

3
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Then

F’ -2AxV

so that as x decreases from 1, F decreases from zero as long as V is negative. However,
at xl, F=> 0, which is the desired contradiction.

Now let U(x)= V(x)- Vo(x). Then

u"(x) ( f," + Vo) U(x)

so that U oscillates frequently when V+ Vo is large and negative. It follows from
Lemma 1 that f’-<_-4A(1-x2) on [0, 1]. Thus, on [0, 1/2], say, V0+ f" is large and
negative for large A. Hence U must vanish many times in this interval, for large A.

On the other hand, it is easy to show that if/3 is large (for fixed A), then V-
vanishes only once in [0,^ 1), at a point close to x 1. The graph of V cannot be
tangent to the graph of V, and it is then seen that the zeros of V- V that exist when
/3 0 must leave the interval [0, 1) by crossing to the left across x 0. As successive
zeros cross x =0, V(0) must alternate in sign, since V’(0)=0. Therefore, between
values of/3 such that V(0) =0 there must be values of/3 such that V3(0) =0, and
these correspond to solutions of (1)-(2). This proves Theorem 1.

3. Proof of Theorem 2. (i) It is convenient to rescale the equation, setting y(x)=
aY(bx), with a =4/5 and b a2/2. This leads to the equation

(5) y" =y2--X.
We want a solution such that

(6) y(0) 0, y v/ as x

As before, we use a shooting method. Let yy denote the solution of (5) such that

y(0) 0, y’(0) y.

Holmes and Spence 1 have proved a unique positive 3’ exists such that y satisfies
(5)-(6), and there is at least one such value of 9’ that is negative. They show that the
solution with 3’ 0 does not satisfy (3). They have conjectured that there is only one
possible negative 3’. Holmes and Spence have further proved that for each negative y,
there is a first x x>0 where y’.,,(x)=0. Finally, they have proved the following
important result.

LEMMA 3. Suppose that in some interval )’1 < Y <= ’)t2 ( 0, X7 is a strictly decreasing
function of y, and also that yv(xr) is decreasing in % Then there is at most one value of
3, in this interval such that y satisfies (6).

Recall that Holmes and Spence have shown at least one 3’* exists such that (6)
is satisfied if 3’ 3’*. We prove Theorem 2 with the following two additional lemmas.

LEMMA 4. Any possible y* is less than -2.3.
LEMMA 5. The hypotheses of Lemma 3 hold with Yl =--00 and ’/2---2.3.
Proof of Lemma 4. We use the functional

y3 (y,)2o xy ---i-,

where y(x) is a solution of (5)-(6). Thus, Q(0)=-3,2/2 and

(7) Q’ -y.

Note that, on some interval (0, e), Q < 0 and y < 0. The following useful result is easy
to prove.
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LEMMA 6. If Q > 0 before y > 0, then y cannot satisfy (6).
Proof. If (6) holds then there is a first Xl with y(xl)=0. From (7) we see that

Q(Xl) > 0. However, the definition of Q shows that Q(xl)<-_0. This proves Lemma 6.
Continuing with the proof of Lemma 4, our method requires step-by-step estimates

of the solution, via a sequence of further lemmas.
LEMMA 7. For 0 < x < .6, as long as y’< O, y" has at most one zero.
Proof of Lemma 7. Consider the functional

H (y,,,)2/2 y (y,,)2 2y,,(y,)2.
Then H(0) 1/2 and
(8) H’= -5y’(y")2.
If there are at least two numbers b > a > 0 in (0, .6) where y" 0, and y’ < 0 in [0, b),
then (8) implies that H _->1/2 in [0, b]. Therefore, from the definition of H, y’" 30 at
x--a and x- b. We may therefore assume that y"< 0 on (0, a) and y"> 0 on (a, b).
From (8) and the definition of H we conclude that

(9) y’"(a) _-> 1,

(10) y’"(b) _<- -1.

Differentiating (5), we obtain

y’’ 2yy"/ 2(y’) _-> 2y3.
On (a, b), lYl < v/, so y’’ -> -2(.6)3/2. Integrating this and using (9) gives a contradiction
to (10). This proves Lemma 7.

Continuing with the proof of Lemma 4, we need Lemma 8.
LEMMA 8. Suppose that y < O. Ify" has two zeros on (0, xv] where xv is the first

zero ofy’, then y cannot satisfy (6).
Proof. Again let a and b be the first two zeros of y", and assume that y’< 0 in

[0, b). From the previous lemma we see that b > .6. Also, as before, y’"(a) > 1, y’"(b) <
-1, and y">0 on (a,b). It follows that y(b)=-x/ and y’(b)>--1/2x/. Therefore,
Q(b)>-2bE/a/3-1/(8b)>O and Lemma 6 implies the result.

As we continue the proof of Lemma 4 with the use of Lemma 6, we introduce a
key method of polynomial estimates of the solution. This method can be implemented
with MACSYMA. It is convenient to introduce operators on the space of polynomials
as follows:

I(p)(x)= p(s) ds,

J(p)(x)=),+I(p)(x), K(p)(x)=(p(x))E-x,

M(p) IJK (p) yx + (p2(t) t) dt dx.

We then define a sequence of polynomials yo(x)- 0, y+l M(y). As long as yE(x) is
negative, we have

(lla) 0> y2j(x) > y2j+_(x) > y(x) > y2+l(X) > y2-l(X),
(1 lb) 0 > y(x) > y.+2(x) > y’(x) > yj+l(X) > y_(x)
for j 1, 2, 3,. .. The repeated use of these inequalities will give our result.

The "hand" computation first uses Y2. Easy estimates show that y2(x)< 0 for
0 < x _-< 1.75 and -2.3 =< y < 0. At this point, the "hand" computation requires that we
break up the interval [-2.3, 0) into [-2.3,-2.1) and [-2.1, 0). Using Y2 and (7), we
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show that Q(1.75) > 0 if -2.1 -<_ y < 0. In the range -2.3 _-< y =< -2.1, the estimate using
Y2 is inadequate. However, it is difficult to work with Y4, since it involves terms as
high as x38. Instead, we observe that y2 can be truncated. We find that the inequalities
Y < Y2 <-- 0 imply

y2X4 89
(12) Y =< )72

12
+ 7x -.166x < O.
90

From this we have

y’> JK
and

(13) y>
We substitute x 1 in these inequalities to obtain

(14) y(1) -> -2.062, y’( 1 >- 1.28

if -2.3 =< y _-< -2.1 and Y2 -< 0 on (0, 1).
Next, truncating (13) gives

y(x) > Y3(x) .07 ’)/2x4 X3/6 + yX

for x in [0, 1] and y in [-2.5,-2.1]. From this,

y <- M(fi3)
and this inequality implies that

(15) y(1) <- -1.9, y’(1)_<--1.1.

Finally, using (13) and the fact that Q’---y, we obtain that

(16) Q(1)-> -1.55

for y in [-2.3, -2.1]. Again, all of this derives from the observation that y2 ( 0 on [0, 1).
By this point the reader will have a clear idea of our method--repeated application

of the inequalities (11) with appropriate truncations to make the calculations tractable.
Our goal is still to prove that Q becomes positive before y, if y_->-2.3. Continuing on
from x 1, with (14)-(16) as starting values, accomplishes this. At the same time, it
can be verified that y2 (0 as long as necessary. At this point, however, we turn to a
proof using MACSYMA.

4. Proof of Lemma 4 using MACSYMA. We can, of course, simply use MAC-
SYMA to check the various steps of the earlier proof, and indeed, this has been done.
However, we can better illustrate the utility of symbolic manipulation as a tool for
this sort of proof by an application that does not need the nontrivial truncation that
obtaining (12) required. In fact, it turns out that Lemma 4 can be strengthened, and
this improvement helps give a complete MACSYMA proof of Theorem 2.

LEMMA 4M. If-2.4<--_ y < 0, then Q =0 before y =0, so that (6) cannot hold.
Proof We use Sturm’s theorem [3]: Let p be a polynomial of degree n. Define

polynomials Po, P,’’’,Pr as follows" po=p, p=p’, pi=qipi+-pi+2 where the qi

are polynomials, deg (pi/2)<deg (p+), and pr0, p/ =0 (Euclidean algorithm).
Then the number of roots of p in an interval (Xl, x2], not counting multiplicity, is
j-k, where j is the number of sign changes (ignoring zeros) in the sequence
{po(xl),pl(x),"" ,p(x)} and k is the number of sign changes when the p are
evaluated at x2.

It is now clear how, in principle, MACSYMA can be used to give rigorously the
number of roots of a polynomial p with rational coefficients in an interval with rational
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endpoints, since MACSYMA calculations with rational numbers are exact. However,
limitations ofmachine time and memory mean that all is not completely straightforward.
With the VAX 8600, polynomials of degree 15 or 16 can generally be handled within
10 minutes of CPU time (although this depends on how many digits are required to
give the coefficients as fractions), but machine time and space requirements quickly
become a problem for polynomials of higher degree.

Further, this theorem is for a polynomial in one variable, and our comparison
polynomials yj depend on x and y. Therefore some investigation is necessary. The
hand calculations made earlier facilitate this. We first prove Lemma 9.

LEMMA 9. If 0 <--_ X <= 1.8 and -2.4 <_- y _-< 0, then y < O.
Proof. We use a series of intermediate results.
LEMMA 10. If --2 <= 3" <= 0 and 0 <-_ x <= 1.8, then Y2 < O.
Proof. Since Y2 is of degree 8 in x, this can be checked with Sturm’s theorem

(computations done with MACSYMA) for y 0 and 3’ -2. Since d2y2/d3"2 is positive,
y2 must also be negative for the intermediate values of 3’.

Now let I and J denote the intervals (1.7, 1.8] and [-2.4,-2], respectively.
LEMMA 11. y> 0 in I X J.
Proof. y(1.7, 3’) is a quadratic polynomial in 3’ and it is easy to check that it is

positive for 3’ J. Also, y yl2- x. But y’ =-x < 0, while d2/dx2(-,f-)> 0. Again, we
easily check that (yl2 x) > 0 in I x J.

LEMMA 12. y < 0 in I X J.
Proof. y(1.7, 3’) is of degree 4 in 3’. With MACSYMA this is easily found to be

negative for 3’ in J. Also, y y22-x. Further use of Sturm’s theorem shows that for 3’
in /, lye(x, ’)1:< 1.8 for x 1.7 and x 1.8. Hence, from Lemma 11, y <0 in I x J.
This implies Lemma 12.

LEMMA 13. y> X in I x J.
Proof. The polynomial y(1.7, 3’) is of degree 8 in 3’, so Sturm’s theorem can be

used to show that y(1.7, 3’)> 1.8. Now Lemma 13 follows from Lemma 12.
LEMMA 14. y>0 inlxJ.

Proof. Similarly, y(1.7, 3’) is of degree 8 in 3", and, using MACSYMA, we easily
show it is positive. Lemma 14 therefore follows from Lemma 13.

To prove Lemma 9, we first use MACSYMA to check that y_ is negative for x in
(0, 1.7) and 3’ in [-2.4, 0]. Hence, by (11), y < Y4 < Y2 < 0 in this region. If -2 _-__ 3’ _-< 0,
then these inequalities hold up to x 1.8. For 3’ in J, we observe that y < Y4 as long
as y4 > y22. Since y2 is increasing in/, the last inequality can only fail if, at some x in
/, Y4 + Y2 0. As a result of Lemmas 11 and 14, to prove Lemma 9 we need only check
that y4 "+’y2 -< 0 at x 1.8, 3’ in J. This polynomial, of degree 8 in 3’, is again easily
checked. This completes the proof of Lemma 9.

Lemma 4M is a consequence of Lemmas 6 and 9 and the following lemma.
LEMMA 15. If 0 < --3’ _--< 2.4, then Q(1.8) > 0.
Proof. From (11) and (7),

Q(x) >= y4(s) ds
2

for (x, 3’) in the region described in Lemma 9.
Setting x and using Sturm’s lemma on -< 3’ =< 0 gives the result.

5. Proof of Theorem 2. (ii) The idea here is to use the variational equation for
(5). This is

(17) w" 2yw.
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To show that the hypotheses of Lemma 3 are satisfied in (-, -2.3), which is necessary
for the "hand" proof, we must show that x, the first zero of y, and y,/(x,/) are strictly
increasing functions of xv in an appropriate interval.

It is convenient to use the notation y,(x)= y(x, 3") in this section. Recall that 3’*
denotes some value of 3’ such that (6) is satisfied. We show first that y(x,, 3") is strictly
increasing in (-az, 3’*).

Note that from the definition of xv,
d Oy(x, 3")

w(x, ,,,),
d3"

[y(xv, 3’)1
03’ x=x,

where w(x, 3") is the solution of (17) with y y(x, 3") and w(0) =0, w’(0) 1. The Sturm
Oscillation Theorem implies that w(x, 3’) > 0 for 0 < x _-< xv if

(18) -2xEy(xv, 3’)< 7r2.
The "hand" proof of (18) begins with the relations

X 3"2X41____"+893"x (.166)x3(19) )73(x) .07 3’2x4---+ 3’x < y < )72
90

which hold as long as 372 < 0.
The key step is to find upper and lower bounds in terms of 3’ for xv. Numerical

and asymptotic calculations suggest that these bounds should each be of the form
-k/3"1/3 for some k, and numerical experimentation suggests the values 1.32 and 1.85
for k. Therefore we define an initial value Xo -1.32/3’1/3, and set X -"-1.85/3’1/3.
Substituting Xo into (19) and truncating appropriately, we obtain the relations

.64 .0274 .63 .028
<y’(20) (.3863)3’ 3"2/3 3’7/3= (Xo)-<(.34)3’ 3"2/3 3’2/3

and

.331 .0045 .327
(21) -(1.099)3’2/3++ 3’8/3 -< y(Xo) <- --(1.0894)3"2/3 -I-.

We also see that 72(xl)< 0.
To prove (18), we first show that y"> 0 on (Xo, xv). This implies that

y(xv) > y(xo) + y’(xo)(X, Xo),

and substitution of the estimates for x and Xo into x2y(xv) yields (18).

6. Proof of (18) using MACSYMA. Our goal is again to prove (18), and the
technique is the same as before; that is, we find upper and lower bounds for xv, the
first zero of y’, and then use the comparison polynomials to estimate x2y(x) at x.

A minor complication in this section is the need to consider all 3’-<-2.4 (from
Lemma 4M). Sturm’s lemma requires consideration of polynomials in 3’ over a finite
interval. However, we can circumvent this by using MACSYMA to prove the following
lemma.

LEMMA 16. If 3"<=-lO0, then y cannot satisfy (6).
Proof We can readily see, even by hand, that y3(1)> 0 if 3’ <-100. Thus the first

zero of y must come before x 1. It is easy to show, further, that mino_x___ y(x)
as 3’ -oo. From this we quickly see that y’(x) oo, and the result follows.

Nevertheless, implementing Sturm’s lemma was a little harder than expected and
proved to be a valuable lesson in using these techniques. By Lemmas 4M and 16, we
must obtain the desired estimate for -100-< 3’-<-2.4. It turns out that if we could
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obtain the estimate at )" =-2.4, then using Sturm’s lemma gives the same estimate in
-100< ),<--12/5.

Initially, then, we tried to demonstrate (18) for 3’ )’o -12/5. Using y we first
obtain a lower bound on Xo. As before, we look for this estimate in the form -k/8o,
where 8o )’/3. From y we find that k 7/5 is sufficient. That is, y, and hence y’,
are negative at x=-7/(56) if--1001/3<6<--6o Also, y>0 for x>-7/(56), which
implies that y">0 .as long after -7/(58) as Y2 <0.

To obtain an upper bound for x, we must use y., looking for kl such that
y2(-kl/6) < 0 and y’3(-k1/6)> 0, if 6 =< 80. We found that kl 191/100 satisfied these
conditions. Unfortunately, these estimates are insufficient. We find that if Xo =-7/(580)
and xl =-191/(1006o), then

(22) -x(y3(xo) + y’3(Xo)(Xl- Xo)) > 7r2/2.
In other words, the estimates based on Y2 and Y3 are insufficient, and we must use the
38th-degree polynomial Y4. In principle, this is not difficult, because we need to use
y4 only to improve the estimate of Xo, and we can easily show that y2(xl)<0. In
practice, however, it seemed we would be unable to implement the method because
to verify (18) on an interval ()’1, yo), we would need to apply the Euclidean algorithm
to the polynomial P(6)=-637y4(-k/6), where k is chosen so that y, and hence y’,
is negative at -k/6o. This polynomial is of degree 40, and in general, as observed
earlier, it seemed that exactly implementing the Euclidian algorithm with rational
arithmetic would exceed time and space limitations on the computer. Fortunately,
however, the polynomial P, while of high degree, only contains nine terms, and the
computation does succeed in a reasonable time. We find that y’4(-8/(56)) is negative
for --1001/3 6 6-0, where 8-0 =-1,338/1,000 is an upper bound for 80. Using Xo
-8/(58) and x1=-191/(1006) in (22) yields the required reverse inequality for
-1001/3 < 6 _-< go.

7. Continuation of proof of Lemma 5. We have only to show that x is increasing
in 3’ for 3’--< 3/*. One technical difficulty is the possibility that there are values )’2 < 7*
such that y(x, )’2) attains both a relative minimum and relative maximum in the interval
0<x<xv.

LEMMA 17. Suppose that )" < )’* and as before let xv denote the first positive zero

X,),of y’(x, )’). If O<x<x*, then y"(x, )’)> O. If y’(a, )’)=0 at some first a in (x, *
then y(a, )’) > y(a, )’*).

Proof First, we determine some crucial properties of y(x, )’*). It easily follows
from (5) that the first zero ofy"(x, 3’*) lies in the interval (0, 1/)’.2)

___
(0, 1/2). Furthermore,

Lemma 8 implies that y"(x, )’*) cannot have a second zero on (0, xv*). By hypothesis,
y’(xv, )’)=0 and 0<xr < x.* The definition of xv implies that y"(xv, )’)>= O. Suppose
that y"(xv, )’)= 0. Then xv must be at least the second zero of y"(x, )’), and Lemma 8
implies that xv >.6.= Furthermore, (18) guarantees that if y(xv, )’)>y(x*=, )’*), then
y(xv, )’)< y(xv, 3’*). But then y"(xv, y*)< 0, a contradiction. Therefore, y"(xv, )’)> O.

We assume, for the sake of contradiction, that y’(b, )’)=0 for some first b in

(xv, xv*) and that y(xv, y)>= y(b, )’*). Then y"(b, 3’*) <- 0, a contradiction, which proves
Lemma 12.

LEMMA 18. Let )’2 < )’1 )’*. Then xv < xv,.
Proof Suppose, on the contrary, that there exist )’2 < )’1 =< 3’* with xr-> xv,. This

and (18) imply that y(x, )’2) <y(x, )’1)<0 for all x in (0, xv,). Therefore y(xv,, )’2)<-
y(xv,, )’1) and

(23) y’(xv,, )’2) _-<0.
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Let -= y(x, 3,2)y’(x, 3,1)-y(x, 3,1)y’(x, 3,2). Then

’r’= (x + y(x, 3,2)y(x, 3,1))(y(x, 3,1)- y(x, 3,2))>0

for all x in (0, xv,). Since ’(0)=0, this implies that

(24) ’(x,,) > 0.

However, (23) and the definition of - lead to

e’(X,l -y(x,,)y’(x,, 3,,) <-- O,

contradicting (24). This proves Lemma 18.
From (18) and the variational equations (17) it follows that d/d3,[y(xv, 3,)]>0

for all 3, < 3’*. Therefore if 3,2 < 3,1 < 3,* then y(xv2, 3,2)< y(x,,, 3,1). This completes the
proof of Lemma 4 and Theorem 2.
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EQUILIBRIUM OF AN ELASTIC SPHERICAL CAP PULLED
AT THE RIM*

P. PODIO-GUIDUGLI, M. ROSATI:I:, A. SCHIAFFINO, AND V. VALENTE:t:

Abstract. For thin and shallow caps the title problem is carefully formulated. The outcome is a nonlinear
system of two ordinary differential equations of second order; this system is amenable to a variational format
through reduction to a single functional equation, which turns out to be the Euler-Lagrange equation of a

suitable energy integral depending on a load parameter 7ro and a thickness parameter Ko.
It is shown that, for all admissible values of the parameters, a global minimizer exists that is unique

for sufficiently large outward tractions; moreover, no matter what the cap’s thickness, such a global minimizer
tends to a fiat pseudoconfiguration when 7to-> +. It is also shown that, for 7r 0, in addition to the
unstressed reference configuration, a Ko-sequence of local minimizers exists, interpretable as everted stressed
configurations of the cap; this sequence, for r0--> +c, tends to a pseudoconfiguration that is the reflection
With respect to the horizontal plane of the middle surface of the cap in its reference configuration.

Key words, nonlinear shells, minimum problems, equilibrium stability

AMS(MOS) subject classifications. 34B15, 73H05, 73L99

1. Introduction. It is common for a thin and shallow elastic cap to be made to
snap from a load-free and stress-free reference configuration into another equilibrium
configuration, still load-free but no more stress-free, characterized by a macroscopic
change in sign of the surface curvature.

A process through which such change in equilibrium configurations takes place
is called an eversion, and the resulting configuration is called an everted equilibrium
configuration. Indeed, the possibility of eversion of spherical shells, tubes, etc. is one
of the mundane facts that best demonstrate the lack of uniqueness inherent in static
problems of finite elasticity (cf. the discussion with illustrations given by Truesdell in
[1]; the eversion into a spherical form of thick spherical shells has been considered
by Antman in [2]).

Common experience shows how rather small disturbances induce the cap to snap
back from the everted to the reference configuration; this suggests that the energy
functional should attain a local minimum at the everted configuration.

Our paper is organized as follows. Section 2 is devoted to constructing the model
of a spherical cap uniformly pulled along its rim by outward horizontal tractions.
Section 3 covers the mathematical analysis of the resulting variational problem.

Care must be exercised in formulating this problem at a tractable level of generality,
especially if we want to specify which simplifying hypotheses (among the many which
shell theory practitioners use in a scattered and sometimes contradictory way) are
going to be accepted, and under which form. Our formulation opens the way to tackle
also other similar equilibrium problems, as it allows for a variety of meaningful loading
and boundary conditions, in addition to those covered here. This is not the case for
other related studies, where rather artificial boundary conditions appear to be essential
for successful mathematical analysis.

A spherical cap has two aspect ratios, thickness and shallowness, defined by (2.1)
and (2.2) below. In 2.1, we give a succinct account of the kinematics of axially
symmetric deformations of spherical caps of arbitrary thickness and shallowness. In

* Received by the editors October 16, 1987; accepted for publication (in revised form) August 1, 1988.
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2.2, we carefully state the hypotheses underlying the notion of a thin cap. Roughly
speaking, our thinness hypotheses, in the spirit of the semiinverse method, seek
equilibrium displacements that have a particularly simple representation and that, in
addition, give rise to strain states such that material fibers only suffer moderate stretching
at the middle surface. In 2.3 we stipulate that our cap is made of a homogeneous
elastic material of the Saint-Venant & Kirchhott type" this constitutive law, featuring
a linear relationship between nonlinear measures of strain and stress, has the merit of
simplicity (it also has drawbacks; cf. [3]). Integrating over the latitude and the thickness
coordinates, we obtain the total energy functional as the sum of a stored energy
functional and a loading potential; then, in 2.4 and 2.5, respectively, we derive the
relative field and boundary equations. Finally, in 2.6, we give these equations the
simplified form appropriate to shallow caps and arrive at Problem , i.e., a semilinear
system of two ordinary differential equations of the second order, with linear boundary
conditions, depending on two parameters" a parameter 7to, which is directly propor-
tional to the applied load, and a parameter Ko, which is inversely proportional to the
cap’s thickness.

In 3.1-3.3 we select suitable weighted function spaces for Problem , introduce
a pair of Green operators associated with the principal part operators in that problem,
and end up reformulating it as a single functional equation whose solutions are the
stationary points of a functional F depending parametrically on 7to and Ko. We then
look for global ( 3.3) and local ( 3.4) minimizers of this functional. Our main findings
may be summarized as follows.

For all values of 7to, that is, no matter whether the cap’s rim is pulled or pushed,
and for all possible values of the thickness parameter o, there exists at least a global
minimizer of F.

When the applied load is a sufficiently large outward traction, the global minimizer
is unique (cf. Theorem 3(i)-(iv), and Theorem 4, 3.3); moreover, for every o>0
fixed, when 7to- +c such global minimizer tends uniformly to a pseudoconfiguration
of the cap that is not an equilibrium solution, but rather would correspond to "flatten-
ing" the cap into a disk under extremely high loads (cf. Thm. 5, 3.3).

When the value of 7to falls into the range of possible nonuniqueness for global
minimizers and, in addition, ro is greater than a positive number depending on 7to,

the functional F is not convex (cf. Theorem 3(v)). In particular, F is not convex when
zro 0. In this situation, we find that for sufficiently thin caps there exists a sequence
of local minimizers. This sequence, when o" +, tends to another pseudoconfigur-
ation of the cap that is not an equilibrium solution, but may be described as the result
of everting the reference configuration of an extremely thin cap with no bending
resistance (in fact, a membrane) into its reflected image with respect to a horizontal
support plane.

Thus, although we are unable to produce everted solutions explicitly, we believe
we have sufficient grounds to claim that, at zero load, our model indeed accounts for
eversion of sufficiently thin caps. This claim is substantiated by numerical computations
presented in [4]; in particular, the everted shapes of Fig. 2 exhibit not only the overall
change in curvature alluded to above, but also the expected flaring in the proximities
of the cap’s rim.

2. Formulation. Let {O; i,j,k} be an orthonormal Cartesian frame, and let
{R, O, } be a system of spherical coordinates centered at O (see Fig. 1).

Given three positive numbers Ro, po, and 00, set

Po(2.1) e .=
Ro
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k

FIG.

and

1 -cos t9o(2.2) n: sin 19o
and consider the region

(2.3) Re]Ro-Po, Ro+Po[, O e [0, Oo[,

of thickness 2e and shallowness 27. We will interpret as the reference configuration
of a spherical cap comprised of an elastic material of Saint-Venant & Kirchhott type.

2.1. Kinematics. A displacement of is a smooth vector field u over such that
the deformation

(2.4) X--x f(X):= X +u(X)
is smooth, orientation preserving, and one to one;

(2.5) F:=Vf and H:=Vu=F-I,
with I the gradient of the identity mapping, are the deformation and the displacement
gradient, respectively. The linear and nonlinear deformation measures E and D are
based on H and F"

(2.6) E:= 1/2(H+Hr), D := 1/2(rr-l) E+1/2HH.
Let X Xi+ X=j.+Xk be a typical point of % having spherical coordinates

(2.7) Z

At X, the covariant basis is

(2.8) E := 0zX, for A= 1, 2, 3;

as we will deal only with the so-called "physical" components of tensorial quantities
throughout this paper, we introduce the associated orthonormal basis

:= E =sin e+cos k, := R-1E =cos e- sin k,
(2.9) ,:= (R sin )-E, e’,
where the unit vectors e and e" are defined to

(2.10) e:= cos i+ sin j, e+/-: -sin i+ cos j.



646 P. PODIO-GUIDUGLi, M. ROSATI, A. SCHIAFFINO, V. VALENTE

We here restrict attention to axially symmetric deformations. Accordingly, the
displacement vector u has components

u := u" u(R, (R)), ub:= u o uo(R, (R)),
(2.11)

u,:= u" E.-=0;

the displacement gradient H and the linear strain measure E have nonvanishing
components

(2.12)

and

HRR gIR, R cot 0uo),

HOR UO,R,

ERR HRR, Eoo Hoo, E,, H,,,
(2.13)

1 1
Ego " ngo "F Hog (UR,(.) -IL" RUo,R UO),

respectively. The nonlinear strain measure D has nonvanishing components

DRR HRR + 1/2(HeR + H.) R), Doo Hoo+ 1/2(Hoo2 + Heo),
(2.14)

D,t..s. Ha,.+1/2Ha,, D.o=1/2(Ho+ Ho)+1/2(H.H.o+ HooHo).
For axially symmetric deformations, it is easy to believe that u(R,. and uo(R," ),
provided their common domain of definition is extended in the obvious way, must be
even and odd functions of O, respectively, for every fixed R ]Ro- P0, Ro + po[. Thus,
in particular, all of UR,(R," ), uo(R," and HRo(R," vanish at O 0.

2.2. Thin caps. To motivate some simplifying hypotheses that will prove crucial
to our further developments, we now lay down counterparts adapted to the present
context of the classical hypotheses of Kirchhoit’s thin plate theory [5]-[9]. Our
hypotheses are, for R R0,

(2.15)

(2.16)

(2.17)

DRO DR O,

DRR =0,

Doo D,, Do, 0.

As is well known, (2.15) and (2.16) express, respectively, the requirement that a radial
material fiber remains, at the point where it crosses the middle surface, both orthogonal
to the middle surface itself and unstretched. Equation (2.17) expresses the requirement
that the material comprising the middle surface suffers no stretching in any conceivable
deformation of the cap.

Note that for axially symmetric deformations, (2.15)2 and (2.17)3 are identically
satisfied. In view of (2.14), the remaining equations can be written as

(2.18) oHo(1 + HORR)+ HR(1 + Hoo)= 0,

(2.19) (I + Ha)2 + (Ha) 1,

(2.20) 1 + Ho)2 + (HRo)u 1,

(2.21) (1 + H,t,)u 1.
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(Here the superscript denotes evaluation at R-Ro.) This suggests that we look at
situations when

(2.22) IH,I << 1, Inol << 1, IH,,I << 1.

It follows from (2.22) that all of the above conditions of Kirchhott’s type are satisfied,
except for (2.18), which reduces to

(2.23) no+H 0,

and the consistency condition

(2.24) (Ho) << 1.

On adapting a procedure that has proved to be expedient in the case of plates ([8]),
we look for solutions of (2.18)-(2.21) having the following form:

ug(g, O) U0R(O) + (R)w(O), g Ro(2.25)
uo(R,O) Uo((R))+(g)u((R)), st(R) := ’Ro

implicitly restricting attention to thin caps.
We find that hypotheses (2.22) can be equivalently written as

1 1 1
(2.26) R--- Iwl << 1, lu + u,ol << 1, [u + cot Ou << 1,

whereas (2.23) is satisfied if

(2.27) u u o
U R,O"

Accordingly, we write (2.25) as

(2.28) u(R,O)=uR(O), uo(R,(R))=u(O)+(R)(u((R))-UR,O(O)).
Note that the parity properties requested for u(R,. and uo(R," are guaranteed if
we assume that

(2.29) U0R( is even and u(. is odd.

From (2.12)4,5 we obtain that

1
u R,O) HOR --HRo(2.30), HOR o (Uo o -Ho,

likewise, from (2.12),.3 it follows that

(2.30)2 HRR 0,
(2.30)3 H,, H,,+ sr/-:/,a, with/.:/0, -cot OHRo,
(2.30)4 Boo Ho+ ’/:/o with/:/o --HRo,o.

We are now in a position to use (2.14) and (2.30) to evaluate the nonvanishing
components of the nonlinear strain measure D. These are"

(2.31) Doo
with

(2.32)

1 1 1
/’/R,O)Dgo Hgo +" H o --oo U + uo,o + "oo Uo o 2

1D,. H,, 0 (u + cot Ou),
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and

(2.33)

/o =/:/o + (Ho+ Ho)(/:/o +/2/o)

t/R,O),Oo

cot O

Ro UR,O).

0 0or 1/2(2/x + X )((Do)2 + (D,,)2) + ADooD,,,

(2.38) &0 (2/z+X)( 0 "0DooDoo+DD)+ A o oDooD+Do),
0 (2+)((o)+())+2DooD.

Integrating over the latitude and the thickness, we obtain

=4R e(3+ea) sinOdO+2e3 #sinOdO
3 o

(2.39)
3 o+2e l+e sinOdO

d0

where e is the thickness parameter (2.1). Adhering to a common practice (cf., e.g.,
[10]), we take

(2.40) R 3e sin dO+ sin d

We stipulate that the cap is pulled along its rim := {Xe0lO=Oo} by a
horizontal outward traction , of constant magnitude p per unit area,

(.4

with e defined by (2.10). The associated loading potential is

(2.42) H := [ . ;

(2.37)

where

2.3. Energy functional. For a Saint-Venant & Kirchhoff material, the stored energy
density is

(2.34) o" := tz II)l +1/2x (trace (D))2,
with z and A two constant material moduli;

(2.35) ; := f r

is the associated stored energy functional. The following constitutive law:

(2.36) S:= Oao’= 2zD+ A trace (D)I

delivers the stress accompanying D.
In view of (2.31)-(2.33), the integrand in (2.35) can be written as follows:

r(R, O) tr(O) + sr(R)#(O) + 1/2’(R)t(O),
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by use of (2.11) and (2.28), integrating again over the latitude and the thickness, we
arrive at

4r
II p--- R sin (R)o(3e(sin OoU((R)o) + cos (R)oU(Oo))

(2.43)
+/33 cos o(U([)o)- UR,O(O))).

Suppose now that we would be willing to stipulate that the vertical component
of the displacement vector vanish along the cap’s rim:

(2.44) u k 0 for all points of .
This assumption would imply that

(2.45) cos Oou(Oo) sin Oou(Oo)=0, sin Oo(u(Oo)- u,o(Oo))=0.
On recalling (2.30) we note that, as sin Oo0, the geometric condition (2.45) is
equivalent to

(2.46) HoR(Oo) =0.

Motivated by the above argument, we choose to reduce the loading potential (2.43) to

(2.47) II=p47rRge sin Oo(sin Oou(Oo) + cos Oou(Oo)),

stipulate that (2.45) holds, and dispense with (2.45).
In conclusion, we will request that the energy functional

(2.48) ITu, u} := E{u, u}-II{u, u},

with E and 11 given by (2.40) and (2.47), respectively, be stationary over the class of
variations (v, vo) obeying the geometric condition (2.45)

(2.49) cos OoV(Oo)- sin OoVo(Oo)=0.

Condition (2.49) guarantees that the variation vector

v := VRER + voEo
has null vertical component at the rim. We will also stipulate that VR ("), like UR (R, ),
is an even function, and that vo(" ), like uo(R," is an odd function of O.

2.4. Euler-Lagrange equations. After some manipulations the following system of
differential equations in ]0, Ool- is arrived at:

(sinOM’+cosO(M N) sin oOHoRS) -sin O(S+ T)=0,
(2.50)

sinOM’+cosO(M N) sin oOHoRS-Cos OT+ (sin OS)’ 0,

where for convenience we have denoted differentiation with respect to O by an
apostrophe and we have set

o a a
Doo + D,.),Doo+ D,,), T:= D,,+7-,, oS:= Doo+-’ o

(2.51)
3
M :=/).o + (’o "oOoo +/),,) N :=/),. + oDoe + D,,)
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To give (2.50) a more tractable form we need some preliminary results. First, from
(2.32) and (2.51)1,2 we obtain that

(2.52)
A (H +tansinOT’+cosO(T-S)-2(X+tz-------sinO(T+S)’=-cosOH, ,

Second, in view of (2.33) and (2.51)3,4, we have that

( l_lOsin OM’+cos (R)(M- N) --sin 19 ..o,+cot (R)(H’,-cot
(2.53)

+-- + cot
2

Third, solving (2.50) for T, we get

1
M’ O(M N) sin(2.54) r S + tan OS’ + (sin O + cos

cos O

and substituting (2.54) into (2.50)1 yields

Ho,S))’.(2.55) (sin20S)’ (cos O(sin OM’ cos O(M-N)-sin O o

Integrating (2.55) over [0, (R)], we obtain

(2.56) tan2 (R)S
1 (sinOM’+cos(R)(M-N)-sin(R)H.,S)

cos O

(here we have made use of (2.61) below); but, (2.54) and (2.56) together imply that

(2.57) T (tan OS)’.

Now, from (2.52) and (2.57), we deduce

(2.58)1

( A+2/z (tanOS)’’-A2(A+/z) )-tanO
2(A+/x----- S’ +(S-(tanOS)’)=nR HR+tan(R)

from (2.50)2, (2.53), and (2.57), we have

(2.58)2

),)l_lOtt OvHe,, =(H, +tan O)S.- ,,on +cot O( -cot OH)+ (H’, +cot OHt,

The ordinary second-order equations (2.58)1. compose a system for the unknowns S
and oHo,, expressing the equilibrium of the cap under study.

2.5. Boundary conditions. In order that the first variation of the energy functional

(2.48) vanish identically, we must require that the following condition be satisfied at

the boundary:

[sin OSvo- sin OH.)RSt. +sin OM(vo--VR,)+(sin OM’+cos O(M- N))I)R]0O

(2.59) "ko sin Oo(sin O0VR(O0) + COS O0Vo(O0)) 0

for all admissible variations v, and vo, and for

(2.60) "ko :=p2/.t’ /.t > O.
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On evaluating at 19 0 the term between square brackets in (2.59), we see that it
vanishes if and only if

(2.61) M(0)- N(0) 0.

As

M(0)- N(O)=/)o(0)-/),,(O) (sin OHR)’
sin 19

where for convenience we have set

(2.68)

2KoOF := HR, G := (S- o),
l+v

#o2K := (1 -/2), "/’r0 := with u :=
e l+u

3
F’F"+ =Ko(I+F)G+2o(I+F),

3
G + G’=-o(2 + F)F,

t+2

(2.67)

the parity properties of axially symmetric solutions imply that indeed

lim (M(O)- N(O))=0.
040

Taking (2.49) and (2.61) into account, we have that (2.59) yields the two natural
boundary conditions that prevail at the rim; these are

(2.62) M(Oo) 0 and sin OoQ(19o) + cos OoS(Oo) ?o 0,

and involve the "bending moment" M and the "shear force" Q, the latter being defined
by

(2.63) sin (R)Q:= sin OM’+ cos 19(M-N)- sin OHRS.
In view of (2.33) and (2.51)3, (2.62)1 can be written as follows:

(2.64)1 H’R((R)O) + Cot OoHR(OO) 0;
h+2/x

likewise, as (2.56) and (2.63) imply that

(2.65) Q tan OS

at equilibrium, (2.62) can be written as follows:

(2.64)2 S(Oo) o cos Oo 0.

The boundary conditions prevailing at 19 =0 are dictated by the often-recalled
parity properties of axially symmetric deformations, as they are reflected in such
constructs as S and HR. Indeed, it is easy to see from the relevant definitions that S
and HOR must be even and odd functions of 19, respectively. Therefore, we insist that

(2.66) S’(0) 0 and HR(O) O.

2.6. Shallow caps. The differential equations (2.58), supplemented by the boun-
dary conditions (2.64) and (2.66), regulate the equilibrium of a thin spherical cap
uniformly pulled at its rim. The corresponding equations for the case of shallow caps,
i.e., when 2,/=Oo, are obtained by simply replacing throughout tan 19 with 19, etc.
The resulting differential system is
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The boundary conditions are

F’(0) 0, OoF’(Oo) + (1 + v)F(Oo) 0,
(2.69)

’(0) =0, (o) =0,

where (2.69) efficiently replaces (2.66)2, a condition which is rendered empty by the
change of variable (2.68).

3. Analysis. We will refer to the boundary value problem (2.67), (2.69) as to
Problem . We remark that v is the only material parameter of importance in this
problem. For Saint-Venant & Kirchhoff materials, v is the direct counterpart of
Poisson’s modulus for isotropic, linearly elastic materials. For reasons of physical
plausibility we assume that

(3.1) ve ]-1,1/2[;
hence, definitions (2.68)2,3,4 make sense, and we may regard the thickness parameter
in Problem as positive:

(3.2) to>0.
On the other hand, the sign of ro, the applied force parameter, tells us whether the
cap is pulled (ro> 0) or pushed (ro < 0) at its rim.

In this section we will study existence, multiplicity, and stability of solutions to
Problem , for v fixed, and for the parameters to, ro varying over their admissible
ranges. We will devote special attention to the case of zero load (ro 0), when eversion
is in order.

3.1. Function spaces. To motivate our choice of function spaces, consider first, in
an informal way, the linear differential operator that composes the principal part of
both equations (2.67)"

(3.3) -L[. ]:= [. ]"+ 319-’[. ]’= e-3[ea[ ]’]’.
For h some "test" function vanishing in a neighborhood of zero, the weak version of
the equation

(3.4) L[f] g

is

(3.5) -[03f’h]oO+ Io’3 O3f’h’ dO= I? O3gh dO,

or rather, taking the boundary condition (2.69)2 into account,

io io(3.6) (1 + V)OoEf(Oo)h((R)o) + Oaf’h dO= oagh dO.

In the light of the above, we introduce the following weighted Hilbert spaces:
K the space of all functions on ]0, 19o[ that are square integrable with respect

to the weight 03
K= the space of all functions on ]0, 19o] whose first derivatives are elements of K,
K the space of all functions of K vanishing at 19o,

with scalar product and norm

(3.7) (f,f2)o := of,(o)f=(o) dO, Ilfllo:= (f,f)o in K,

(3.8) (f,f2), := (f,f)o+ (1 + t’)Of(Oo)f2(Oo), Ilfll:= (f,f), in K’.
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We point out that K turns out to be the orthogonal complement in K of the subspace
of all constants; thus, our choice of function spaces nicely accommodates the boundary
conditions (2.69)3,4.

LEMMA 1. Let f K 1. Then, there exist two positive constants 2’1 and 2 such that

(i) o Of2(O) dO =<
(ii) o 03f4(0) dO yllfll.

Moreover,
(iii) K is compactly embedded into K.
Proof. Preliminarily, note that both (i) and (ii) trivially hold true iff has constant

value. Hence, it is sufficient to consider the case whenf K. In this case, we have that

and

Consequently,

and

f2(O) =-2 f(dp)f’(d) d,

f4(O)--<4(ff2() dp)(ff’2() d).

(R)f2(O) =< 2 I,If()f’()[ d

(3.9)2 O3f4(O)<4 f2() d 3f,() d _-<all fill f2() d.

Consider now the identity

(90 I? J0(3.10) Of(O) dO dO f() d,
0 O

that holds whenever the mapping OOf(O) is integrable over ]0, 0o[. In view of
(3.10), (3.9)1 yields

O
of(o) dO 2 O=lf(O)f’(O)l dO

<_-2(Io Of’(O)dO)’/’(I Of"(O) dO) ’/

which is (i). Item (ii) is proved in a completely analogous way, using the last formula
above and (3.9)2.

To establish (iii), consider a bounded sequence {fn} c K 1. As all functions f, are
equicontinuous over every subinterval [e, Oo] with e > 0, we can always find a sub-
sequence converging uniformly in any one of those subintervals. The desired result
then follows from the estimate under (i). ]

3.2. Green operators. As a consequence of Lemma l(i) f..f2 is a continuous
mapping from K into K. Therefore, in Problem , the right-hand sides of equations
(2.67) belong to K if both G and F belong to K 1.
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Then pick g K, and consider the following two problems associated with
(equation (3.4) and) Problem :
(o) FindfK such that (f, h)l (g, h)o for all h K.
(1) Find f K such that (f, h)l (g, h)o for all h K 1o

On appealing to standard results from the Hilbertian theory for boundary value
problems, we see that Problem (a 0, 1) has a unique solutionf that solves (3.4);
for almost every 19 ]0, 19o[, satisfies the boundary condition in t9o (i.e., eitherfo((R)o) 0
for a 0 or (R)of((R)o) + (1 + v)fl((R)O) =0for c 1), and satisfies the boundary condition
in 0 in a weak sense (i.e., f’ K). Accordingly, the mappings g-f (a =0, 1) define
two (linear and bounded) Green operators G from K into, respectively, K for a -0
and K for a 1; we have also that, for all functions h K for a 0 and all functions
hK for a=l,

(3.11 (G[g], h)l (g, h)o.

LEMMA 2. Let G be either one of the Green operators defined just above, and let
g,f (a -0, 1) be such thatf G[g]. Then, for O6 ]0,Oo], the following inequalities
hold true:

(i) ]f’(o)12_-< o OIg(O)l dO;
(ii) If(Oo)-f(O)l<-_llglloln

Moreover,
(iii) G maps compactly K into K 1;
(iv) G can be seen as a self-adjoint operator ofK into itself;
(v) G is a positive operator, i.e., g > 0:=>G[g] f > 0;
(vi) G maps continuously C[0, 19o] into C2[0, t9o].
Proof. Preliminarily, we observe that it follows from the strong integrability

requirement necessary for the right-hand side of (i) to be finite that the boundary
condition at zero is satisfied in classical sense, i.e.,

lim f’(O) 0.
00+

Under the current hypotheses,

(3.12) (G[g](O))’=f’(O)=--I-3 (I)3g() d(I.

To see this, first take g(O)-=0 in an arbitrarily small right neighborhood of zero; as
f(O) has constant value in such a neighborhood, (3.12) holds; a straightforward
density argument then shows that this conclusion continues to hold for an arbitrary
gK.

By integrating (3.12)2 over [, Oo], we obtain

(3.13)

io oo
f’(O) =f"(O)- 02 I)3g(I)) d*+l0-22 ,3g(,) d*+ *g(*)

Now, for a =0, fo(Oo) 0 and (3.13) yields

(3.14) fo fo’ O-:)g(O) dO"
1 003 --2 03(0_2fo(O)= (0 -O2)g(O)dO+
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for a- 1, again (3.12)2 implies that
0

(3 15) 3g(@) d= -Oofl(OO) (R)(1 + v)fl(o),
o

so that (3.13) this time yields

(3.16) fl(O) =fo(O) + (1 + v)-l)-2 3g() d.

From (3.12)2, (i) follows by splitting O3g(O) as 05/21/2g(@)) and using the
Schwartz inequality. Next, by integrating (3.12)2 over [, o] and using the Schwartz
inequality again, we get (ii).

The proofs of statements (iii) and (iv) are almost trivial, and we omit them. The
proof of statement (v) easily follows from either a glance to (3.14) and (3.16) or a
direct application of the Maximum Principle.

Finally, assume that g is continuous at zero. To show that statement (vi) holds
true, it is sufficient to divide both sides of (3.12)2 by O, and then pass to the limit for

0, to get

f(O) 1/4g(0). [-!

We are now in a position to write Problem in the following form"

F= -KoGI[(1 + F)G + 2roKo(1 + F)],
(’)

G- oGo[(2 + F)F].

We remark that the inequalities under Lemma 2(i) and (ii) ensure us that every solution
of Problem ’ is in fact a classical solution of Problem

3.3. Global minimizers. We begin by noting that Problem ’ can be written under
the form of a single equation for the unknown F, namely,

(3.17) F+ :o2Gl[(1 + F) Go[(2 + F)F] + 2ro(1 + F)] 0.

On recalling (3.11), (3.12)1, and Lemma 2(iv), it can be shown that the left-hand side
of (3.17) is the Fr6chet derivative of the functional

(3.18) F(F) :-- [IFI[ +-II or(2+ F)F] [[, + ro(2+ F, F)o,

consequently, the solutions of (3.17) are the stationary points of F. Moreover, the
second differential of F at F turns out to be the quadratic form

(3.19) F"(F; h):= I]h[[12+2:o2[]Go[(1 + F)h][[2+ roE(Go[(2+ F)F], h)o+Eroollh[[o2.
THEOREM 3. Thefunctional F over K defined by (3.18) has thefollowingproperties:
(i) F is lower semicontinuous with respect to the weak topology of K1;
(ii) F is coercive, i.e., r(F)-+oo as
(iii) F is strictly convex for ro ->- O/16;
(iv) for every ro < Oo2/16 there exists a positive number ,o such that F is not convex

for K0 Kr
Proof. Statement (i) is an easy consequence of (iii) in Lemma 2.
Statement (ii) is proved by contradiction. Indeed, let {f,}c K 1, with [[f,[[- +oo,

and assume that there exists some constant , such that

(3.20) F(f.) _-< y.
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From (3.18) we then have that

(3.21) lim ,Ifnll-4F(fn) lim IIGol f2. 121112
As zero is not a proper value of Go, it follows from (3.21)2 that

Ilf, IIo_ 0.

Consequently,

lim inf r(f,) _-> 1/2 lim inf IIf, I1-

an inequality incompatible with (3.20).
To prove items (iii) and (iv), we begin by observing that

(3.22) I’"(F; h)-I’"(-1; h) =2o2llGo[(1 + F)h]ll2+ K(Go[(I+ F)2], h2)o_->0,

where the last inequality follows from Lemma 2(v). In addition, we observe that

(3.23)

and that

r"(-1, h)-Ilhll/2roollhllg-o(Oo[1] hE)0,

(3.24) Go[l]

But, (3.22)-(3.24) together imply that

(3.25) F"(F’, h)-->llhll+,g 2ro-
O-O2.) h2(O) dO"

8

from (3.25), the desired conclusions easily follow.
As a straightforward corollary of Theorem 3 we have the following theorem.
THEOREM 4. For all admissible values of the parameters, i.e., for all Zro R and

Ko> O, a global minimizer exists in K for the functional F; moreover, if 7ro >- 0/16,
such a minimizer is unique.

Thus, the equilibrium problem under study has at least a solution of minimum
energy, which is the only solution when sufficiently large outward tractions are applied
along the cap’s rim.

Our next theorem gives qualitative information concerning the nature of global
minimizers.

THEOREM 5. Let o>0 be fixed; moreover, for every choice of Tro>-O/16, let Fo
denote the global minimizer of F associated with (:o and) ro. Then, as 7ro +oo,
(F,o((R)) + 1)0 uniformly in [0, 00].

Proof. Set H, := F, + 1. Then, from the second equation in Problem ’, we get that

H,o] oGo[ 1 ];(3.26) G= oGo[ 2

in turn, in view of Lemma 2(v), (3.24), and the present hypothesis on the parameter
ro, (3.26) implies that

(3.27) G, + 27roKo > 0.

With this, from (2.67)1 we obtain

(3.28) M[F,o] := -(L+ o( G,o + 27roro) I)[ F,o] o( G=o + 2roro) --> 0,
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where we have denoted by I the identity operator. Now, by the Maximum Principle,

(3.29) F=o((R)) =< 0.

On the other hand, as

and as

H’o(O =0,

L[Ho]-0,

OoH’o(OO) + (1 + )Ho(OO) > 0,

by the Maximum Principle the global minimizer F=o must be such that F=o(@) >- -1.
We then conclude, with the aid of (3.29), that

(3.30) -1 _-< F=o((R)) -< 0.

Suppose now that there exists a sequence {ro,n}- +o such that

(3.31) max Fo (O)=>a>-l.
[O,Oo]

We may safely assume, in addition, that

-o,+1 -rro. => Oo/16.
Therefore, repeating the argument leading to (3.29), we have that the sequence {Fo.,,}
decreases pointwise to some function F; we also have that, in the topologies of K
and K, respectively,

{(2+Fo.,,)Fo,,,}(2+F)Fo, {Go.,,}->coGo[(2+F)Foo].
In view of this, dividing the first equation in Problem ’ by ’o,n and taking the limit
for n - oo, it follows that G[F+ 1 0, which in turn implies that F+ 1 0. But
then, by Dini’s Theorem, Fo.,,(O)--I uniformly; this contradicts (3.31).

Obviously, as F -1 does not solve (3.17) for any finite ro, it cannot be interpreted
as a possible equilibrium configuration of our cap. However, F =-1 does correspond
to a "flat" pseudoconfiguration, in a sense that we will now make precise.

We begin by noting that, for F-=-1, we have from (2.30) and (2.68)1 that

(3.32) u(O)- UR’(O) -Ro(R).

We also have from the second equation in Problem ’ together with (2.68) and (3.24)
that

0o-02

(3.33) S(O) 7ro-.
16

On the other hand, it is not difficult to see that, from a purely kinematic point of view,
an axisymmetric flattening displacement of the spherical surface coinciding with the
middle surface of the cap in the reference configuration has to have the following form:

u(O) -Ro(1 -cos 00 cos (R))+sin Ov(O),
(3.34)

u(O) =-Ro cos Oosin O+cos Ov(O),

where v is an arbitrary (smooth and) odd function. Equivalently, (3.34) can be written
as follows:

(3.35) u(O)- u(O)= -sin Ov’(O), un(O) + cot Ou= -Ro+ v(O_.)
sin O’
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or rather, with the use of the shallow cap approximation introduced in 2.6:

(3.36) uOo(O)--UR’(O)=--Ov’(O), OUR(O)+uo(O)=O(--Ro+V’(O)).

Comparison of (3.32) and (3.36) suggests that we exploit the arbitrariness in the choice
of v by taking v’(0)= Ro, so that (3.32) is satisfied and (3.36)2 becomes

(3.37) Ou(O) + u(O) 0.

But, it follows from (2.32), (2.51)1,2, and (2.57) that

1 o 1 +1 (u_u)2(3.38) --o(UR+COt(R)Uo)=-OO (uR+u’) 2R + (tan (R)S)’- S.

In the shallow cap approximation, (3.37) results from (3.38) by the use of (3.32) and
(3.33). We then have reason to say that F-= -1 corresponds to "flattening" a spherical
cap of small, but nonnegligible thickness into a circular disk by means of extremely
high outward peripheral tractions.

3.4. Local minimizers. We begin with a lemma that will allow us to define the
Leray-Schauder degree of F’, the Fr6chet derivative of the energy functional.

LEMMA 6. Let
moreover, for {f,} a sequence in K 1, let

2 G,[(1 +f,,)Go[(2+f.)f,,]+2rro,,,(l+f)](3.39) F’(f) :=f + o,,

Then, ifthe sequence {F’(f,)} is bounded, the sequence {f,} is also bounded in the K -norm.
Proof. With a view toward coming up with a contradiction, and with no loss of

generality, we suppose that IlL II,- We may also suppose that

l+fh
II1 /L II,

weakly in K 1, and therefore strongly in K. Now, by (3.39) and the definitions of the
scalar products for K and K, we have that

2 (2"rro.,,+Go[(2+f,,)f,,], (1 +f.)2)o.(3.40) (F’(f.), 1

Dividing (3.40) by [11 +f. 4 and taking the limit for n --> oo, it follows that (Go[h 2] h 2)o
0, thereby implying that h 0, or rather,

Ill /f, IIo
’--) 0.
III/LII,

From (3.40) we have that

2(r’(f.), 1 +f,,)l>=(f,,, 1 +f,,), +27ro,.,,,(1, (1 +f.)2)o tCo..(Go[1], (1 +f.)2)o,

and hence

lim inf
(r’(f.), 1 "-fn)l ____> lim Ill +f. Ill +oo,

a result incompatible with the hypothesis that the sequence {F’(f,)} is bounded. [q

In view of the preceding lemma we have that the Leray-Schauder degree 6 of F’
is well defined and independent of the values of parameters 7to and Ko. Due to the
convexity of F for 7to large, we also have that 6 1.
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We remark that each extremal F of F must be such that F((R)o)-1. Indeed,
consider the fiat manifold

and let

be the symmetry mapping ofK onto itself about the point Fo 1. By direct inspection
of the definition (3.18) of F, we see that FI, the restriction of F to , attains its
absolute minimum at Fo and, moreover, for each F , FIt(F)= FI(F). Suppose
absurdly that F Fo, and therefore also that were an extremal of FI. Then, the
fourth-order polynomial

rF[(-l+ (1+ F))

would need to have extremals at r +1, absolute minimum at " 0, and would have
to grow to +oo for ’- :oo, which is manifestly impossible.

If we denote by f+(f-) the collection of all functions /3 in K such that
/6(0o) > -1(/6(Oo) <-1), and with 8+ and, respectively, 8-the corresponding degrees,
we deduce from the above that both 8+= 1 and 8-= 0.

We now turn to investigating the behavior of local minimizers for the thickness
parameter tending to infinity, i.e., when the cap is made thinner and thinner.

For 7to fixed, let {Ko,.} be a sequence in I such that {KO..}-- +OO, and let {/3.} be
a sequence in K whose typical element/3, is the extremal of F corresponding to (ro
and) o... We will call such a sequence a o-sequence of extremals.

LEMMA 7. For 7to fixed, let {F.} be a bounded o-sequence of extremals. Then, we
have the following"

(i) For 7to 0, {F. } 1 weakly;
(ii) For 7ro=O, ever.,y weakly convergent subsequence of {F.} tends to -2, -1, or zero.

Proof Let {F.}-F K weakly. From (3.17), in the limit for n- oo, we get

G[( 1 + )Go[(2+ 16)/] + 27ro(1 +/3)] 0,

and hence

(3.41) (1 + )(Go[(2 + 6)/3] + 27ro) 0.

On setting

(3.42) ( := Go[(2 +

we obtain from (3.41) and (3.42) that

(3.43) (l+6)(t+27ro)=0 and L[ t] (2 + /3) /3.

Let J denote any connected component of the set {O]0, Oo[1(o)-1}. As the
function (t+27ro) vanishes identically over J, so does the function (2+/)6 and, by
(3.42), so does also G. The two assertions under (i) and (ii) easily follow.

It is interesting to note that the "fiat" pseudoconfiguration corresponding to F 1
is the common limit of situations when either Ko is fixed and the applied load is made
to tend to +o (Theorem 5) or 7to is fixed and the thickness is made to tend to zero.
For 7to--0, the two other possible weak limits of bounded Ko-sequences of extremals
are the reference configuration, which obtains for F=0, and an "everted"
pseudoconfiguration corresponding to -2.
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To explain the terminology alluding to eversion, we first observe that, for/3 _= -2,
(3.32) and (3.33) are replaced, respectively, by

o _t/t(3.44) u -2Ro(R)

and

(3.45) S=0.

Second, it follows from (2.32), (2.51)1,2, (2.57), and (3.1) that

go
((tan OS)’- vS),(3.46) u + cot Ou +----

so that, in view of (3.45), we have that

(3.47) u+cot Ou=0.
Third, we note the form that a reflection with respect to the horizontal plane of the
surface coinciding with the middle surface of the cap in the reference configuration
must have

(3.48) u(O) -2Ro cos (R)(cos (R)-cos Oo), u(O) 2Ro sin O(cos O-cos (R)o).

Equivalently, in such a reflection, (3.47) and

u- U0R =-2Ro sin O cos O

have to prevail. In the shallow cap limit we are then entitled to interpret F=-2 as
the limit situation corresponding to perform an eversion process, at zero loads, of
thinner and thinner caps.

We remark that, for Zro< Oo2/16 and Ko large, there exists a neighborhood of-1
in K (independent of too) where F" is not semidefinite; therefore, a sequence of local
minimizers cannot converge to -1. Thus, in view of Lemma 7, if Zro-0, a o-sequence
of local minimizers breaks down into subsequences converging weakly to F= 0 or
/-=-2, or else diverging in the K l-norm; if 7to 0, a o-sequence of local minimizers
has to diverge.

To put the last remark into perspective, we observe that

F(F,) <- r(o) 0

for {Fn} any sequence of global minimizers. With a glance to (3.18) we see that, for
ro> 0, we must have

or rather

(2 + F,,, F,,)o =< 0,

II1+ Fllo=< IIlll=o.
Thus, when ro> 0, a sequence of global minimizers cannot diverge in the K-norm.

We now show that local minimizers do exist in
THEOREM 8. Let 7to O. Then, there exists o > 0 such that, for all o> o, the energy

functional F has a local minimizer FKo belonging to 1-. Moreover, a to-sequence ofsuch
local minimizers tends to F =-2.

Proof Choose T1 > [1-2l[, and 7 3-2,-1[, and define

A:= {f Kill[fill <_ y,,f(Oo) =< Y2},
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with 0A, the boundary of A, such that

01A := {fe 0A ][f]] Yl},
0A 01A U 02A with

OA :- f OA f(Oo)

As A is a closed and convex set, F must attaih an absolute minimum on A; on
the other hand, F----2 is an interior point of A itself. We will now establish the first
statement of the theorem by proving that there exists fro(y1, y2) such that

(3.49) inf F(F)>F(-2) for
FOA

Indeed, for F 0A,

r(F) _>- 1/2d > r(-2).

Furthermore, for F e 02A, let

’3 :’-" min Go[ (2 / F)F] II12 > 0
FOzA

(as 02A is a closed and convex set, this definition makes sense). Then, it is always
possible to choose fo(5’l, 5’2) such that, for fo Ko,

2
K0r(F) _-> -> r(-).

Finally, the second statement of the theorem follows from the fact that the A sets
form a neighborhood base for F---2. I3

In the light of this theorem, among the three weak limits possible for bounded
o-sequences of extremals according to Lemma 7 when ro=0, the "everted"
pseudoconfiguration ---2 is the only one that is a local minimizer.

In Fig. 2, for ro 0, v 0.3, and Oo 0.4 rad, the everted configurations have been
graphed that are obtained by solving system (2.67) with the boundary conditions (2.69)
for various values of the thickness parameter o.

FIG. 2. Reference configuration (a) and everted shapes for ro= 0, 00 =0.4, v =0.3, and Ko 133 (b), 313

(c), 1875 (d).

For relatively small o (a relatively thick cap), an edge flaring effect is evident.
We can also see that the everted shape increasingly resembles the reflected shape of
the reference configuration as <o increases. For completeness, the (rescaled) bending
moment M and stress S corresponding to case b of Fig. 2 are graphed in Fig. 3.

We remark that, as the degree of F’ in fl- is null and as a local minimizer exists,
another extremal of F must be found in 1)-. We have been unable to spot this other
extremal, either analytically or numerically.

Finally, we remark that, as inequality (3.49) holds true also for small values of
zro, Theorem 8 can be established also under the weaker hypothesis that 17rol<< 1.
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FIG. 3. Moment (a, 10-1 x M) and stress (b, 50 x S) for the everted configuration b of Fig. 2.
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M(k) THEORY FOR SINGULAR HAMILTONIAN SYSTEMS WITH
ONE SINGULAR POINT*

ALLAN M. KRALL’

Abstract. The theory of singular Hamiltonian systems is developed. Square integrable solutions are
exhibited and used to define Green’s function. Using a singular Green’s formula, other self-adjoint boundary
value problems are generated in which regular and singular boundary conditions are mixed together. Finally
the spectral measure, the generalized Fourier transform of an arbitrary function, and the inverse transform
for problems with separated boundary conditions are derived.

Key words, singular boundary value problems, Sturm-Liouville problem, spectral resolution
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1. Introduction. The solution of linear boundary value problems has a long and
honored history. Rising from attacks on such problems as the solution of the heat,
wave, and Laplace equation as well as others from mathematical physics, linear
boundary value problems have played an important part in mathematics for over two
centuries.

The problems fall into two classifications. First, those defined over finite intervals
with well-behaved coefficients are called regular. They have a discrete set of eigenvalue,
eigenfunction pairs, which are used as building blocks in the solution of the partial
differential equations from mathematical physics. The solution of such problems is
classical and may be found in many books, such as [3].

Problems that are not regular are singular. These are considerably more difficult
to discuss, and as a result have only been examined closely during this century. The
work was begun by Weyl [32] in 1910. He was followed by Titchmarsh [30] and many
others. From 1910 until 1945 these mathematicians developed and polished the theory
of self-adjoint differential operators of second order to a high degree.

Their work was continued by Kodaira [21], Coddington and Levinson [3], and
Hartman and Wintner (see [4]) in the late 1940s and 1950s. Not only were additional
results found for operators of second order, but operators of higher order were also
examined. At the same tiine the Russian school, led by Krein, Naimark, Akhiezer, and
Glazman, also made major contributions.

For a far more comprehensive survey of this work, we recommend the second
volume of Dunford and Schwartz [4]. They provide an excellent summary of the
numerous contributions made by many mathematicians.

Further study continued in the 1960s and 1970s with the work of Atkinson [1] on
regular Hamiltonian systems and Everitt [5]-[11] on higher-order scalar problems.
The work of this period is summarized by Atkinson [1], Everitt and Kumar [12] and
by Kogan and Rofe-Beketov [22] of the Russian school. Again, there were many other
contributors. One contribution, perhaps, deserves special mention. Walker [31 showed
that any scalar self-adjoint problem of an arbitrary order can be reformulated as an
equivalent self-adjoint Hamiltonian system. This removed the need to discuss scalar
problems and systems separately.

* Received by the editors May 17, 1987; accepted for publication (in revised form) August 9, 1988.
This work was supported by the Applied Mathematical Sciences subprogram ofthe Office of Energy Research,
U.S. Department of Energy, contract W-31-109-Eng-38.

t Department of Mathematics, McAllister Building, Pennsylvania State University, University Park,
Pennsylvania 16802.
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Most recently in the 1980s Hinton and Shaw [13]-[20] have made great progress
by considering singular problems in the Hamiltonian system format, following the lead
of Atkinson [ 1 ]. Many of the results of the past, including the development of M(A)
theory, the derivation of the Green’s function, and singular boundary conditions, were
substantially improved.

We will follow in the footsteps of Atkinson, Hinton, and Shaw by considering
the 2n-dimensional linear Hamiltonian system JY’= (AA + B) Y, over an interval [a, b).
The procedure we will follow is to first examine the differential equation over a
subinterval [a, b’], a < b’< b, on which the problem is regular. We then allow b’ to
approach b.

The first problem to be encountered concerns the number of solutions that lie in
the underlying Hilbert space L(a, b), generated by the inner product

Y, Z) Z*AYdt.

For Im A # 0 it is possible to show that there exist m solutions in L(a, b), n _-< m -< 2n.
Since, in order to exhibit a Green’s function, only n are needed, the problem is to
determine which to choose.

There are two easier to handle situations. If the number is n, then there is no
freedom. Everything is determined. If the number is 2n, then there are automatically
a number of required limits. But a number of problems exist in the situations involving
m solutions in L(a, b), n < m < 2n. These are handled by the use of singular boundary
conditions. One main purpose of this paper is to show how this is done.

Another problem arises if we attempt to impose boundary conditions arbitrarily.
When is a problem self-adjoint? We will show how to use Green’s formula to determine
all self-adjoint problems. We will do so in a manner that considerably simplifies
previously used approaches [4].

Finally, as we allow b’ to approach b, the generalized eigenfunction expansion
over [a, b’] is shown to converge into the general spectral resolution traditionally
associated with self-adjoint operators. The generalized Fourier transform and inverse
transform will be explicitly exhibited.

2. Notation and definition. We consider over the interval [a, b) the differential
expression

(.) JY’=(AA+B)Y,

where Y is of dimension 2n (a 2n x I matrix).

(0-OI,), A=A,,(x) A,2(x) B=(B,I(X) B,2(x)J=I, \A2(x) A22(x)/’ B2(x B22(x)/

are locally integrable 2n x 2n matrices, A A*_-> 0 and B B*. We assume that a is
a regular point, while b is singular. That is, a is finite; A and B are integrable in a
neighborhood of a. b may be finite or infinite; A and B may not be integrable in
a neighborhood of b. The word singular is used to denote difficulties with infinity or
with nonintegrability.

Our setting is L(a, b), the Hilbert space generated by the inner product

Y, Z) Z*AYat.
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To ensure that elements in the domain of the maximal operator, to be defined,
are dense in LEA(a, b), we assume that if JY’-BY-AF and AY-O, then Y=0. Most
of what follows proceeds without this assumption, but without it some expansions
must be restricted to subspaces instead of holding on all of LA(a, b). Earlier works
([1], [13]-[29]) made this assumption with F--0.

We impose a regular, self-adjoint boundary condition at a,

(a,, a:) Y(a) O,

where a, c: are n x n matrices satisfying rank (a, a:) n and

a,o* + a,a* I, a,a* a2a* O.

Self-adjointness is assured, since when written as MY(a)= O, where

the requirement for self-adjointness under separated conditions [3, p. 291].
It is no imposition to assure that ac* + a2c2" I,, for if the rank (a, a2) /1, then

rank(a*)
and the rank of

tlt +2t (tlt2) J
is/1. It is nonsingular and positive. Hence if the sum does not equal I,, replace a and
a2 by (aa* + aEgl2)l/2t and (tla + 612gl2)l/2t2

Next let b’ be in (a, b) and impose the regular, self-adjoint boundary condition

(ill,/32) Y(b’)= 0,

where

fl + fl2fl I,, fl + 2fl O.

If the boundary condition is written as NY(b’)= 0, where

(0 O)N=
fll ,82

then

NJN*
fl f12 I,, 0

=0.

Again the requirement for self-adjointness is under separated conditions.
Problem (.), together with the two boundary conditions, defines a regular, self-

adjoint Sturm-Liouville problem.
Finally, let

and let o be the fundamental matrix for (,) satisfying (a)= E.
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If is partitioned into

=(o,)=
0

then at x=a, (a,, t2)O(a)=I,, and (a,, a2)(a)=0. (’2)satisfies the boundary
condition at a.

3. The M(k) matrix. The following definition and characterization of the matrix
M(A) is a generalization of the Weyl-Titchmarsh m(A) function [30], [31]. What
immediately follows is closely patterned on the work of Hinton and Shaw [13]-[20].
It is essential in providing the building blocks needed throughout the remainder of
the paper: the square integrable solutions of (.).

THEOREM 3.1. Let fl,, 2 satisfy

Let

Xb’= M(b’)

and suppose (fl, fl2)Xb,( b’) O. Then

M(b’) -(ill,(b’) +/322( b’))-’(ill 0, (b’) +/32 02(b’))

and X*b,( b’)Jxb,( b’) O.
Conversely, iffor some M,

satisfies X*b,(b’)Jx,(b’)= O, then there exist fl,, fiE satisfying

,fl*l + 2’2 I., 1’2 f12* 0

such that (,,/32)Xb,(b’) 0 and

M -(/3,,(b’) + f122(b’))-I (ill O, (b’) + f1202(b’)).

Proofi Let Im A O, and impose on

X’= M(b’)

the boundary condition (, )b,(b’)=0. Hence, with x b’,

O M(b’)

This yields

and

(/3,01 (b’) + f1202(b’)) + (fl11 (b’) + f122(b’))M(b’) 0

M(b’) -(fl,1(-b’) + f122(b’))-I (/3, 01 (b’) +/3202(b’)).

The inverse must exist. Otherwise A, which is complex, would be an eigenvalue of the
self-adjoint boundary value problem on [a, b’].
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for

Since (fl,, fl2)Xb’(b’) 0,

x( b’) (1 , /
c,

(/3,,/=)
L /

c=o.

This in turn implies that X*,(b’)JXb,(b’)= O, or

(I,,M(b’)*)(b’)*J(b’)( I" )=0.M(b’)

Conversely, if for some M,

(I,, M*)(b’)*J(b’)(4) =0,

define (/31,/32) (I,, m*)(b’)*J. Then rank (/3,/32) n,

(fl,, fl2)(b’)(I,) --"0M

and

--fllfl$2 + 2fl$1 (l, 2)
in 2

Further M -(fllbl(b’) + fl22(b’))-’(fl,O,(b’)+ f122(b’)), and

1* +* (,) (I,, M*)(b’)*O(b’) > 0,

and so with minor adjustments like those of the previous section, we can have

4. M circles. The M circle equation is

+(I,, M*)(b’)*(J/i)(b’)( MI") =0
where for convenience, we have divided by i, and (+) holds when Im A > 0, (-) holds
when Im A < 0.

and let

Let

(M :)={ @(b’)*(J/i)@(b’), Imh>0,
-(b’)*(J/i)(b’), Im h <0,

E(M)=(I,,M*)(
THEOREM 4.1. The expression E(M) =0 ifand onlyifM Mtforsome

where

M -(/3,,(b’) + 22(b’))-’ (/3,01 (b’) +/30=(b’)).

This is a restatement of Theorem 3.1.
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Expanding, we find

E(M) (M + -1?)’20(M + 20-’) +-?*20-’?

(M- C)*R-;2(M- C)-R
=0

where C _20-1, R1 20--1/2, R2 (,20-1 j)l/2.
LEMMA 4.2. The matrix 20 > O.
Proof.

b*l b*2]-iI,,

where

02 dp2 ick *JO id *Jd]

02’ 4’=

669

Or

(,.o ,. .)
where indicates , replaces A. (Remember that there is a sign change in the matrix
when A replaces A.) Hence

o=-*, -L=-*,

i. , o k-k*.
The last yields *- -. The second shows

--1 __+ ,[,--1]

COROLLARY 4.4. e matrices R and R2 satisfy R2 1.

So 20=+b*(b’)(J/i)d(b’). Now manipulation of the differential equation Jb’=
(hA + B)b yields

4)*(J/i)4,1’- 2 Im A qb*Aqb dt.

The limit at x=a is 0. Hence qb(b’)*(J/i)d(b’)>O when ImA>0, and
qb(b’)*(J/i)qb(b’)<O when Im X <0. In either case 20>0.

LEMMA 4.3. The matrix ’20-M - where -1= 20-()
Proof Note that for A and ,21(x, Tt)*J21(x,A)=J for all x. Hence

-J(x, ])*J(x, A I and (J(x, )t ))(-J(x, )*) I as well. Multiplying by J yields
-dt(x, A)J(x, )*= J for all x. As a result

J ,(x, a)*j,(x, 7t)

(x, )*[-J(x, )J(x, )*J](x, )

-[ 21(x, A )*(J/i)21(x, A )]J[-(x, )*(J/i)21(x, )].
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Note that if the coefficient matrices A and B are real, then qY(x, X) qY(x, A) and
so also for sO, , . In this case, R2- R.

THEOREM 4.5. As b’ increases, increases, R1 decreases, and R2 decreases.
Proof. Note that

2lIm AI $*A$ dt.

The results are then immediate.
THEOREM 4.6. limb,,b Rl(b’, A) Ro(A), limb,b R2(b’, A) Ro() o exist. Ro

O, RoO.
THEOREM 4.7. As b’ approaches b, the circles E M) O are nested.

limb,b C(b’, A Co exists.

Proo The interior of the circle E(M) 0 is given by E(M) 0, or by

(
Using the differential equation (.), we find

(M) 21m 1 ,A, de (M* M)/i.

Now if M is in the circle at b"> b’, then (M)N0 at b". At b’,N(M) is ceainly
smaller, and so M is in the circle at b’ as well. The circles are nested.

To show that the centers converge, we need to solve the circle equation

(M-C)*R(M-C)=.
(Recall that N, R1, and R are self-adjoint matrices.) This is equivalent to

-1

Therefore the bracketed term

a unitary matrix, and

R-(’(M- C)-( U,

M C +R UI.
As U varies over the n x n unit sphere, M varies over a "circle" with center C. We
will have more to say about the range of M shortly.

Now let C be the center at b’, and C2 be the center at b". If

and

M C, + Rl(b’) U, RI(b’)

M2 C2 + R1 (b") U2R2(b"),

then M2 lies in the b’ circle as well, and

ME= C + R(b’) VII(b’)

where V is a contraction. Thus

C1- C2 gl( b") UEg(b") gl( b’) v1gl( b’).
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Consider the mapping defined by the equations for M2 above, defining V1 in terms
of U2:V1 F(U2). It is a continuous transformation of the unit sphere into itself and
therefore has a unique fixed point U. Letting U2 and V, be replaced by U, we find

IIG- C,ll R,(b")U(b")- R,(b’)U/(b’)
<-IlR,(b") U,(b") R,( b") U.,( b’)

+ IlR,(b") U,(b’)- R,(b’)U,(b’)l
--< I[R,(b")II II,,(b")- ,,(b’)ll + IIR,(b")- R,(b’)I[

As b’ and b" approach b, R and R1 have limits. The centers then form a Cauchy
sequence and converge.

A computation shows

=+ 2Imh qb*AO dt- iln

So at b’, the center

C=--1=- 2ImA d* Ad dt 2ImA 4*AO dt- iIn

As we have seen, as b’ approaches b, this has a limit Co.
The limiting "circle" equation may not exist because both Ro and Ro may have

rank less than n and may be singular. Nonetheless

M Co+ RoURo
is perfectly well defined. As U varies over the unit circle in n x n space, the limit
"circle" or "point" Eo(M)is covered.

5. Square integrable solutions. As a consequence of the previous section we have
the following theorem.

THEOREM 5.1. Let M be a point inside Eo(M)-<_0. Let x=O+bM; then X is in
LA(a, b).

Proof

2lIm ;tl x*Axdt+[M*-M]/i=E(M)<-O.

As a result,

0<-_ x*Axdt<-[M-M*]/2iIImA[.

The upper bound is fixed, so let b’- b. Remember that

M Co+ Ro URo
where Ro and Ro are decreasing matrices ~and U is either unitary, or a contraction.

THEOREM 5.2. Let rank Ro r, rank Ro- ; let S(U) RoURo where U is unitary.
Then rank S(U) _-< min (r, ).

Proof. That the rank of a product of matrices is less than or equal to the ranks
of the components may be found in virtually any linear algebra text.

THEOREM 5.3. Under the conditions of Theorem 5.2, supu rank S(U) min (r, ).
Proof Let r -> . Otherwise consider the transpose UTR. The rank of S(U)

is the dimension of the image of RoURo acting on C". Let Ro acting on C" be the
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subspace W of dimension rank/o. Further note that there is a subspace X of C"
such that dim RoX =rank Ro--r. Since dim X >_-dim W, there is a unitary matrix
U" W-->X, injectively. Then U(W) is a subspace of X of dimension 7, and
dim (Ro U(W)) dim W 7.

THEOREM 5.4. Let m n + min (r, 7); let Im A 0. Then there exist m solutions of
(,) in L2A(a, b), n <= m <=2n.

Proof. +Co is made up of n solutions in L2A(a, b). As U varies, 4(RoUlo)
gives an additional m-n solutions, which are independent of the others. This does
not say the deficiency indices for (,) are equal. It says merely that there are at least
m solutions in L(a, b). For , or there may be more.

By way of example consider Table 1. These cases .actually occur in practice for
scalar problems. It is also possible for rank Ro rank Ro. McLeod [33] has found a
very interesting example.

TABLE

n rank R rank/o m Case name

2 limit circle
0 0 limit point

2 2 2 4 limit circle
2 3 intermediate
2 0 0 2 limit point

3 3 3 6 limit circle
3 2 2 5 intermediate
3 4 intermediate
3 0 0 3 limit point

In closing this section we include a rather interesting theorem concerning the
eigenvalues of (b’, A) as b’ approaches b. It generalizes a theorem of Hinton and
Shaw [20, Lemma 2.1].

THEOREM 5.5. Let/a,l(b’) -<’’" -</x,(b’) be the eigenvalues of (b’, A). Let there
be m, n<-_m<-2n solutions of JY’=(AA+B)Y, ImA#O, in LEA(a,b). Then
/Xl(b’),"" ,/x,,_,(b’) remain finite and /,,-,+l(b’),"" ",/XE,(b’) approach oo as b’
approaches b.

Proof. Suppose /x(b’)< B for all b’. Let Vb, be a unit eigenvector of (b’, A).
Setting Xb,= ChVb’, we get

b’

2i Im A X*b’AXb’ dx V*b,dp*JdpVb,I b’=, sgn (Im A)./x(b’).

Thus

"X*b,AXb, dx <- tx(b’)/llm AI -< B/lIm AI.

Choosing a subsequence of (Vb,)’S that converge, we find a solution X bv in L2a(a, b).
Since there are only mL-solutions and X 0 + bM comprises n of these, there can
only be m-n such X’s and only m-n finite/z’s.
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Niessen [27] has a very similar theorem for proving the existence of square
integrable solutions. His theorem depends upon the eigenvalues of

instead of those of @.

6. SglrImtemlfis. Unlike regular boundary points, such as b’, where
a regular boundary condition (,) Y(b’) 0 is imposed, singular boundary points,
such as b, require a more careful approach. We define a singular boundary value that
is valid on the domain of the maximal operator.

DEFINITION 6.1. We denote by D those elements Y in L(a, b) satisfying

(1) IY=JY’-BY=AF

exists almost everywhere for some F in L(a, b).
DEFINITION 6.2. We define the maximal operator L by setting LuY F for all

Y in Du.
THEOREM 6.3. Let be a solution ofJY= (A+B), Im # 0. en for all Y

in D,

Bbj( Y) lim YJY
exists if and only if is in L(a, b ).

Proo Manipulation of

and

yields

Integrating, we get

JY’ BY AF

JY BY) AA Yj

YJY)’ YA[F Y].

(YJY)(x)= YTJY(a)+ YA[F-AY] dx.

If Y is in L2A(a, b), then as x approaches b, the integral on the right converges, and
limx-,b YJY(x) exists.

Conversely, if the integral on the right converges for all Y, F in La(a, b), the
Hahn-Banach theorem states that it generates a bounded operator. The Riesz Rep-
resentation Theorem then affirms that Y is in L(a, b).

DEFINITION 6.4. Let Im A # 0. Let M() o+ -oURo be on the limit circle. Let
X(x,)=O(x,)+rk(x,)M(.) satisfy (.) with A replaced by and be in LEA(a,b).
We define the boundary value B (Y) by setting

Bx (Y) lim X(x, .)*JY(x)
b

for all Y in DM.
Note that Ba (Y) is explicitly written as

Ba (Y) lim (In M()*)(x, )*JY(x).
b
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Note also that A is used in the definition of Ba(Y). This is a convenience only.
We shall remove the requirement later.

7. The ditferential operator L. We assume that the number of solutions of (.) in
L2A(a, b) in either half plane Im A > 0 and Im A < 0 is the same, m, as given by Theorems
5.4 and 5.5. This is certainly true if A and B are real. Using boundary conditions at
both a and b, we can now define a self-adjoint differential operator on L2A(a, b).

DEFINITION 7.1. We denote by D those elements Y in LA(a, b) satisfying

(2) tY=JY’-BY=AF

exists almost everywhere for some F in L(a, b),

(3) (c,, c) Y(a) 0,

(4) Bx(Y) =0.

DEFINITION 7.2. We define the operator L by setting LY F for all Y in D.
The inverse of L-AI can now be calculated easily. If we solve

JY’ (AA + B) Y+AF

by variation of parameters, the substitution of Y C, where 0 is the fundamental
matrix, yields JC’= AF, so C’= -J)---JtAF where we have written ’(x, h for (x, )*,
since if the matrix coefficients A and B are real, t=, the transpose. Integrating,
we find

Y=-(x, A) J’(,A)A(sCx)F(Cs) d+(x,A)K

where K is constant.
Since

or

0 c* a*] K=0’

Further,

(00)t(x,A)jy(x)= (0_
(o+
I

Since ’(x, A )J(x, A =- J for all x,

/(

o)M’ ’(x, A )J(x, A) J’(, A )A()F() d(

M’ ’(x’A)J(x’)K"

)I0
’(, A)A(t)F(t) dtMt

o
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Letting x - b,

Adding

to this, we have

O-

0
| oy,(, A)A()F() dM /

0
/ 0t(:, A)A()F() dscM /

The coefficient of K is its own inverse. Hence

and

(0 0)

o)+ M’ -I,
K.

M’ (, A )A()F() d,

Y= (x, h) M’ t(, h )A()F() d

+ )J(x, A)
I, M’ (s, A)A()F() d.

or

Y= G(A, x, )A()F() d,

At this point we note that the Green’s function, the kernel of the integral operator,
is the limit of Green’s functions of regular Sturm-Liouville problems. Since regular
problems satisfy

G(h,x,)=G*(,,x),
so does the present Green’s function. Comparison of the two sides gives a definition
of M(h) in terms of M(),

M(A)=M’=M*(),

and X(x,A)=O(x,A)+(x,A)M(A) is in La(a,b). Now from the first integral, the
terms

(x, a M’ (’, x(x,a (’, .
From the second, recalling that M’= M,

(O0)’(,A)=(x,A)X’(,A).(x,h)
I,, M’

Therefore

g(x=x(x,a (,,X)*(:F(,),+(x, x(;X)*A(’)(’)’,
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where

G(,, x, sc) X(x, , )(, .)*, a _-< =< x -< b

(x, X )X(:, X)*, a < x < < b.

THEOREM 7.3. e parameter , used in defining the boundary condition Bx, is in
the resolvent of L,

(g--((x 6(, x,((,
where G is given by (**).
To 7.4. e operator L is self-adjoint.
Proo Let (L- II) g F, (L* XI)Z G. Then

((L- AI)-F, G)= G*(x)A(x) G(/, x, )A()F() ddx

6"(, x, (xa(x x ()(

[G*(, , x()G(l ]*(xF(x)

G(X, x, )A()G() d A(x)F(x) dx

=(F,(L-]I)-IG)
since G(A, x, ) G(], , x)*. But

((L-/)-IF, G) (F, (L*-XI)G),
so (L-XI)-=(L*-XI)-1. Taking inverses, L-XI L*-XL Canceling XL L= L*.

We remark that when M(X) is on the limit circle, then lim X(x, X)*Jx(x, ])= O.
This is a test for selhadjointness of the singular boundary condition Bx (Y). It is the
limiting form of (fl, fl2)J(fl, f12)* =0, required in the regular case.

THEOREM 7.5. e operator (L-AI)- is a bounded operator.

I1(- x)- = /lIm

Proof Let (L-AI) Y F. Then

(Y, F)-(F, Y)=(Y, (L-AI)Y)-((L-AI)Y, Y)= (/-X)(Y, Y).

Applying Schwarz’s inequality to the le

2lIm 1 11 = 211 11
Canceling YII yields the result. (This may be found in [1] as well.)

THEOREM 7.6. IfJY’- BY AF, AY 0 implies Y O, then D is dense in L(a, b).
oof If D is not dense, then there is a G ohogonal to D. Let Y be in D, and

let Z satisfy Z 6 D, JZ’- BZ AAZ+ AG for Im I # 0. Then

Z*[JY’- BY- IAY] dx.
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Let JY’ BY AAY AF. Then

0 (F, Z) Z*AFdx.

Now F is arbitrary, so let F Z. Thus b Z*AZdx 0 and AZ 0. Thus JZ’- BZ AG,
and Z O. Since Z O, AG O, and G 0 in L(a, b).

8. Extension of the boundary conditions. We have chosen to be fixed in
generating the boundary condition at x= b. We would like to show now that,
properly extended, X(x,A)=O(x,A)+dp(x,A)M(A) remains in L2A(a,b) and that
if limx_bX(X,)*JY(x)=O, then for all A, ImA O, limx_bX(X,)*JY(x)=O. In a
sense, the boundary condition is independent of A.

In the course of deriving the Green’s function, we show that M(A)= M()*. As
a consequence we find the following theorem holds.

THEOREM 8.1. If X(X, A)= O(x, A)+ b(x, A)M(A), then limx_.bX(X, )*"
rx(x, x) 0.

Proof

X(x, )*Jx(x, A) (I,,, M()*)(x, )*J(x, A)
M(A)

(I,,, M()*)J
M(A)

so the limit is zero also.
COROLLARY 8.2. Let the columns ofx(x, A be modified smoothly so that they vanish

near x a. Then, so modified, the columns ofx(x, A) are in D.
THEOREM 8.3. If Y is in D, then limx_b X(x, A )*JY(x) O.
Proof Since each column of X(x, A), appropriately modified, is in D, an applica-

tion of Green’s formula shows the limit is zero.
DEFINITION 8.4. We extend the definition of X(x, ) to other values/2 in the same

half plane as , by

X(x, ft)=X(X,X)+(IJ,-X) G(,x, )A()X(,tz) d.

It is well known that if Iz-XI<I1/ImAI, then with initial estimate X(x,.), a
Neumann series may be used to show that the integral equation has a unique solution,
analytic in /2 and in L2a(a, b). Further, this solution can be extended analytically
through the entire halfplane containing . It is also easy to show that (L- 12 )X(x, IJ, O.

A simple calculation shows that X(x, 12,) O(x, IJ,)+ 4,(x, IJ,)M(IJ,), where

M() M(i)+(-i) X(x, X*A(’)X(’, ) ,
thus extending M(/2) as well.

THEOREM 8.5. For different parameters and 12, lim_,b X(x, )*Jx(x, I)=0.
Proof If limx_bX(x, )*J is applied 1:o the integral equation, both terms on the

right-hand side have limit zero. Extended analytically in/2, this remains zero.
COROLLARY 8.6. Let the columns ofx(x, I be modified smoothly so that they vanish

near x a. Then, so modified, the columns ofx(x, I) are in D.
THEOREM 8.7. If Y is in D, then limx_,b X(X, )*JY(x)= O.
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DEFINITION 8.8. We extend the definition of X(x, Ix) to other values Ix in the
same half plane as A by

X(x, IX)=X(X,A)+(IX-A) G(A,x,)A()X(,IX) d.

The comments made after Definition 8.4 apply here as well with the conjugate
signs removed.

THEOREM 8.9. For different parameters A and Ix, limx_b X(x, A)*Jx(x, Ix)= O.
COROLLARY 8.10. Let the columns of X(X, Ix) be modified smoothly so that they

vanish near x a. Then, so modified, the columns ofx(x, Ix) are in D.
Proofi Clearly the columns are in D, associated with A. But D, defined by B (Y),

and D, defined by Bx(Y), are the same.
THEOREM 8.11. If Y is in D, then limx-,b X(x, Ix )JY(x) O.
In summary, we state the following theorem.
THEOREM 8.12. Let Y be in D. Then, for all A, Im A # 0, B (Y) 0.
THEOREM 8.13. For all A, Im A # 0, (L-AI)- exists and is given by (**).

II(L- AI)-’ II-<- 1/lXm AI.
Proof. The previous calculation holds no matter what A.
Finally we comment that for all Ix, ImIx0, X(x, Ix)=O(x, Ix)+O(x, Ix)M(Ix)

satisfies limx_,b X(X, Ix)*Jx(x, Ix)-0. This implies that M(Ix) is on the Ix limit circle;
however, its exact relation to the sequence (/31,/32) and U, used to define M()on
the original limit circle, is not clear.

9. The Lagrange bilinear form. Just as L is a restriction of the maximal operator
LM, all other self-adjoint operators involving the differential equation (.) are also
generated by examining other restrictions of LM. This can be done by examining
Green’s formula, a major component of which is the Lagrange bilinear form Z*JY.
This must be expressed properly in order to identify those which are self-adjoint. If
Y and Z are in D, then a preliminary form of Green’s formula is

[Z*(JY’- BY)-(JZ’- BZ)*Y] dx z*JYI

Since Y and Z are in D4, they satisfy

JY’-(hA+ B) Y AF, JZ’- (A+ B)Z AG,

where Im A > 0 and F and G are in L2A(a, b). Using the Green’s function for L we
can write

b

Y(x)= G(A,x, )A()F() dse+Xb(x,A)C+ck(x,A)C2,

Z(x) G(X, x, )A()G() d+Xb(X, X)D + dp(x, X)D2,

where C2 and D2 are chosen so that b(x, A)C2 and b(x, )D2 consists only of La(a, b)
solutions.

We can solve for C, C2, D, D2. Since the integral in the formula for Y, as well
as the term gb(x, It)C satisfy the limit boundary condition, and
lim,_,b Xb(X, )Jqb(x, It -I,

lim X,(x, .)*JY(x) -C2.
xb
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Further

where

Likewise

and

where

lim D*2 (x, )*JY lim D*2(x, .)*JRy(x) + D’2 C1,
xb xb

RE(X) G(A, x, )A()F() d.

lim Z(x)*JXb(X, A)= D2*

lim Z(x)*Jqb(x, A)C2 lim Rz(x)*J(x, A)C2- D* C2,
b b

Rz(x) G(., x, )A(s)G(sc) d.

We then compute

lim Z*(x)JY(x) lim Rz(x)*J(x, A )C2 + lim D*2 b(x, .)*JRy(x) D*I C2 + D*2 C
x-b xb xb

the other terms cancelling because they satisfy the X boundary condition at b.
Eliminating the terms DI* C2 and DE*C by substitution, we obtain

lim Z(x)*JY(x) lim Z(x)*Jcb(x, A )C2 + lim D*2 b(x, ,)*JY(x).
xb xb x-b

Now the term

b(x, A )C2 -b (x, A) [limLx-’b
Xb(X, X)*JY(x)].

Let b(x, A)= (b, ck2)(x)Eb, where b(x, A) consists of those m-n solutions of (,) in
L2A(a, b), and b2(x, A) are those not in L2A(a, b). Let

Xb(X, X)E*b (X,, /2)(X, ),
where X contains m-n components as well. Then

b(x, A )C2 -(x, I) [limkx-’b
X(x, X)*JY(x)].

Likewise, the term

D*2 b(x, .)* [lim Z(x)*Jxb(x, A )] b(x, .)*

[lim Z(x)*Jx(x, A ] b,(x,

where tb(x, A) contains m-n components. The terms

--2(X, b) [lim x2(x, X)*JY(x)]
and

lim Z(x)*Jx2(x, h)] bE(X, X)*
x-b
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are not present because b (x, A C2 and b (x, )D2 contain only solutions in L(a, b).
Therefore, we have the following theorem.

THEOREM 9.1. Let b(x, A) (b, b2)(x, A)Eb, where consists of all of the
L(a, b) solutions of (.). Let O(x, )= (, 2)(x, )b, where consists of all of the

L(a, b) solutions of (.) with A replaced by . Let (g, g2)(x, ) gb(X, )E, and
let (X,, X2)(x, A) Xb(X, A). en for all Y and Z in D

lim g2(x, )*JY(x) 0, lim g2(x, A )*JZ(x) O.
xb xb

Proo This is the only way to ensure that 2(x, A) and 2(x, ) are not present.
The possibility of this occurring was reposed to the author by D. B. Hinton several

years ago.
Theorem 9.1 explains an apparent discrepancy. It appears that by imposing the

conditions limb X(X, )*JY(x) 0 and (a, a2) Y(a) 0, that 2n boundary conditions
are being required. However, since the deficiency indices at x= b are (m, m), only
n + m should be imposed.

Theorem 9.1 shows that in fact when m n combinations are in L(a, b), 2n m
combinations are not, and so there are 2n-m X automatically zero conditions. As a
result imposes only n-(2n-m)= m constraints. With n constraints at x= a, the
total is n + m, not 2n.

Returning to limbZ(X)*JY(x), we find

lim(x,X)*JY(x)lira Z(x)*Jg(x) lira (x, )*JZ(x)
kxbxb xb

lm (x, )*JZ(x) _lira ,(x, X)*JY(x)
b xb

THEOREM 9.2. Under the conditions of eorem 9.1, let

[lim (x, X)*JY(x) txb
X1

Bb( Y)
lim (x, X)*Jg(x)
\x-*b

/’lim (x, A)*JZ(x) Ixb
X1

b(Z)
\x-.blim 4(X, A

Jb= Ira-, 0

where (m, m) are the defect indices of (*) at b; then

lira Z(x)*JY(x) (Z)*JB( Y).

The symbol indicates A is used instead of A.
If the end x a is regular, the computation is a bit easier. Note that

[x(x, ;t), 6(x, ;)]J[x(x, ), 4,(x, )]* J.

Therefore

Z*(a)JY(a) -Z*(a)J[xb(a, h ), dp(a, A )]J[xb(a, .), b(a, )]*JY(a).
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THEOREM 9.3. Let

Ba( y) (Xb(a, X)*JY(a) )6b(a,X)*JY(a)

/, (Z)= (X,(a, A )*JZ(a)
,(a, A)*Z(a)/’

then

Z*(a)JY(a) B(Z)*JB,( Y).

The terms dpb(a,X)JY(a) and qbb(a,A)JZ(a) are simply (al,a2)Y(a) and
(al, aE)Z(a). The terms xb(a,)*JY(a) and xb(a,A)*JZ(a) may be replaced by
O(a,)*JY(a) and O(a,A)*JZ(a), and the formula for Z(a)*JY(a) still holds.
O(a, )*JY(a) (-a2, a) Y(a); O(a, )*JZ(a) (-a2, a)Z(a) as well. These are
complimentary boundary forms.

10. Green’s formula. If the pieces from the previous section are assembled
together, we have the following theorem.

THEOREM 10.1. Let Y and Z be in D4. Then

{Z*[JY’- BY]-[JZ’- BZ]*Y} dx -a(Z)*JBa( Y)+ b(Z)*JbBb( Y)

(B,(Z)*,/,(Z)*)
0 Jb Bb(

Y)Y))"
Let M and N be rx2n and rx(2m-2n) matrices, respectively, where (m,m)

are the defect indices of (,) at b, with rank (MN)=r, 0<= r<=2m. Further, let P and
Q be (2m-r)x2n and (2m-r)x(2m-2n) matrices such that

(M N)
is nonsingular. If /,/Q,/3,( are rx2n, rx(2m-2n), (2m-r)x2n, (2m-r)x
(2m-2n) matrices such that

hT/* 5* N

then inserting this in Green’s formula gives it its final form.
THEOREM 10.2. (Green’s formula.) Let Y and Z be in D4. Then

{Z*[JY’- BY]-[JZ’- BZ]* Y} dx

[/l// (Z) / /b(Z)]*[MB(Y) / NBb( Y)]

+ [/5/a (Z) + Ob(Z)]*[PB( Y)+ QB( Y)].
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DEFINITION 10.3. We denote by/ those elements Y in L2(a, b) satisfying
(1) Y is in DM;
(2) MB( Y) + NBb( Y) O.
DEFINITION 10.4. We denote by L the operator defined by setting LY= F

whenever JY’-BY AF and Y is in/.
DEFINITION 10.5. We denote by/* those elements Z in LA(a, b) satisfying
(1) Z is in D4;
(2) + o.
DEFINITION 10.6. We denote by * the operator defined by setting *Z G

whenever JZ’-BZ AG and Z is in/*.
THEOREM 10.7. The abuse of notation abote is correct. The adjoint of in L2A(a, b)

is f_ft. The adjoint of [,* in LEA(a, b) is L
Proof. The form of the adjoint of/: is well known to be the same as that of *.

From Green’s formula it is clear that/* is included in domain of the adjoint.
Conversely, again from Green’s formula, since PBa (Y) + QBb(Y) is arbitrary, any

element in the adjoint’s domain must be in/*.
There are parametric boundary conditions as well. Set

MBa(Y) + NBb(Y) O, PBa (Y) + QBb( Y) F,

where F is arbitrary. Multiply

by

P Q Bb(Y)

The result is

Likewise, if

then post-multiply

by

B(Y) =#*F, B(Y) -0*F.

(z) + a, PBa(Z)+QBb(Z)=O,

P Q 0 --Jb"
The result is

a(Z) -JM*A, b(Z) JbN*A.
THEOREM 10.8. The parametric boundary conditions are fully equivalent to the

original boundary conditions.

11. Equivalent boundary conditions. The evaluation of lim_,b Z(x)*JY(x), found
in the proofofTheorem 9.1, enables us to establish a number ofinteresting relationships.
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First think of it as defining a boundary condition on Y:

Bz( Y) lim Z(x)*JY(x)
b

lim l(x, A)*JZ(x) lim X(X, .)*JY(x)
b L b

lim X(x, A)JZ(x) lim d(x, X)JY(x)
b b

If we let

C lira 4(x, A)JZ(x)

we have the following theorem.
THEOREM 11.1. Let Z be in DM then

-lim X(x, A )*JZ(x)
x-}b

Bz (Y) CBb(Y).

Since Glazman showed that all self-adjoint boundary conditions can be
generated by using appropriate elements from DM, this shows that our
solution-generated boundary conditions also suffice.

As a special case, let Z Xl(x, A).
THEOREM 11.2. Let V [limx_.b b(x, A)*Jx(x, A)]*; then

The coefficient

/2=[limX(x’A)*JX(x’A)]*]x-b
is zero.

Likewise, let Z 4,(x, A).
THEOREM 11.3. Let

V2 lira 4l(X, ,)*J4(x, A)

and )); then

V22 lim X,(x, A )*J&(x, A
b

Bb(Y) VB,(Y).

COROLLARY 11.4. There exists a matrix V such that

Bb(Y) VBb(Y).

Note that if A can be chosen to be real, which is frequently the case, then V V I.

12. Self-adjointne.ss.
THEOREM 12.1. L is self-adjoint if and only if r m and

MJM*= NVJbN*.
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and

Proof. Suppose/_ is self-adjoint. Then Y in/ satisfies

MBa(Y) + NBt,(Y) 0

a( Y) + Ob( Y) O.

Since the boundary, evaluations at each end must be the same, and B(Y) B(Y),
we find Bb(Y) VB,(Y) for all Y in/.

Then

o(g) o(y) -7*A,

We have

M(-JM*A) + N( VJt,N*A) O,

Since A may be arbitrary,

Conversely, if

then

,(Y) V- Bb(Y) JbN*A.

or [-MJM*+ NVJt,N*]A O.

MJM*= NVJbN*.

MJM* NVJt,N*,

VJt,N*
=0, (M,N)

Bb Y)
=0.

Thus there must exist a nonsingular A such that

VJsN*]
A

Bt, (Y)

and eo(Y) -JM*A, ns( Y) VJbN*A. Hence/(Y) -JM*A,( Y) JsN*A. This
implies

PB(Y) + QBs(Y) O,

and so Y is in *. A symmetric argument then shows *, and is self-adjoint.

13. The spectral resolution of L. This section closely follows the lead of Codding-
ton and Levinson [3, Chap. 9].

If we consider the regular boundary value problem on In, b’],

JY’(AA+B)

(aa2) Y(a)=0, (flfl2) Y(b’)=0,

we recall that $ satisfies the boundary condition at a, while for Im A # 0, Xb’ 0 + SMb,
satisfies the boundary condition at b provided

Ms,= -[(fllfl2)(b’, b)]-’[(fl,fl2)O(b’, A)].

For all A, Ms, is analytic in A except for real poles, which are igenvalues for the
regular problem on a, b’]. We denote these eigenvalues by {Ak}= . Their corresponding
eigenfunctions are { k}k=. For each Ak,

V (x, A)K,
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where Kk is an n x 1 matrix. We assume that at multiple eigenvalues, the corresponding
eigenfunctions have been made orthogonal.

THEOREM 13.1. Let F(x) be an arbitrary element in LEA(a, b’). Then

F(x)= E Ck(X)Ck,
k=l

where Ck(X)= (X, Ak) and

Ck *k ACk d CkAFd.

This is, of course, just the standard eigenfunction expansion. Note that Ck is an
n x 1 matrix.

THEOREM 13.2. Let F(x) be an arbitrary element in L2a(a, b’). Then

I’F*AFd,==[I’F*Add,][I’d*Add,]-l[I *AFd,].
This is Parseval’s equality.
DEFINITION 13.3. Let R: denote the n x n matrix [I’ *Adl-’.
DEFINITION 13.4. Let

a() 4(, )*()() .
DEFINITION 13.5. Let Pb’(1) be an n x n matrix valued function satisfying
( e,(0+ 0;
(2) Pb’(1) is increasing, jumping R at I I, but otherwise constant, continuous

from above.
Thus

Pb,(A)= Z R, A ->0,
0<AkA

Pb,(h)=- ’. g, A <0.
h<hk-<0

THEOREM 13.6. (Parseval’s equality.) Let F be an arbitrary element of L2A(a, b’).
Then

F*AFd= G*(X dP,(A )G(X).

This can be extended by the polarization identities to inner products.
COROLLARY 13.7. Let F1, F2 be arbitrary elements in L(a, b’). Let G(A) and

G(A) correspond to them according to Definition 13.4. en

FAF d G(A dP,(A )G(A ).

We will need this in the theorem that follows.
THEOREM 13.8. ere exists a nondecreasing n x n matrix valued function P(A),

defined on (-, ), such that
(1) P(0+) 0,
(2) P(X)-P() =im, [P,(x)- P,()], x > .
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Proof. Let Mb, be on the circle E (M), defined by setting Xb*’(b’, h )(J/i)xb(b’, h O.
Set h equal to ho, and Xb,(x, ho) O(x, ho)+ b(x, ho)Mb,(ho). Then Jx’b,=(hoA+ B)Xb,.
Apply Parseval’s equality to Xb’.

where

X*b’AXb’ d= G(A )* dPb,(A )G(A

G(A b*(s, A )A(se)Xb,(, Ao) d:.

Now Jx’b (AoA + B)Xb, and J (AkA + B)&k imply

Jxb,l’= (Ao- Ak) AXb, d.

At b’ both k and Xb’ satisfy (fl, fl) Y(b’) 0, so the upper limit on the left is 0. At x a,

So
b’

O(Ak) Ck*kAXb’ as (Ak Ao)-’ I,.

Parseval’s equality becomes

X*b’AXb’ dsc IX Ao1-2 dPb,(a ).

An easy calculation using the ditterential equation for Xb’ shows

X*b,AXb, d Mb,- M*b,]/ (2i Im ,o).

If ao v/Z-i, then

I_ , ,-2 dP,(, M,( i) M*b,( i)]/ (2i).

Since i-A -- A/ 1, we see there is a K > 0 such that

I_o(AE+l)-ldPb,(A)<K.
This implies for/z > 0 that

I/’ 2]dPb,(A < K + tx

This implies since Pb’ is increasing, and 0-< Pb’()< K[1 +/z2], then 0_-< --Pb,(--/x)<
K[ 1 //x] for all/z _-> 0. Therefore Pb,(A is uniformly bounded on compact subintervals
of the real line. Helly’s first theorem [23] shows there is a subsequence that converges
"weakly" to P(A) with the properties stated.
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THEOREM 13.9. If F is in LA(a, b), there is a function G(A) in Lp(-, ), with
inner product

such that if

then

and

But

Thus

G, H)p f_ H* dPG,

E(A G(A )- 6*(sc, A )A(se)F() dsc,

limf_E(A)*dP(A)E(A)=O,b’- b

Proof. (1) Let F be in C(a, b). Then F is in D.
If b’ is large enough,

(LF)*A(LF)= H*AHd= E 6*kAHd Rk 6*kAHd
k=l

*kAHd *k[JF’- BF] d J’k Bqbk]*Fd:

b’

Ak Ch*k AFd AkG(Ak).

I b

(LF)*A(LF) d= AEG(A)* dPb,(A)G(A).

Let N > 0. Then

1

N2 AEG* dPb,G (LF)*A(LF) de

So, since

F*AFd + + G* dPb,G,
-N

P*AFd- G* dPb,G + G* dPb,G
N

<-_ N---5 (LF)*A(LF) d.
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Let b’ approach b. Helly’s second theorem [23] implies

F*AFd G* dPg <- -- (LF)*A(LF) d.

Let N approach

F*AFdsc G* dPG,

provided F is in C(a, b).
F(2) Let F vanish near b but otherwise be arbitrary in LA(a, b) Choose { j}j--1 in

C(a, b) such that

lim F F)*A(F F) d 0.

Apply Parseval’s equality to F,

f (- Fk)*A(- Fk) d (Gi- Gk)* dP(Gj- Gk),

where

Gj qb *AF d, Gk *AFk d.

Since limj_. F F, {G} is also a Cauchy sequence in L(-, ). Thus there is a
G in L(-, ) such that lim G G. Since

G;- * AFd *A(-F) d

*Ad [-F]*A[- F] d

implies lim/ GI ’ *AFH, which is continuous, we find G= *AFH, almost
everywhere. Thus if F vanishes near x b,

F*AFd lim FA5d lim G dPGi G* dPG.
j j

(3) Finally, if F is arbitrary in L(a, b), let

F,=F, xb’,

F,= 0, x>b’.

Let

Since

Gb, *AFb, d *AFd.

Gc Gd )* alP( Gc Gd F*AFd,
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{Gb’} is a Cauchy sequence as b’ approaches b. Let limb,_ G,= G in Lp(-, ).
Letting b’ approach b in the previous result, we get

F*AFd G* dPG.

2 )(4) Since G, approaches G in Lp(-,

lim G()- 6*AFd dP(h) G(A)- 6*AFd =0.
b’b

We remark that if the condition JY’-BY= AF, AY=O implies Y=0 fails to
hold, then the approximation used in the proof of this theorem may hold only on a
subspace of L(a, b). The subspace may be as small as only one dimension. We will
give examples later.

THEOREM 13.10. IfG(A is the limit of’ 6(sc, A )*A(sC)F(sc) d in Lp(-Oo, oo), then

f_6(x, it)dP(,)G(,)=F(x)

in L2a( a, b ); that is,

lim F- c dPG A F- ch dPG d O.
,oo

Proof. Let I (/x, ,), and

Fl(X) [ (x, A) dP(A )G(A ).

If b’ is in [a, b), then

IF- Ft]*AFI d= [F- FI]*A 6 dPG d

=I’,[ff’[F-Fr]*AOd,] dPG.

Likewise, we have

IF- F]*AFd= IF- 5]*AO d dPG.

Subtracting, we obtain

[F-N]*A[F-F] d= [F-F]*Ad dPG.
-,)-

Now ’ *A[F-FI] d is the transform of a function in L(a, b), which vanishes on
(b’, b). Consequently the integral from a to b’ in brackets is in L(-, ). Applying
Schwarz’s inequality,

F F ]*A[F F d
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The first integral on the right is less than or equal to
b’

F Fx ]*A[F FI dt.

If this is inserted and canceled,

F Fx ]A[F F, d <- G* dPG.
--oz,x)--

Let b’ approach b. Then let I approach (-, ). The result is that F lim1_(_o,) Ft,
or

lim 4(x, A dP(A )G(AF(x)
(,)-,(-o,)

in LA(a, b).
Theorem 13.9 may be extended to involve inner products by use of the polarization

identity. The inner product form of Parseval’s equality is

F()*A()FI() d= G(1)* dP(A )GI(A ),

where

Theorems 13.9 and 13.10 may be extended to represent the resolvent operator
(L-IoI)- when Io is not in the support of dP(A). Parseval’s equality is

[(L-hI)-F()]*A()[(L-hI)-F(se)] dsC= x -Aol
The resolvent expansion is

(/-o-(xl 4,(x, P( ------.
14. The werse problem. Again, this section follows closely the lead of

Coddington and Levinson [3, Chap. 9].
The preceding section began with choosing an F in L(a, b), producing G in

L( -oo, oo), and then showing that F could be recovered from G. In this section we
begin with G, produce F, and then recover G.

Without the assumption that JY’- BY 0, AY 0 implies Y 0, L(-oo, oo) may
be too large in the sense that G- F- G, but G may not equal G. G may be only in
a subspace of L(-oo,

With the assumption made in the Introduction (let F =0), there is no ditficulty.
LMMA 14.1. Let G(A be in L(-oo, oo). Let

,(xl | 4(x, e(tla(.
Then lim_,(_.o)F(x) exisCs in La(a, b).

Proof. Let I c h. Then

F,- F,, f ck(x, X dP(X )G(X f ck(x, X dP(X )K_,,(X )G(X
12- I!
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where

K2_I,(A) 1, A 12-11,

KI2_,(;l 0, A I2-11.
Let F be an arbitrary element of L(a, b), which vanishes near b. Then

R*A[F,- F,,] d= R*A 6 dPG d
-I

*AR d dPG S* dPG,
I2--I

where S is the transform of R" S= &*AR de We now let R F-F, on [a, b’),
but set R 0 near b. Then

-I

But by Parseval’s equality

Take the square root, cancel with the inequality above, and then square.

EEl2-- F,,I*A[F,- F,,] de a* aPG.
12- I

Since the right-hand side is independent of b’, let b’ approach b. Then F-F is in
L(a, b). As I approaches (-, ), the inequality also shows that {F} forms a Cauchy
sequence in L(a, b), and therefore limt(_.)F F in L(a, b).

LEMMA 14.2. Let G(A) be in L(-, ). Let

d

lim [ (x, A) dP(A)G(A).F(x)
,-,)

Let

G(A b*(:, A )A()F() d,

and let

(x) f ok(x, A) dP(A )d(A ).

Then

lim F, FI ]*A[F1 F, d O.
I-.(-,o)
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Proof From Theorem 13.10, F(x)=liml_(_.)ff;t(x) in LZA(a,b). But by
definition, F(x)= lim_(_oo.)Ft(x). The triangle inequality

A -< F A -[" F- ff’ A

shows that as I approaches (-, ), liE,- ,IIA approaches zero.
At this point we have, given G, that an F exists. F yie.lds G which again yields

F. And so the process stops. We continue to show G and G coincide.
LEMMA 14.3. Let Ao be a complex number with positive imaginary part, and let

Hi(x, Ao) oh(x, A) dP(A
G(A )- G(A

A -Ao
Then for allfixed ho, lim_(_oo,,)H(x, ho) O.

Proof HI satisfies

JH’-[AoA+B]H,=A(x) I [b(x, A) dP(A)][G(A)-d(A)].

Further, H satisfies the boundary condition (al, a2)H (a, Ao) 0. Thus

H,(x) G(ho, X,)A()[F,()-F,()]d+dp(X, ho)C,

where here G(Ao, x, sc) is the Green’s function for the singular boundary value problem
As I approaches (-oo, ), the integral approaches zero. So

H(x, )to)= lim H(x, ho)= b(x, ho)C.

But lim,_.bX(X, Xo)*JH(x, ho)=0 because, since Ht satisfies the boundary condition
as x approaches b, H must satisfy the singular boundary condition as x approaches
b as well. Since limx-.b X(x, Xo)*Jcb(x, Ao)= M(A), which is nonsingular, C =0.

LEMMA 14.4. G(A) (h) in L2p(-O, o).
Proof. Let K be a constant 2n x 1 matrix; let

Ys(A b(sc, A )*A()K d.

Then Ys(A) is in L(-oo, oo), since it is the transform of a function that vanishes near
b. Then

K*A()H(, Ao) ds= Y(A)* dP(A)
G(A)- t(A)

Let I approach (-o, oo). Then

O=f_ Y(A)* dP(A)[G(A)-(A)].h -ho

By varying/Zo and 9o (ho =/Xo+ io) independently, we see that

0 Y,(A)* dP(A)[ G(A) d(h)]
(h o)

If we integrate with respect to/Zo from a to fl, reversing the order of integration, we have

0 Y(A)* dP(A)[ G(A) d(A)] tan- /3 -tan-
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Letting 9o approach zero, we get

0 Ys(A)* dP(A)[ G(A) G(A)],

or

0 K*A(:)(:, A) dP(A)[ G(A) G(A)] d:.

Differentiate with respect to s"

0 K*A(x)(x, A) dP(A)[ G(A)- G(A)].

Now apply an extension of the Mean Value Theorem, remembering that the expression
is 1 x 1 and is analytic in A. We find for some Ao in [a, fl]

K*A(x)(x, Ao) dP(A)[G(A)-d(A)]=O.

Since A(x)(x, Ao)V is only zero for all x when v 0, we can choose K appropriately
to conclude that

dP(A)[ G(A)- G(A)] 0

for all a, . We use this to build up integrals involving step functions, dense in
L(-, ), which have as their limit

G(A) G(A)]* dP(A)[ G(A) G(A)] 0.

Hence G in Lp(-m,
We summarize in the following theorem.
TnEOREM 14.5. IfG(A) is in L(-m, ), there is a unique F(x) in L(a, b) such that

F(x)=f(x,)dP()G()
and

G(A 0(:, A )*A(:)F(:) d.

15. The relation Ietweea M(k) aatl P(k). The matrix M(A) can frequently be
determined by careful inspection of the solutions of (*) to determine appropriate
solutions in L(a, b). More difficult is the determination of the spectral measure P(A ),
since its existence follows from Helly’s selection theorems. Fortunately, they are
intimately connected. Recall the following theorems.

THEOREM 15.1. LetM(h) be on the limit circle letx(x, h)= O(x, h)+ (x, A)M(A)
for h Ix + ,, , O Then

b

x(, A )*A()X(, A) d= [M(A M(A )*]/ (2i Im A).
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THEOREM 15.2. Let Ao =/ + iv, v # O. Then

X(, Ao)*A()X(, Ao) d IA Ao1-2 dP(A).

Proo The theorem is true if b is replaced by b’. Let b’ approach b.
THEOREM 15.3. If A1 and A2 are real, then

P(A) P(A1) lim
1

Im M( + iv) d.

Further, if1 and have nonzero imaginary parts, then

M()- M(,) [(-)-’-(- ,)-’] dP().

Proo We have IA Ao1-2 dP(A) [M(Ao)- M(Ao)*]/2i satisfies

dP(1)
Im M( + i)=

(i -)+.
Integrate both sides from I to I with respect to .

I2 [tan_, (A2 A)(A A)
Let v approach 0 from above, we obtain

lim Im M( + i) dg dP(A) [P(A)-P(A1)].

To validate the second pa, note

Im [M(0)- M(l)]
i_1-i_1

I [(-* (-l)*]Im IZ- al la Z2i dP(a)

We therefore have two functions, analytic in I and I, whose imaginary pas are
equal. The real pas can only dier by a constant. Letting I I shows this constant
to be zero.

1. Te seer! reslmom We connect the result of the preceding sections to the
representation of the identity as an integral generated by a projection valued measure
E. Given

F(x)=I2(x,)dP(")G(")
where

G(I b*(s, A )A()F() d,
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Considered the limit of eigenfunction expansions, Ea can easily be shown to be
a projection. It is continuous from above and satisfies Ea, Ex2= E, when A <= A2, as
well as E_oo O, Eo L If we let {Aj}j___oo be a partition of (-oo, oo), Ai < Aj if <j, and

Aj+
AgEF(x) ok(x, A dP(A )G(A ),

then F(x)= .q---oo A.iEF(x). As the mesh {A}j_-_oo becomes finer, we may write

F(x) j- dE,F(x)

as the limit of the decomposition above.
If Y is in D, it has the representation

Y(x)=Iob(x,A)dP(A)G(A)
where

Then

This translates into

G(A 6"(:, A )A(sc) Y(:) dsc.

LY(x)=f?oAqb(x,A)dP(A)G(A).

LY(x)= f_A dEa Y(x).

The resolvent operator also has the standard representation. If Ao is complex,

I_o 1
dEaF(x).-oI-Fx -----o

It is apparent that Ao is in the spectrum of L if and only if it is in the suppo of
dEa or dP(A).

17. Examples. (1) Consider the two-dimensional system

0

on the interval [0, 1), together with boundary conditions

O: (1 o)/yl(O)ky(0} =
or

E: (yl(0))(0, 1)
\y2(0)

0
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at x 0, and

lim (1 0)(0 \y2(x)

at x=l.
The differential system is equivalent to the Legendre differential equation. With

the O boundary condition, the odd polynomial boundary value problem is generated.
With the E boundary condition, the even polynomial boundary value problem arises.
The boundary condition at x 1 is the one satisfied by the Legendre polynomials.
x 1 is limit circle.

(2) Consider the four-dimensional system

0 0 -1 O\[y 1 0 0 0 0 0 0 0 y
0 0 0 -lilY2""

i
0 0

i ! -2(1-x2) 1 0 Y2
0 0//y 

=x
00

/
0 0 o

0 1 0 0]\y4 0 0 0 0 (1 -x2) Y4

on the interval [0, 1), together with boundary conditions

/YI(0 /yl(O)
/O" (1. O. O. O)! Y3(O) O. (0. O. O. 1)lye(O)I o

\y4(O) \y4(O)]

or

/y.(O) [y.(O)\
E" (0, 1, 0, 0)

y3(0)
0, (0, 0, 1, 01/y3(0)/ 0

\y4(O) \y4(O)/
at x 0, and

lim (ln (1 + x), (1 + x)-’, O,-(1- x)2)

O0 -1 O\/y,
0 0 -l||y:|
o o I
1 0 O/\y4/

0 0 -1 O\[y.
lim(1 0.0.0) 01 0 0 -l||y2|...
x->l 0 0 O/|y3/=0

o 1 0 O]\y4]

=0,

where, at x= 1, the limit-4 case holds, and for A =0, (1, 0, 0, 0) , and (ln (1 +x),
(1 + x)-, 0,-(1-x)2) 7- are L2 solutions. The problem with O boundary conditions is
again the odd-degree Legendre polynomial boundary value problem. With E
boundary conditions, the even-degree Legendre polynomial value problem is the result.

(3) Consider the fourth-order scalar problem (y")" Ay on [0, ), together with
boundary conditions y(0)= 0, y’"(0)- 0. is limit point, so no boundary condition at

is required.
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Let y =y, Y2 Y’, Y3 =-Y", Y4 Y"; then the problem is equivalent to

0 0 -1 0 y 1 0 0

0 0 Y3 0 0

1 0 4 0 0

with boundary condition

( o0

0 0 0 0 0

1 0 y3

0 0

y 0

The initial condition for the fundamental matrix is

1 0 0 0

0 1
1 0

The components of the four 4 x 1 matrices that makes its columns are combinations
of sinh ZoX, cosh ZoX, and cos ZoX, where Zo A l/a. Multiplying the fundamental matrix
by

M
and requiring the result to be in L(O, o) shows that

+ i)/2M=
Zo(-i+1)/2

As A z approaches the positive real axis,

/,i/2
Im M -->

-A /2

Zo(1 i)/2
(1 + i)/2Zo]"

-A1/4/2
1/2114]"

As A approaches the negative real axis, Im M 0. Consequently,

dP(A
I ( //2 A /’/2

-,t’/a/2 1/2A’/] da, A O.

Elements in L(0,) are dependent only on their first component, so F=
(f(x), O, O, O) en

G(A ): 2A,4 -,A ’/2 sin

sin x sin f() d

F(x)=
0

0

0

where we have replaced A by/za. This is the Fourier sine expansion.

18. Subspace expansions. At the beginning the assumption JY’ BY AF, AY 0
implies Y 0 was made. We would like to briefly comment on what occurs if the
assumption fails to hold.



698 A.M. KRALL

First A must be singular. Thus if F is in the maximal domain: JF’-BF AH,
the dimension of AH is less than 2n. If function 3’1," ", 3’2, is chosen so that

then

(3/1, 3"2n)A =0,

(3’, ,’’’, 3’2,)(JF’ BF) O.

Letting (3",, .., 3’2,)J K, (3’, ,..., 3’2,)B L, we have KjF- LjF =0,j 1,..., 2n.
Three possibilities occur:
1 If K) # 0, F c) exp (L)/Kj) d.

(2) If Kj 0, L 0, F is arbitrary.
(3) If K=0, Lj#0, F=0.
Since not all K)= 0, F) is restricted and may not be dense in L(a, b).
We provide two examples to illustrate. First consider

( -10)(,2)’=A (4__1 114)(’2) +(-41 114)
The fundamental matrix is

Y(x,A)=(1-x 1/4Axe.
-4Ax 1 +

Elements in L(0, 1) have an inner product

((2)’ (;12))= ff (gl, 2)( 4_1 114)(12)d:;
an element is zero if 2f 1/2f2.

If boundary conditions

(1, o)(Y (0)=0, (0, 1)(Y (1) -’-0
\ ]Y2 \ ]Y2

are imposed, there is only one eigenvalue A =-1 and one eigenfunction

The solution b is

so for F= (),

(1/4)Ax
l+Ax/’

dP is zero unless A =-1. dP(-1)= 4. So

F(x)=(-(1/4)x’4" I]



SINGULAR HAMILTONIAN SYSTEMS WITH ONE SINGULAR POINT 699

Clearly this is one-dimensional. In fact, elements in the maximal domain are of the
form (o), where c is constant. Such elements are equivalent to the eigenfunction

Only these can be expanded.
Second, consider

Y2 --1

(1,0)|Y|/\(0)=0,
\ /Y2

1 Yl +
ee Y2 -1 f2

-’-0.
\ /Y2

The only eigenvalue is at A (1- e) -1. Its eigenvector is

[1_ ee-X]/[l_ e]

If

is an element of L(O, 1), then

G(;t )= (-e-ef +f2) d.

dP is zero except at A (l-e)-1, where it is e/(1- e). Thus if

F(x)=
f2

is in the maximal domain, D4,

F(x)
[1 eel]/[1 e] 1 e

(-e-ef +f) d.

A quick calculation shows that elements in D have the form (), where c is
constant. Arbitrary elements in L(0, 1) have the form

0

so D is not dense.
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M(A) THEORY FOR SINGULAR HAMILTONIAN SYSTEMS
WITH TWO SINGULAR POINTS*

ALLAN M. KRALL"

Abstract. The 2n-dimensional Hamiltonian system JY’= (AA + B) Y on an interval (a, b) is considered,
where both a and b are singular points. A Green’s function is derived using separated singular boundary
conditions, and it is used to show that the singular boundary value problem consisting of the differential
equation and boundary conditions is self-adjoint. Then a doubly singular version of Green’s formula is
derived and all self-adjoint boundary value problems arising from the differential equation are characterized.
Finally, the spectral measure, generalized Fourier transform of an arbitrary function and its inverse transform
for the original boundary value problem with separated boundary conditions are derived.

Key words, single boundary value problem, Sturm-Liouville problem, spectral resolution
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1. Introduction. The present paper follows up on our earlier work [11], which
discussed linear Hamiltonian boundary value problems with one singular point. Our
purpose here is to state the results for doubly singular problems and to give proofs
where necessary. But where verifications closely parallel the single singular point
development, we will merely refer to the proofs given in 11 ].

We refer to 11] or to [4] for a lengthy development of the history of the problem.
We would be remiss, however, if we did not mention those works that had the most
direct impact on what follows. Kodaira (see [3]) and Coddington and Levinson [3],
[10] developed the theory of singular scalar differential operators of nth order. Many
further details, as well as other results, were worked out by Everitt (see [11]). The
notation and general techniques for systems were developed by Atkinson 1 ]. Following
Atkinson’s lead, Hinton and Shaw [6]-[8] made major advances. The present work
uses the results of these authors extensively throughout. It is virtually impossible to
give full credit to them where warranted, because their influence is so widespread. We
are sure, however, that those who read on will recognize where their contributions
appear. Without them this current version could not have been written.

We follow the footsteps of Atkinson [ 1 and Hinton and Shaw [6]-[8] by consider-
ing the 2n-dimensional system JY’ (AA + B) Y over an interval (a, b) where both a
and b are singular points. Our procedure is to first consider a problem on [a’, b’]
where a < a’< b’< b, then permit a’ to approach a, b’ to approach b.

The first problem we encounter is the verification of the existence of solutions
that are in L2A(a, c) and L2(c, b), a < c < b, where the Hilbert spaces L are generated
by

Y, Z) f Z*AYdt.

For Im A 0 it can be shown that there exist at least n L2A-SOlutions toward a and
toward b. By using these solutions appropriately, we can construct a Green’s function

* Received by the editors May 18, 1987; accepted for publication (in revised form) August 9, 1988.
This work was supported by the Applied Mathematical Sciences subprogram ofthe Office of Energy Research,
U.S. Department of Energy, under contract W-31-109-Eng-38.

" Department of Mathematics, McAllister Building, Pennsylvania State University, University Park,
Pennsylvania 16802.
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with which we can develop a second problem to determine the self-adjointness of a
differential operator related to JY’-BY in L2a(a, b).

Using the Green’s function appropriately enables us to develop a singular Green’s
formula. This in turn permits us to determine other problems, possibly with mixed
boundary conditions, that are self-adjoint in L2a(a, b). Finally, employing the regular
eigenfunction expansion over an interval [a’, b’], we follow the lead of Coddington
and Levinson [3] to develop the spectral resolution for a doubly singular problem with
separated boundary conditions. Brauer [2] has developed the broader theory for mixed
boundary problems.

2. Notation and definitions. We consider over an interval (a, b) the differential
expression

(,) JY’=(AA+B)Y,

where Y is of dimension 2n (a 2n x 1 matrix),

{0 -0I.} A={AI(X) A2(x)}J=
I. A2,(x) A22(x)

B= { B’’(x) B12(x)}B21(x) B22(x)

are locally integrable 2n x 2n matrices, A A*-> 0, B B*. We will assume that both
a and b are singular points; that is, either or both a and b may be infinite. Neither A
nor B is necessarily integrable in a neighborhood of a or b. Our setting is L(a, b),
the Hilbert space generated by the inner product

Y, Z) Z*AYdt.

To ensure that elements of the maximal operator are dense in L(a, b), we assume
that if JY’- BY AF and AY O, then Y O.

As a preliminary step we consider (.) over a subinterval [a’, b’], a < a’< b’< b,
and impose at a’ and b’ the separated regular self-adjoint boundary conditions

(O1, 02) Y(a’) 0, (ill, f12) Y(b’) O,

where al, 02, #1, #2 are n x n matrices satisfying

rank (al, a2) n, rank (/31,/32) n,

010 15 q- O202" In, #1# 1 "- #2# L,

#1#--#2#1-"0.
Equation (.), together with these boundary conditions, defines a regular self-adjoint
boundary value problem over In’, b’].

Finally, let c be in [a’, b’], and let (x, A) be a fundamental matrix for (.)
satisfying (c, A) I2,. We decompose into 2n x n matrices 0 and b such that (x, A
O(x, ), ,(x, )).

3. M(A) functions, limit circles, L2 solutions. If Im A # 0, we attempt to satisfy
the b’ boundary condition by Xb’(X, A) O(X, A)+b(x, A)Mb,(A). Insertion into
(/3,/32) Y(b’) 0 shows that

Mb,(A -[(/31, f12) b (b’, X )]-l[(fl,, f12) O(b’, A )].

The inverse must exist, for otherwise the boundary value problem of (.), the b’ boundary
condition, and the c boundary condition (I,, 0)Y(c)=0 would be self-adjoint, but
would have a complex eigenvalue.
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The circle equation, satisfied by Mb,, is +Xb’(b’, h)*(J/i)xt,,(b’, A)=0. If at b’, we

(d *) *(J/i), Im A > 0,
_Old.(j/i)olj, Im A < 0,

the circle equation can be written as

(, M*,I

Expanded, this is

M’,Mb,+ M’, + gd*Mb, + 4 O.

It is possible to show that,. + O*(b’)(J/ i)O(b’),

N=*(b’)(J/i)O(b’)= 2Iml *AOdt-iI

*(b’)(J/i)(b’)= 2 Im *A dt

If R -/, R R(X), and C --, then M,= C +R UR, where U is
any unitary matrix. As b’ approaches b, C, R, and R have limits C, R, R, giving
M.

It is shown in [11] that as b’ approaches b, M, can be made to approach
M C+RUR, where

[ f, ]_l[ f, ]
Rb i 2 IIm AI *A dt b(A)=

and Ub(A) is a unitary matrix.
It is fuher shown that if Xb(X,A)=O(x,A)+(x,A)Mb(A), then

f xAx dt M M]/2 Im A.

For Xb (X, A and Xb (X, ), Im A 0, Im 0, we have

lim Xb(X, )*Jxb(x, A O.
xb

Note that for all A, Im h 0,

Similarly, we attempt to satisfy the a’ boundary conditions by g,,(x, A)=
0(x, A)+ b(x, A)Ma,(A). Insertion into (al, a2)Y(a’) 0 shows that

Ma,=-[(c,, a2)b(a’)]-’[(a, c2)0(a’)],

where, again, the inverse must exist.
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let
The circle equation, satisfied by Ma’, is +Xa’(a’, X)*(J/i)xa,(a’, A)=0. If at a’, we

(M *)=-@*(J/i)@, Im A >0,
3 *(J/i), Im A < O,

the circle equation can be rewritten as

(, M.*,

Expanded, this is again

M*,Ma,+ M*, + *Ma,+=O.
It is possible to show that

= +O*(a’)(J/i)O(a’),

1 +d*(a’)(J(i)O(a’)) + 2 Im A d*AO dt+ iI,,

*(a’)(J(i)(a’))= 2 Im *A dt

If R /, R R(X) and C -N-N, then M.,= C +R U.R, where U. is
any unitary matrix. As a’ approaches a, C, R and R have limits C., R., ., giving M..

As a’ approaches a, M., can be made to approach M. C. + R.U.R. where

C. lira 2 Im *A dt 2 Im I *AO dt+ iI

R, lim 2llm A *A dt ,
a’a a’

and U is a perhaps different, unitary matrix.
With X(x, A)=O(x,A)+(x,A)M(A), it is also true that

xAx dt [M L]/2i Im A.

For X (x, A and X(x, ), Im A 0, Im 0, we have

Iim Xa(X, )*Jx(x, A O.

Note that

Im M M M*
Im A 2i Im A

We will require some facts concerning M(A) and Mb(A).
THEOREM 3.1. For all A, Im A # 0,
(a) M,(A)# Mb(A), [ImA][M,(A)-Mb(A)]<O;
(b) M,(A) M,()*, Mb(A) Mb()*;
(c) Mb(A ), Mb(A ), M(A Mb(A are all invertible;
(d) Mo(A)[M(A)-Mb(A)]-Ma(A)= M,(A)[M,,(A)-Mb(A)]-Mb(A).
Proof. The second part follows from the statements

lim x(x, tz )*Jx(x, A O,

lim Xb(X, lx )*Jxb(x, A O,
xb
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letting /x . The third follows from noting that for any matrices M A+ iB, with
M*=A-iB, we have A=(M+M*)/2 and B=(M-M)*/2i. If B>0 or B<0, then
M is nonsingular. Suppose M is singular. Then there exists an eigenvector v such that
Mv=O. This implies O=v*Mv=v*Av+iv*Bv. Since B>0 or B<0, iv*By is
imaginary, while v*Av is real. This is impossible.

The fourth is an easy computation.

4. The differential operator. From an extension of a theorem of Everitt [5], we
know that the number of solutions of (*) in L2a(a, b) is invariant provided Im A > 0
or Im)t < 0. It is possible, however, for the deficiency indices to be unequal. Only
when both ends a and b are limit circle (all solutions in L(a, b) for all )t), or when
A and B are real, are they guaranteed to be equal. Here we must assume the deficiency
indices are equal.

DEFINITION 4.1. We denote by DM those elements Y in LA(a, b) satisfying

(1) IY=JY’-BY=AF
exists almost everywhere for some F in L(a, b).

DEFINITION 4.2. We define the maximal operator L4 by setting L4Y F for all
Y in D.

THEOREM 4.3. Let Yj be a solution of
JY (hA 4- B) Yj, Im h 0.

Then for all Y in D4,

B,(Y) lim YJY
exists if and only if Y is in La(a, c),

Bb, (Y) lim YJY
xb

exists if and only if Y is in L2A( C, b ).
DEFINrrION 4.4. Let Im A 0. Let Ma()= ta +aUR be on the limit circle at

a. Let X(x,)= O(x,)+ qb(x,)M,() satisfy (.) with A replaced by and be in
L(a,c). Let Mb()=b+bUbRb be on the limit circle at b. Let Xb(X,)=
O(X,)+ ch(x,)Mb() satisfy (*) with A replaced by and be in LA(C, b). We define
the boundary values Ba(Y) and Bb(Y) by setting

B(Y) lim Xa(x, )*JY(x),

Bb( Y) lim Xb(X, )*JY(x),
b

for all Y in Da4.
Note that is used in the definition. This is for convenience only and will be

removed later.
DEFINrrION 4.5. We denote by D those elements Y in LA(a, b) satisfying (1)

l(Y) JY’- BY= AF exists almost everywhere for some F in L2a(a, b); (2) B(Y) =0;
(3) Bb(Y) 0, for some fixed A, Im , 0.

DEFINIa’ION 4.6. We define the operator L by setting LY F for all Y in D.

5. The resolvent, the Green’s function. The inverse of (L-AI) can be calculated
with ease. We solve (.) together with the two boundary conditions. If we set Y C,
variation of parameters shows C’= -J*AF, where ’(x, A) (x, )*. Thus

Y(x) -(x, A J’(, A )A(()F(() d+ (x, A )K.
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We multiply by

so

Now

is constant. At x c,

Xjy
o/

Thus

Letting x- b, we get

0= AFd+
Mb
0

Note that the integral exists since Xb is in L(c, b).
Now return to Y and multiply by

,/

Then

Now

is constant. At x c

Thus

X, X, Mta -I.
K.

Letting x--> a, we get

0= AFd+ K.

Again the integral exists since X is in L(a, c).
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Add the two limit equations together to get

t0= AFar- X; AFar+ M; -I.
The coefficient of K is nonsingular, yielding

[ (Ma-Mb)-’ -(Ma-Mb)-’ ] Ic’ [I,, M’b],aFd,K
M(M-M)-’ -M(M- M)-’ 0 0

[ (M-Mb)-1 -(M.-Mb)- ]I.(O 0 )M.(M. Mb)- -Mb(M. Mb)- I. M ’AFd.

Inserting this in Y, we obtain

M (M, M)- 0 , M; ’AFd

+(; MI" )((M --Mb)-10 (Ma-Mb)-1)0 fx (I.0 )taFd’

Fuher computation shows this can be written as

r(x) x(x, X )(M(X )- M(X ))- X(, )*A()F() d

+x(x, )(M,(a M(- x(, Xl*(I() a.
THEOREM 5.1. (L-I)-1 is given by

(g-l-(xl a(, x,a((,
where

G(A,x,)=Xb(X,A)(Ma(A)-Mb(A))-X,(,)*, a<<x<b,

G(A, x, :) X,(x, A )(M,(A)- Mb(A ))-lXb(, )*, a < x < < b.

THEOREM 5.2. G is symmetric

G(A,x,)=G(,,x)*.

THEOREM 5.3. (L- AI)-1 is bounded

THEOREM 5.4. L is self-adjoint.

6. Parameter indelendence of the domain. It appears that D is dependent on the
parameter A used in the boundary conditions. Indeed, the Green’s function was only
calculated for A. As shown in 11], however, we can demonstrate that A may vary with
impunity so long as Im # 0.

THEOREM 6.1. Let Ybe in D. Then for all R, ImA #0, B(Y)=0, B(Y)=0.
THEOREM 6.2. For all A, Im # 0, (L-,I)- exists and is given by (**)

II(L-,X)-’II 1/lIm AI.
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7. Green’s formula. Only minor modifications in the technique used in [11] are
needed to express the Lagrange bilinear form Z*JY properly for insertion into Green’s
formula. Using the Green’s function for the doubly singular problem, we get

G(A,X,)=Xb(X,A)[Ma(A)-Mb(A)]-Ixa(,)*, a<=<x<-b,

G(A, x, sc) Xa(x, A )[Ma(A)- Mb(A )]-’Xb (:, )*, a =< x < st _--< b;

instead of the one for the previous problem [11]. We set

Rg(x) a(Ax, )A()F() d.

The previous calculation 11] then goes through without change.
Assume that for Im A # 0 there are m solutions of (.) in L2A(C, b), a < c < b. Since

n of these are represented by Xb, the other m- n are linear combinations of columns
of .

THEOREM 7.1. Let b(x, A)= (bl, b2)(x, A)Eb, where dp consists of all of the dp-
L2A(C, b) solutions of (,). Let b(x, )= (bl, b2)(x, ).b, where dpl consists of all of the
qb L2A(C, b) solutions of (*) with A replaced by . Let (X, X2)(x, ) Xb(X, )E*b and
let (X, X)(x, h Xb(X, h ),*b. Then for all Y and Z in D4,

lim X2(x, )*JY(x) O, lim X:(x, h )*JZ(x) O.
xb xb

Returning to limx_.bZ(X)*JY(x), we find

lim Xl(X, )*JY(x)]lim Z(x)*Jr(x) [l,,imb bl(X, A)*JZ(x)]*[x_ b

Hence we formulate the following theorem.
THEOREM 7.2. Under the conditions of Theorem 7.1, let

lim X(x, )*JY(x)b

Bb( Y)
lim qb(x, ,)*Jr(x)]’

b

lim X(x, A )*JZ(x),Bb(Z)
lim 4),(x, h )*JZ(x) ]b

where (m, m) are the defect indices of (.) at b. Then

lim Z(x)*JY(x)= b(Z)*JbBb( Y).
xb

The symbol indicates A is used instead of .
Assume that for Im A # 0, there are p solutions of (.) in L2a(a, c), a < c < b. Since

n of these are represented by X, the other p-n are linear combinations of &.
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THEOREM 7.3. Let tk(x, A) (tkl, tk2)(x, A)Ea, where c consists of all of the ck
LEA(a, C) solutions of (*). Let tk(x, X)=(tk, tkE)(X, A)/a, where ck consists of all the
c LEA(a, C) solutions of (*) with A replaced by X. Let (X, XE)(X, X) X(x, X)E*, and
let (X1, XE)(X, A) X(x, A )*. Then for all Y and Z in DM,

lim X2(X, )*JY(x) O, lim X2(x, A )*JZ(x) O.

THEOREM 7.4. Under the conditions of Theorem 7.3, let

/’lim X(x, )*JY(x)I.__iBa(r)
\lim bl(X, )*JY(x)]’
/lim X(x, X )*JZ(x)\

/L(z) x-.o /
6 x, *Jz x }’

Ja= Ip_, 0

where (p, p) are the defect indices of (,) at a; then

lim Z*(x)JY(x)= a(Z)*JB*( Y).

Again the symbol indicates A is used instead of .
The pieces now can be puttogether to yield

{Z*[JY’-BY]-[JZ’-BZ]*Y} dx=(,(Z)*,(Z)*) -J" 0 B(Y)

If M, N P, are rx(2p-2n), rx(2m-2n), (2m+2p-4n-r)x(2p-2n), and
(2+2p-4n-r)x(2m-2n) matrices, ONrN2m+2p, and , , , 0 are chosen so
that

We finally have the following theorem.
To 7.5 (Green’s formula). Let Y and Z be in D. en

{/*[Jg’ g] [z’- z]* gl x

+[.(z+ 0(z]*[e. g+(g].

DEFINITION 7.6. We denote by those elements Y in L(a, b) satisfying
(1) Y is in D;
( M.( gl +.( gl 0.
DEFINITION 7.7. We denote by the operator defined by setting Y F whenever

JY’- BY AF and Y is in D.
DEFINITION 7.8. We denote by * those elements Z in L(a, b) satisfying
(1) Z is in D;

DEFINITION 7.9. We denote by * the operator defined by setting *Z= G
whenever JZ’-BZ AG and Z is in *.
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THEOREM 7.10. The abuse ofnotation above is correct. The adjoint off_, in LE(a, b)
is *. The adjoint of f_,* in LEA(a, b) is .

The proof is almost the same as that with only one singular point.

8. Self-adjoint problems. In [11] it was shown that every boundary condition at
b can be written as a linear combination of terms from

Bb( Y)
l)mb dp,(x, X)*JY(x)J

In particular Bb(Y) has the representation

B,(Y) VBb(Y),
where

0 )V= V, V==
is nonsingular. If A can be made real, then Vb L

This same sort of representation also holds at a"

Ba (Y) Vana (Y).
As an immediate con,sequence, we find the following theorem holds.

THEOREM 8.1. L is self-adjoint if and only if r m +p-2n and

MVaJaM*= NVbJbN*.
9. The spectral resolution of L. The operator L was defined in 4. Restricted to

a finite regular subinterval (a’, b’), the resulting operator has a well-known spectral
resolution that is an eigenfunction expansions: if {Ak}k_-i are the eigenvalues with

Xk O(X, Ak)Sk + ((X, Ak) Tk, k 1, , the associated normalized eigenfunctions, then

Xk (X, Ak)
Tk

and we have the following theorem.
THEOREM 9.1. For all F in L(a’, b’),

(x e(x, s (s r (,*((0.
k rk

Parseval’s equality also holds.
ToN 9.2. For all F in L(a’, b’),

Dro 9.3. Let R denote the 2n x 2n matrix

rs
DEFINITION 9.4. Let

O,(A) (,A)*AFd,
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DEFINITION 9.5. Let Px(A) be a 2n x2n matrix-valued function satisfying
(1) P,(0+) 0;
(2) PI(A) is increasing, jumping R at A Ak, but otherwise constant, continuous

from above.
Thus

P(A)= E R, A=>0,

P,(A)=- E R, A<0.

THEOREM 9.6 (Parseval’s equality). Let Fbe an arbitrary element in LEA(a ’, b’). Then

F*AFd,: f_o G*(A)dP(A,G,(A,.

This can be extended by the polarization identities.
COROLLARY 9.7. Let F, F2 be arbitrary elements in L2a(a ’, b’). Let G, G,2 corre-

spond to them according to Definition 9.4. Then

F*2AF d: G2(A )* dPx(Z Gt(A ).

THEOREM 9.8. There exists a nondecreasing 2n x2n matrix-valued function P(A),
defined on (-, o) satisfying

(1) P(0+) 0;
(2) P(h )- P(tz) liml_,(o,b)[P(h )- P(lz)],
The proof consists of showing that if

H(x) Xb’(X, X )[Ma,- Mb’]-iXa’(C, )*, C < X,

n(x) Xa,(x, A )[Ma,- Mb’]-’Xb’(C, )*, C > X.

Then ,b’, H*AHdx < K. This ultimately yields

P,(a < K( +..

Helly’s first convergence theorem can then be applied. See [10].
2 00) withinnerTHEOREM 9.9. IfF is in LEA(a, b) there is a function G(A) in Lp(-o,

product

(G, H)p f H* dPG,

such that if

E(A G(A )- (s, A )*A(s)F(s) as,
then

lim
(a’,b’)(a,b)

E(A)* dP(A)E(A)=O

and

I b

F()*A()F() as G(A)* dP(A)G(A).
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THEOREM 9.10. IfG(A is the limit of jb’a, ’dt(:, A)*A(:)F(s) d in L2(-oo, c), then

IIJ(x,A) dP(A)G(A)=F(x)

in L2A(a, b ), that is,

lim F- dPG A F- 31dPG d O.
I-->(-oo,oo)

Theorem 9.9 may be extended to involve inner products by use of the polarization
identity. The inner product form of Parseval’s equality is

F2()*A(e)F,() d= G2(A )* dP(A )GI(A ),

where

G( (’, *(’)(0 ’, j , .
Theorems 9.9 and 9.10 may be extended to represent the resolvent operator (L- AoI)-1

when Ao is not in the support of dP(A). Parseval’s equality is

If’ I-o,, G(A )* dP(A )G(A[(L-AI)-IF()]*A()[(L-AI)-IF()] ds= [A-Aol2

The resolvent expansion is

(L-AoI)-F(x)= (x, A) dP(A)
AA----’"

10. The converse problem. The preceding section began with choosing an F in
L2A(a, b), producing a G in L2(-o, 00), and then showing that F could be recovered
from G. In this section we begin with G, produce F, and then recover G.

Without the assumption that JY’- BY O, AY 0 implies Y 0, L2p(-oo, ) may
be too large in the sense that G--> F--> G, but G may not equal G. G may be only in
a subspace of L(-o, c).

With the assumption made in the Introduction (i.e., let F =0), there is no such
difficulty.

THEOREM 10.1. If G(A) is in L2p(-oo, 00), there is a unique F(x) in L2A(a, b) such
that

F(x)=f?(x,X)dP(X)G(X)
and

O(A (s, A )*A(s)F(s) ds.
11. The relation between Mo, M, and P(A). The matrices Ma and Mb can

frequently be determined by a careful inspection of the solutions of (.) to determine
appropriate L solutions. More difficult is the determination of the spectral matrix
P(A), since its existence follows from Helly’s selection theorems. Fortunately, they
are intimately connected.
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THEOREM 11.1. Let

M2M=
M21 M22]’

where

Mll (Ma Mb)-1 -(M* Mb*)-= 2i Im (Ma Mb)-,
M12 1/2(Ma M)-(M. + M) -1/2(M* M*b )-(M* + M),

M2 -(M +M)(M M)-+(M+M)(M-M)-= -M,
M2= M(M M)-M M(M-M)-M] 2i Im M.(M. M)-M.

If A and A2 are real, then

P(Az)-P(A)= lim
oo+2 aa

M( + iv) d.

12. The spectral resolution. We connect these results to the classic representation
of the identity as an integral generated by a projection valued measure Ex. Given

F(x)=f;(x,X)dP(X)G(X),
where

we define

G(A) 0y,(:, A )A()F() d,

EAF(x) (x, h dP(A )G(A ).

Considered as the limit of eigenfunction expansions, Ex can easily be shown to
be a projection that is continuous from above and satisfies Ex,Ex Ex, when A _<- A2,
as well as E_ O, E= I. If we let {Ai}j_ be a paition of (-, ), A < A if <j,
and

hj+t
AEF(x) (x, A dP(A )G(A ),

then F(x)= Zi=- AEF(x). As {&}i=_ becomes finer, we may write

F(x) j’f dEx F(x)

as the limit of the decomposition above.
If Y is in D, it has the representation

where

G(A *(sc, A )A() Y(sc) dsc.
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Then

which is equivalent to

LY=f_oA(x,A)dP(A)G(A),

LY(x) J-oo A dE, Y(x).

The resolvent operator also has the standard representation. If Ao is complex,

(-o-(x ---- a. (.It is apparent that Io is in the spectrum of L if and only if it is in the suppo of
d or dP(1).

xample. (The Legendre Squared Problem.) The square of the Legendre operator
is

Ly [( 1 xE)Ey"]"- 2[( 1 xE)y’] ’.

We put this in system format by setting y =y, yE=y’, y3 -((1-xE)Ey")’-2(1-xE)y’,
y, 1 xE)y". Then (L A )y 0 becomes

0 0 -1 O\/yl\’ 1 0 0 0 0 0 0 0 yl

0 0 0 -lilY2/= 00 0 0 0 + 00 2(1-x2) 1 0 y2

1 0 0 OlYI 0
0 0 1 0 0 y

0 1 0 O/\y4] 0 0 0 0 0 1/(1-x2) y,

With h =0 there are four solutions, all of which are square integrable over (-1, 1).
They are

[ ln(l+x) \

\-(1-x)-2]
and Y,, whose initial component is

ln(1-x)
-(1 x)-’}
-(1 + x)-2]

y: (l-t)- [ln(1-s)/(l+s)2]dsdt,

but nonetheless is square integrable. Each generates boundary conditions at +1. We
content ourselves with displaying those satisfied by the Legendre polynomials. They
are in terms of scalar y,

lim 1 xE)2y’’- 4x( 1 x2)y"- 2( 1 xE)y’] 0,

lim (1 + x)2(-y + (1 x)y") O,

lim [-( 1 xE)Ey + 4x( 1 xE)y"+ 2( 1 x2)y ’] 0,
x-}l

lim (1 x)E(y’ + (1.+ x)y") O.

For system Y, they are, of course, lim YJY, where j 1, 2 as x 1, j 1, 3 as x -1.
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EXISTENCE AND UNIQUENESS THEOREMS FOR
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A.R. AFTABIZADEH, CHAITAN P. GUPTA, AND JIAN-MING XU

Abstract. Existence and uniqueness theorems for third-order boundary value problems are
studied. The methods used are the Leray-Schauder continuation theorem and Wirtinger-type in-
equalities.
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1. Introduction. The existence and uniqueness of third-order boundary value
problems deserve a good deal of attention, since they occur in a wide variety of ap-
plications. For example, a three-layer beam is formed by parallel layers of different
materials. For an equally loaded beam of this type, Krajcinovic [6] has shown that
the deflection is governed by an ordinary third-order linear differential equation

" K + a 0,

where K2 and a are physical parameters depending on the elasticity of the layers. The
condition of zero moment at the free ends implies the boundary conditions,

’(0) ’ (1) 0,

and symmeCry yields Che Chird boundary condiion

(i/2) =0.

For recent results concerning third-order boundary value problems, we refer the reders
to [1]-[5], [8]-[10].

The purpose of this paper is to study existence and uniqueness results for non-
linear third-order boundary value problems

um + f(u’)u" g(x, u, u’, u") + e(x)
u’(O) u’(1) u(r/) O, 0 _< r/_< 1,

(1.1)
(1.2)
and

(1.3)
(1.4)

4’) +
u’(0)=u"(1)=u(r/)=0, 0<r/<l,

* Received by the editors June 15, 1987; accepted for publication June 30, 1988. The first
author’s research was partially supported by U.S. Army Research Office grant DAAG29-84-G-
0034.

Department of Mathematics, Ohio University, Athens, Ohio 45701.
:Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115.

716



THREE-POINT BOUNDARY VALUE PROBLEMS 717

where f . C(R, R) and g [0, 1] R3 --. R satisfies Carath!odory’s conditions, that is
(1) for almost everywhere x G [0,1], the function u G R3 g(x,u) R is

continuous;
(2) for every u R3, the function x [0, 1] --. g(x, u) e R is measurable;
(3) for every r > 0, there is a real valued function gr(x) e LI[0, 1] such that for

almost everywhere x [0, 1], Ig(x, u)l <_ gr(x) wherever Ilull _< r.

The boundary value problems (1.1), (1.2) and (1.3), (1.4) are in the form of
operator equations

Lu + Nu w, where L D(L) C X Y

is a linear operator, N X Y is a nonlinear operator and X, Y are suitably Banach
spaces in duality (denoted by (,)). Clearly the linear operator L in (1.1), (1.2) or
(1.3), (1.4) is given by

Lu u",
where the boundary conditions (1.2) or (1.3) are used to define the domain, D(L),
of L. Our study is motivated by the observation that although it is not possible to
obtain necessary a priori estimates to use Leray-Schauder continuation theorem using
(Lu, u), it is possible to obtain the necessary a priori estimates using (Lu, u). In
fact, we use (Lu, u) and Wirtinger-type inequalities to obtain the needed a priori
estimates to apply Leray-Schauder continuation theorem. Accordingly, we believe
that our methods to study the boundary value problems (1.1), (1.2) and (1.3), (1.4)
are natural and different than those used in [1]-[5], [8]-[10].

In 2 and 3 we present some existence and uniqueness results for problems (1.1),
(1.2) and (1.3), (1.4), and in 4 we compare our results with the results given in [3],
[10]. First we present some results, which help to simplify the proofs of our main
results. Let us define

sup lu( )l, and I1 11 u2(x) dx.
0xl

2LEMMA 1.1. If u(x) G C1[0, 1] and u(0) 0, then Ilull 
LEMMA 1 2 /fu(x) e C1[0, 1] and u(0) u(1) O, then [lul[ < (1/r2)[[u’[[ 2
LEMMA 1.3. Let Mr max{r/, 1 r/}, 0 _< r/_< 1. /]" u(r/) 0, then

and

Thus

Proof. Since u(r/) ---0, then by Lemma 1.1,

u2 (x) dx _< r/2 [u’ (x)] 2 dx

4 1u2(x) dx <_ --(1 r/)2 [u’(x)] dx.

4 r/2 ou:(x) dx <_ - 4
(1 r/)2 I[u’(x)] 2 dx + - [u’(x)] : dx,
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or
4

LEMMA 1.4. If u(0) u(1) 0, then

1/o1
Let us define the space H3(0, 1) by

dJu

H3(0,1)=
uE [[0,1],R] is absolutely continuous on [0, 1]

d3u 2for j 0, 1, 2, and e L ([0, 1])

with the usual inner product and the corresponding norm IH3. We define a linear
operator

L D(L) C C2[0, 1] LI[0, 1]
by setting

D(L) {u e H3(0,1) u

and for u D(L),

satisfies (1.2)or (1.4)}

d3u
dx3"

LEMMA 1.5. ker L (0}.

2. Existence results. In this section we apply the results of 1 and the version
of Leray-Schauder continuation theorem given by Mawhin in Corollary IV.7 [7] to
obtain the existence of a solution for the boundary value problems (1.1), (1.2) and

(1A).
THEOREM 2.1. Let g [0, 1] R3 R satisfy Carathdodory’8 conditions, and

f e C(R, R). Assume that

(i) There exist function8 a(x) e C [0, 1], b(x), c(x) e C[0,1], d(x) e n1[0, 1], and
real numbers ao, bo, Co R such that

a’(x) <_ao, b(x) >_-bo, c(x) >_-co for a.e.x [O, 1],

and for every u, v, w R, a.e. x [0, 1]

v, > + + + d( )lvl;

(ii) There exist c e C[[0, 1] R2,R] and fle L[0, 1] such that

for every u, v, w R, and a.e. x [0, 1].
Then for every e(x) L[0, 1], the problem (1.1) with (1.2) has at least one solution if

(ao + 2bo)r + 4M,co < 2r3,
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where Mn max(y, 1

Proof. Let X denote the Banach space C2[0, 1] and Y denote the Banach space
5110, 1] with its usual norm. Also for u E X, v E 5110, 1] let

v)

denote the duality pairing. We define a linear mapping L D(L) C X Y by setting

u X lu" absolutely continuous on [0, 1],D(L)
and u’(0) u’(1) u(r/) 0 f

and for u D(L),
Lu UIII.

We also define a nonlinear mapping N X Y by setting

(Nu)(x) f(u’(x))u"(x) g(x, u(x), u’(x), u"(x)).

We note that N is a bounded, continuous mapping. Next, it is easy to see that the
linear mapping L D(L) c X Y, defined above, is a one-to-one mapping. Also the
linear mapping K Y X, defined, for y Y, by

(Ky)(x) y(r) dr ds dt + 2
y(v) dr dt

is such that for y . Y, Ky D(L) and LKy y and for u D(L), KLu u.
Furthermore, it follows easily by using the Arzela-Ascoli theorem that K maps a
bounded subset of Y into relatively compact subsets of X. Hence, KN X X is a
compact mapping.

We next note that u C2[0, 1] is a solution of the boundary value problem (1.1),
(1.2) if and only if u is a solution of the operator equation

Lu + Nu e.

Now, the operator equation Lu / Nu e is equivalent to the equation

u + KNu Ke.

We now apply the Leray-Schauder continuation theorem (see, e.g., [7, Cor. IV.7]) to
obtain the existence of a solution for u + KNu Ke or equivalently to the boundary
value problem (1.1) and (1.2).

To do this it is suffices to verify that the set of all possible solutions of the family
of equations

u’" + Af(u’)u" Ag(x, u, u’, + Ae(x) x e (0, 1),11)
(2.1)

u(rl) u’(O) u’(1) O, 0 _< r/_< 1,

is, a priori, bounded in C2[0, 1] by a constant independent of [0, 1].
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Let u(x) be a possible solution of (2.1) for some E [0, 1]. Since u’(0) u’(1) 0,
then by Lemma 1.2,

1 2

and from Lemma 1.4
1

From u(r/) 0 and Lemma 1.3, we have

4 2 4 2 2IlulIN < -M. Ilu’ll _< -Mn Ilu"ll.

On multiplying the equation (2.1) by u’ and integrating from zero to 1, we have

u’u’" dx + A f(u’)u’u" dx A
1

g(x, u, u’, u")u’ dx + A e(x)u’ dx.

Since u’ (0) u’(1) 0, it follows that

f(u’)u’u" dx O,

and then from the condition (i), we have

fo fo[u"(x)] 2 dx > A a(x)u’u" dx + A b(x)[u’(x)] dx + A c(x)luu’l dx

fo fo/ ,X d(x)lu’l dx + A e(z)u’ dz

[u"(x)] 2 dx > - (x)[u’(x)] dx + .h b(x)[u’(x)] 2 dx

c(x)luu’l dx + A d(x)lu’l dx + A e(x)u’ dx

or
ao114’11 _< (T / bo)llu’ll / collllll’ll / Ildllll’llo / Ilellll"llo

Hence from the estimates following (2.1), we obtain

r3 (lldllx + Ilellx)Ilu"ll 2r3 r(ao + 2bo) 4Mnco
p"

Thus
1141100 _< p and I111oo <_ p.

Now, let us assume that

M, max If(v)l, e I-p, p],
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then

and using condition (ii) we have

Ilu"’ll < Mllu"ll / Ig(x, u, u’,

<_ Mop -F

< pM /

where
Kp max l((x, u, v)l on [0, 1] x [-p, p] x [-p, p].

Further, since u’(0) u’(1) 0, there is an E [0, 1] such that u"() 0 and
u" (x) f u"’ (t)dr, for x e [0, 1]. It follows that

All of these considerations imply that there is a constant C, independent of A
[0, 1] such that

IIllc[o,] < c.
This completes the proof of this theorem. [3

Essentially the same reasoning establishes Theorem 2.2.

THEOREM 2.2. Suppose all conditions of Theorem 2.1 hold true, except in con-
dition (i) we assume that a(x) el0, 1] and a(x) >_ -co, and

v.g(x, u, v, w)

_
a(x)lvwl / b(x)v / c(x)luvl / d(x)lvl,

then problem (1.1), (1.2) has at least one solution provided

aor2 + bor + 2coM, < r3

Remark 2.1. Theorems 2.1 and 2.2 give the solvability of problem (1.1), (1.2) for
every given e(x) in L [0, 1], it is obvious that Theorem 2.1 also gives the solvability of
the equation (1.1) with inhomogeneous boundary conditions

u’(0)- A1, u’(1) A2, u(r/) A3.

COROLLARY 2.1. Let g [0, 1] x R3 R satisfy Carathdodory’s conditions,
f R -- R be continuous and assume that for almost everywhere x [0, 1], the
function g(x, u, v, w) is continuously differentiable with respect to u, v, and w. Suppose
that there exist real numbers co, bo, and Co with aoTr2 -F boTr-F 2coM ( 7r3 such that

Og Og > ag
(x, o, o, w)l < ao(2.2) (x, u, v, w) > -co (x, 0, v w) -bo Ia- .



722 A.R. AFTABIZADEH, CHAITAN P. GUPTA, AND JIAN-MING XU

,for almost everywhere x E [0, 1] and all u, v, w R. Suppose further that there exists
a continuous function c [0, 1] R2 ---, R and (x) LI[0, 1] such that

(2.3) Ig(x, u, v, w) < I(x, u, v)llwl= + (x),

for every u, v, w R and for almost everywhere x [0, 1].
Then for every given e(x) e LI[0, 1] the boundary value problem (1.1), (1.2) has

a solution.

We can use the same method as in Theorem 2.1 to prove the following theorem
for the boundary value problem (1.3), (1.4).

THEOREM 2.3. Let g [0,1] R3 R satisfy Carathdodory’s conditions.
Assume that

(i) There exist functions a(x), b(x), and c(x) C[0, 11, d(x) LI[0, 1], and real
numbers ao, bo, co R such that ,for every x [0, 1]

a(z) >_-ao, () >-o, c() >_-o

and for every u, v, w R, almost everywhere x [0, 1]

g(, =, , w) _> a()lw + b(),= + ()l=l + d()ll;

(ii) There exist a e C[[0, 1] R2, R] and e LI[0, 1] such that

Ig(x, u, v, w)l _< I(x, u, v)llwl / ()

,for every u, v, w R, almost everywhere x [0, 1].
Ta orv() e n’[0, 1], ro (1.)-(1.) aa at at o ot=tio iI

2r:ao + 4rbo + 8Mrco < r3

where Mn = max(r/, 1 r/).
COROLLARY 2.2. Suppose that all conditions of Corollary 2.1 hold true, except

that the condition aor + bor + 2coM < 73 i8 replaced by

2rao + 4rbo + 8M,co < r3,

then boundary value problem (1.3), (1.4) has a solution.

3. Uniqueness results. In this section we discuss existence of a unique solution
for the boundary value problems

(3.2)
and

(3.3)
(3.4)

u’" + Au" g(x, u, u’, u") + e(x)
=() =’(o) =’(1) o,

=’" a(, =, =’, =") + ()
=(n) =’(o) "(1) o,
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where A is a constant and g(x, u, v.w) satisfies Carathiodory’s conditions, and e(x) E
LI[0, 1].

THEOREM 3.1. Let g [0, 1] x R3 ---, R satisfy Carathdodory’s conditions, and
A be a constant. Assume there exist functions a(x) e C1[0,1], b(x), c(x) e C[0, 1],
and constants ao, bo, co R such that for almost everywhere x [0, 1]

a’(x) < ao, b(x) >-bo, c(x) >-co

and for every ui, vi, wi R, i 1, 2, and almost everywhere x [0, 1]

(g(X, il, Vl, Wl) g(x, 12, V2, W2)) (Vl V2) _a(x)(Wl W2)(Vl V2)

--b(x)(Vl v2)2 + c()l’/ 2l]Vl v2l.

Then for every e(x) LI[O, 11, problem (3.1), (3.2) has a unique solution provided

(ao + 2bo)Tr + 4coMn < 27r3.

Proof. Let us assume that ul and u2 are two solutions of (3.1)-(3.2), then

(3.5) (u u)"’ + A(u uz)" g(x, u, Ul, uT) g(x, uz, u, u)
and

(3.6) (ul u2)(r/) O, (ul u2)’(O) O, (ul u)’(1) O.

On multiplying (3.5) by (ul u2)’ and integrating for 0 to 1, we have

Let y ul -uz, then from the condition (i)

l[y,,]z dx > a(x)y"y’ dx + b(x)[y’] dx + c(x)lylly’l dx

lj01 01 01a’(x)(y’) dx + b(x)(y’) dx + c(x)lylly’l dx>- 2

or

jfO
1 (1)jfO jfO jfO

2Mnc 01<_ ao/2 + bo l(y") 2 dx + 32 (y")z dx

or Ily"llu u <_ 0. From Lemma 1.2, it follows that Ily’ll <- 0. Since
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then y(x) 0, and hence ul(x) u2(x) for almost everywhere x e [0,11. But
H3(0, 1) c C2[0,1], which implies u(x) u(x) for every x e [0, 1]. The proof is
complete. E]

THEOREM 3.2. Let g: [0, 1] x R R satisfy Carathgodory’s conditions, and A
be a constant. Assume there exist junctions a(x), b(x), c(x) E C[0, 1], and constants
co, bo, co, R such that for almost everywhere x [0, 1]

a(x) k -co, b(x) k-bo, c(x) k -co

and for every ui, vi, wi R, i 1, 2 and almost everywhere x [0, 1]
/

g(x, Ztl, Vl, Wl) g(x, Z$2, V2, W2)) (Vl V2) >_a(x)lwl llv

+(z)( v) + ()I, I I
Then for every e(x) LX[O, 11, the problem (3.1), (3.2) has a unique solution provided

aoTr2 + boTr + 2coMn < 7r3

THEOREM 3.3. Let g [0, 1] x R3 R satisfies Carathdodory’s conditions.
Assume there exist functions a(x), b(x), c(x) e C[0, 1] and constants co, bo, co e R
such that for almost everywhere x [0, 1]

a() _-co, b()_-bo, Ic()l _< co

and for every ui, vi, wi R, i=1,2, and almost everywhere x [0, 1],

(g(x, Ztl, Vl, Wl) g(x, Zt2, V2, W2)) (Vl V2) >_a(x)lw wllvl vl
/b(x)( v2)2 / c()11 ullvl vJ,

Then for every e(x) LI[O, 11 the problem (3.3), (3.4) has a unique solution if

27rao + 47rbo + 8Mnco < 73.

Remark 3.1. We remark that Theorems 3.1-3.3 give uniqueness results for the
boundary value problems (3.1), (3.2) and (3.3), (3.4). To obtain existence and unique-
ness results for (3.1), (3.2) and (3.3), (3.4) we only need to combine the theorems of
2 and 3.

4. Examples and comparisons. From Theorem 2.2 it is easy to prove the
following corollary.

COROLLARY 4.1. Suppose all conditions of Theorem 2.2 hold true except condi-
tion (ii) which we replace by

(ii)’ There exist c e C[[0, 1] R,R], "7 e C[[O, 1]R3,R], and 3 e LI[0, 1] such
that

Ig(x, u, v, w) < (x, u, v)lwl 2 + (x, u, v, w) +
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for every u, v, w E R and almost everywhere x [0, 1], where if(x, u, v, w) is bounded
when (x, u, v) varies in a bounded set in [0,1] x R. Then the problem (1.1), (1.2) has
a solution provided

aor2 + boTr + 2coM, < r3

Aftabizadeh and Wiener [1] studied problem (1.1), (1.2) when f --0 and r/= 0.
Granas, Guenther, and Lee [3] discussed the existence of solutions of boundary value
problem (1.3) ((1.2), or (1.4)) where g o + , they proved the following [3].

The boundary value problem

") "), (0) ’u’" (x, u, u’, / (x, u, u’, (0) u’(1) 0

has at least one solution provided the functions to and are continuous and

(a) to.v_>0 on [0,1]R3

(b) I1 -< B(1 / lula + Ivl + [wlU), where B < oe, 0 <_ a, fl, - < 1.

(c) o(x, u, v, w) is bounded when (x, u, v) in a bounded set [0, 1] R2.
Corollary 4.1 covers this results. Indeed it is clear that (b) implies there exists B
such that for every u, v, w R, x E [0, 1]

(4.1) 1(, ,, , )l-< I,1 / I1 / Iwl / B.

Then from (a) we have

(4.2) (o + ).v >_ .v >_ -Il.lvl >_ -luvl- v2 -Ivwl- B’lvl.
Also from (4.1) we have

Io + 01 < Iol + 101 < Iwl2 + [1ol + I’1 + I’1 + B’ + 1].
Hence, if we take f =_ 0, e 0 and g o / in Corollary 4.1 with /- 0, then the
result of [3] follows.

O’Regan [10] proved the following theorem.

THEOREM O. Let g [0, 1] R3 ---, R be continuous.

(a) Suppose there is a constant M >_ 0 such that

pg(x, u, p, O) > 0 for Ipl > M and (x, u) [0, 1] x R.

(b) Suppose that

Ig(x, u, p, q)l -< A(x, u, p)q2 Jr- B(x, u, p)

where A(x, u, p), B(x, u, p) >_ 0 are functions bounded on bounded (x, u, p) sets.
Then the boundary value problem

u"’ g(x, u, u’, u"), u(r/) u’(0) u’(1) 0, x e [0, 1],

has at least one solution in C3[0,1].
In general this theorem covers more class of differential equations than our The-

orem 2.1 if f 0. Condition (a) is weaker than condition (i) of Theorem 2.1. If
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the function g(x, u, v, w) is independent of w, then our results are stronger, as the
following example shows.

Example. (Sandwich beam). Consider the differential equation

"’ k )’ ), xe [0, 1],

with the boundary conditions

’(0) ’(1) (1/2) 0.

O’Regan [10] assumed that k2(x, ) and a(x, ) are continuous functions on [0, 1] R.
In addition, suppose there exists a constant L < oo such that

a(x, for (x, ) [0, 1] x R.

Then ’g(x,,) ’(k2’- a) > 0 for I’l > L and (x,) E [0,1] R, and so
Theorem O implies that the boundary value problem has at least one solution in
C3[0, 1].

Now we make the following assumptions on k and a.
Suppose k2(x,) 1 and a(x,) a(x) / b(x) then Theorem O does not

guarantee this problem has a solution while Theorem 2.1 implies the boundary value
problem has a solution. More generally, if we suppose that k, a e C [[0, 1] R, R] and
there exists functions c(x) e C[0, 1], d(x) LI[0, 1] such that c(x) > -71"3 and

’. a(x, 0) g c(x)]0.’ + d(x)l’l,

then Theorem 2.1 guarantees this boundary value problem has at least one solution
in C3[0, 1].
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QUADRATIC BIRTH AND DEATH PROCESSES AND
ASSOCIATED CONTINUOUS DUAL HAHN POLYNOMIALS*

MOURAD E. H. ISMAIL’, JEAN LETESSIER,: AND GALLIANO VALENT:

Abstract. Birth and death process polynomials with symmetric quadratic rates are studied. They provide
two generalizations of the continuous dual Hahn polynomials. Generating functions and explicit representa-
tions are derived. The asymptotic behavior and weight functions of the polynomials under consideration
are also determined.
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1. Introduction. A birth and death process with birth rates {A.} and death rates
{/2.} gives rise to a set of polynomials {p.(x)} defined recursively by

(1.1) po(x) 1, pl(x) (Ao+/2o-X)//21,

(1.2) -xp,(x) =/2n+lPn+l(X)+ An_lPn_l(X)--(An +/2,,)p,(x).

It is assumed that

(1.3) A,>0, /2,+1>0, n->0, /2o->0.

The p,’s are orthogonal with respect to a probability measure d$ with finite moments.
The orthogonality relation is

(1.4) p,(x)p,(x) d(x)= r,6m.,,

where

(1.5) ro 1, zr. hOhl, An-1//21/22, /2n, n > 0.

Karlin and McGregor [8], [9] proved that the transition probability p.,.(t), the probabil-
ity that the system moves from state m to state n in time t, is given by

r,p,, (t) e-Xtp,(x)p,(x) d(x).

Such a measure dq is called a spectral measure of the birth and death process.
Birth and death processes with polynomial rates {A,}, {/2,} arise in many fields

[5], but there seem to be very few cases known where the polynomials and the spectral
measures are known explicitly. A complete analysis of the cases when both A, and
/2,+1, n -> 0 are linear in n was completed only recently [4], [7], [20]. The polynomials
are associated Laguerre and associated Meixner polynomials.

We will study symmetric birth and death process polynomials with quadratic rates

(1.6) A,=(n+a)(n+b), n>=O, /2,=(n+a)(n+), n>0, /2o=0or/2o=afl.
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When a or/3 0 the polynomials reduce to the dual Hahn polynomials in Askey’s
tableaux; see [1], [3], and [10]. This case has also been treated in [11]. The cases
ab 0 are in 12]. We will call these polynomials the associated continuous dual Hahn
polynomials. In {} 2 we find generating functions for the polynomials and for the
numerator polynomials of the corresponding J fraction. We also apply Darboux’s
asymptotic method to these generating functions and determine the main term in the
asymptotic expansion of the polynomials under consideration. In 3 we find the
continued fraction whose denominators are the associated continuous dual Hahn
polynomials. The spectral measure in this case turns out to be unique, so the continued
fraction is the Stieltjes transform of the spectral measure. The Stieltjes transform is
then inverted and the spectral measure is found. In {} 4 we obtain explicit representations
for our polynomials and use the symmetry of the polynomials in the parameters a,/3
to obtain transformation formulas involving double sums.

We follow the notation, terminology, and methodology in [2] and [14]. In par-
ticular, if a sequence of orthogonal polynomials {r (x)} satisfies a three-term recurrence
relation

r,,+(x) (a,x + b,)r,(x)- d,r,_l(X),

then the associated polynomials {r,(x; c)} are given initially by

ro(x; c) 1, r,(x; c) acX + b
and are defined recursively by

r,+(x; c) (a,+cX + b,+)r,(x; c) d,+r,(x; c), n > O,

provided that the coefficients a,+, b,+, d,+ are well defined and r,(x; c) has precise
degree n. The interesting cases arise when c is not a positive integer. For references
on associated polynomials, see [2] and [4]. Recently Wimp [19] made a detailed study
of the associated Jacobi polynomials, applying the approach used in [4].

We will follow the standard hypergeometric function notation as in [6], [15], and
[17] and the terminology of asymptotic analysis as in Olver [13].

2. Generating functions. We will treat two distinct cases according to whether or
not/Zo vanishes. For convenience we introduce an auxiliary parameter r/in the following
way.

Case I: r/= 0 and/Zo 0 Case II: r/= 1 and/*0 aft.
Let {Pn(x)} (or {Pn(x; a, b, a,/3, r/)}) be the corresponding orthogonal polynomials
and set

(2.1) G(x,w)=P,,(x)w".
o

Multiplying the recurrence relation (1.2) by w"+ and applying the initial conditions
(1.1), we derive the differential equation

(2.2)
w(1-w)EG"+(1- w)[l+a +/3-(a+b+ 1)w]G’

+ Ix + (w 1 )(ab aft/w)]G aft( 1 w)n/w,

where denotes differentiation with respect to w. We then observe that the singularities
of the above differential equation are w- 0, 1, oo and that all three are regular singular
points. This means that if H is a solution of the homogeneous equation corresponding
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to (2.2) then we can find parameters and v such that the function F(w)=
w-’(1 w)-"H(w) satisfies the hypergeometric differential equation

(2.3) w(1 w)F"+[C -(1 + A + B)w]F’-ABF=O.

We make the choices

(2.4) /x -/3, v=y-(y2-x)1/2 where y=(l+a+fl-a-b)/2,

and find

(2.5) A=-(y2-x)/2+(l+a-+b-a)/2, B-A+a-b, C=l+a-fl.

At this stage the square root appearing in v in (2.4) has no particular branch associated
with it. Later we will choose the branch that makes Re(y’-x)l/2>O. Two linearly
independent solutions of the homogeneous differential equation corresponding to (2.2)
are given by the functions G1 and G2 defined below.

GT’t3(w) w-t(1 w) -(v2-’)’/2 2FI(A, B; C; w)

G.’t3( w) G"(w).

The Wronskian of G1 and G2 is Cw--’-(1--w)/t3-"-b, C being a constant.
Therefore the solution of (2.2), which is analytic at w 0 and G(x, 0)= 1, is given by

G(x, w)- u’+’- (1 u) "-2- [G’’t3(w)G’t3(u)o
(2.6)

GT"’(u)G"(w)] du.

We next determine the main term in the asymptotic development of P, (x) using
the asymptotic method of Darboux which states that if

f(z) .,f,z" and g(z)
o o

are analytic in Izl< r, and f(z)-g(z) is continuous on Izl r then f, g, +o(r-") as
n- oo. Thus the asymptotics of the coefficients in the Taylor series expansion of a
function f(z) analytic in a neighborhood of z 0 are determined by the main term in
the singular part off(z) at the closest singularities to the origin. For details see Olver
[13] and Szeg6 [18]. It is clear that the 2F’s appearing in (2.6) are defined when their
argument equals unity if Re {(y2-x)/2}>O. Therefore in this case

(1 w)-V+4U- G(x, w)

is an analytic function of w in wl -< 1. Let denote the limit of the above function
as w- 1. The smallest exponent of 1-w in the expansion of G(x, w) around w 1 is
y-(y2-x) /2. We now apply Darboux’s asymptotic method. Thus the dominant term
in the asymptotic expansion of P,,(x) equals the coefficient of w" in 4(1-w)-’/-7z-;-.
We then use the binomial theorem to find the latter coefficient to be

r(n- ,+,/-x)
r(,/v x v)r(n + 1)

which is asymptotic to n-’-l+’/-U-X/F(-y+.,/y2-x). This establishes the asymptotic
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formula

aftn-l-’v-( v2-x)/2 Io(_ot)F{(y2_x)l/2_7}
(l-u)n-’-l-4"4r-x

[u_ r(1 +#-a)r(2(r:-x)/)
r(1-A)r(1- B) 2Fl(A+ fl a, B + fl t

l +a-fl u)
-a similar term with a and/3 interchanged] du,

when x R. The integrand in the above asymptotic formula can be greatly simplified
by using the connection relation [6, 2.9, (33)]

h-f, h-g
(1 z)h-f-gEF

1 + h -f- g l-z)
r(1 -f)r( -g) 2F z)

r(1 + h-f-g)r(h- 1) gl_h2F(1 +f--h, 1 + g-h
r(h-f)r(h-g) \ 2-h

The result is

P.(x) OlFI- I-y-(v2-x)’/2 f012( 3,
2 x)’/2r{( ),2 x)’/2 y}

l-A, 1-B
2F 1 +2(’y2-x) 1/2 l-u) du,

valid for nonreal x. We now apply the Euler type integral representation [15, 49]

(al, a2, a3) l"(b2) Iot ( )t%_
al, a2

zt dt(2.7) 3F2 b, bE
z

r(b-a3)r(a)
(1- t)--F

b
and obtain the asymptotic relationship

--’-,r()r(n +,/- x)
P,(x) 2,/y2_xF(,/y2_x_y)F[rt+,,/y2_x+(a+ b+#_a_ l)/2]

(2.8)

F2[
a, a2, a3
b, b2

where

a (1 + a b + a)/2 +/y2- x,

a2 x/y2- x +(1 + b- a +/3 a)/2,

a3 /y2-- x+ r/+ (a + b-a -fl- 1)/2,

b 1 + 2/y2- X,

b2 x/y2- x + ’r/+(a + b+/3 a 1)/2,

as n- oo and fixed x with Im {x} # O.
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3. The spectral measures. The orthonormal polynomials {to. (x)} are given by

to.(x) [/x,/x2, ’,/x./AoA,, ", A._]’/2p.(x).

Therefore

to.(x)-[F(a)F(b)/F(a+ 1)F(fl + 1)]n’++2--bp.(x), as n-->oo.

It easily follows from (2.8) and the above asymptotic relationship that the series

o

diverges for some complex x. Now Theorem 2.9 16, p. 50] implies that the correspond-
ing moment problem is determined, i.e., the spectral measure is unique.

The numerators {q,(x)} of the continued fraction whose partial denominators are
the p,’s (of (1.1) and (1.2)) satisfy the recursion (1.2) and the initial conditions

(3.1) qo(x) =0, q,(x) -l/Ix,.

Clearly, q. (x) is a polynomial of degree n 1. Let (r denote the support of the spectral
measure d@. The determinacy of the moment problem ensures the uniform convergence
of q.(x)/p.(x) to (x-t)-’ d@(x) on compact subsets of the complex x-plane cut
along cr [ 16, Thm. 2.9, p. 50]. At this stage we need to exhibit the dependence of the
polynomials on the parameters involved, so we will use P.(x; a, b, a,/, ,/) instead of
just P. (x) to denote our polynomials and will use a similar notation for the q.’s. We
can easily see that

q.(x; a,b,a,, n) [-(a + 1)(/3 + 1)]-’
(3.2)

P._(x; a + 1, b + 1, a + 1,/3 + 1, 0), r/= 0, 1,

follows from (1.1), (1.2), and (3.1). Set

(3.3) Xn(x) lim q,(x; a, b, a, fl, q)/P,(x; a, b, a, fl, rl).

We are now in a position to prove the following theorem.
THEOREM 1. The functions X, (x) are given by

a- (1-A, 1-B,x/’y2-x-T 1)3F2 l+2x/y2-x, b-A+l
(3.4) Xn(x)=

1-A, 1-B,x/y2-x-y+r/
r/=0,1.

[’Y-/T2-x + fl(n-1 )]3F2( 1)1 +2x/y2-x, b-A+n
Proof The theorem follows from (3.2), (3.3), and (2.8).
The next step is to invert the Stieltjes transforms Xn (x) and find the measures d@

explicitly via the following inversion formula, which holds when the support of d@ is
contained in a half line

d@(t)
F(x), x : supp {d@}

X--t
(3.5)

if[ @(t2) (t) lim f,2 F( ie F( + ie
dr.

-*0 J t, 2ri

The inversion formula (3.5) is usually referred to as the Perron-Stieltjes inversion
formula. We now state a technical lemma needed in the inversion of the Stieltjes
transforms of the measures d@(x).
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LEMMA 2. Assume that Re {d a b} > 0 and Re {a + b + c d e} > 0. Then

(a,b, cl ) F(d)F(e)F(a+b+c-d-e)
(3.6) lim(1--Z)a/b/c-d-e3F2

d,e
z

z-,- r(a)r(b)r(c)

Proof. Applying the Pfaff-Kummer transformation 15]

(3.7) 2F,(a, b; c; z)=(1-z)-a2F,(a, c-b; c; z/(z-1))

to the 2F1 in (2.7), then replacing by 1- we get

(a,b,c) F(e)(1--z)a--blot3F2 d e
z r(c--(-- c)

te-c-X(1-- t)c-

{ zt }a--b (d-a’d-b1- 2F1 z(1- t) dt

r(e)( z)-- (d-a),(d-b),z,, re_c_
r(cr(e-c o n!-(-d (-+-

1- dt
--1

r(e)(l-z)--(d-a)(d-b)._ (e-c,a+b-d )F(c)F(e c) o n .’-(-d- z’F e+n -1

In the last step we also used the Euler integral representation for a F, i.e., (2.7) with
al equal to b. Next apply the transformation (3.7) to the F in the last sum to obtain

(a, b,c ) F(e)(d-a),(d-b),,F(n+c)(1--z)a+b+c-d-e3f-
d,e

z =F(C) o n!-(d),F(e+n)
(3.8)

2Fl(e-c’n+d+e-a-b z

We then let z-, 1- in (3.8) and use Gauss’s theorem [15]

2F(ce, fl; 3’; 1)=r(r)r(r-a-B)/{r(r-a)r(r-)}, Re(y-a-fl)>0.

It is easy to justify interchanging the limiting and summation processes. The result is
that the right-hand side of (3.8) reduces to

F(e) (d-a),(d-b),,F(a+b+c-d-e)
r(c) Zo .(r-- d)

which can be summed by Gauss’s theorem. This completes the proofofthe lemma.
We now discuss the inversion of the Stieltjes transforms X,(x), r/= 0, 1, and find

the measures with respect to which our polynomials are orthogonal. Let

(3.9) X,(x) (x-t)-1 dd/(t; n).

We can easily see from (3.5) that

(3.10) 27ri’(t; "o)=X,(t-iO+)-X,(t+iO+).
It readily follows from (3.10) that ’ vanishes identically on (-, y) because X,(x)
is single-valued in the complex plane cut along (-c, 3,2). Clearly,

(3.11) x/3,2 +/- O+ + x/ 3,2, t[3,2,0o).
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Define

(3.12) D=-i/t-y2+1/2(l+a+b+fl-a),
It is easy to see from (3.4), (3.11), and (3.12) that

Xo( t- iO) Xo( + iO)

E ix y2+1/2(l+a+b+fl-a).

(3.13)

D-a,D-b,D-a-1
F: 1-2ix/t-y2, D 1)

a(D_ I)3F2(D-a, D-b, D-a-11- 2i/ y2, D -1

We then apply (4.4.3) in Slater [17] and obtain

1)
complex conjugate.

(1 _Z),+b+,+l_o_.3F2(a’ D,
fl + 1

D-a, D-b, D-a-1
3F:

1 2i/t y2, D 1 z)
z)
2

(3.14)

b’(t; O)

Lemma 2 shows that the limit of the numerator on the right-hand side of the above
formula is F(E)F(D)F(a+b+fl+I-D-E)/{F(I+)F(a)F(b)}. This fact, when
combined with (3.10) establishes, after some simplification, the following result.

THEOREM 3. The weight function O’( t; O) is supported on [y2, c) where it is given
by

F(a)4t-y
rar(a)r(b)r(l + 1)

F(i4-y2+1/2(a + b- +0- a))

3Fz{it-y2+1/2(a-b+ +fl-a), it-y2+1/2(b-a+ +-a), it-y2+(a+b-l-a-fl),
1+2i, i-yz+(a+ b+O-a-1)

It is clear from (1.1), (1.2), and (1.6) that the dual Hahn polynomials remain
invariant if we interchange a and b, or interchange a and . Therefore O’(t, ) must
also be invariant under the same operations. The right-hand side of formula (3.14) is
symmetric in a and b but does not exhibit the symmetry of O’(t; 0) in a and . The
more symmetric form

r(a)r(b)r(a + 1)r( + 1)’(t; o)

(3.15) =x/t’-Y2 F(1/2(3+a+-a-b)+i/t-y2}F(1/2(a+b+-a-1)+ix/t-Y2}
F(1 + 2i/t y2)

( a-l, b-l, 1/2(l+a+fl-a-b)+ix/t-y )
2

3F2 1/2(a+b+a_fl_l)+ix/t_y2,1/2(a+b+_a_l)+ix/i. y
1

for s [T2, O0) can be obtained from the transformation

A,B, C
3F2 D,E

r(E)r(s) (D A, D B, C
1

r(E-c)r(s+c) 3F2 D,S+C

with S=D+E-A-B-C.
One can treat the case /= 1 similarly, that is /o 0. In this case we need the

following lemma.

lim

a[ T
2 + {(a + b + fl a 1 )/2}2]{ y2}-l/2{Xo(t i0) Xo(t + i0)}
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LEMMA 4. The 3F2’s satisfy the contiguous relation

Z3F2{X, Y, Z+ 1
(3.16) u,v (x,r,z1 =(V-1)aF2

U,V-1
1 +(I+Z-V)aF2

U,V 11
Proof. This lemma follows from

Z(Z + 1)n (Z)n(Z + n)= (Z),{(Z V+ 1)+( V+ n 1)}.

Remark. Lemma 4 is known but is not easily accessible.
Using the notation

X=1/2(a-b+fl-a+l)-i/t-y2, Y=1/2(l+b-a+fl-a)-ix/i-y2,

U 2i/"- y2,

V=1/2(l+a+b-fl-a)-ix/t-y2, Z=1/2(a+b-l-fl-a)-ix/t-y2,

together with (3.4), (3.9), and (3.10) we find

y-i.,/t-y2 {X(t+iO)-X(t-iO)} F2
X,Y,Z+I

1
U,V

U, V F2 , I7" 1 -complex conjugate

=(V-1)3F2
U, V-1132\ O, 9 1

+ (1 + Z V) F2 U, V
1 complex conjugate,

which, since 1 + Z- V is real, simplifies to

( X, Y,
v_I ) ,[’ " 1r(V-1)3F2 1 3F2| ]1 -complex conjugate.

The above quantity appeared earlier in the inversion of Xo(x) and was simplified using
(4.4.3) in Slater [15]. This enables us to find the absolutely continuous component of
the measure dd/(t; 1). When we combine this result with (3.14) we obtain the following
theorem.

THEOREM 5. Let y=(l+a+fl-a-b)/2 (as in (2.4)). The weight functions
q/( t; q when r/= 0, 1, are given by

t-nx/t   lr{1- n + i/t- }[2@’(t;
r(a)r(b)r(a + l)r(# + 1)1r{1 + 2ix/t-y2}12

(3.17)
F{ r + a 3/- i/t yE}F{ r/+/3 y + i/t y2} 2

n + ,/ + i,/ ,, r + , + i,/ -- 1

valid for e y2, o).
The isolated jumps of 0 coincide with poles of its Stieltjes transform. We believe,

but have been unable to prove, that the functions appearing in the denominators of
Xn (x), 0, 1 do not vanish for real values of x if and fl are positive when o aft,
or >-1 and fl >-1 when o 0.
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4. Explicit and transformation formulas. We first derive the explicit formula

P, (x; a, b, a,/3, r/)
(T + a i%/x 3,:)j(v + b i%/x T2)j(-- T "" i4x

(4.1)
jfo (n -j)!(a + llj(fl / llj

3F2( a’ fl’ Y-*l-i/x-y2 )
3, + a ix/x 3,2, 3, + b ix/x 3,2

1

Proof of (4.1). We make the substitution

(4.2) G(x, w)= w-a(1 w)V-’47F(x, w)

in (2.2) and find that the function F(x, w) satisfies the differential equation

(4.3) w(1-w)F"+[C-(l+A+B)w]F’-ABF=tflwa-l(1-w)n-v+’,
where’ denotes differentiation with respect to w. We then solve (4.3) using the Frobenius
method. Clearly,

F(x, w)= Z c,,w’+l,
o

with Co 1. Equating coefficients ofvarious powers ofw leads to the two-term recurrence
relations

(a + n+ 1)(/3 + n+ 1)Cn+l--(n + a+ 3,- i/x- 3,2)

(n + b + 3, ix/x 3,2) c, aft(3, q i/x 3,2)n+
(n+l)!

whose solution, subject to the initial condition co 1, is

n i4x-
c"

a + r- i4x 3’)" b+ "/- i4x "/:)" /"
t( + iJx(a+l)n(fl+l), k=ok a 3,- 3,-

This and (4.2) establish (4.1) and the proof is complete.
Observe that when a or/3 vanishes our polynomials reduce to the continuous

dual Hahn polynomials and (4.1) provides a representation of continuous dual Hahn
polynomials as multiples of 3F2’s. Note also that (4.1) remains valid if we reverse the
signs of all square roots involved because the left-hand side is a real polynomial in x.

An interesting representation of the associated continuous dual Hahn polynomials
is discovered if we change variables in (2.2) as follows. Set

(4.4) G(x, w) w-t (1 w)t-aP(x, z), with w z/(1 / z).

It is readily seen that P(x, z) satisfies the differential equation

z(1 + z)
02P
Oz

+[l + a -/3 + (2 + a- b+ a fl)z]
OP
Oz

+[(a fl )(a b+ 1)+ x]P Otflgla-l(1 / Z) 1-a-n.

We again apply the Frobenius method and let

P(x, z)= , h,,z"+.
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We then find that the h,’s satisfy the two-term recurrence relation

(n+/3+ 1)(n+a+

+{(n+fl)(n+a_b+a+l)+(a_)(a_b+l)+x}h,=afl(_l),+ (a + r/- 1),+
(n+l)t

whose solution subject to ho 1 is

h, (- 1)"
(a + 3’ + ix/x 3’2), (a + 3" ix/x 3’2),

(alk(fl)k(a +’q 1)k

k=0 k !( a + 3" + i/x 3’2)k a + 3" i4x ,)
Thus we have

(_w)kG(x, w) (1- w) hk
1 wk=0

(a + k)j
hkWk+j.

j.k=O j!

Replacing (a + k)j by (a)k+j/(a)k leads to the explicit formula

(a). (-n)k(a+ y+ ix/x-y2)k(a-t-y-ix/x-y2)k
P,,(x; a, b, a,/3, /)=---. k=O (a)k(a + -’-(li-k

(4.5)
k (a)(fl)(a + rl 1)
=oj !(a + 7 + i/x 3’2)j(a + 3’ ix/x 3’2)

When a or/3 vanishes, the right-hand side of (4.5) reduces to the familiar 3F2
representation of continuous dual Hahn polynomials.

Observe that the right-hand side of (4.5) is obviously invariant under interchanging
a and/3. On the other hand, the A,’s and ,’s in (1.1) and (1.2) are symmetric in a
and b (see (1.6)). Therefore the polynomials P, must also be symmetric in a and b.

TI-IEOREM 6. The right-hand side of (4.5) is a symmetricfunction of a and b where

3’ is as in (2.4).
Theorem 6 is a generalization ofthe Whipple transformation 17] to a double series.

Acknowledgment. We thank the referees for their help in improving the presenta-
tion of some of our results, for correcting several typographical errors, and for pointing
out a minor error in the original version of this paper.
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ON THE ZEROS OF POLYNOMIALS ORTHOGONAL
ON THE SEMICIRCLE*

WALTER GAUTSCHI"

Abstract. It is shown that the polynomials r,,(.; w) orthogonal in the sense of [W. Gautschi, H. J.
Landau, and G. V. Milovanovi6, Constr. Approx., 3 (1987), pp. 389-404] on the unit upper semicircle need
not necessarily have all their zeros in the interior of the unit upper semidisc, not even for weight functions
w that are symmetric, w(-z)-w(z). A symmetric weight function wa (depending on a parameter a) is
exhibited, which has the property that r,(. wa) for any fixed even n has a zero on the imaginary axis with
imaginary part greater than one, provided a is large enough. Similarly, a weight function w is constructed
for which the analogous property holds for r,(.; wO), n odd.

Key words, complex orthogonal polynomials, indefinite inner product, zeros

AMS(MOS) subject classifications. 30C10, 30C15, 33A65

1. In [3], [4] we introduced polynomials that are orthogonal on the semicircle
with respect to the (non-Hermitian) inner product

(1.1) (p, q)= p(e’)q(e’)w(e’) dO.

Here, w is a "weight function" analytic on the semidisc D+ {z e C" Izl < 1, Im z > 0},
nonnegative on (-1, 1) and integrable over OD+. We have shown that under the
assumption

(1.2) Re w(e’) dO 0

there exists a unique system {rn}=o of monic polynomials 7rn (’) r, (.; w) such that

=0, kl,
(1.3) deg 7r, n, n 0, 1, 2,. , (Trk, 7r)

0, k I.

They possess many of the properties familiar from orthogonal polynomials on the real
line, such as satisfying a three-term recurrence relation and a second-order linear
differential equation (for special weight functions), and in fact can be expressed as
(complex) linear combinations oftwo successive polynomials orthogonal on the interval
(-1, 1) with respect to the same weight function w. They give rise to Gauss-type
quadrature rules for integration over the semicircle and to new, possibly more stable,
quadrature formulae for evaluating Cauchy principal value integrals (see [3, 7, 8]).
Since the nodes of these quadrature rules involve the zeros of the polynomials r, in
(1.3), a study of the qualitative properties of these zeros is of interest.

In [4] we have shown that for weight functions analytic in D= {z C: ]z < 1},
symmetric in the sense

(1.4) w(-z) w(z) for all z D,

and satisfying

(1.5) w(x)>-O on(-1, 1), w(0)>0,

* Received by the editors December 8, 1987" accepted for publication (in revised form) August 1, 1988.
This research was supported in part by National Science Foundation grant CCR-8704404.

" Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.
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all zeros of 7r, are contained in D+ with the possible exception of a single (simple)
zero iy, y -> 1. For the Gegenbauer weight w(z) (1 z2)a-1/2, the exceptional case can
only arise if n--1 and -1/2< A-<0. Likewise, no exceptional cases seem to occur for
Jacobi weights w(z)=(1-z)’(l+z), a>-l, fl>-l, if n->2, as was observed by
numerical computation. We might be led to believe that this absence of exceptional
cases prevails for arbitrary weight functions w. In this note we show, however, that
this is not so, not even for symmetric weight functions. We exhibit symmetric functions
w for which 7r,(.; w), for arbitrary fixed n, has a zero iy with y >- 1.

2. Let bk bk(W), k 1, 2, 3,’’’, be the coefficients in the recurrence formula

(2.1) Yk+ Xyk bkYk-, k 0, 1, 2, , y_ 0, Yo 1

satisfied by the polynomials p,,(x; w) orthogonal on the interval (-1, 1) relative to the
symmetric weight function w. We recall from the proof of Theorem 6.5 and equations
(5.2), (5.4) of [4] that iy is a zero of zr,(. w) if and only if

(2.2) o.(y)- 0._1 0,

where

bk-I(2.3) to(y) y, tOk(y)=y+ k=2,3,’’’
tOk_(y)

(2.4) 0.-1

and

b b b,, .rr

b2b4"’" bn-2 mo’
b2b4 bn-1 m__o
b b3 b 2 "rr

n even,

n odd,

(2.5) mo w(x) dx 2 w(x) dx,
--1

the weight function w having been normalized to satisfy

(2.6) w(0) 1.

If n 1 or n- 2, empty products in (2.4) are assumed to be one. Equation (2.2) holds
for some y >= 1 if and only if

(2.7) o.(1)- 0._ <= 0.

Indeed, since oo,,(y) c as y , inequality (2.7) trivially implies (2.2) for some y >_- 1.
Conversely, if (2.2) holds for some y >_-1, but (2.7) (if n _>-2) does not, the left-hand
side of (2.2), hence .(iy), would have either two distinct zeros > 1, or a double zero
> 1, which is impossible by Theorem 6.2 of [4]. By (2.3), we can write (2.7) in the form

(2.8) 1 + bn-1 bn-2 bl On--
1+ 1+ 1

We now show that (2.8), for any fixed n >= 1, can always be achieved for some suitable
weight function w.

3. It is necessary to distinguish the cases n even and n odd. In the former case,
(2.8) becomes

bn-1 bn-2 bl bb3" bn-1(3.1) lq
1 + 1 + 1 bEb4" b,-2 mo
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It is clear that we can enforce (3.1) to hold if we can find a family of weight functions
w for which mo tends to zero and the bk remain bounded and bounded away from
zero. Such a family of weight functions (keeping in mind that they should be analytic
in D, satisfy (1.4), and be normalized by (2.6)) is given by

1 +x/al’rr e-’z
(3.2) w(z)=w,(z)= a>0.

l + x/a/ ,"

The fact that w also satisfies (1.2) follows from Theorem 5.1 of [4]. We note that
the second term in the numerator of (3.2), for real z =x, is an approximation to the
Dirac delta function 8(x), to which it converges as a o o. It follows that, for any
polynomial p,

1 + w,,(x)p(x) dx - [1 + 6(x)]p(x) dx

(3.3)
1

=| p(x) dx + p(O) asac.
--1

In particular, putting p(x)= 1,

(3.4) mo3/a, a .
Fuhermore,

(3.5) limbk(W)=bk.>0, k=1,2,3,’’.,

where bk, are the recursion coefficients of the monic polynomials orthogonal with
respect to the weight function 1 / 6(x) on [-1, 1] (Legendre weight plus Dirac function
centered at the origin). It follows from (3.4) and (3.5) that for a sufficiently large, (3.1)
will be true (even with strict inequality). The proof of (3.5) is deferred to 4.

Assume next that n is odd. Then, (2.8) becomes

bn-I bn-2 bl bEb4"" bn_l mo(3.6) lq -<
1 + 1 + 1 bl b bn-2 ,’It

We now want m0 to be large and may choose, for example,

(3.7) w(z) wa(z) 1 + agE, a > O.

Then

(3.8) mo=a+2
and

(3.9) lim bk(Wa) b> O, k 1, 2, 3,"
a-oo

where b are the recursion coefficients of the monic polynomials orthogonal with
respect to the weight function x2 on [-1, 1]. Again, from (3.8) and (3.9) it follows that
(3.6) will be true for a sufficiently large. It remains to prove (3.5) and (3.9).

4. We denote the moments of w by mk,

(4.1) m2r+l =0, mzr=2 x2rw(x) dx>O.
o

The recursion coefficients bk(W) can be expressed in terms of Hankel determinants:

(4.2) A.(m) det (mi+j)i=o,1,...,n_l, Ao= 1,
j=0,1,...,n--1
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by means of [1, p. 19]

Ak-(m)ak+,(m)
(4.3) bk(W) [Ak(m)]2 k 1, 2, 3," .

In the case of w(x)= wa(x) [cf. (3.2)], we have by (3.3)

(4.4) m,.-/.n’/am,.,, a, r=0, 1,2,...,

where mr.o are the moments of the weight function 1 + 6(x) on [-1, 1]. Therefore,

A,(m)- A,(m), a->,

and, consequently, by (4.3),

Ak_,(m)Ak+(m)
bk(W,)--"

[Ak(m)]2 a,

that is,

(4.5) bk(W) bk, as ac.

Likewise, for w(x)= wa(x) [cf. (3.7)],

mr- amr a, r=0,1,2,...,

where m are the moments of the weight function X
2 on [-1, 1], and thus,

A,,(m)’--a"A,,(m), ac,
giving

(4.6) bk(Wa) b as a.

This proves the assertions in (3.5) and (3.9).
We remark that instead of one in (2.7) we could have selected any number larger

than one, which means that the zeros of r,(. ;w,) and 7r,(. ;w) on the imaginary
axis can be made to have arbitrarily large imaginary parts by choosing a sufficiently
large.

5. We now confirm the validity ofthe construction in 3 numerically by computing
the zeros of r,(. w), n even, and of r,(. wa), n odd, for the critical value a a*
(which should yield a zero at i) and a few selected values a > a,*. We compute these
zeros in terms of eigenvalues of a real tridiagonal (nonsymmetric) matrix, as indicated
in [4, 6.1], the coefficients bk(Wa) and bk(Wa) being generated by the "discretized
Stieltjes procedure" (cf. [2, 2.2]).

Table 5.1 shows the values of a* for n-2(1)10 obtained to eight significant
decimal digits by using the bisection method on (2.2) where y 1. The zeros of 7r, (. w

TABLE 5.1
Values of a* for n =2(1)10.

2 55.274946 3 17.009652
4 250.25427 5 46.413430
6 798.58573 7 89.537192
8 1951.2926 9 146.34390

10 4037.4957
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TABLE 5.2
Zeros of’,,(." wa), a=(l+r)a*,, r=0, 1/2, 1, o, where n =2(2)10.

Zeros

2

4

6

8

10

0
.5

1.0

0
.5

1.0

0
.5

1.0

0
.5

1.0

0
.5

1.0

.225i

.177i

.152i
0

.065i

.053i

.046i
0

.031i

.025i

.022i
0

.018i

.015i

.013i
0

.012i

.010i

.008i
0

1.000i
1.264i
1.472i

1.000i +.797 + .038i
1.237i +.791 +.035i
1.435i +.788 +.032i
ci +.775

1.000i +.912+.011i +.559+.051i
1.251i +.911 /.010i +.553 +.044i
1.461i +.910+.009i +/-.550+.039i

ooi +/-.906 +/-.538

1.000i +/-.951 / .004i +/-.751 + .022i
1.262i +/-.951 +.004i +/-.749+.019i

1.479i +/-.950+.004i +/-.747 +.017i
i +/-.949 +.742

1.000i +/-.969 +.002i +/-.841 +.011i
1.269i +/-.969+.002i +/-.840+.010i

1.492 +/-.969 / .002i +/-.839 + .009i
i +/-.968 +/-.836

+.421 / .046i
+.416+.039i
+/-.413 +.034i
+/-.406

+/-.623 + .026i
+/-.620+.022i

+/-.618+.019i

+/-.613

+/-.335 +.040i
+/-.331 +.033i
+/-.330+.029i

+.324

TABLE 5.3
Zeros ofr,,(." wa), a =(l+r)a*, r=0, 1/2, 1, , where n =3(2)9.

Zeros

0
.5

1.0

0
.5

1.0

0
.5

1.0

0
.5

1.0

1.000i +/-.781 +.046i
1.356i +/-.776+.038i

1.710i +/-.774+ .032i
ci +/-.775

1.000i +/-.909 + .012i +/-.541 + .057i
1.407 +/-.908 + .010 +/-.536 / .044
1.807i +/-.907 +.008i +/-.535 +.035i
i +/-.906 +.538

1.000i +.951 + .005 +/-.747 + .023
1.429 +/-.950+ .004i +/-.744 + .018i
1.847i +/-.950+ .003i +/-.743 + .015i
i +.949 +/-.742

1.000i +.969 + .002i +/-.839 + .012i
1.440i +/-.969 + .002i +/-.838 + .009i
1.868 +.968 + .002i +/-.837 + .008i
i +.968 +/-.836

+.405 + .051
+/-.402 + .038i
+/-.401 + .030i
+/-.406

+/-.618 + .027
+/-.615 +.020i
+/-.614+.016i

+/-.613

+/-.321 +.044i
+/-.320+.032i

+/-.320+.025i

+.324
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and r,(.; Wa) for n =2(2)10 and n =3(2)9, respectively, where a=(l+K)a,*, K=0,
1/2, 1, oo, are listed in Tables 5.2 and 5.3. Although they were computed to eight significant
digits, only three-digit values are shown because of space considerations. If a oo (i.e.,
r.oo), it follows from zt,=pn-iO,_lp,_l (cf. [4, eq. (2.9)]) and 0,_1oo that the
(finite) zeros of 7r, tend to those of p,_, the orthogonal polynomial of degree n- 1
relative to the limiting weight function woo(x)= 1 + (x) and w(x)= x2, for n even
and odd, respectively. These limiting weights are not as unrelated as we might think
at first. We have, in fact,

p,,-l(X; woo)= xp,,_2(x; woo), n(even) -> 2,

since each side is easily seen to be orthogonal on [-1, 1] to all powers of degree -< n -2
with respect to the constant weight function w---1, and hence equal to the monic
Legendre polynomial of degree n 1. This is why the limiting zeros for r oo in Table
5.2 and Table 5.3 are the same.

It can be seen that for n even, there are two zeros on the imaginary axis moving
in opposite directions as a increases from a,* to oo, one up from to ioo (cf. the remark
at the end of 4), the other down from some iy*,, 0 < y,* < 1, to zero. For n odd, there
is one zero on the imaginary axis moving up from to ioo.

It is also easy to compute the coefficients bk.oo and b and to observe numerically
the convergence in (3.5) and (3.9).

REFERENCES

[1] T. S. CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] W. GAUTSCHI, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput., 3 (1982), pp.

289-317.
[3] W. GAUTSCHI AND G. V. MILOVANOW, Polynomials orthogonal on the semicircle, J. Approx. Theory,

46 (1986), pp. 230-250.
[4] W. GAUTSCH, H. J. LANDAU, AND G. V. MILOVANOV, Polynomials orthogonal on the semicircle,

II, Constr. Approx., 3 (1987), pp. 389-404.



SIAM J. MATH. ANAL.
Vol. 20, No. 3, pp. 744-760, May 1989

(C) 1989 Society for Industrial and Applied Mathematics
017

UNIFORM ASYMPTOTIC EXPANSIONS FOR WHITI’AKER’S
CONFLUENT HYPERGEOMETRIC FUNCTIONS*

T. M. DUNSTERJ"

Abstract. The asymptotic behavior, as K-> o, of the Whittaker confluent hypergeometric functions

MK. (z) and WK,, (z) is examined. Asymptotic expansions are derived in terms of Bessel and Airy functions,
the results being uniformly valid for real values of K and such that 0 -<//K _--< A < (A an arbitrary
constant), and for all complex values of the argument z. Explicit error bounds are available for all the
approximations.

Key words, confluent hypergeometric functions, asymptotic expansions

AMS(MOS) subject classifications. 33A30, 34E05

1. Introduction. In this paper we aim to derive asymptotic expansions for solutions
of Whittaker’s equation

(1.1)
dz2 --z 2 j w,

this being a form of the confluent hypergeometric equation (see, for example, Olver
[5, p. 260]).

We consider the case where the parameters g and tz are real, with large and
either large or small, and the independent variable z complex with unbounded absolute
value.

Previously there have been a large number of investigations into the asymptotic
behavior of solutions of Whittaker’s equation, and for a comprehensive survey of the
results prior to 1975 the reader is referred to Olver [6, pp. 127-132]. In this survey
Olver remarks that there are several outstanding problems to be tackled. One of these
is the case ofll- c with 1 8 <- r//z <- 1 + 8; (here and throughout 8 is used generically
as an arbitrary small positive constant). This problem has since been successfully
treated by Olver [8] who has derived asymptotic solutions in terms of parabolic cylinder
functions. The results are uniformly valid for ,/x, and z either all real or all purely
imaginary, and are furnished with explicit error bounds. The asymptotic solutions were
derived by an application of the asymptotic theory of second-order differential
equations having coalescing turning points (Olver [7]).

A second outstanding problem is the case where c with 1 + 8 <-/x / =< 1 8,
and this is the problem that we address in the present paper. To get a better insight
into this particular case let us reformulate (1.1) into the form

(1.2)
d2w { K2(:- :1 (a2))(:- :2(O2))1}d:2 4sc2 4-sO2 ’w,

where for convenience we write

(1.3)

(1.4)

* Received by the editors January 27, 1988; accepted for publication (in revised form) July 1, 1988.
t Department of Mathematics, University of British Columbia, British Columbia, V6T 1Y4, Canada.

Present address, Department of Mathematical Sciences, San Diego State University, San Diego, California
92182-0314.
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and

(1.5a) :1 2- (4- a2) ’/2

(1.5b) sc2 2 + (4- a2) ’/2.

When K is large, (1.2) is characterized by having a regular singularity at 0, an
irregular singularity at infinity, and turning points at (a2) and 2(c2). The
position of these turning points depends on the value of a. When K and/z are real
we have the following four cases:

(i) O
2 0; :1 coalesces with the singularity : =0, and sc_ =4.

(ii) 0< a2< 4; : lies in the interval (0, 2), and lies in the interval (2, 4).
(iii) a= 4; sc and 2 coalesce at the point : 2.
(iv) 4 < a 2 < x3; (1 and s2 no longer lie on the real axis, and are complex conjugates.
Our results then will be uniformly valid for 0 =< a2 4--3, or in other words for

either coalescing with the pole at the origin or taking positive real values. As a2-- 4
the turning points coalesce and the results of Olver [8] are applicable; our results can
be regarded as complementary to Olver’s.

The plan of the paper is as follows. In 2 we present definitions and relevant
properties of the Whittaker functions that are to be approximated. Also, we record
connection formulae that will be used relating to these functions.

In 3 and 4 we transform Whittaker’s equation (1.2) into two different forms.
In the first of these new equations the coefficient of/2 has a double pole and a simple
zero which coalesces with the pole as a 0. The coefficient of b 2 in the second equation
has only one transition point, a simple zero.

In 5 we apply the general theory of a coalescing turning point and singularity
(Boyd and Dunster [2]). This general theory is applicable to the first of the transformed
equations, and provides asymptotic expansions for its solutions in terms of Bessel
functions. These approximations for Whittaker functions are uniformly valid in certain
regions of the complex s plane which include both s 0 and : 1, but not 2.

We then apply the general theory of a simple turning point in the complex plane
to the second of the transformed equations. This theory is given in Olver [5, Chap.
11]. The resulting asymptotic expansions involve Airy functions and are uniformly
valid in certain regions of the complex : plane that include sc 2, but not (= 71" The
domains of validity for the Bessel function and Airy function expansions overlap and
together cover the entire complex plane. The principal results are summarized in 6.

Of the previous investigations into Whittaker functions with I1 large we mention
two special cases of our results. The first is the work of Erd61yi and Swanson [3] who
construct asymptotic approximations for M,.(s) and W,.(K) in terms of Bessel
and Airy functions. These results are valid for fixed nonnegative/z, i.e., a O(-).
Accordingly, the investigation is that of the case of a simple pole and one fixed turning
point. The resulting approximations are uniformly valid for ]rl large (real or complex)
and : real with 0 -< :< c. Skovgaard [9] has extended these results to asymptotic
expansions with complex.

Neither Erd61yi and Swanson, nor Skovgnard, supply error bounds for their
approximations; however, for the real variable case, Olver [5, pp. 412-413, 446-447]
provides error bounds for both the Airy and Bessel function expansions.

More recently, Baumgartner 1 has investigated the Whittaker function M,.(:)
in great detail, and has derived a uniform approximation in terms ofthe Bessel function
J(z), which is uniformly valid for positive /z and r with 0-<_/x/K<=l-, and for sr
lying in the finite interval 0-< : =< :2-& A very thorough error analysis is given and
explicit error bounds are derived. Our results are considerably more general than those
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of Baumgartner: we derive full expansions rather than the leading term; we approximate
in turn the Whittaker functions MK,,(Ks), WK,,(K), W_.,(rs e-"), and W_,,(rs e’i);
and the results are uniformly valid in domains that cover the entire complex plane.
These expansions are uniformly valid for real nonnegative values of/z and r such
that 0-</z/r <- 1 6, and are readily extended to negative values of/z and K by means
of appropriate connection formulae.

2. Whittaker functions: Definitions, characteristic properties and connection
formulae.

2.1. Standard solutions. The Whittaker functions we approximate are M,,(z),
W,, (z), W_K,, (z e), and W_,, (z e-i), each being a solution of 1.1 ). These functions
are defined by

(2.1) M,,u(z)= e-’/2z F(1/2+ In, ; 1 +2/z z),

and

r(2)F(-2/). M,(z)+ M,,_u,(z),(2.2)

where F1 denotes the confluent hypergeometric function. The limiting form of (2.2)
is taken when 2/z is an integer. The four solutions are linearly independent of one
another for all nonnegative values of/z and r, the only exception being that MK,, (z)
and Wk., (Z) are multiples of one another when r-/z-1/2 is a nonnegative integer.

2.2. Behavior at singular points. Whittaker’s equation has a regular singularity at
z 0 and an irregular singularity at infinity. The behavior of the four solutions at these
singular points is given as follows (with r and/z assumed fixed):

(2.3) M,,.,(z) z’+’/2{1 + O(z)} as z-O,

r(-2)
z’+ 1 + O(z)}w,(z) r(1/2_,_ 1

(2.4)
r(2) -+,/2{+ z 1 + O(z)} as z0,

F(2/z + 1) e(V,_,+l/2)rriz,M,,,(z) =F(/z + K +1/2) e-Z/2{1 + O(z-’)}

r(2a + 1)
(2.5) + z-" eZ/2{1 + O(z-’)}

(2.6) W,,,,(z) z" e-Z/2{1 + O(z-’)}

(2.7) W_,,,(z e’’) e-=’z eZ/2{1 + O(z-)}

(2.8) W_,,,,,(z e-") e""z-" e/2{1 + O(z-’)}

as z- oo, -r/2 < arg z < 37r/2,

as z4oo, -3zr/2 <arg z <37r/2,

as z , -5r/2 < arg z < 7r/2,

as z oo, -zr/2 < arg z < 57r/2.

From (2.3), (2.6), (2.7), and (2.8) we perceive that the characterizing properties
of the four functions are that, for nonnegative/z, M,,(z) is recessive at the origin,
and that for all values of/z and r the functions W,, (z), W_., (z e"), and W_,, (z
are recessive at infinity in the sectors -r/2 < arg z < r/2, -3r/2 < arg z < -zr/2, and
r/2 < arg z < 3r/2, respectively.
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2.3. Connection formulae. We will require the following connection formulae:

(2.9) WK., (z) --- F[e-/2)’W_,,,,,(z e’)+ e-("-l/2)"W_,,,(z e-i)],

1 (
Our results are valid for N 0 and > 0. We can extend these parameters to

negative values using (2.2) and the following relations"

(.) M_,.( e

3. Domains containing the transition points = 0 and =: Prelimina transfor-
mations. In 3 and 4 our purpose is to transform Whittaker’s equation (1.1) to two
new forms. The first, given here, resembles Bessel’s equation and has a finite regular
singularity. The second, given in 4, resembles Airy’s equation. Both have simple
turning points. Having made these transformations, we can derive asymptotic solutions
and then identify them with standard Whittaker functions.

Then, using a Liouville transformation that transforms both the dependent and
independent variables, we transform (1.1) to the Bessel equation form. Following [2,
eq. (2.1)], we define a new independent variable () and dependent variable W() by

d (1 )1/2- )/,

(3.2) W() (d) (),

where the branches of the fractional powers will be specified sholy. With these
transformations, Whittaker’s equation (1.1) is transformed to the equation

d2W { 2[a 2 1 1] (a, )}(3.3)
d2-

u
42 4 42 + W,

where

(3.4)

primes (’) denote differentiation with respect to ’. An explicit expression for , can be
obtained by using (3.2); a straightforward calculation yields

(3.5)

,(a, ’)=16(ai_,)z sr+4a 2

[(1 ;(Z)] (3- 16:2 + 4(1 a3)c+ 4a2)

We now examine the s- " transformation in more detail. First, integration of (3.1)
gives the relationship

’(t2- t) ’/2 J (1- t)1/2(:2-- t) 1/2
dt=(3.6)

2t , 2t
dt.
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The lower integration limits are chosen so that the turning point : :1 of the original
equation (1.1) is mapped to the turning point sr a 2 of the transformed equation (3.3).
Note also that both integrands have a singularity at the origin, and as a consequence
the pole :=0 of (1.1) corresponds to the pole ’-0 of (3.3).

The relationship (3.6) as it stands is not well defined as there are branch points
at the transition points 0, :1, :2, and " 0 and a 2. We therefore introduce branches
as follows. First, with regard to the poles at the origin, we temporarily introduce a
branch cut along the negative real axis in both cases, and assign the principal values
of the arguments for both sc and ’. Throughout this paper we assume that (and ’)
take their principal values; appropriate connection formulae can be used to extend all
subsequent results to other ranges of arg :.

The branches of the fractional powers are chosen as follows. The integrand on
the left-hand side of (3.6) is assumed to be negative imaginary just above the semi-
infinite interval (c 2, c), positive imaginary below the same interval, and continuous
elsewhere. The integrand on the right-hand side is assumed to be negative imaginary
just above the interval (:, :2), positive imaginary below the interval, and continuous
elsewhere.

The integrals in (3.6) can be evaluated explicitly (see, for example, Gradshteyn
and Ryzhik, [4, pp. 83, 84]). We obtain

(O2 -) 1/2 -ln { O -1- O
2 ’) 1/2"1/2

1 1/2(_ 1/2 aln{ X2--2:1 }(3.7) =(:1--:) :2 ) +" a2_2:+a(:,_:)l/2(:2_:)l/2

2--1+ln
2

_
(1 )1/2(2 )1/2

Let A_ denote the " domain given by larg ’l < r with all points on the interval [’2,
excluded (sr_ denoting ’(:2)). We will confine our attention to A_ and the corresponding
: domain A: both A and A_, together with corresponding points, are illustrated in Figs.
l(a) and l(b). The curves CD, CD’ are given by

5 (1-- t)1/2(:2-- t) 1/2 dt
Re 0,

e2 2t

and are asymptotic to a line parallel to the imaginary axis.
The mapping ’(:) is conformal within A and hence the inverse (’) is conformal

within _A. It follows that 0(a, ’) is holomorphic in A_, and that, moreover, it is uniformly

FIG. l(a). Domain A in plane. FIG. l(b). Domain A_ in plane.
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continuous for " A_ and a [0, 2- 6]; (see [2, eq. (2.6) and the paragraph after Lemma
1]).

To identify solutions of the transformed equation (3.3) with standard Whittaker
functions we will need to know the asymptotic behavior of sr(s) as sr 0, and also as
sr-*-o+/-i0. (Here and throughout +i0 indicates a complex number being above or
below a cut.)

First, we find from (3.7) that sr-0 as sr- 0, and more specifically

(3.8) a-a ln2a+-ln ’+O(’)=-+ln 232 +In
a +ln s+O(:).

On collecting terms and exponentiating we arrive at

(3.9) st= c(a)+ O(:2) as :0,

where

We remark that (3.9), (3.10) is uniformly valid for a [0, 2- 6]; (see [5, eqs. (A3),
(A4)]). In particular when a-0 the limiting form of (3.9) applies:

(3.11) sr4s as s-0.
Next we examine () as - i0. We find from (3.7) that - i0, such that

(3.12) (-)’/2+O =(-)+ln +ln +ln (-)+O

the result being uniformly valid for a [0, 2-6].
Finally we must examine the asymptotic behavior of (a, ) and its derivatives

as ff in . From (3.7) we have

(-)/2+ O(ln ) asin a,
and hence from (3.5) we have

1
(3.13) O(c, sr)---8(_sr)3/2 as srooinA,

uniformly for a [0, 2- 6 ].
Also, on differentiating (3.5) s times, we find that the sth derivative of q

(3.14) ll(S)(ol,)--O(-3/2-s as’-,inA_,

uniformly for a [0, 2- 6 ].

4. Domains containing the transition point : = :2: Preliminary transformations. In
the previous section Whittaker’s equation was transformed, via a Liouville transforma-
tion, to a new differential equation from which asymptotic solutions are to be obtained.
As we have remarked, the transformation is not regular at s SeE, and the asymptotic
solutions that we obtain are not uniformly valid in a neighborhood of : sr2. The
purpose of this section is to use the general theory of [5] to transform Whittaker’s
equation, via a different Liouville transformation, to a differential equation from which
we can obtain asymptotic solutions that are uniformly valid in a neighborhood of : 2.
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We use the notation of [5] except that each term here is written with a circumflex
(^) to avoid a clash of notation with 3.

The appropriate Liouville transformation is given by the following (see [5, (3.02)]):

d( ((: :1),,(: :2)) 1/2 1
(4.1) d-- " 2--’
(4.2) t’() (d) 1/2

w().

The effect of the above transformations is to transform (1.1) into

(4.3) d2 {K2-i (0, )} /",

where

(4.4) (, ) 1-- (: :1)3(: :2)3 [:3 16:2 d- 4(1 a2): d- 4a2].

For the sc- map to be regular at the transition point sc- SeE, this point must
correspond to the turning point sr 0 ofthe transformed equation (4.3). Thus integration
of (4.1) yields

2 3/2 l’ [(t-- SC,)(t 2)] 1/2

(4.5)
:2 2t

dt.

With regard to the logarithmic singularity at sc 0 we introduce a branch cut along
the negative real axis and restrict our attention to larg :1 < 7r. We also introduce a cut
along the negative real axis and a cut along the real : axis from :1 to ; with these
cuts both sides of (4.5) are assumed to be positive for (0, o) and sc (72, 00) and
to be continuous elsewhere in the cut plane.

The integral in (4.5) is expressible in terms of elementary functions: we obtain
the relationship (cf. (3.7))

" (:-- 1) :2) -t- In
2: 6

2
O (: :1)’/2(: :2) 1/2

(4.6)
+ln

_
2 + (_ :1)1/(_ :)/

The map of the half space 0_-< arg sc < 7r is shown in Figs. 2(a) and 2(b) for a 0.
The map of the half space -Tr < arg =< 0 is the conjugate of the domain indicated
in Fig. 2(b).

It is possible to obtain asymptotic solutions of (4.3) that are uniformly valid as
c with arg sr +47r/3, or equivalently as sc 0 + i0. However, these solutions would

not hold uniformly at s 0 when a 0.
On the other hand, the asymptotic solutions of (3.3) are uniformly valid in a

neighborhood of s =0 for a [0, 2-3]. Therefore for simplicity we will restrict our
attention to a s domain that includes : s2, but excludes both s 0 and : .

To this end we define z to be the s domain larg 1 < 7r lying outside the pear-shaped
region BCB’, with a neighborhood of s :1 excluded. When a 0 A is the s domain

]arg :1 < 7r with^ a neighborhood of sc 0 excluded. The domain z and the corresponding
sr domain A_, are shown in Figs. 3(a) and 3(b).
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(o) () (:) (o)

A’

FIG. 2(a). : plane. FIG. 2(b). plane.

A’ B’(,) (2)

FIG 3(a). Domain in plane. FIG. 3(b). Domain

_
in plane.

2 3/2 1
(4.7) = :-ln :
In general,

Since^ both s =0 and l do not lie in z, it follows that () is holomorphic

wiin A. Furthermore, since d/d does not vanish in this domain the inverse mapping
(’) is holomorphic within _. We also note that (, ’) is holomorphic within , as
well as being uniformly continuous for e

_
and a e [0, 2- ].

We now record the asymptotic behavior of ’(:) as oe. From (4.6) we find that

+- In --i + In : 1 + O(-) larg 1 < 2.r
2 3/2 1

(4.8) = so+ O(In so) as so-> oo in ,,
and therefore from (4.4) we deduce that

1
(4.9) (a, ) --5
and

(4.10) ()(a, ) 0(-2-s) as o in .
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5. Asymptotic expansions for Whittaker functions. Having made the preliminary
transformations, we now apply the general theories of [2] and [5] to obtain asymptotic
solutions of the transformed equations (3.3) and (4.3).

First let us apply the theory of 5 of [2] to the differential equation (3.3). From
Theorem 3 we deduce that, for each value of K and a and nonnegative integer n, the
following solutions of (3.3) exist that are holomorphic in _"

&(a, ’)
_+l(k, c, ’)= "/-,’1/) ,

s=0

(5.1)
B(a, )+- <’’/). z. ,_-----7--.+ o,+,o(, , ’)

K s=O K

(j=0, 1,2),

with cgT)(z) denoting the Bessel function 2J(z), H()(z), HT)(z)forj 0, 1,2, respec-
tively. The coefficients A and B, are given recursively by the integral equations

[2(ct t) ta(a, t)+a,(a, t)-$(a, t)a,(a, t))B(a, sr) (a 2 .)-,/2 -,/2( dt

(5.2)
(s=0, 1,2,...),

(5.3a) A(, ’)=-’B’ + (a, t)B_(, t) dt +,L (s 1 2,...)s--1

(5.3b) Ao(a, ) Ao.
The numbers A (s 0, 1, 2,...) are arbitrary constants of integration, and the

branches in (5.2) are defined as in 3. Each of the coefficients is holomorphic in _A,
and furthermore they are uniformly continuous for " A_ and a [0, 2-6] (provided
of course that each constant ,L is taken to be a continuous function of a).

Before assigning values to the constants A we must record the asymptotic behavior
of A(a, ) and B(a, ) as ’c in A_. From (3.13), (3.14), and Ritt’s theorem (see,
for example, Olver ([5, pp. 9, 10)]) we can easily establish by induction from (5.2),
(5.3a, b) that

(5.4a) A(a, ) a + O("-1/2) (S 1, 2,’" "),

(5.4b) Bs(a,)=bs(-)-/2+O(-3/2) (s=0, 1,2,...),

as sr -+ oo with larg (-sr)l _-< rr- 6. Here as and b, are numbers independent of ’. Similarly,
we can prove the important result that the variations Y’{(sr-aE)l/Els()} converge as
sr + oo with ]arg (-’)1 =< 7r 6.

We choose two different sets ofvalues for the constants as follows. For the solutions
W() and ..r(2). (and hence Ao) the value 1 and each of the subsequent2n+l lff’2n-t- we assign ;to
constants A so that

(5.5) as=O (s=l,2,...).

For each solution uz(o)
2,+ we again choose Ao 1, but now choose each a in turn so that

(5.6) As(a,O)=O (s= 1,2,...).

Bounds for the error terms e{fl,)+ are furnished by Theorem 3 of[2] with u replaced
by . For the bounds to be meaningful a reference point sr{*) in A_ must be assigned
for each of the three functions 2,+.) We take .{o) =0, ’{) -oo+ i0, and sr{2) -oo- i0.
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Given these reference points we define domains _(J), (j 0, 1, 2), to be the set of points
in

_
that can be linked to sr) by a progressive path (J) (see [2, p. 439]). Under these

circumstances _(1)= _(2)= _, and (o) consists of all points in except those lying on
the cut on the real axis from

The regions S), (j 0, 1, 2), which are defined in [2], 5, are illustrated in Fig.
1 (b). Each ofthe solutions WJ)+ is characteristically recessive within S and dominant
elsewhere in

The bounds for ,+) given in Theorem 3 of [2] imply, for each j =0, 1, 2, that
(j) 1/2 /2)]- is 0( uniformly for a [0, 2- 8], andthe ratio 82n+l(K a, )[ J2(K -2n-1

for all points in 6(s) except those near the zeros of the denominator. Fuahermore,
the same ratio vanishes as ff if(s). These two impoaant observations are deduced from
the propeies of the auxiliary functions E and M given in 5 of [2].

Let us now identify the standard Whittaker functions with the asymptotic solutions
(5.1). First we note that (d/d)l/ZM,,(), regarded as a function of if, and
W,+(, a, ) are solutions of (3.3) that are recessive at the origin. It follows that, to
within a multiplicative constant, the two solutions must be identical. Therefore there

o) such thatexists a constant 2,+

(o. - +(, , ).(5.7)

The constant can be determined by comparing both sides of (5.7) at some paicular
value of . It is convenient to do so at =0 because, as noted above, the ratio

(o)e:,+(, a, )[/22L(/)]- Vanishes as -0.
From (2.3) and (3.9) we find that the left-hand side of (5.7) is equal to

(5.8)

where, for the moment, a and are assumed to be nonzero and held fixed.
Next, on using the known behavior of J(z) and J’(z) near z=0 (see Olver [5,

p. 436]), and on referring to (3.9), (5.1), and (5.6) we find that the right-hand side of
(5.7) is equal to

z,+,() 1 + a
:+l (1 + O())/4c( )-/:

v( + =o(5.9)
as 0.

On equating (5.8) and (5.9), and invoking (1.4) and (3.10), we arrive at the desired
relation:

(s.o o =r(+

_
+ (’

2s+l
s=0

The assumption that K and a be held fixed can now be relaxed, and an asymptotic
expansion for M,(K), uniformly valid for 6 (o) and a 6 [0, 2- 6], is now given by
(5.7) and (5.10). This and all subsequent expansions will be expressed again in terms
of the original variables in 6.

Next, consider the asymptotic solution uz(1)2n+l(K, , ). This function shares the
property with the Whittaker function (d/d)/2W_,(Ke-) of being a solution of

(1) exists(3.3) that is recessive as -+ i0. It therefore follows that a constant 2+a
such that

(511) W_K.(K-i (1)(2__ 1/4

.(, , .
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The value of the constant is established similarly to the foregoing analysis, namely
when we compare the ratio of both sides of the equation at a convenient value of
In this case we compare both sides of the equation as ’+-m+ i0. Thus we have

(5.12) t,2n+l ii1(1)’---,-oo+ iO ;2 (:2 )114

On employing (2.8), (3.12), (5.1), (5.4a, b), (5.5), together with the known
asymptotic behavior of H(’)(z) and H(’)’(z) at infinity (see Olver [5, p. 238]), we can
evaluate the above limit. After some straightforward calculation we find that

,/2 2(2- :,) 2_____(5 13) t2n+ e iKar/2
K(4--a :,(2+ a)/ ,=oK

This expression together with (5.11) gives an asymptotic expansion for
W_.,( e-=i) that is uniformly valid for sr e

_
and a e [0, 2-a]. The identification

of uA2) is similar. Both this function and the Whittaker function2n+l

(d/d)’12W_,,.,(K e) are solutions of (3.3) that are recessive in S). We deduce the
,..(2) such thatexistence of a constant V2n+l

(5.14) W_,< .( e"’) c2,,.,-,\ ’i ’ :,] (2 )--1/4

the value of the constant being found, similarly to (5.13), to be

(5 15) t,2n+l e- t,2n+l.

Again, these results are uniformlyvalid for " , a [0, 2- ( ].
Now consider the sr domain . Applying Theorem 9.1 of [5] to the transformed

equation (4.3) yields asymptotic solutions that are uniformly valid in this region. We
obtain the three solutions

(5.16)
I’2,,+,,,(, )= Ai;(K2/3) A()2

s=O K
Aij(K4/32/3) nl /s()

.2S - (K, ).- #-
K s=O K

(j=0, 1,-1),
where Ai(z)., denoLes the Airy function of complex argument Ai(ze-2"iJ/3). The
coefficients A, and B, are defined recursively by Ao(sr) 1,

1 r
(5.17) /()= -1/2 J0 {@(t),’’(t)-,i’’(t))t-’/2 at,

and

1 fof(5.18) As+l() -/(g) + (t)(t) dt+k+, (s=0, 1, 2,’’ ").

Each (s 1, 2,...) is an arbitrary integration constant for which a value will be
assigned shortly.

The expliciLerror bounds given by (9.03) of [5] are meaningfulprovided a
reference point " d in is assigned for each of the solutions W2n+l,j (j O, + 1).
Before we do so we observe that

(5.19) ,() a + O(ff-3/2),
(5.20) /(() s--l/2" O(--2),
as --> oo in _, where each (, and/;, is a constant. Also, we can prove that the variations
W’(’/2/,({)) converge as {-->oo in _. These results follow from (4.9), (4.10), (5.17),
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(5.18), and Ritt’s theorem. It is justifiable then to choose the reference points at infinity:
we take to o, tl =oo e2"r’i/3, and t_l =0 e-2"r’i/3. With these choices it follows from
the error bounds that for each j(0, +1) the ratio 2,/I,j(K, )/Aij(K2/3) is O(-2"-1)
uniformly for e _, except near the zeros of the denominator and near the cut interval
BCB’. Moreover, the same ratio vanishes as " ag.

For convenience we take the constants s (s= 1,2,...) to be the same set for
each solution W2,/a (j 0, + 1), defining them recursively such that

(5.21) a =0 (s 1, 2,...).
The three solutions ff’2,+,o, I’2,/,, and 2,+,- have the characteristicproperty

of being recessive in the sectors [arg ’1 < r/3, r/3 < arg sr < 7r, and -r < arg " < -7r/3,
respectively. Thus, we can identify them directly with standard Whittaker functions.

Beginning with W2./,o(r,’), we identify this with the Whittaker function
(dg/d)/2W,,,,,(xsr) since this too is a solution of (4.3) that is recessive in the sector
larg 1 < r/3. We have then the following identification:

(2:) 1/21/4 ](5.22) W,,(rs) 2n+l.0 [(:Slii:2)]l/4j 2n+l,0( b(, g),

where c2,+.o is a constant of proportionaflty. We can determine the constant by
comparing both sides of (5.22) as :+ (sr do). On employing (4.7), (5.16), (5.20),
and (5.21), as well as the asymptotic forms for Ai (z) and Ai’ (z) with large argument
(see [5, p. 392]), we find that the right-hand side of (5.22) is asymptotically equal to

(5.23) C,,2n/l.O(2,.ff,_l/2bg_l/6(2)e_,/2(2(2_Ol)Kt/2 _{ 1 )2Ss/ }--S) (s2-2) 1-
=o :

This must be equal to the asymptotic form of W,,(Ks) as sr (see (2.6)), and so
we conclude that

KS/s=O

Equation (5.22), with I/2,+1,o and c2,+,o given by (5.16) and (5.24), rpectively,
gives an asymptotic expansion for W ,(K:) that is uniformly valid for ff o) and

[0, 2- ], where is the domain consisting of all points in except those lying
on either side of the cut inteal BCB’ (see Fig. 3(b)).

An asymptotic expansion for W,(r) that is uniformly valid in the complementary
domain A can be obtained by replacing the functions W_,,(re) by their

asymptotic forms (5.11) and (5.14) in the connection formula (2.9). For the result
(stated in terms of the original parameters), see (6.8) in 6.

The identification of the other two solutions in (5.16) is similarly achieved. For
j 1 we have the identity

(5.25) W_,(r e-=’) (2)1/21/4

since both sides share the same recessive propey in the sector /3 < arg . By
comparing both sides as , -+i0 (see (4.7)), we obtain the following
expression for the constant of propoionality:

c+.l (2)/2/6 e-/6,[2(2- ))/2
(5.26)

1 1--e-/3 sO
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This asymptotic expansion is uniformly valid for _(1) and a [0, 2- 8], where
is the domain consisting of all points in except those lying on the lower part of the
cut interval BCB’.

Likewise, we can show that the following asymptotic expansion:

(5.27) W-,,,,(Ke’)=c"2,,+,,-, [( 1(2)]1/4 +1,--1

where

n+l,--, (27r) ’/2’/6 e-("-’/6)iI 2(2-- ce)) ’<’/2

-1 1-ei/3
+

s=O K

is uniformly valid for { (-) and a [0, 2- 8], where (-) is the domain consisting
of all points in except those lying on the upper pa of the cut interval BCB’.

From (2.10), (5.25), and (5.27) we can obtain a uniform asymptotic expansion for
M,.(K), uniformly valid for (o), a [0, 2-8]. The result, stated in terms of the
original variables, is given in 6, eq. (6.16).

6. Summa. For reference we now present the principal results of this paper,
and in doing so we express them in terms of the original parameters K and . We
present asymptotic expansions as K for the Whittaker functions W,.(z) and
M,.(z). These expansions are uniformly valid for all real values of K and such that

(6.1) 0/K1-8, r>0,

where 8 is an arbitrarily small positive constant. Moreover the expansions, which either
involve Airy functions or Bessel functions, are uniformly valid in certain complex z
domains. These domains overlap and taken together cover the entire complex z plane.
Thus an asymptotic expansion is available for both of the Whittaker functions for any
value of z such that [arg z[ =< 7r. For other ranges of arg z we can use appropriate
connection formulae (see, for example, Olver [5, p. 262]).

We also present expansions for the solutions of Whittaker’s equation W_K,, (z e-=i)
and W_,,#,(z e=i). A separate identification for these functions is necessary because
they are recessive in the second and third quadrants respectively of the complex z
plane. Asymptotic expansions for the Whittaker function MK,,(z) for negative values
of K are easily obtained from the ensuing results (where K is positive) and the connection
formula (2.11). Also, we can extend the following expansions to negative values of
on using (2.2) and (2.12).

We first introduce two transformed variables ff and ff that are related to the
parameters , , and the independent variable z, with - < arg z , by the following
equations:

+ (42- K)I/2(42--KC)1/2-- In _(4_KC)UJ
(6.2)

1Z+#ln{ Z(#2--K2+K(K2--#2)l/2)}{2(K2--#2)I/2-- (K --(K2-2)1/’ KZ Z)" + K In
j,

{ Z(K2-2+K(K2-2)l/2) } + In 2(K2--2)1/2(6.3) 2K/2=2Z+ In
((YJi?-22-Z) t ;S J’

where

(6.4) Z (Z2-- 4KZ + 4#2) 1/2.
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The fractional powers on the left side of (6.2) and (6.3) are assumed to take their
principal values, with

-Tr < arg " -< -r < arg " -<

Let z Zl, z2 denote the zeros 2K 2(K2 _/x2) 1/2, 2K + 2(r2 _/Z2) 1/2, respectively, of the
function Z; we take the root of (6.4) such that Z is positive imaginary above the
interval (Zl, z2), negative imaginary below the same interval, and continuous elsewhere
in the complex z plane.

For convenience we introduce the following functions:

(6.5) t(,/x, z)(4/z2- 2sr) 1/4 () 1/2

(Z2_Z)-I/4
\ z-z

(6.6) t(K,/z,z)=( ) 1/4 (2z)’/2
z--’z2 (Z-- z1) 1/4’

where again principal values are to be taken.
The following asymptotic expansions are uniformly valid for 0 -</x / =< 1 , > 0,

and for z and " lying in the specified complex domains.

( e2 )"/2(-/z) K/2{ lB,(a,O)1-1M(z)=’/r(2+) 2 +
(6.7)

A,()
s=O

,1 B,(’) 1 1/z,,(m ] z
2s -f’ ’- 2n+l(’) --C a(0), " e (0);

s=O K K

[{J2,. (K’’/2) sin (-/x)rr-- Y2. (K’’/2) cos (-/x)rr}
,=0

A,(’)2,

(6.8)
.1/2 .1 B, (’)+{J4z(K"1/2) sin (K -/z)rr- yz(K,l/2) COS ( /z)Tr} 2s
K s=O K

__i 1/2{ (K )’n’iE (1) --Ix) rrio (2) ]+2 st- e- 2.+1(’)- e(K

Z

W-(ze-i) "2,,+,dp(, z,z)[H(-I)’’/2 ,=0i As()K 2s
(6.9)

.1/2 n-1 B, (’) _l/2e(1 ]q- H(2’(K"1/2) E 2s + C ,(’)2n+
K s=O K

Z
-A, ’6,
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W_,(z ei) ..2.+,
’’(’) e-2idP(t,/z, z) [*-2u(2)(t"/2) =0 A(’)t2s

(6.10)

Z

The coefficient t,2n+l"(1) is given by

(6.11)

The z domain of validity A, and the corresponding " domain _, are illustrated in
Figs 1 (a) and l(b). The domain A() (_(o)) consists of all points in A (8) except those
lying on the lines CD, CD’. The coefficients A(r) and B(r) are defined recursively
by (5.2) and (5.3a, b), with (5.6) applying to (6.7), and (5.5) applying to (6.8), (6.9),
and (6.10). In (5.2) the function is given by (3.5) together with (1.3) and (1.4).

(o). (1). and e (2), have explicit upper bounds available (seeThe error terms e2n+l, e2n-l, 2n-I

[2, eq. (5.16)]). From these bounds the following asymptotic properties as x - can
be deduced:

,1/2
(6.12) ’-l/2e(2J)+l(" Qt?(J) -2n- Q_(j)’[ -2n+l) (j=0, 1,2),

where c)= 2J, H1), H for j =0, 1, 2, respectively. The O-terms are uniform for
0-</x/K _-< 1- 6, K > 0, and " lying in the respective domain of validity.

The error terms also satisfy the following boundary conditions:

(6.13) lim {‘.(o)2n+ )/J2l (R"’/2)} 0,
’0

(6.14) lim {6 (1).+,(’)/.. :,,., (,,"/:’)} O,---o+iO

(6.15) lim {..(2) H(2)r 1/2o:,.+,()/ :,,.,.t,, )} o.

The followi.,ng asymptotic expansions are uniformly valid for 0 =</x/ =< 1 6, > 0,
and for z and " lying in the specified complex domains:

M,.., (z) - r(2. + )r ,,:-a + 1 +-b, (:, ,u,, z)

0

(6.16) - Ai ) sin -- -sin(-)

+i’(/g) cos -- -cos(-)
=0
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(6.17)

(6.18)

E E

Ai’ (/<2/3e-2Zri/3) ’ Js() ]/<4/3 2s -" 2n+l,,(/)
s=0 K

(6.19)

(--1)

The coefficient is given by

and is defined by

bs(6.21) . 2s+l.
s=O /<

(4(/<2-/x2))-/2

The z domain A and the corresponding sr domain A_ are illustrated in Figs. 3(a)
and 3(b). The domains of validity (1) and _(-1) consist of all points in

_
except

those lying, respectively, on the lower and upper parts of the cut interval BCB’. (o
is the intersection of z() and z(-.

The coefficients /s() and /s() are defined recursively by (5.17), (5.18), with
(4.4) and (5.21). Bounds for the error functions /1, 2,/,1, 2,/,-, are supplied
in [5, p. 418]. These functions satisfy the following boundary conditions"

2/3 --2"rrij/3(6.22) lim {e2,+d(’)/Ai (/< e )}=0 (j=0, +1).
--> 2r/j/3
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Finally, we remark that (6.8) and (6.16) should not be used when K -/x -1/2 is equal
to a nonnegative integer. In this case the asymptotic formulae (6.7) and (6.17) should
be used, together with the relation

(6.23)
r(-2)

M..(z).W,(z) r(1/2__ )
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ERRATUM:

Study of a Doubly Nonlinear Heat Equation with No Growth Assumptions
on the Parabolic Term*

D. BLANCHARD" AND G. A. FRANCFORTt

Inequalities (64) and (101) of [1] are not satisfied under the assumptions on
listed in (5) of that paper. Rather, they immediately result from the following implicitly
(but not explicitly) assumed almost pointwise inequality:

(I) (O(w)(x)-O(w’)(x), W(X)--W’(X))RN>--O,

for any w and w’ in [Lq(f)] N.
Counterexamples of functionals that satisfy (5) of [1] and for which (I) is

violated are easily obtained. In the usually considered case where is a C 1, convex,
coercive, local functional (cf. definition below), (I) is trivially satisfied and
inequalities (64), (101) hold true.

DEFINITION. The functional defined on [Lq(’)] N, q> 1, is a C, convex,
coercive, local functional if there exists a convex normal integrandf(x, :) on l-I x N, C
in : for almost every x in ] with the following properties:

There exist an element a(x) of L([2), two strictly positive constants a and/3 such
that, for almost every x of fl and every : of,

altq <-- f(x, ) <-- a(x) + t11q,
For every w in Lq (a)

(w)= If(x, w(x)) dx.

Remark If cp is a C 1, convex, coercive, local functional and if (0)= 0, Dq is
bounded on the bounded sets of [Lo(l))] N and satisfies (5) of [1] with a coercivity
exponent r equal to q.

To ensure the validity of the results of our paper, it is then tempting to impose
(I) as an additional hypothesis to (5) and to investigate the nonlocal functionals that
satisfy (5) and (I). In fact there are no such functionals and the following theorem
can be deduced from the work of Buttazzo and Dal Maso concerning integral rep-
resentations of local functionals (the proof uses [2, Thin. 1.4 and Cors. 1.5, 1.7]).

THEOREM. If dp satisfies (5) and (I), is a C 1, convex, coercive, local functional
on [L(a)].

Conclusion. If is a C, convex, coercive, local functional on [Lq(f)] in the
sense of the above definition (and if (0)= 0), Theorems 1 and 2 of [1] hold true as
stated. In fact, Theorems 1 and 2 hold true (except for the comparison results) even
when (I) is not satisfied, as can be shown by the method developed for the proof of
Theorem 2, but such considerations are beyond the scope of an erratum.

* Received by the editors October 8, 1988; accepted October 21, 1988.

" Laboratoire Central des Ponts et Chaus6es, 58 boulevard Lefebvre, 75732 Paris Cedex 15, France

761



762 ERRATUM

REFERENCES

1] D. BLANCHARD AND G. A. FRANCFORT, Study of a doubly nonlinear heat equation with no growth
assumption on the parabolic term, SIAM J. Math. Anal., 19 (1988), pp.1032-1056.

[2] G. BUTTAZZO AND G. DAL MASO, On Nemyckii operators and integral representation oflocalfunctionals,
Rend. Mat., 7 (1983), pp. 491-509.



SIAM J. MATH. ANAL.
Vol. 20, No. 4, pp. 763-781, July 1989

1989 Society for Industrial and Applied Mathematics
001

REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS
WITH PIECEWISE ANALYTIC DATA, Ih THE TRACE SPACES
AND APPLICATION TO THE BOUNDARY VALUE PROBLEMS
WITH NONHOMOGENEOUS BOUNDARY CONDITIONS*

I. BABUKAf AND B. Q. GUO

Abstract. This paper analyzes the trace spaces of the weighted space (fl) introduced by Babuka
and Guo [SIAM J. Math. Anal., 19 (1988), pp. 172-203].

Key words, elliptic equation with piecewise analytic data, Dirichlet problem, corner singularities

AMS(MOS) subject classifications. 35B65, 35D10, 35G15, 35J05

1. Introduction. Elliptic boundary value problems with piecewise analytic data
are typical in many fields of applications, for example, in structural mechanics. These
problems are then numerically analyzed in engineering by the finite-element method.
The design and performance of a numerical method directly depends on the class of
problems to which it is oriented. The smaller the class is, the more effective the numerical
method can be. Hence, it is important to characterize mathematically a (minimal) class
that encompasses virtually all practical problems in a field of applications. The space
3(II) is such a class. In [4], [5a], and [5b] it has been shown that if the solution
belongs to the space 3(1-1), then the h-p version of the finite-element method has an
exponential rate of convergence. The h-p version uses properly refined mesh and a
high degree of elements in contrast to the usual h-version that uses only low-degree
elements. For the survey of various theoretical and practical aspects of the h-p version
we refer the reader to 1] and the references given therein.

In [3] the spaces (l-l) have been analyzed. It has been shown that the solution
of the elliptic boundary value problems with piecewise analytic data belongs to these
spaces.

The present paper elaborates in detail on the structure of the traces of functions
of (1). The results give easy characterization of the case when the solution belongs
to 3(fl). In 2 we give the preliminaries and basic definitions. Section 3 defines the
model problem of second-order elliptic partial differential equations. Section 4 intro-
duces the space of traces of u s (fl) on the boundary 0fl. It is also shown that these
traces can be extended into (fl).

2. Preliminaries. Let fl c R2, (xl, x2) x be a simply-connected, bounded domain
with the boundary 01"1 F U 1 ’i. F are analytic simple arcs called edges,

’, {(p,(s), ,()) s [= [-1, 1]},

where p(sc), ffi() are analytic functions on [ and > ,>0. By r, we
denote the open arc, i.e., the image of I (-1, 1). Let A, i= 1,. ., M, be the vertices

* Received by the editors April 6, 1988; accepted for publication October 11, 1988.

" Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742.
The work of this author was supported by the Office of Naval Research under contract N00014-85-K-0169.

t Engineering Mechanics Research Corporation, Troy, Michigan. The work of this author was supported
by the National Science Foundation under grant DMS-85-16191 during a stay at the Institute for Physical
Science and Technology, University of Maryland, College Park, Maryland 20742.
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764 I. BABUKA AND B. Q. GUO

of II and F AiAi+l, i.e., the edge F is linking the vertices A and A+I. For simplicity
we will also write A1 AM+I. An example of the domain II under consideration is
given in Fig. 2.1. By to, i- 1,..., M, we denote the internal angles of II at A. We
will assume that 0 < toi =< 2,r. We will also consider the case when two edges coincide.
Then we understand them in a "two-sided" sense. If all edges are straight lines then
we call the domain II a straight polygon. Otherwise we speak about a curvilinearpolygon.
If 0< toi <2r, 1,’’., M, we speak about a Lipschitzian domain. Let us assume
that F F() U F() where F( Uo, F(1) F- F(), (a) U o’ ’, where Q is some
subset of the set {1, 2,. ., M} M and Q’= M Q.

We assume for simplicity that fl is a simply-connected domain. The results we
present here are also valid when fl is an n-connected, bounded domain and its boundary
is composed of n-cues.

Denote I {x]-I <x < 1}; we also write I= {Xl, X2]--I <X < 1, X2 =0}c 2 when
no misunderstanding can occur.

By L2(), Lp(), L2(I), Lp(I), the usual spaces of p-integrable, 1 < p <, func-
tions on or I are denoted. By Hm(), Hm(I), m0 integer, we denote the usual
Sobolev space of functions with square integrable derivatives of order less than or
equal to m on fl (respectively, I). The space H() is furnished with the usual norm

L2(
0llm

where a (a, a2), a 0 integer, 1, 2, a] a + a2, and

Du
Ox

Fuhermore, we let

As usual, we write H()
H(n) {u e Hi(n) ]. 0 on F<)}.

In an analogous way we define H(I) by Du u= du/dx.
By (x)=dist(x, As)=]x-AsJ, xe, je, we denote the Euclidean distance

between the point x and the veex As, Fl(X)=x+l, r(x)=x-1, x L Let
(1," ", 3M) (respectively, (, 32)) be an M-tuple of real numbers 0 < < 1,

A3
A

A
FIG. 2.1. The scheme of the domain.
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1,. , M. We write O < < O2 (respectively,/3 </3) if al < fli < O2 (respectively,
fli </3i), i= 1,. ., M. For any integer fl, we write fl + k {ill + k,. .,/3M + k} such
that

and

M

/(x)-- II Ir,(x)l ’/,
i=1

2

i=1

By C(I’I), C(fi), C(I), C([), j>=O integer we will denote the set of all functions
with continuous j-derivatives on gl, fi,/, /, furnished with the usual norm [[.
[[" c(). Let H"(gl), m -> t_->O integers, be the completion of the set of all infinitely
differentiable functions under the norm

k=m

Ilull,’(m Ilull =
k=l

for 1_>-1,

k=m

Ilull,,(.) E II%/lDulll =
L2(fl)

k=O

If m 1= 0 we will write H’= L(fl). Analogously as before we define

lulz.’(m X II%lDulll =
Lz()"

In a similar way H’I(I) is defined

Ilull,’(,) Ilull =.’-(i)+ E II%+-llDulll(,) for lN 1,
k=l

k=m

ilull=Hr’o(I)-- E II%+lOul
k=0

Furthermore we introduce the space (fl), l=>0 integer that will.play an important
role in this paper:

(’) {U It/E H’/([), for any k >- I, II+_,loul (.)

<-- Cdk-t(k-l) !, I1 k. c>0. d ->_ 1 independent of k},

where C and d may depend on u. If we wish to emphasize the dependence on d we
will write t,d(f/). Analogously for -> 0 integer

(I)={ulu H’t(I), for any k >- 1, II$+_,u<)ll <,
<= Cd’-(k l)!, C > 0, d >= 1 independent of k}.

Furthermore, for j 1, 2,

ip(ll) {u Hi(II)IID"u(x)l <--

lal k =j- 1,j,. ., C > O, d -_> 1 independent of k},

(I) {u e HI(I)I lu()(x)l-< ClP+l_+/2(x)l-dkk!,
k =j- 1,j, , C > 0, d -> 1 independent of k}.
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Let y U io= Pi. Then we define Hk-1/E(y), k _-> 1 (respectively, H3-1/2"l-1/2(’y),
k l 1) integers as follows" for any e H-a/(y) (respectively, H-l/U’t-/(y)) there
exists fe H() (respectively, H’*(O)) such that fir . We define then

IIIIH-,,=<> (respectively,

inf Ilfll-m (respectively, Ilfll

By -/(), IN 1, we will denote the set of the traces on T of functions from the
space ().

Let F be an edge of; then by the assumption there exists a one-to-one mapping
m of I onto F which is analytic. If F is a straight line, then we will assume that m
is the linear mapping. Let u be defined on F, U(x) u(m(x)) be defined on L Then
we define

H(F)=(ulUHm(I)), IlUllH’(r,--II UII-(I)
In the same way we define the spaces H"(F,), 3(Fi), (r,). Let us remark that,
as we defined it, I1" [[q(r, depends on the mapping mi, i.e., it depends on the
parameterization of the arc F. Nevertheless the space H"I(F) does not do as well as

(F) (see Lemma 4.6) but 3(F) could be dependent on mi. Let us now state some
lemmas that will be used later.

LEMMA 2.1. We have

H’2(a)
with the continuous injection.

See Lemma 7 of [2].
LEMMA 2.2. Let u H’2(f). Then

(2.1)

(i)

(ii) Let u(A) O, 1,. , M. Then

(2.2)

See Lemma 8 of [2].
I.uA 2.3. (al=(a) .a (a=+(a, 0<+<1,

arbitrary.
See Theorems 2.2 and 2.3 of [4].
LZMMA 2.4. Let u (f), j >--_ 0; then u is analytic on - t.J iM=l Ai,

LZMMA 2.5. Let r # 1 and F(x), 0 < x < oe is defined by

F(x)= f( t) dt for r > 1,

F(x) f( t) dt for r < 1.

x-F_x_ <- x xf) dx.
r-1

e>O

Then

See Theorem 330 of [7].



REGULARITY OF ELLIPTIC PROBLEMS, II 767

3. The model problem and its properties. Let fl be the curvilinear or straight
polygon and let L be a strongly elliptic operator

2 2

L(u) , (ai,j(x)ux,)xj + E bi(x)ux, + c(x)u
i,j=l i=1

where ai3(x)= aj,i(x), bi(x), c(x) are analytic functions on 12 and for any
and any x f let

2

E a,,j(i >- to(+)
i,j=l

with/Zo > 0.
Let B(u, v) be a continuous bilinear form on H(12) H(I):

We assume that

i,j=l i=1

inf sup
IlUlIttl(II) [I/3IIHI(I/)__.
u_H(D)

and for any v e H(O), v 0

IB(u, v)l tZl > O

sup [B(u, v)l > O.

u.H(D)

Assume now that gtqa 3/2-1(Fl), I= O, l,fe (fl) and consider the boundary value
problem

(3.1a) Lu f onfl,

(3.1b) u=gtJ onF(,
Ou

gill on F (1)(3.1c)

where we denoted by n the conormal in the usual sense. The solution of our problem
is understood in the usual sense. Then we have Theorem 3.1.

TEOREM 3.1. There exists unique solution Uo Hl(fl) of the problem (3.1). See
Lemma 3.1 of [3].

Let us mention some theorems addressing regularity of the solution Uo.
THEOREM 3.2. There exists 0 <- < 1, 1, , M, depending on the problem (i.e.,

operator L, w, etc.), such that iff (), g[l] E /2-1(F(l)), O, 1, /<fl <1, then
Uo().

Proof is given in [3].
THEOREM 3.3. Let f be a curvilinear) polygon (instead of straight polygon as in

Theorem 3.2) and let the assumptions of Theorem 3.2 hold. Then Uo (f).
Proof of the theorem is given in [4].
We have seen in [4], [5a], and [5b] that when the solution u of the problem

(3.1a)-(3.1c) belongs to the class 3(f) then the h-p version of the finite-element
method converges exponentially.

Theorems 3.1 and 3.2 show that it is important to develop practical characteri-
zations of spaces /2-(F), 0, 1, which can be easily used in concrete cases to verify
whether the input data, i.e., gt belong to the desired space. We will elaborate on this
in the next section.
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4. Traces and extensions of weighted Sobolev spaces. Characterization of the spaces
/2-(F). In this section we will elaborate on the characterization ofthe space /2-t(1-’),

0, 1, which leads to an easy verification in the concrete cases of applications.
LEMMA 4.1. Let/3 (1, 2), 0 < < 1/2 and g H’(I). en
(i) g C([) and IIllcO(r> CllgllA,’(,);
(ii) [g(x)-g(-1)l Cl/2_o(x)llg[l,k(i>,

Ig(x)-g(1)l

where C is a constant independent of g(x) (but depends on fl).
Proo Obviously,

g(x) g( t)[ g’( r) dr

(4.1) g,2(,)(,) d, (B(,))-2 d,

Ilgll u.’(l) (o(z))-2 dr

which shows that g is continuous on Using the imbedding theorem on (-, )= I’,
we have

(4.2)

and we get immediately

Ilgll C(I) Cllgll

Further, (4.1) immediately leads to (ii).
LEMMA 4.2. Let fl (ill,/32), 1/2 </3 < 1 and g H’2(I). Then
(i) g C(I) and

where C is a constant independent of g(x).
Proof Using (4.1), we get

Ig(x) g(t)l ,x g’() d

and

g’-- --< C[[g’(0)l / Ilg"

In the last inequality we used Lemma 2.5 and the fact that 1/2 </3 < 1. The lemma now
follows immediately.
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LEMMA 4.3. Let g ,d(I), 0 </3 < 1. Then for k > 1

Ig(k)(x)l _<_ C(k_,/2+o(x))-’(d,)kkt
where dl= "I’d, )’ > 1 is independent of g, k, d, and C depends on , but is independent
ofg, k.

Proof. Let I’ (-1/2, 1/2). Then for any k ->- 1 we have

IIg(k)llH,(r,)-- C(dp(-))-k-k! d k

where/3 max (/3,/32). Hence by the imbedding theorem, we have

Ig(0)l __< Cdklk!
where dl --> yd, y > -1(1/2) > 1. Further, for k >- 1, we have that

ig,(x)l <__ igk(0)[ / g(k+l)(t) dt

_-< Ig(0)l+ (g(k+l)(t))2p213+k(t) dt *-+k(t) dt

--1<- Cdk![1 +/_,/(x)]

<-CriCk! (x))-’(k-/2+
COROLLARY 4.4. Let g 1(I), 0</3 < 1. Then g 1(I).
COROLLARY 4.5. Let g2o(I), 0</3 <1. Then for k>-2

Ig(x)l <_-

and g (I).
LEMMA 4.6. Let m(x) be a one-to-one map of I onto I, let m(x) be analytic on

[, and let Im’(x)l > 0, x [. Assume that g(I),j= 1,2, and define v(x)=g(m(x)).
Then v (I), j 1, 2.

Proof. Because m(x) is analytic on I it can be extended into the complex plane
C on I=(z=x+iyl-l-8<x<l+,,lyl<8}, 8>0, m(z) is a one-to-one mapping
of [8 onto *=I,, ’>0 and Im’(z)l>ao>O, z[. Now let j=l and XoI. Then
for k>--1

Ig(xo)l <__

and the series

g’(x)= E g(k+l)(Xo)(X--Xo) k 1

k=0 k!

is absolutely convergent for Ix-xol a((Xo)/dl), a < 1. Hence also

g’(z)= 2 g(k+l)(Xo)(Z--XO)kk
k=O

converges and Ig’(z)l-<- Cat+/(Xo) for IZ-Xol <- a(cI’(Xo)/d) where C is independent
of Xo. Hence g(z) is a holomorphic function and v(z)= g(m(z)) is holomorphic, too.
Using Cauchy’s theorem we get immediately that for k => 1

Iv)(x)l < Cd4,-;

_
Obviously, v(x) H’I(I). In quite a similar way we prove the statement forj 2.
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Remark 4.1. Lemma 4.6 shows that the space (I) is invariant with respect to
an analytic mapping. Using the formula of the nth derivative of a composite function
(see formula 0.430 of [8]) we can also show that (I) is an invariant space with
respect to an analytic mapping m(x) as in Lemma 4.6.

Let F be an analytic arc. Then we could define the spaces (F) and (F) with
respect to the length instead as we did in 2 by using a specific mapping. These two
definitions are then equivalent by Lemma 4.6 and Remark 4.1.

LEMMA 4.7. Let M(x), xR2, M(x)= (Ml(x), M2(X)) be a one-to-one mapping
of onto and IJ-l _-< tz on , where J is the Jacobian of the mapping. Assume that
M(x) can be analytically extended on l) {x R21 dist (x, f) <- 8} so that it is a one-to-
one mapping of fi onto fi*, f* ,. Let u (f), j 1, 2, v(M(x)) u(x). Then
v().

The proof is analogous to that of Lemma 4.6, however, we must apply the theory
of two complex variables.

LZMMA 4.8. Let g (I), 0</3 < 1, j 1, 2. Then

g(I), O<fi<l,
+ e, e > O arbitrary.

Proof. Let us consider only the case j 1. The case j 2 is analogous. Because
for k=>l

we get

Ig()(x)l Cdkk!(k+13_l/2(X))-1

(g(k)(X))2p2k+fi_l(X) dx <= Cdk(k!) (I) fi_/3_ 1/2(X dx
--1

C(e)dEk(k)2.

We see that Lemma 2.3 has a completely analogous version for the relation between
(I) and (I).

THEOREM 4.1. Let u H+2’2(), k O, and Fi be a straight line edge of and

Ulr g. en we have the following:
(i) For < ,, fl+ < 1 and k 0

g, HI’I(F,), , (,,1, ,,2),,. > 0. ,. ,._.-. 1). 1.
and

with C independent of k and d >- 1.
(ii) For 0 < fl,, fl,+l < 1/2, k >= 1

g H(F),
Hk+,2rFg,e , ,) flid e(fli+-l+1/2 1), j=l 2,

(iii) Vu() and ,,(r,),
r, + 1.If O<fli, fli+l<, then gi,( i) flid(fli+-
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Proof Without any loss of generality we can assume that Fi 1-’1 and
lPl {Xl, X21X I, x2 0}, A (-1, 0), A2 (1, 0), / (/3a, fl).

Let k >_- 0 and Vk (oku/oxk)k+. Then for k_-> 2,

II I1(-i,/CI)k+ + k D -i,/CI)k+,_l/--.2(fl) L:(,O.)

Using Lemma 2.2, we get for k 1

Because of Lemma 2.1 u C(I)), and hence vo(Ai) 0, 1, 2. Hence, using Lemma
2.2, we get

IVol.m <-

and hence for all k => 0
(4.3)
where C is independent of k. Therefore by the imbedding theorem

Vk C(fi), k _-> 1.

Let us now show that Vk(A) 0, 1, 2, k 1. Assume on the contrary that v(A) > O.
Then because Vk C(fi) we have

v(x)>e>O forlx-Al<, >0.

Hence for k => 2

where

>= e2 ff dP2--2 dx=O

dx= 2v2 dx

and we have the desired contradiction. For k 1 we use Lemma 2.2 and get

O0 > 0213_1 dx > 82 022 dx

If u (f) then we get from (4.3) for k=>O

IIv, llw,)-< Cdklk!.
We have gk(xl)=Oku/oxkIr k>0.= Then gk(xl)=d-lk+(X)Vk(X)lr =d-k+(xl)vk(x)
where we wrote -1k+(Xl) and Vk(Xl) instead of -1k+(Xl, 0) and Vk(Xl, 0). Assume first
that 1/2<fll,fl2<l. Let do={min=3,...,4 dist(A,F,)}4-2. Then we have for x eFt,
(Xl) -<- (Xl)d-, and hence for j 1, 2,. ., k + 1,

j_,+,lg{J)(Xl)l2 dx, <= Cj2 " 2 + -2j-l+,[lvj-,I s+j-,
--1

[IV_ll ^ 1 4, }cI),_ + Iv- _+,_] dx
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Using Lemma 2.5, the fact that j 1,. , k + 1, Vj_l(Ai) 0, 1, 2 and that/3 fll +
1 > 1/2, we get for some dl < 1

_+lg(x,)] dx, Cd, _15,_
--1

By (4.3) and the imbedding theorem we have for 1 < p < and j 1,. ., k + 1

Hence for j= I,..., k+1, because -fl >-, we get

L2q(I)
--1 -1

Because by Lemma 2.1

we get

Ilgl] L=r, <

Hence we have proven (i) and (iii) for 1/2</3i,/3i+1 < 1 and k->0. Assume now that
0 </31,/32 < 1/2. We will proceed analogously as before. For j-> 2, we have

I2 (j) 2 2 --2(I)j-E+lg (Xl)l dXl < Cj2 dXlj-2+I[IVj-ll2-2+j-1 + dpj+lvj_l 2]
--1

<- Cd-(2 _+,_(v_(x))2 dx
-1

where we once used Lemma 2.5 and the fact that -1 +/,- >-1/2. Hence, using (4.3)
and realizing that -1 +/-/ >-1/2, we get analogously as before for j 2,..., k + 1

%-=/1 Ig><x,)l= dx, Cd u +=,=,
Let us prove now that

We have vo(A1)= vo(A=)=0, and hence

g,2 dx =< Cdff= [=[vgl=+lvol=-=+1] dx dff2 2Ivl= dx
--1 -1

where we have again used Lemma 2.5. Because 0 < <) and

we proceed as before and (ii) and (iii) follow easily.
Remark 4.2. In the proof of Theorem 4.1 it has been assumed that fl,

(fl+_ -, 1), respectively, fl. (+-1 +, 1), i.e., of the open inteal. The proof does
not hold for the closed inteal. It has been assumed in Lemma 4.9 that the edge F
of the domain was straight. Let us now assume that F= re(I) where m =(, ) are
analytic functions on I as given in 2. Then we have Lemma 4.9.
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LEMMA 4.9. Let the edge F of the domain be analytic. Then part (iii) of Theorem
4.1 holds.

Proof. By Lemma 2.3, u (l). Let M(sc) (p(:), p(sc)), sc I, be the mapping
of I onto F1. Then we define

Then the mapping M(,)=(M(,),M2(,)) is analytic on I=
(, -1 < < 1 + , ] < ), > 0, J] < , ]J-] < on I (where J is the Jacobian
of the mapping) and maps I onto the (open) neighborhood S* of F. Denoting
*=S*, T=M-I(*), we see that r(x)=u(M-(x)) is defined on T, and r
(T) by using Lemma 4.7. Hence r +(T), e > 0 arbitrary, by Lemma 2.3. Hence
for < fl, fl+ < 1 we get by Theorem 4.1(iii)

gi() V(, 0) ,(i) fli, (fli+j-1 + e -- ), j 1 2.

Because e > 0 is arbitrary, id (fli+-l-, ). Analogously for 0< fli, fl+l <, gi()
,(I), ,.j (fli+j-1 +, 1).

LEMA 4.10. Letg(I),O<<,O<2<l, g2(I),)<<l,O<2<
1. Let S { r, 0 0 < 0 < 2, 0 < r < } where r, O) are polar coordinates with respect to
(- 1, O) and (r) r. Define

Ui(r, O)= gi(-l + r), V(r, O)= O[g,(-l + r)-g(-1)]

(by Theorems 3.1, 3.2, gi C(), i= 1, 2, and hence gi(-1) is well defined). Then

u,, v,
U2, V2 I(S), 1-.

Proofi Assume first that 0<,< and g,(I). Set fl=,+ and U,=
g(- 1 + r). Then for k 2

r
rd dO

<= Cdk(k!)2.

Hence by Theorem 1.1 of [4] we have for k_->2, [a[ k

V,16.+ - ll Cdgk!.

Furthermore,

Hence, U, (S). Now let <1 < 1. Set fl ,-. As before, we have for k2

s k Ork ] (r-2+)2r dr dO Cdk(k)2

and we get UI ’(s < m- Hence, U e (S). Let us now consider the function V(r, 0).
Then as before

--rk ] (rk-2+t)2r dr dO <- Cd2k(k!)2.
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Furthermore, using Lemma 2.5 and k-> 2, we get

[ OVI r-2(rk-2+p)2r dr dO /8-lgl r-2(r-2+#)2ar0 ar,, / r dr dO

Cdkll.(k-1) 2
IlSl k-2+fllllL2(l)

2

Cd](k ).
In the last inequality we used the fact that

Ig(-’(0)l Cd(k)
and realizing that aV/(ar- d0) =0 for kj2 we have for }a}= k2

Fuhermore for 0 < 1 < and I* (- 1, 0) we have

v, ’(s c[ g’,/11L(,* + II(g, () g,(- 1 ))_,/ L(,*]
< c[llg1’a, L(,* + (g,() g,(-1

cllg, ll.’(,).
In the last inequality we have used once more Lemma 2.5 and the fact that
Quite analogously we prove tat
Lh 4.11. Let g (I), 0 <

+().
Proo For k 1,

--1

g(’(6_) (’-’ _,++ ax
-1 !=0

N Cdk (g(O ((k l)2 dx
/=0 J-1

Cd2k (gO) +,_((k_/)t)2 dx+ (g)E_(k)2 dx
/=1 --1

Cd (g’YCZ+,_,((k- )) dx+ (g’)}(kY dx Cd’(k)
1=1

where we have used Lemma 2.5 in the above inequality. Fuhermore,

v2 dx g2@v dx CIIgll%i’,
by Lemma 4.1.
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LEMMA 4.12. Let ge(I),.g(+l)=0,1/2<<l, 0<T<1/2, v=gP_v. Then for
fi+y> 1, ve93+_(I) andfor+y<l, ve93+(I).

Proo (a) Assume first that + T > 1. Then for k 2

(V(k))2++,-2 &<= Cd2 (g(/))uu-,-(-,)+k+g+,-2((k- 1)1) &
--1 /=2 --1

+(k) g *}_2dx+((k-1))2 g’2}_ dx
--1

Cd2k (g(1))2}+,_2((k_/))2 dx
I=2

+(k) g’_ dx

In the last inequality, Lemma 2.5 has been used. Because by,the imbedding theorem
Ig’(0)l cllgl}( and using Lemma 2.5 once more yields - 1 >-, we get

’(I) "-1 -1

Hence,

Furthermore, as before
1

(v(k))Zk+g+V_2 dx <--_ Cdk(k!)2.

J < IVt2(+T_ dx C g-’==r-, dx <- CIIgll=,, < o.
--1 --1 13

Because g C(), v L2(I),.
(b) Now assume that/3 + T < 1. Then for k => 2 we get exactly as before that

Furthermore,

(V(k))2)i+fi+ dx < Cd21 k
")’--2 (k!).

-1

V
t2 dx<C 2^2g _r_dx+

--1 --1 --1

=< C g" (I) --T+

Because -3’ + 1 > fi by our assumption we see that

v’2 dx<- Cllglli.
-1

Using Lemma 4.2, we also get
LEMMA 4.13. Let 12 be a curvilinear polygon with the vertices Ai, 1,. ., M. Let

u (12) and w be such that

IU"wl--< c-.+1 !d",

Then v wu ?(12) where i [3i- ’/i"
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Proof. For k-> 2, al k, we have

IDllvl20l_+a dx<= Cd=k Iok-’ullO’wl .2_2+e dx
/=0

<- Cd E ((l+ 1)! D- ul:(I)_:_,+ dx
I=0

k

<- Cdk ((l+ 1)!)2((k 1 +/)!)2_< Cdk-2((k_2)!)2.
I=0

Furthermore,

Ill lDll)12 dx C[fflDltl[21wl2 dxqIgl lul2lDIwl2 dx] <00

because by Lemma 2.1 u e C(fi).
It is very easy to prove the following lemma.
LEMMA 4.14. Let ge?3(I), 0</<1/2. Then v=gPef:3}(I) and v(+l)=0. Let

geOl,(I), 1/2</<1; then v=gPe}(I) and v(+l) =0.

Proof. The statement that ve3(I) can be directly verified. By Lemma 4.1 v is
continuous on f. If v(-1) # 0, then v2(x) > e > 0 for all Ix + 11 < , Hence, g2 (v-1)2 >=
^2 ( ),0</3<1/2 The proof of theeq-l, which contradicts the assumption that g e 3 I

second part of the lemma is analogous.
LEMMA 4.15. Let u e 3(1)), 0</3 < 1 and u =0 at Ai. Then u-1

The proof follows easily using Lemma 2.2.
THEOREM 4.2. Let 12 be a straight polygon with the edges F, i-1,..., M, and

let g e (F1), 0< , < 1/2, fl, fl +1/2, i= 1, 2 (respectively, g e 3(F1), 1/2</ < 1, fl =/3,-
1/2, 1, 2) and g(A) O, 1, 2. Then there is u such that

(i) u e 3(12), with 0 < fl < 1, j 3," ", M, arbitrary;
(ii) U[r,=gandulr=Oforj=2,...,M.

M
Proof. Let O H,=3 x A[2, x e 1) Denote ff g/O. Then obviously g e 3 }(F1)

(respectively, g e 3}(F1)). Now select 0< y < 1/2 such that 0</3 + y < 1/2 (respectively,
0 </3 + y,- 1 < 1/2). Denote ff I-I=l Ix A,I -,

_
where y (yl, 72, 0,..., 0).

By Lemmas 4.1 and 4.2 (A)-0, i= 1, 2. Using Lemma 4.11 (and 4.12) we see that
e 3}+y(I) (respectively, ff e 3+v_1(I)).

Let U e HI(I)), A U 0 and U on F1 and U 0 on F, j 2, , M. Function
U exists and is uniquely determined. To see this consider q(x), x e F1, p e C(F1),
(p(x) I for Ix- AI -< e/2, i- 1, 2 and p(x)=Ofor]x-Ail> e, i= 1, 2 with e sufficiently
small. We define

U-- UI-- U2
where AUi=0, UieH(I)), i=1,2, Ullr--(1-q), U21rl--,o and U=0 on Fs,
j=2,...,M. Because h=(1-o)eC(F1) and hi(x)=0 for
obviously exists.

By Lemma 4.10 there exists We HI() such that W]rl h2=o, and Wlrj=0,
j 2,.. ", M. Hence, U2 exists too. Function U has the following properties"

(i) AU=0.
(ii) U]r, , Ulrj 0, j 2,..., M.
(iii) is analytic on F (not on F1).
(iv) In .a-tqfl{xllx-Al<,}, i=1,2, with t sufficiently sall, there is W

such that W e 3}(t2i,), where /3i =/ + 3’ +1/2 (respectively, / fl + 3’- 1 +1/2) and

Wlr,na,., ft. (This follows from Lemma 4.10.)
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By the selection of yi we have/3- > 1/2, i= 1, 2. Now using the same arguments as
in the proof of Theorem 2.1 in [4], we conclude that U (12), where/ffi =/3 + y +1/2
(respectively,/3 =/1 + Y,-1/2), i= 1, 2, and 1 >/ > 1/2.

By Lemma 4.13 we see that u OvU (12) where fl, , +1/2 (respectively,
/3i fl-1/2), 1, 2 and 0 < flj < 1 arbitrary for j 3,. ., M. In addition, Ulr g and
ulrj=0, j=2,... ,M.

Let us outline the main idea of the assertion that U(f). Let S.,=
{ri, 0i[0< ri < 8, 0< 0i < to} fq 12 where (r, 0) are the polar coordinates with the origin
in A. We select 8 < 1 such that S.2, f’) Sj,2j for <-j. Using Theorems 5.7.1, 5.7.1’,
and 6.6.1 of [8], we conclude similarly, as in the proof of Theorem 2.1 of [3], that
U (-u/M_-I Si,i/4 due to the analyticity of on F-UI Si,i/4. Hence we have
to prove only that U (Si.,/4).

Let

o C(+),

o(r)=l for0_-<r=<1/2,

o(r)=0 forx=>l,

tp,(r) qo(r/2t,)= q(r).

Denote v qU. Then v can be understood to be defined on the infinite sector Q
{(r, O,)lO<r,<,O<O,<o} when extended by zero outside of S,, and we have

Now we prove that g(S,a,/) as in [3].
Remark 4.3. We have assumed that either

1/2</ < 1. Obviously Theorem 4.2 is correct if J(F1) only in the neighborhood of
A1 and (F1) in the neighborhood of A:. Theorem 4.1 leads easily to the next
theorem.

TrEOREM 4.3. Let 12 be a straight polygon with the edges Fi, 1, , M and let

g ,(,) /, (/,,1, fl,,2), 0 < fli,1, fl,,2 < 1/2
--/,1-’-i,1--1/2, --/,2--i,2-t" 1/2, iQc{1,...,M}

or

g fli,1, fli,2 < 1,

fl,l=/,,1-1/2, fl.2=/,,2-1/2, iQc(1,...,M}.

Further, let g be continuous on y U ,o ,. Then g /2(y) where/ max (/-1.2,
forA ), if 1 Q or e Q then we define fl-1.2 O, respectively, fl.l O) and 0 < fl < 1
arbitrarily for Ai : 7.

Proof. Because g is continuous on y we can construct a polynomial P on 12 such
that g- P 0 at A. Then we can apply Theorem 4.2. l-]

Remark 4.4. It is obvious how the theorem may be modified when g (F),
respectively, g (F) in the neighborhood of A only. See also Remark 4.3.

Remark 4.5. Theorems 4.1 and 4.3 are complementary, which is analogous to the
theorems of trace and extension in usual Sobolev spaces on smooth domain. Namely,

Fif g ,(,), 0</,a<1/2 (respectively, g .(F), 1/2<a< 1)j 1,2, then we have an

extension by function G (f),/3 + _1/2fl,,1 +, fl,+l fl,.2 - (spectively, fl, ,.1
i+1 i.2--1/2), and if G (I) then G[r, g ,+(Ii),
for 1/2 </3,,/3,+1 < 1 (respectively, g ,+(F,), /3,.1 fl, +1/2, fl,,2 fl,+l +1/2 for 0 <
+1 <), e > 0 arbitrary.
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THEOREM 4.4..,Let 12 be a straight polygon with the edges Fi, i= 1,.-., M, and
letg93(F), 0<3,<1/2, i= 1,2, i=fli+1/2, i= 1,2 (respectively, g (F), 1/2</, < 1,
fl fl-1/2, i= 1, 2). Then there is u such that we have the following"

(i) u 2)(1)) with 0 < flj < 1, j- 3,. ., M arbitrary.
(ii) Ulr‘= g and Ulrj=O, j= 2, .., M.
Proof By Lemma 4.14, =g4(r), respectively, 2)(F1) and (A,)=0,

i= 2, 3, and hence by Theorem 4.2 there is v 23(1) such that v on F1 and v =0
on Fj,j 2, , M. By Lemma 4.15 the function V(I)-1 has the desired properties. [3

Theorem 4.4 leads immediately to Theorem 4.5.
THEOREM 4.5. Let f be a straight polygon with the edges F, 1,..., M, and let

i), ]i (i,1, i,2), 0 < 3i,1, 3i,2 < 1/2

fl-i.l i., +1/2, fl-/.2=/i.2+1/2, Qc {1, M}

or

g 6 2),(r,), fl, (fl,.1, fl,.2), 1/2 < i.1, fli.2 ( 1,

fl,l=/,,1-1/2, fl,2=/,.2-1/2, ieO{1,’..,M}.

Let y=U,Q,. en z(y) where ,=max(,_l.2,,.1),_ A,_ y (if i-lq or
Q when we define -1. O, respectively, .1 O) and 0 < i < 1 arbitrarily for

AT.
Remark 4.6. It is obvious how Theorem 4.4 has to be modified when g (F),

respectively, g (F) in the neighborhood of A only. See Remark 4.3.
Theorems 4.3 and 4.5 give the characterization of the boundary conditions that

guarantees that the solution of an elliptic paial differential equation of second order
with analytic coefficients on a domain fl with piecewise analytic boundary belongs to
(fl) or () (see Theorems 3.2 and 3.3).

In the concrete cases these conditions are usually very easy to check. Let us state
a useful lemma that characterizes the space (I) (respectively, (I)).

LEMMA 4.16. Let

a= {z x + iylx I, lyl p(x), > O)

and G(z) be a holomorphic function on 12 such that for /2--(/21, /22)

Let g(x) Re G(z)[x or Im G(z)[I. Thenfor u, > -1/2+ (j 1),/, + u, > 1/2+ (j 1), 0 </, <
1, i=l,2, j=0, 1,2

g(x) 6 ?O(I).

Proof By the Cauchy formula we have for k > 0

Ig)(x)/__< C4,(x)(4,(x))-k!-.
Hence,

O,_l+t]g(k)(x) dx<=(Ck! a Ov+/_ dx<=(Cld !)2
-1

provided that /2 + > 1/2. Furthermore, for k 0
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and hence for ui > --12, g H(I). The lemma is proved for j 1. The proof of the case
j 0 is analogous. Let us consider now the casej 2. We see that for ,i +/3 > and k -> 2

,_+a g*)(x) ax<=(Ck!a-) _+_+ dx<(Cldkkl)2

Fuhermore, if v>, then also g Hi(I).
Instead of G(z)l C(Re z) we can assume that ]G(z)-P(z)l C(Re z)

where P(z) is a polynomial.
Lemma 4.16 is very useful in practice. For example, if g is analytic on F then

g(x) can be extended into some neighborhood of and therefore g (I). Lemma
4.16 characterizes very well the structure of the spaces (1) (respectively, (1)).

LEPTA 4.17. Let g(I), 0<<. en there exists a>0 such that g can be
analytically extended onto and

(z)-g(-1)-g(1),(1-x)(x+l)2, C+/_(Rex)

(g C([) by Theorem 3.1).
Proof. Since g (I) we have by Lemma 4.3 for k_-> 1

[gk)(X)l <_

Hence the series

g’(x) E g(k+l)(Xo)(X--Xo)kkl, Xoe I
k=O

is absolutely convergent for Ix-Xol <=1/2(dP(Xo)/d), and hence also

O’(z)= Z g+l)(xo)(Z-Xo) 1

k=O k!

converges for Iz Xol<1/2(P(Xo)/d) and IG’(z)I<=Cp-+l/2(XO), X0 Re (z), and C is
independent of Xo, which yields the lemma. [3

So far we have assumed that 12 is a straight polygon. We did not exclude the case
where the internal angle is 2r; i.e., we did not exclude the slit domain. Let us now
consider the curvilinear polygon and assume that it is a Lipschitzian domain. Let us
prove first Lemma 4.18.

LEMMA 4.18. Let [’--{Xl,X2l-l<xl<l,O<x2<h(x),h(x)>o(Xl+l),
h(-1)=0, a>0}. Assume that q,(x,x2) is an analytic function on S=
{Xl, x21 (Xl + 1)2+ x-<-4} such that we have the following"

(i) ff/(Xl, h(x,)) 0;
(ii) Od//OXl(X, O) > a > O, -1 <- Xl <- 1.

Define

F1 {X1, X21-1 < xl < 1, x2 0},

F2 {x, x21-1 < X < 1, x_ h(x)},

and let T fl (q $1 where $1 { r, 0[0 < 0 < 2 7r, 0 < r < 1 } where r, O) are polar coordi-
nates with respect to (-1, 0) and T*= $1- T. Let g 2)(F1), 0< fl <1/2,/31 =/32 (respec-
tively, g2=(F1), 1/2</3,<1,/31 =f12), g,(-1)=0, i= 1,2 and ep=r.

Then there exists

V ( T), V* 2( T*), /=/+1/2
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(respectively, V2 8( T), V*2 ( T*), 1/2) such that V g, and V* g, on F1
and V, V*i =0 on F2CI .

Proof. Let o(r, 0) (r, O)/r. Then (r, 0) O(Xl) is analytic on F1 and (Xl)>
6 >0; hence -l(x) is analytic on x too. In addition, =0 on F2. Furthermore,
IDO(Xl,X2)l <- Clal !-Ildl’l by Cauchy’s theorem on the theory of two complex
variables. Define 1 glo-l(Xl). Then ffl e (F) and by Lemma 4.11 there exists U1
on S1 such that U1 e ($1), =/+1/2 and Ullrl 1. Now define V1 UI. Using
Lemma 4.13, we conclude that Vle(T) (respectively, (T*)), Vllr,=gl and

VIlF2 0. The proof that V2 has desired properties is analogous.
LEMMA 4.19. Let {Xl, x2[-1 < Xl < 1, hi(x1) < x2 < hE(X), hl(Xl) < -a(Xl + 1),

hE(X)> a(xl+l), a>0, hi(-1)=0, hi(Xl) analytic functions on I, i-1,2} and

ri {x, x21-1 < x < 1, x2 h,(x)},

a. =aN S., S,,={r, OlO<O<=2mO<r<rt,q>O},
where (r, O) are polar coordina.tes with the origin at (-1, 0). Let g e }(F1), 0</3
(respectively, g2e }(F1), 1/2</3i < 1),/31 =/32., gi(-1) =0 and let r. Then there exist

rl > 0 and V e (’rl ), VI e (’), -- 1/2 q- E, E > 0 arbitrary (respectively, V2

(On), V2 (l-l*n), = -1/2+ e) such that V[rlnfi, g, and V[r2nfi, =0.
Proof Because hl(Xl) is analytic on I it can be analytically extended onto I

{-1 6 < Xl < 1 + 6}. Then the mapping M" (Xl, x2) - (Yl, Y2), Yl Xl, Y2 x2- hl(Xl)
is analytic on n, r/= 6/2 and M(fn)= 12n. For r/1 sufficiently small we have
S., F* U F* where

F* {Yl, Y2 l-1 < Yl < --1 + r/, y_ 0},

F2* {y, Y21-1 < y < -1 + g/a, Y2 h*(y)= h2(yl)- h(yl)},

and h2(Yl) > al(Yl+ 1). In addition, it is easy to see that IJI, IJ-1l </x < a, where J is
the Jacobian of the mapping M. Because h*(yl) is analytic on -1 <-Yl -< -1 + 1 we
define O(yl, Y2)=-y2+ h2*(yl) and O(Yl, Y2) has the properties in Lemma 4.18. Now
using Corollaries 4.4, 4.5, gle}(F1), g2e}(F1), and hence using Lemma 4.6,
gl(M-l(y))ly2=o *t(F1 ), g2(M-l(y))ly2__oe }(F*). Using Lemmas 4.8 and 4.18, we
obtain functions Va and V* (respectively, V2 and V2)on nf’lS2 (respectively,
ln* f’! S,), which belong to 3}+/2(12n f-I S,) (respectively, 23}+,/2(1*n f’l S,)). Now
when we use Lemmas 4.7 and 2.3, our lemma follows. [q

The lemma leads to the following theorem.
THEOREM 4.6. Theorems 4.3 and 4.5 hold alsofor a Lipschitzian curvilinear polygon

when fli are replaced by fl + e, e > 0 arbitrary.
Proof Because the edges are analytic curves and g are analytic on F (but not on

F) we show similarly (as in the proof of Theorem 4.1) that the solution u of the
Laplace equation belongs to 23+(f). This can be done identically as in the proofs.
of Theorems 3.3 and 3.4 of [6], showing that u +(tq). [3

Remark 4.7. Comparing the respective theorems for straight and curvilinear poly-
gons, we see that in the latter case we lose slightly in the regularity. It is not known
whether this loss can be removed.
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VALUE PROBLEMS IN TWO DIMENSIONS*
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Abstract. This paper is concerned with second-order quasilinear partial differential equations in two

independent variables of the form div [p(x, u, grad u) grad u] 0. Previous work of the authors, establishing
exponential decay estimates for Dirichlet problems on a semi-infinite strip subject to nonzero data on the
finite end, is extended to include regions of arbitrary shape, and, in the case of unbounded regions, the a

priori assumption that solutions must decay to zero as Ixl- o is removed. The results have application to
Saint-Venant principles for nonlinear elasticity as well as to theorems of Phragm6n-Lindel6f type.

Key words, second-order quasilinear partial differential equations, two independent variables, decay
estimates, Dirichlet problems, Saint-Venant principles, Phragm6n-Lindel6f type theorems

AMS(MOS) subject classifications. 35B40, 35J60, 73C10

1. Introduction. In a recent paper [3] the authors derived exponential decay
estimates for a certain class of nonlinear boundary-value problems in the plane.
Specifically, they treated a class of second-order quasilinear equations (not necessarily
elliptic) defined in a semi-infinite strip with nonzero boundary data at the finite end.
Assuming boundedness of certain functionals on the strip, the authors derived exponen-
tial decay estimates in various norms. In a subsequent paper [4] these results were
extended to R3.

In this paper we remove the requirement that the region be a strip domain (i.e.,
of constant cross section) and in the case of unbounded regions we eliminate the a
priori assumption that solutions must decay to zero uniformly as Ixl->oo, where

Ixl
The spatial decay estimates of concern in [3], [4] and in the present paper are of

interest in connection with studies on Saint-Venant’s principle in elasticity theory. (See
[2] for a review of results on Saint-Venant’s principle.) The results may also be viewed
as giving rise to theorems of Phragm6n-Lindel6f type (see, e.g., the references cited
in [3]).

Let 12 be a bounded (or unbounded) simply-connected region with Lipschitz
boundary 012, lying in the half plane x2> 0, and let u(xl, x_) be a classical solution
of the equation

(1.1) [p(x, u, grad u)u,j],j 0 (j= 1,2)

in 12. Here we have adopted the convention of summing over repeated indices and a
comma denotes partial differentiation. The boundary 012 is composed of a small arc
E on which no data are prescribed and the remainder 012/E on which u is assumed
to vanish. When 12 is unbounded it is assumed that no data are prescribed on X and
that u vanishes on the finite portion of the remainder of 012. For the moment no a
priori assumption is made about the behavior of u as Ixl- in 12, where Ixl- (Xl / x22) 1/2.

* Received by the editors August 17, 1987, accepted for publication (in revised form) June 1, 1988.
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t Department of Mathematics, Cornell University, Ithaca, New York 14853. The research of this author
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Although we assume existence of a classical solution throughout, it will be clear that
the same decay results would hold for appropriately defined weak solutions.

Consider then the solution u of (1.1) subject to the condition

(1.2) u=O onOO/Z.

We wish to derive a bound for a suitable norm of the solution that decays as some
function of the distance from E. The assumptions on the form of p are as follows. We
have either Case 1 or Case 2 as follows.

Case 1.

(1.3) 0 < m <= p <= M + Klpq2.

Case 2.

(1.4) 0 < m2 <= p-1 <_ M2 -l- K2pq2 in f.

Here we have used the notation q2= Igrad ul 2. These are the same assumptions
made in [3]. It will be clear that M1 and M_ could be allowed to depend on Xl and
x, but in this paper we assume that the rni and Mi are positive constants and that the
K are nonnegative constants. We recall the discussion in [3] concerning assumptions
(1.3), (1.4). If, for instance, p were a bounded function of its arguments, then K1 in
(1.3) could be taken to be zero. Roughly speaking, the first term on the right in (1.3)
provides a bound on p as q o 0, while the second term gives a bounding function for
p as q o . A function p for which (1.3) holds is p 1 + q2, in which case we may
take rnl 1, M1 1, and K1 1. If p (1 + q)-l/, in which case (1.1) is the minimal
surface equation, then (1.4) is satisfied with rn2 1, M2 1, and K2 1.

Let us now introduce a family of curves f(xl, x2) a, a > ao. For ao < a < a the
curve f a is assumed to intersect f and form a region f‘" defined as

(1.5)

It is further assumed that through each point of fl one and only one curve of the
family passes and that the following properties hold:

(i) / -< 6 ::> fo = f;
(ii) 012‘" contains no points of E;
(iii) Igradf] _-< y in ll‘"o.
We will also investigate the case in which II is unbounded and a is infinity. In

the previous paper [3] the region fl was assumed to be the semi-infinite strip {Xl > 0,
0 < x2 < h}, and f(xl, x2) was chosen to be the coordinate Xl. For certain geometries
this same choice off can be made for the class of problems considered in this paper.

2. Decay estimates in the first case. The method of proof will differ somewhat
from that used in [3]. Furthermore, for the case of unbounded II we make no a priori
assumption on the decay of u as Ixl->c in fl. The method itself will provide an
appropriate alternative.

Let us first introduce some additional notation, i.e.,

S‘" := {f(x1, x2) a} ("1

(2.1)

l(a) length of S‘’,

B(a)= Is plgradf] ds,

N(a) fs P-llgradf] ds.
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We wish to consider the behavior of the functional

puu,f,
(2.2) F(c) ig--ad7Ids, o < <

as a function of-a. It is understood throughout that t9 =- p(x, u, grad u).
Now, F() may be rewritten as either

(2.3) F(a) [_ pq2 dx if f/is bounded,

or

I," Is pq____2
ds if fl unbounded.(2.4) F(a) F(ao) +

Igradfl dn is

We could, of course, use the second representation in either case. Both representations
follow directly from the divergence theorem. The weighted Dirichlet integrals (2.3),
(2.4) provide a measure for the "energy" associated with solutions of (1.1), (1.2). It
follows that

fs pq2
ds,(2.5) F’(a)

[gradf]

where the prime denotes differentiation with respect to a. Our first objective is to derive
an explicit inequality of the form

(2.6) IF()l <= k-’(a)F’(a).
This will lead to the following two first-order differential inequalities:

(2.7) F’(a) >- k(a)F(a),

(2.8) F’(a) >- -k(a)F(a ).

One of these inequalities will be superfluous if 12 is bounded, but it will permit us to
derive an alternative result if fl is unbounded. We now proceed to establish (2.6).

By Schwarz’s inequality,

(2.9) F2(a)<= fs P(Ou/On)2 f.]gradfl
ds pu21gradf[ ds.

Regarding p as a function of the variables (x, x2) and introducing the variable

(2.10) tr= plgradfl ds,

we have

(2.11) pu2lgrad fl ds u= dcr <-
,/0 71"

where B(a) is as defined in (2.1). The boundary condition (1.2) and a well-known
inequality of Wirtinger type (see e.g., 1, p. 185]) have been used in obtaining the last
inequality. Reverting to the original coordinates, we have

(2.12)
fs pU2lgrad f[ ds <= [n()]2 fs ,(0u2

-I

r2 P- \ss/ [grad f[ as

<[B()]= I # (o") =
m--215 lgradfl

as,
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where the left-hand inequality of (1.3) has been used in the last step. Insertion of the
above into (2.9) leads to

m,r Igrad fl
B(a)<= F’(a).
2miTt

p 0u2 1/2

We have thus established (2.6) with k(a) 2mlr/B(a).
An integration of (2.7) with the above value for k(a) leads to

(2.14) F(a) >= F(8) exp 2mlr [B(n)]-1 dn

for a _-> c > ao. This inequality shows that if F(a) > 0 for any a (say c), then F(a) > 0
for a > t, and hence if l is bounded then F(al) cannot be zero. Thus in this case
F(a) < 0, for all a. It is, of course, obvious from (2.3) that, for bounded , F(a) can
never be positive. Thus for f bounded we have from (2.8)

-F(a) <= -F(ao) exp -2m,r [B(n)]-’ an
which we write as

(2.16) pq2 dx<_ pq2 dx exp -2miTt [B(r/)] -1 dr/

The exponential will now be bounded in a manner somewhat different from that
used in [3]. We note that

(2.17)

where we recall from (2.1) that l(r/) is the length of S,. Thus

1 f’ dr/
[B(r/)] -1 dr/-->MIy l(r/) M12 l(r/)lgradfl

oq dx
M2112

(2.18)

where l denotes inf,t,o,, l(r/). We are thus led, for bounded f, to the inequality

(2.19) f pq2dx<f pq2dxexp{2mlgl’rrlf2 2 pq2 dx exp
Mll,, M1Tat) at)

which is the desired decay result. Thus we have established Theorem 1.
THEOREM 1. If f is bounded, then the decay estimate (2.19) holdsfor ao < a < al.
To make the inequality explicit we of course need a bound for "ao pq2 dx.

Techniques for finding such bounds have been indicated in [3].
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We now consider the case in which fl is unbounded. From (2.14) we again conclude
that if F(a) is positive for some c7 then it must be positive for all a > t. Let us suppose
now that F(t) > 0 and that

(2.20) /(r/) <_- L< c.

Then if

(2.21) lim inf so (Pq2/Igrad fl) dS= o

we will show that we are led to a contradiction, i.e., it must follow that F(a)<_-0, for
all a (ao, o). This can be deduced from the fact that, if F(cT)>0, then for a > d,
(2.7), (2.5), and (2.14) lead to

f pq_.___2
ds >- 2mlTrF(c)

Igradfl ay[Mll(a)+ Kly s (pq2 ds/]gradf)]
(2.22)

exp
y[Mll(n)+ K, y Is. (pq2 ds/lgrad f[)]

But given any e > 0 it follows from assumption (2.21) that for sufficiently large

(2.23) | ds _-< ea.
as [grad fl

Thus for sufficiently large ,a

e >- a-1 --[ pq.___.2
ds

[grad f[,Is

(2.24)

2mlrF(cT) [ M_L+ TKlea]aT[MIL+ yKea] L+ yKlet

>-2mKleTrF(8)[M1L+ yKl ea ]t(2"’ =/ u" v2)-21[ML+ yKeS

Letting a +c we observe that for e sufficiently small the right-hand side tends to
infinity. Thus we have established Theorem 2.

THEOREM 2. If 1 is unbounded and l(a) is bounded for all a, then either
lim inf-, [a- js (pq2/lgrad f]) ds]> K >0 or F(a)<-O for all (o, ).

If l(a) as a , then similar alternative theorems can be derived depending
on the order of l(a) as a . For instance, if the family of curves x a is used and
l(a) Ca for some positive constant C then y 1, and in (2.22) the exponential term
is bounded by

exp 2m [M/(n)+K Is (oq ds/Igrad fl)]
(2.25)

2mI/[M1C+Klel

Thus (2.22), (2.23) imply in this case

-1 Is pq2 ds

(2.26)

We observe that if

(2.27)

2mlTrF(cT)
[M1C + Kle]

mlTr/M1C > 1,
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then we may choose e so small that the exponent of a is positive. Then, letting a - c,
we would again be led to a contradiction. We see, therefore, that if l(a) Ca then
either liminf_.oo [a- s pq2 ds]> K >0 or F(a)<=O for all a (ao, ) provided
(2.27) is satisfied.

Alternatively we could have chosen the family [x[ a, in which case the assumption
l(a) <= Ca would have led to the same result. We could also have shown by similar
arguments that if m17r/MiC> 2 then either lim inf_ {a -2 ISa pq2 ds}> K >0 or
F(a)=<0 for all a (ao, oo).

We assume henceforth that conditions as a - oo imply that F(a) -< 0 for all a > ao.
It follows then from (2.16) that

(2.28) pq2 dx<_ pq2 dx exp -2mTr [B(n)]- dn
0

and we conclude as before that the decay estimate (2.19) holds now for unbounded f.
Suppose that l-I is a wedge of angle 26. Then by using f(x, x2)= Ixl in (2.19), we

find that, as a o, the energy term a Pq2dx tends to zero like (x12+x2) -t. The
constant/3 is given by

(2.29) /3 mTr/2M6.

(Note that when f=[x[, 3’ may be taken to be 1.) It follows that if m M, the
estimated decay rate/3 will be the same as the optimal decay rate for harmonic functions
(see, e.g., [2], [5], [6]). Since (1.3) yields rn_-< M, the estimated decay rate (2.29) is
always less than or equal to the actual decay rate for harmonic functions.

For the wedge we have l(a)= 26a, and if m --M1, condition (2.27) implies that
the alternative holds for 6 < 7r/2. For angles r/2 < 6 < 7r we must replace the condition

[ l’ ]liminf a- pq2 ds
=0 by liminf a -I"

pq2 ds- s [grad f[
=0

for an appropriately chosen p (0, 1).
When 12 is a semi-infinite strip, we may take f(xl, X2) X1 and recover from (2.19)

the exponential decay estimate (2.1) of [3].

3. Decay estimates in the second case. Again in this case we define F(a) as in
(2.2) and seek to determine a k(a) such that (2.6) is satisfied. To bound the second
integral on the right-hand side of (2.9) we now note that, on using the left-hand
inequality in (1.4), we have

fs 1 Is -lu2lgrad fl ds"(3.1) pu2lgrad f[ ds <= m2 P

Thus, on setting

(3.2) z p-llgrad fl ds, (a)= Is p-’lgradfl ds

we are now led to

(3.3) pu2lgrad fl ds<- Sm--- [grad f[ ss ds

which, together with (2.9), (2.5) yields

()
(3.4) IF(a)[=< F’(a).

2m27r
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It is clear now that the arguments following (2.13) carry through and that we
obtain (2.19) with ml, M1, and K1 replaced by m2, M2, and K2, respectively, provided
either that g/is bounded or that the appropriate behavior at infinity is assumed.

In [3] decay estimates for other norms of the solution have been given. Similar
estimates are obtainable for solutions of the problems considered in this paper.

As has been pointed out in the Introduction, for the case of the minimal surface
equation we have m2 M2 K2 1, in which case the bound for the decay rate is given
according to (2.19) as exp {--2"try-1 od’O/i(’o)}, which for a wedge and for a semi-
infinite strip agrees with the optimal decay rate for harmonic functions. (We choose
f= ]xl, y 1 for a wedge; f= Xl, )’ 1 for a semi-infinite strip.)

Acknowledgments. We are grateful to the referees for their comments on an earlier
version of this paper.
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Abstract. In this paper St. Venant type results are derived for the flow of viscous fluid in a pipe of
arbitrary cross section. In the spirit of earlier work of Horgan and Wheeler [SIAM J. Appl. Math., 35 (1978),
pp. 97-116], the decay to fully developed flow as a function of distance from the entry section is investigated.
Here, it is not assumed that the flow is fully developed at the exit section. Weighted energy inequalities are
derived that lead to estimates for the "energy" associated with the velocity field represented by the difference
between the entrance flow and the fully developed flow in a portion of the pipe near the exit section. The
analysis is based on a variety of differential inequality techniques and Payne’s investigation of uniqueness
criteria for steady-state solutions of the Navier-Stokes equations [Simpos. Internaz. Appl. Fis. Mat., 1965,
pp. 130-153].

Key words, pipe flow, Navier-Stokes equations, explicit decay estimates
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1. Introduction. Consider the problem of steady flow of a viscous fluid in a pipe
of arbitrary smooth cross section. The flow is governed by the Navier-Stokes equations
together with the assumption of adherence at the pipe boundary. If the Reynolds
number is sufficiently small we expect that, irrespective of the entrance velocity profile,
the flow will approach the fully developed flow near the pipe exit if the pipe is
sufficiently long. In a recent paper of Horgan and Wheeler [7] the goal of the authors
was to show that under certain assumptions this decay to fully developed flow (in the
appropriate measure) was exponential. Their results were based on differential
inequality techniques developed by Knowles 8] and Toupin 17] in their investigations
of St. Venant’s Principle in classical elasticity theory (see also Horgan and Knowles [5]).

In the present paper we again address this flow problem with an analysis that has
many features in common with that used by Horgan and Wheeler and thus relies
heavily on differential inequality techniques. However, our formulation of the problem
and methodology differ somewhat from theirs with the consequence that we have
obtained slightly better, more explicit estimates for a weighted energy integral associated
with the flow.

One of the assumptions that Horgan and Wheeler made in their work was that
the entrance flow had already evolved completely into the fully developed flow at the
exit end of the pipe and thus that the tangential components of the velocity in the
outlet cross section were both zero. This is a somewhat unrealistic assumption since
we cannot expect complete evolution in a pipe of finite length. In this paper we relax
that assumption, supposing instead that the tangential velocities and their derivatives
in the exit section are small. Our assumption has the effect of making the problem
considerably more complicated, and we find it convenient to compare the entrance
flow to the fully developed flow indirectly through the introduction of a linearized
Stokes flow that enters the pipe with a velocity field equivalent to the fully developed
one. Such an approach has necessitated the introduction of some additional restrictions
on the boundary data for us to obtain our estimates.

* Received by the editors August 1, 1988; accepted for publication October 7, 1988. This research was

supported in part by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell
University and in part by National Science Foundation grant DMS-8600250.
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work was done while this author was a visiting scientist at the Mathematical Sciences Institute, Cornell
University, Ithaca, New York 14853.
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Our main result is an explicit inequality that gives an indication of the spatial
development of the entrance flow as it moves through the pipe. If the data and u are
suitably restricted, the inequality we derive establishes a decay estimate for a weighted
functional defined on the difference between the entrance velocity field and the Stokes
flow. Combining this result with estimates on this functional defined on the difference
between the Stokes and fully developed flows, we obtain the desired inequality compar-
ing the entrance and fully developed velocity fields. In fact we show that a certain
weighted energy functional of this difference is bounded by the sum of two termsmone
a decaying exponential and the other a function of difference in exit data.

In the course of our analysis, it becomes necessary for us to find bounds for the
energy of the corresponding linearized Stokes problem. The arguments we used to
accomplish this are patterned after those used by Payne [11] in his investigation of
uniqueness criteria for steady state solutions of the Navier-Stokes equations. As we
will see, our estimates are explicit in the sense that they depend only on v, the boundary
data, and the geometry of the domain.

It should be pointed out that questions related to those discussed in this paper
have also been considered by Amick [1], [2], Yosifian [19], [20], and Oleinik [10]. In
these latter papers the authors have considered domains with boundaries extending
to infinity, concentrating primarily on questions of existence, uniqueness, and regular-
ity. Yosifian [19] has established an energy decay result for the Stokes system (which
is of precisely the same form as the equations of incompressible linear elasticity), and
Amick [2] has established exponential energy decay rates, but for general cross sections
these were not explicitly expressed in terms of the data and geometry.

In the next section, we will formulate the boundary value problem that serves as
the basis for our analysis. Section 3 is devoted to a summary of the inequalities and
auxiliary results that we will utilize to generate our estimates. We then compare the
entrance flow to a Stokes flow whose boundary data on the inlet cross section coincide
with that of the fully developed flow. Our main differential inequality is established
in 4 and bounds for the Stokes flow are derived in 5 and 6. Comparison of the
entrance and fully developed flows and a discussion of our results, in particular the
criteria that ensure decay, are the subjects of 7. In this section, we also obtain an
upper bound for the maximum speed of the fully developed flow in terms of the
prescribed net inflow and the domain geometry by taking advantage of results for the
analogous Saint-Venant torsion problem. The section also contains some remarks about
the constants appearing in our estimates. Finally, part of 7 is devoted to a brief
description of how bounds for the total weighted energy in terms of data and geometry
can be derived. We note that because of the tedious nature of the analysis used in this
problem, we have relegated some of the details to three appendices.

2. Formulation of problem. In this section we formulate the boundary value
problem that provides the framework for our investigation of the flow development
of an incompressible viscous fluid in a pipe. Much of our notation coincides with that
used by Horgan and Wheeler [7]. We let R denote the interior of a three-dimensional
cylindrical pipe of length and OR its boundary. A plane cross section of the pipe
with Cartesian coordinates (Xl, X2, Z), Z [0, 1] fixed, will be denoted by Sz and its
boundary by OSz. In particular, So represents the inlet cross section and St the outlet
cross section of the pipe.

The velocity field ui(xl, x2, x3) (i 1, 2, 3) and the pressure p(xl, x2, x3) of the
fluid are assumed to be classical solutions of the following boundary value problem:

(2.1) ,A Ui P,i + UjUi.j in R,
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(2.2) ui, 0 in R,

(2.3) u, =0 onaR\(SoU S,),

(2.4) ui =f(x,, x2) on So,

(2.5) u, g,(xl, x2) on S.
Here A denotes the Laplace operator and v is the constant kinematic viscosity. The
prescribed entrance profile f(xl, x2) and exit velocity gi(xl, x2) are assumed to be zero
on aSo and aSt, respectively. The vector field vi(xl, x2, x3) is the solution of the Stokes
problem

(2.6) vA/.)i q,i in R,

(2.7) vi, 0 in R,

(2.8) v,=0 on0R\(Sot.J

(2.9) v V63 on So,

(2.10) vi ui on St.
Here (0, 0, V(Xl, x2)) represents the fully developed velocity field corresponding to
the net inflow

(2.11) f3 dx Q

and can thus be characterized as the solution of the boundary value problem

(2.12) vV.,,, --/,3 in Sz,

(2.13) V=0 on OSz,

(2.14) f_ Vdx Q.

The gradient of the pressure/ in (2.12) has the form/. =-Pt3i where P is a positive
constant.

If the velocity vector gi(x1, x2) at the exit end of the pipe is close to that of fully
developed flow then the data g- V3i may be expected to be small as elements of
W(St). We shall have more to say about this later.

In the previous equations as well as the subsequent analysis, we adopt the
summation convention and denote differentiation by a comma. Latin subscripts will
range from 1-3 while Greek subscripts will range only from 1-2.

Recall that our goal is to compare the entrance flow ui to the fully developed flow
V. To do so we introduce a Stokes flow v that coincides with V on the inlet cross
section of the pipe and with u on the outlet section. We shall first compare u and v
and then vi and V63i. These separate comparisons will lead to estimates for the energy
of the difference between the entrance and fully developed flows. As mentioned in the
Introduction, our reason for taking this approach rather than comparing u and V3i
directly as Horgan and Wheeler did, is motivated by the fact that we do not expect
the entrance velocity field to evolve completely into the fully developed field in a pipe
of finite length. The present approach allows us to avoid making the assumption that
u, 0 and u3 V on Sl.
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To relate the solution ui of (2.1)-(2.5) to the solution vi of (2.6)-(2.10), we define
w u- v and s =p- q. Then the boundary value problem governing the difference
fields is

(2.15 vAw s,i + wj + vj w,, + v,)
(2.16) w, 0 in R,

(2.17) w=0 onOR\So,

(2.18) w, f V63, on So.

in R,

In view of (2.11) and (2.14), we have So w3 dx =0. From this fact as well as equations
(2.16)-(2.18) and the divergence theorem, we readily obtain the condition of zero net
axial flow, i.e.,

(2.19) I_ w3 dx O for0_-<z-<_/.

As pointed out in [7], an analogy between this condition and one that arises in
Saint-Venant’s Principle of elasticity theory can be made.

3. Auxiliary results. To establish the main estimate of this paper, we have relied
on a number of standard inequalities that we summarize in this section.

Let S be a plane domain with boundary OS. If w =0 on OS, then we have the
Poincar6 inequality

(3.1) A1 w,w,dx

where A1 is the smallest positive eigenvalue of

A+A=0 inS, =0 onaS.

If, however, w 0 on 8S and s w dx 0, then

(3.2) A2IsW2dXIsaadx
where A2 is the smallest positive eigenvalue of the problem

A+A= inS, =0 onS,

s
dX =O

for a constant . It is easily seen that IN I. In fact, as indicated in 5, a sharper
lower bound for I can be found.

In addition to inequalities (3.1) and (3.2), we will make use of the following two
Sobolev inequalities that hold for any suciently smooth function w with compact
suppo in either N or N3"

1

(3.4, (ii)III2w6dxfl(III2w,w,dx) 3.
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In a number of papers [9], [16], the best constant in (3.4) has been computed to have
the value II (1/27)(2/r)4.

An important result that will be needed in deriving our estimates is contained in
the following theorem that is given in Babuka and Aziz [3] under less stringent
smoothness hypotheses.

THEOREM A. Let S be a plane Lipschitz domain and let w be a function that is
continuously differentiable on and satisfies s w dx O. Then there exists a vectorfunction
tp, such that

(3.5) ,,= w inS, tp =O on S

and a positive constant C depending only on the geometry of S such that

(3.6) ,, dx C (,)2 dx.
s

This theorem asses the existence of such a function ff, which clearly is not
unique. In fact, in our applications we will not be interested in the function ff itself
(we require only the existence of such a function) but rather in the constant C. More
specifically, for a given domain S we would like to find the smallest possible value of
C or, barring this, a close upper bound for this optimal C Since the optimal C does
not depend on the size of S but only on its shape (it can be thought of as a dimensionless
eigenvalue defined by (3.6)), it can easily be seen that the optimal constant for a circle
of arbitrary radius is C 1..In [6] it has been shown how this optimal constant is
related to an optimal Korn’s constant and to an optimal Friedrich’s constant. In this
latter paper an explicit upper bound for the optimal C for a star-shaped region is
given. Not only will inequality (3.6) be useful in establishing the final estimate but
this result will enable us to eliminate the pressure difference s via the introduction of
an auxiliary function ff, the existence of which is ensured by the theorem since w3
satisfies its hypotheses.

4. Comparison of u and v. We will divide our analysis into two pas. In the first
pa, we derive a first-order inequality for a weighted energy integral that is defined
for solutions of (2.15)-(2.18). Integration of this inequality results in the desired
estimates. In the course of this derivation, we shall need some inequalities for the
energy associated with the linearized Stokes problem that corresponds to (2.15)-(2.18).
Section 5 will be devoted to establishing these inequalities.

We define a weighted energy integral by

(4. (= (_3,,, axa
for solutions w ofthe problem (2.15)-(2.18). In this section, we show that (z) satisfies
a first-order differential inequality of the form

d

where K, M, and M2 are positive constants and Q0 is a data term. Integration of this
inequality with the appropriate data assumptions leads to a result of the form

(4.3) (z) <= (O)e-Kz + :zl Qo( 1 e-Kz)

for 0 =< z _-< I. Here K1 MK and K2 M2/M.
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To obtain (4.2), we first observe that the function (z) can be rewritten after an
integration by parts and substitution of the differential equations for wi as

@(z)=- (-z)2wiwi3 dxd+- (-z w3sdxd

(4.4) + 2--- (- z)2w,w,v3 dx d

(’- z)[ww,,+(+ v) v,,] x.
From the definition of (z) in (4.1), we also have

(4.5)
dz

( z)2 wi, wi.j dx d.

To derive the desired differential inequality, we need to eliminate the pressure
term s from the expression (4.4) for (z). This can be accomplished with the aid of
Theorem A from 3. We thus introduce the vector function that satisfies

(4.6) 0, w3 in Sz,

(4.7) @ 0 on OSz

for z [0, 1]. The existence of such a function is guaranteed by Theorem A since

Sz w3 dx=O for O<=z<=l. If we now multiply the first two of equations (2.14) by
(:- z)2@ and integrate over the domain, we obtain (following Horgan and Wheeler [7])

Iz’Is(,-z)2sw3dxd,
(4.8)

(-z)[(w+v)(w,+v,)+O,w,-(a/w,),3]clxcl.

Substitution of this expression into (4.4) leads to

() (-z)w,x- ( (,,x

+ ( ),,x+- (-z)O(+v)(,+v,)x
(4.9)

1 1
(- z)2wi(w + v)vi, dx d- Is (’-z)3WiWjwij

We have thus written (z) as the sum of eleven integrals k each of which we must
now bound in terms of and d/dz. We indicate here how this can be done for four
representative k; the remaining seven integrals are treated in Appendix I. We note
that all but 9 and 10 can be bounded in terms of d/dz alone. As we shall see, the
bounds on 9 and 10 will generate a decay criterion.
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Consider first

03 (- z)2qo,,jwo,,j dx ds

( z) ,,,, w,, dx d+ ( z) q,,,w, dx de

Using Schwarz’s inequality and inequalities (3.1), (3.2) and (3.6), we have

3 ( C) I/2(Iz’ (’-- Z)2W3,flW3,fl dx d,) l/2(Izt fs,
, z)2w,wa, dx d,) 1/2

(4.10)
+ (Iz’ I, (- z)2w,3w,3 dx d) l/2(Iz’ Is, (- z)2,3,3 dx d) l/2.

Since 0 on Sz, we have ,3 0 on OS, and thus

fztfs 1 fz’fs )2

,
(- z):(q,,): dxd

z) W3, dx ds

after application of inequalities (3.1) and (3.6). From the arithmetic-geometric mean
inequality, we then obtain the bound

(4.11) 03<- - dz"

To bound 05 1/u *z s (- z)2q,vjw,d dx d, we first rewrite the integral as

( z)20,w,3Vdxd+!

where . v VS. The first integral is bounded by applying the Schwarz and Poincar6
inequalities. We have

< ( z w,w, dx d ( z ,, dxd

where v =maxs ]V(Xl,X)]. It then follows from (3.6), (3.2), and the arithmetic-
geometric mean inequality that

(4.12)
C d

2p A1A2 dg"

Abound for I2 is established through the use of Schwarz’s inequality and the inequalities
(3.1)-(3.3) as well as (3.6). We obtain

1 2 (2-1) 1/4 (fS )1/4I2 --<--v max (sr,)2 dx

Z W3, W3, (:- z)2wo,dW,d dx
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Consequently, we conclude that

vs/.ACd 1 2 (2@1) 1/4 (f ) 1/4df(4.13) 5 < vv 1A2 dz 2 Sz dzmx (,,)2 dx

Consider now

11’ fs 1 fs (’-z)3w,w,,dxd’=J+J2

with defined as before. Integration of the first integral leads to

(-z( z)ww, Vdxd+
From Schwarz’s inequality, (3.1), (3.2), and the arithmetic-geometric mean inequality,
we obtain the bound

v f=’fs )2 dxd.+; (-z w,w,

Thus,

vs vs dq
(4.14) J1-<

2,x/ 2A2 dz

Turning to J2, we observe that it may be rewritten as

J2=’-’ (-z)3wi,jwjidxd+ (-z wiw3idxd.

It then follows by applying Schwarz’s inequality, (3.1)-(3.3), and the arithmetic-
geometric mean inequality in the proper sequence that

1 (2@1) 1/4 (fSJ2_-< -- max (,ff,) dx (-z)3w,.w,. dxd

),,4

Hence, we see that

(4.15)
1 (-A) 1/4

mzaX (fs )1/4 1 (A1)I/4uqA2 mzaX (fs ) 1/4 d(I)-<- (,,) dx ,- (,,) dx

Combining (4.14) and (4.15), we have a bound for 9 in terms of and d/&.
Finally let us consider 1o, which we rewrite as the sum of three integrals:

1 zS ,3 1 zlys1o ----3 (- z w,,ff,. dxd- (- z)3w,,.3 Vdxd

(-z)3wVdxd
3

K1 + K2+ g3
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We see that

K + K<-v

from which, after applying the appropriate inequalities, it follows that

mzaX (ISz 1/4

(4.16)

d

2 vh2 --z + z)2,,,, dx d

max (,ff,): dx ++
6val 3

In Appendix I, we derive the following inequalities:

-1 dO
(4.19) (I)l 2"1 dg’

(4.20) ci)2.< _2
dO

d

2 1(1) 1/4 (IS ) 1/4d(4.) 4-- mpx (ww) x
P dz

(4.22) 6 --ff dx
k + dg

(4.18) +

where al and a2 are arbitrary positive constants. We now observe that integration, the
fact that Sz 3 dx "-0, and the divergence free condition allow us to express K as

1 Itfs llztlS )K3=vv (-z)3w30Vdxd+ (-z w33Vdxd

1 v [ z’IS 1 fz’fs(4.17)
-3 2v a (-z)w3,w, &a+ ( z),, axa

a2

(-z)w.w. dxd+ (-

From (4.16) and (4.17), we thus conclude that

{ a ()1/4m,x(Is)1/4a2vs],o= {;,c,) a +
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1 2I(l) 1/4 (Is)1/4 Vll7 -< max (ii)2 dx

(4.23)
z) i,ii,i dx d-+ (-

(4.24) *N- 2max dx + v
d

mpx ax

Combining the relevant inequalities, we obtain the result

d
(4.26) dp <-_ Mld-Kz +N

where

(4.27) M1 2UXl
1 + 2a2) +-u

(4.28)

and

(4.29)

mzaX (I (C,C,) dx)
1/4

(sc z)3 .,. .,. dx d3v

max (Isz (,i)2 dx)’/4+]}

1/4

We thus have the inequality

d
K-z + (1- M1)dP <-- N.

To ensure decay, we require

(4.30) M-- 1-MI> O.
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This condition yields a restriction on the flow. We shall subsequently require a somewhat
stronger hypothesis if decay is to occur. We shall consider these restrictions more
thoroughly in 7.

5. Bounds in the Stokes flow lroblem. The definitions of the constants M1 and K
involve the quantities maxz (Sz w dx) 1/2, maxz (Sz (ww)2 dx) /4, max (s dx) /2,
and maxz (Sz ()2 dx)l/4. In addition, we see that N is expressed in terms of the
integrals s (-z)",, dx de (n 2, 3). Since we would like our estimate to depend
only on the parameter v, the boundary data, and the geometry of the domain, we need
to obtain bounds for the aforementioned expressions in terms of these quantities. The
task of obtaining such estimates ultimately reduces to one of deriving bounds in terms
of the geometry and the data for the linearized Stokes problem. This section will be
devoted to finding these bounds. We note that our analysis is modeled on that used
by Payne [11] in his investigation of uniqueness criteria for steady state solutions of
the Navier-Stokes equations. In 6 we shall address the problem of deriving bounds
for the energy associated with the velocity field v- V83.

5.1. Estimates for and energy integrals. We first obsee that since w, 0,

Is w & =-2 w3w3, & de

-(2- a) w3w3, dx d- a WaW3, dx d

for any constant a. Application of Schwarz’s inequality, (3.1), (3.2), and the arithmetic-
geometric mean inequality then lead for 0 < a < 2 to

Is ac fz’fs 2wdx<= w,w,o dx d(+ 2 w3,3 dx d
(5.1)

where b and c are positive constants that we choose so that the coefficients of the
three integrals in (5.1) are equal. Then,

a(2- a)2+ a2a2

w dx w,. w,. dx d.

The optimal choice a 2A/(A + AE) leads to the result

(5.2) w dx

g bound on maxz (Sz w dx) 1/2 in terms of Io s w,.w,. dx dz where S is a generic cross
section easily follows from (5.2).

We can also bound maxz (s (ww) dx)/ in terms of lo s w,.w,. dx dz since

(ww)2 dx -4 ww,3ww dx d
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by Schwarz’s inequality. Applying the Sobolev inequality (3.4), we obtain

Is (Io’ Is(5.3) (w,w,)" dx <- 841/:z wi,jwi,j dx dz

This inequality then leads to the desired bound.
In view of these expressions, we must now obtain a bound for o s wi.jwij dx dz.

To accomplish this, we introduce an auxiliary vector field that satisfies the Stokes
problem

vAF=,, inR=Sx[0,1],

(5.4) F., 0 inR,

F= w onR.

Our task is now twofold. We shall first compare the energy o s w,,w,, dx dz to the
energy to s.. dx dz associated with (5.4). Second, we shall obtain a bound on the
energy of the Stokes problem in terms of the geometry and boundary data (which are
just the data for w). In this way, we are led to the desired bound on to s w.w, dx dz
in terms of its data and the geometry of the domain.

Let us begin by noting that since both w and are divergence free and w- F
vanishes on R, we have

(5.5) ,, dx dz E,E, dx dz (w F),(w, E), dx dz.

Applying the divergence theorem to the integral on the right side of (5.5), making use
ofthe governing equations, and adding in the term (1/v) o Is (w,- E)(w,- E),u dx dz,
which clearly gives no contribution, we find that

for Iofs(w, E).(w, E). dx az (w,- F,).(w + v)(v, + F,) dx dz.
s

Adding and subtracting the term (1/v) to s (w,- F).v, dx dz and introducing ,
v- V3, we obtain I as the sum of nine integrals Ik,

’  Io’;s fof (,- F,),( )W, ax az

+- (w,- F,).wF, dx dz +- (w,- F,).(, + F,) dx dz

(5.6) +- (w, F,),(V3, +Vs) &&

 Io’fs  Io’fs+- (w,-F,).C,6axaz+- (w-F),LVaxaz

lfo’fs lfo’fs
Each of the I can be ounaea in terms of I, IoIs w,.w,. dxdz, IolsE,E, dxdz
and Iols,, dxdz. Using these ounas ana (5.5), we can obtain a bound for

To apply (3.4) we have extended wi as an even function across z =0.
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o [.s wi, w,j dx dz. In Appendix II, we outline how the proper use of inequalities and
(5.5) leads us to the inequality

{1 ely k271/2- k3fflal/2} Wi,jWi.j dx dz

(5.7)
=< { 1 k4vs ---k22 cl/- k’(1/2} g;+{k6vs+kTl/2}

where

;= FioF,j dx dz and

Here the ki are positive constants defined by

(5.8)

i,jo dx dz.

1
k,-

zVal"V"or- [/(A1 + A)/A2 (1 + el)+ ’],

1/8, k3 k2( 1 + ),

2 2
k4 kl k5-- k3--2o

k6_.
1 1

+

where 0<el << 1, 0<3<< 1, and is an arbitrary positive constant. Inequality (5.7) is
the desired bound on o Is wi,jwo dx dz provided

(5.9) 1 klV, k2/2- k3/2> 0.

As we discuss in 7, this condition generates another restriction on the flow if energy
decay is to occur.

5.2. Estimates for the Stokes flow. We now turn to the task of finding a bound
for o s F,Fo dx dz in terms of the boundary data and geometry. Here we shall assume
in order to make our results explicit that the region R S x [0, l] is star-shaped. With
a little more effo a bound for the Stokes flow energy can be found for regions that
are not star-shaped (see Payne [11]), but we will not pursue this topic in the present
paper.

We first observe that

R R

since F is divergence free and vanishes everywhere on OR except on So. Consequently,
to obtain the desired bound we need to estimate the first integral on the right side of
(5.10). Let Yk Xk +dk3 where d =minoRSoUS, xn and consider the identity

0 yF,(vF ,) d
R

(5.11) ---fop R
ykFi’knid+foR ykVi,k(,j--i)njd,

f *J 2
l fo yknkFi’j(Fij ’i)! F,,tF,_w.,ad__+2 g
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Rewriting (5.11), we have

l f, F,(F,- F,,) dr=l fs yk(Fi,ni- F,,ink) dX
32 v

(5.12) JR yk( nF,k-- nkF,)(F, F,,) d- yknk,(,-- ,,) d.

It follows from Schwarz’s inequality and the arithmetic-geometric mean inequality that

F,,(F,-,,) d
2

(-) foyknk(F’,--,"(F’,--,’,d
(5.13)

1
+2 Js yyyn nF,k nkF,)(n,k nk,) dx

l fs b fs O2 dx+ (yF3,-yaF,)(yF3,-yaF,) dx+2
for positive constants a and b, a < . In Appendix III, we derive a bound for the last
term of (5.13) of the form

(5.14) fs O2 dxV2al lo (Fi,j-,i)(Fij-i) d

with an explicit constant a. Substituting (5.14) for the pressure term in (5.13), we
obtain the result

d
2

(5.5)
+2 d (nF,,k nkF,,)(nF,,k nkF,,;) &

where r maxs. xx. We now choose a and b in such a way that (a/2-)d + b/8
0 and thus obtain from (5.15) a bound for I F,(F,-,) d in terms of the given
data and geometry. From (5.10) we then have the bound

(5.16) - d
(njFi,k nkFi,j)(njFi,k nkFi,j) dx

+ (yFa,- yaF,)(yoFa,o- yaFo,t) dx

fs (Fa,F F,F3) dx.



DECAY ESTIMATES IN STEADY PIPE FLOW 803

Using Schwarz’s inequality and the arithmetic-geometric mean inequality leads to the
result

where the positive constants Yl and y2 can be explicitly computed and depend only
on the geometry of the domain.

6. The Stokes flow problem for ’. The purpose of this section is to briefly discuss
the bounds for the flow associated with the velocity field sr that are needed to complete
our analysis. We first observe that the sr satisfy

vAi= ,i inR,

(6.1)
sr, =0 in R,

’ 0 on OR\SI,

’i gi- V63 on S.
This problem is just the Stokes problem (5.4) except that here the data are nonzero
on S instead of So. Consequently, the bounds we need for this flow can be derived
in much the same manner as those for (5.4) with some modifications.

Recall that we require estimates for maxz (Sz dx) 1/2, maxz (Sz (-i-i)2 dx)l/4,
and z s (-z)"i,j,j dxd to make our decay inequality explicit. The first two
quantities can be bounded using the methods of 5.1 with the result that

1
i,ji,j dx d,(6.2) dx <= ., + A-----l2

and

(6.3) i ’, 2 dX 8’ 2 i,ji,j dx dz

In addition, we observe that

(6.4) J,,(z) (- z)",j,.j dx d <- l" i,ji,j dx dz.

Thus, we again need to find an upper bound for the energy of a Stokes flow problem
in terms of the data on S and geometry of the domain.

We will not go into the details of finding this bound but indicate where our
previous analysis requires modification. Since the data are nonzero on Sl, we have
upon integration and application of Schwarz’s inequality

(fSt ’i’idx) l/2(foR (’,,j--,i)(’i,j--,i) d) 1/2
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The bound on [.s, ’2dx can be found using the analysis of Appendix III with
the obvious modification that OG/On- on St and is zero elsewhere. To bound
oR (sri,j--’j.i)(’i,j--’j,i)d9, we integrate, instead of (5.11), the identity

0 f [Xk (l- d)k3],.k( ,A, dot/

where d is given following (5.10).
The final result is that we can compute explicit constants/31,/32 that depend only

on the geometry of the domain such that

(6.5)

We thus have bounds for the quantities that appear in M1 and K as well as J,,(z)
(n- 2, 3) in terms of the geometry and data of the problem.

For future use let us write

(6.6) J3(z) --< K3/aQo

where Qo is the data term in (6.5).

7. Discussion of results.
7.1. Comparison of entrance and fully-developed flows. In the last few sections, we

have shown that provided certain conditions hold, (z) satisfies an inequality of the
form (4.2) where the constants K and M depend on vs, z,, the boundary data, and the
geometry. The data term N also depends on these quantities and in view of (6.4) and
(6.5) is of order 3. From (4.2), we can thus obtain the estimate (4.3) that we shall now
use to compare ui and V3i. Since to u- V3i w -[- i, we see that

(sc- z)3i,i, dx d (- z)3w,dw,d dx d
(7.1)

+ ( ),. dxd

The first integral on the right of (7.1) is just a multiple of (z) while the second is
J(z). It then follows that

(7. (, ? (e-l,,,axae +,(0e-,+(+o
where and are given by (4.3) and (6.6). Inequality (7.2) provides an upper bound
for the weighted energy associated with the difference of velocities between the entrance
flow and the fully developed flow measured over the potion of the pipe between S
and S. If (7.2) is to be meaningful when is large, then we need to assume that

dx
dSl

2
E

13
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for some e <<< 1. In that case E (toi) will be bounded by a term that decays exponentially
in z plus a term that is O(e2).

7.2. Decay criteria. In the course of our analysis, we have imposed two restrictions
on the flow to ensure that the first term in (7.2) decays. Let us examine these conditions
more closely. We have from (4.30) and (5.9) the following conditions:

(1) 1-(vs/2,X/l)(1 +2a2)-k2(1 +al/2)1/2>0,
(2) 1 klVs k2/2- k3ff’/2 > 0

where the ki, N, and are as defined in 5 and al, a2 are positive arbitrary constants,
chosen so that condition (1) holds. Both of these conditions yield two pieces of
information: (i) a restriction on u and (ii) a restriction on the boundary data. From
(1) we obtain

(7.4) idx+ ,,, dx<-_ 1
2u. /-v-(l+2a)

provided 1 (v/2,-)(1 +2a)>O, or choosing a= e/2<< 1

(7.5) >2(1+).
Condition (2) yields

(7.6)
k2 "Y wiw dx "+- )t2 wi,awi, dx

(Is )+ k dx +O ,,, dx

We thus require 1- kl)s > 0 which, in view of our definition of k translates into the
viscosity restriction

](7.7) u>, (l+el)+t

We are at liberty to choose << 1, but in any case if (7.7) is satisfied then so is (7.5).
We thus see that condition (1) is actually contained in (2).

The two conditions (7.7) and (7.6) indicate that our inequality is valid only for
flows with sufficiently large viscosity coefficients (or, with the proper definition, small
Reynolds’ numbers), and for flows whose data are suitably restricted.

7.3. Bounds for vs and A2. To make our inequalities more explicit, we shall now
demonstrate how an upper bound for vs in terms of the geometry of the domain and
the prescribed data can be obtained. We make use here of some results for the
Saint-Venant torsion problem in a simply connected plane domain S. The torsion
function satisfies

AW=-2 inS, W=O on

In view of (2.11)-(2.13) and the relation 6.=-P63, we may express V in terms of
the torsion function, the torsional rigidity T-- 2 s dx, and the net inflow Q. We have
(see, e.g., [7])
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and thus

where M is the maximum value of the torsion function on S. We now need an upper
bound on M/T. For a simply connected domain, we have the isoperimetric inequality
(see 12]),

Using this inequality, we see that

(7.8) v <-_QT
The desired upper bound can be obtained from (7.8) once we find a lower bound for
the torsional rigidity. Such bounds for various domains are available in the literature
or can be derived using monotony arguments [12], [15]. We mention here two results:
(1) the inequality of P61ya and Szeg/5 15] for a star-shaped domain

T>=A2R-1

where A is the area of S and R =os (Xnx+yny)-1 ds, and (2) the bound obtained by
Payne and Weinberger [14] for convex domains

A2

T>= 1 2D2(1 DE)- -4D(1 DE)-2 log D]

where DE-- 1- 47rAL-, A is the area of S, and L is the length of the perimeter.
Recall from 3 that A2 => A We can actually get a sharper bound for A2 in terms

of the first two positive eigenvalues/Xl (=A) and /’2 of the fixed membrane problem
using Weinstein’s method [18] and the Payne-Rayner inequality [13]. We shall not go
into the details of this derivation but merely record the lower bound that can be
obtained. We find that

where A is the cross-sectional area.

7.4. Bound for (0). Finally, we shall briefly indicate how an upper bound for
(0) can be derived. Using (4.9) with z replaced by zero, we may write (0) as the

sum of eleven integrals, each of which may be bounded in terms of (0),o s w,,w,,) dx dz, and o s ,,, dx dz. These bounds are generated in much the same
way as those for the k(Z) by making use of the appropriate integral inequalities. The
major difference here is that it is necessary to use H61der’s inequality and Young’s
inequality in place of the Schwarz and arithmetic-geometric mean inequalities, respec-
tively. We omit the derivation of these estimates since we assume by now the reader
is familiar with the general procedure. The result is an inequality of the form

Io’Is(7.9) (0) r3 Wi,jWi,j dx dz + r4 ,,) dx dz

where Y3 and 4 are positive constants,

1 kxv k31/2- 81
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and 0 < 81 << 1. Provided > 0 and in view of the results of 5 and 6, (7.9) yields an
upper bound for (0) in terms of the geometry and data. Note that we are guaranteed
that > 0 once we impose (5.9).

We conclude here by remarking that, in view of the results of this section, the
constants in our estimates depend only on , the geometry of the domain, and
the prescribed boundary data.

8. Concluding remarks. We note here that if we were to assume that v and the
fully developed flow are identical, then we would recover Horgan and Wheeler’s results
with a slightly better decay constant. In fact, we would obtain instead of (4.2) the
inequality

d
K---z + MdP <- O

where M= 1-vs/2’Vl. Consequently, we may conclude that our methodology,
although it bears much resemblance to that of the aforementioned authors, yields a
slightly sharper decay rate.

We also observe that our estimate for (z) can be used to obtain bounds on other
integral quantities associated with the difference flow w. For example, we could find
upper bounds for a weighted 2 integral of W or the ordinary 2 integral over a
subdomain.

The case of a semi-infinite pipe is of some interest. In this case our results are
still valid for 0 =< z _<- l, where now we may think of Qo not as data but as the value of
the combination of the "unknown" indicated integrals over that section. It becomes
clear then from (7.2) and the arguments leading to (7.9) that if (5.9) is satisfied, and
provided

Jim [/31 Is iidx-2Is i,oi,,dx] z3--O,

we may conclude that

(- z)3wi3wi,.i dx d <= 3wi,.w,.i dx d e-’,.z,

an inequality reminiscent ofthe exponential decay exhibited by the St. Venant Principle
of classical elasticity.

Appendix I. In this Appendix, we derive the upper bounds given in (4.19)-(4.25)
of the main text. We begin by considering

(-), dx d.

Schwarz’s inequality, (3.1), and the arithmetic-geometric mean inequality then yield

< (--Z)2WijWij dxd

from which (4.19) follows. For 2, we see that

Iz’Is Iz’Is=- (g-z)(Ow,), axa=2 (-z)w, axa
(.1)
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Now

b,d/, dx d= -2 (- z),.3d/,, dx d

us, we find that

(Iz’ Is aa dx d,) l/22(; Is, (,- z)2a,3a,3 dx d,) 1/2

and, recalling that ff,3 0 on OSz, we have from (3.1) and (3.7) the bound

(I.2) dx de 2 (- z):w,, dx de

Substituting this result in (I.1) and applying the arithmetic-geometric mean inequality
results in the estimate (4.20).

To bound 4, we first integrate by pas and write it as the sum of three integrals:

4 lfz[s (-z):w,w dx
=1

Each of these three integrals can now be bounded using Schwarz’s inequality, (3.1)-
(3.3), (3.6), and the arithmetic-geometric mean inequality. We have

<- (-z)

N max ( dx

(1.3) I(,-z)2(Isc w dx)l/2[ ( ffsc wawa dx)(Is wa,wa, dx) ] l/4

d,
2 s

An analogous process leads to the bound

..1 ()l/4mx (ISz )2 )1/4dx

(1.4)
z) w3,3 dx d+ (- z w3,a w3,
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Finally, it follows from (3.3), (3.1), and (3.6) that

1 2

dx

and therefore

2(C) 1/4- mx (ww dx (e-z)w dxd

Now, since z s (- z)w dxd -z s, (- z)w3w3,3 dx de, we find aaer application
of (3.2) and the arithmetic-geometric mean inequality that

() (I (WaWa)2 dx)l/41 1 /4 Cmx Sz
(1.5)

{Iz Is, (’-z)2w3’#w3’a dxd’+ fz fs, (’-z)2w’3 dxd’}"
Combining (I.3)-(I.5), we then obtain (4.21).

Turning now to 6, we write

6 lfzfS )2 lfzlfS(-z wudxd=-- (-z):,wdxdg

 Iz’Is
where v- V3.

Again, the appropriate inequalities applied to each of the three integrals in this
expression for 6 will lead to the bound

1 ()1/4 X(ffS (’2)
1/4

6N
(g-z)2w3,w3, dxdg+ (-z)2w,aw,a dxd

’ (1)1/4 mx(Is
( z) &d+ ( z)w3, w3, w3,3 dx d

from which (4.22) easily follows.
Consider now

(-z)2vv. dxd

z :6L, dxd+ z Vff, dxd
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(I.6) +- (- z) (b.q dx ff,,3’,,3 dx d

() (IS )1/41 1 1/4 C
mpx (,,) dx

+2u (-z)w3"w3"’dxd+ (-z)’3’3dxd

Inequality (4.23) then follows directly from (1.6).
Finally, bounds for a and are easily derivable using the same procedure.

We find

and

Appendix II. We will briefly indicate here how the inequality (5.7) is obtained
from (5.5) and (5.6). The basic idea is to bound each of the integrals In in (5.6) in
terms of I, o s w,,jw,,j dx dz, o s FoF, dx dz, and o s ,,, dx dz. Such bounds are
derived by appropriately utilizing Schwarz’s inequality, (3.1)-(3.3), and the arithmetic-
geometric mean inequality. Since this is a somewhat tedious task, we will illustrate the
methodology for only one integral and summarize the bounds for the other eight.

Let us consider I3. We have

I3 (w, F,),wF, dx dz

-<- max (F/Fi)2 dx (wi- Fi)o(wi- F) o dx dz
S S

fs W2W)z dx dz) 1/4

__<
2v

1/4

al ljwi Fi o( w, Fi o dx dz +
s al

after applying Schwarz’s inequality twice and then using the Sobolev inequality (3.3)
and arithmetic-geometric mean inequality.



DECAY ESTIMATES IN STEADY PIPE FLOW 811

We observe that the bounds for I2, 17, I8, and I9 can be combined in such a way
that the constants arising from the arithmetic-geometric mean inequality can be chosen
so as to optimize the coefficient of 0 s (wi- Fi).s(w- F)o dx dz. In fact, we find that

LL+ A2
.i.:i dx dz

2b2v

z

+ mx (,,) dx .s.s dx dz

where a, b (i 1, 2) and are arbitrary positive constants. If we now make use of
the identity (5.5), choose b2 1, and rearrange the preceding inequality, we obtain

1 kv 1 + a +

_
_1 1

w,, dxd

(11.1)

l)s A1 q- A2__<
evX/l A2

+" {1 klts+

I }LL/[1 i,ji,j dx dz
2blV

(II) ( II) (1) 1/4 l2vs 1 1 1/4 bl 1 1 1
2-l+al+--- 1-

where

1 A1 q- A2kl 2vVI a2
(l+el)

and

///1 max (.,,,)2 dx
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It now remains to find bounds for /1 and //2" We observe that since ’i 0 on So

Is IoZI ii 2 dx 4 ,ijj,3 dx d

(11.2) <_-4 (ff, ff,)3 dx d ,3,3 dx de

N8/ ,, dx dz

where we have used (3.4) to obtain (II.2). Consequently,

(11.3) 1N 23/4 1/8 i,ji,j dx dz

Similarly, since Fi 0 on St, we find that

(11.4) 2N 23/4 [ 1/8 F.jF,j dx dz

Substituting (11.3) and (11.4) into (II.1) and choosing bl--2al 6 for 0< 6<< 1, we
obtain the results (5.7) and (5.8).

Appendix III. To derive the bound (5.15) for the pressure term in the Stokes flow
problem, we first observe that is defined only up to an arbitrary constant and then
fix it by requiring So dx O. Let us now introduce an auxiliary function G such that

AG=0 inR=Sx[0,1],

OG
(III.1) =0 on OR\So,

On

OG= onSo.
On

We have

42 dx qd 4,iGi d/ 12 G i(Fi Fj, i),j dc
R On

and thus

42 HX G,il’lj G,jn )( Fi,j Fj,i) d.
R

An application of Schwarz’s inequality yields the bound

<
v

(F, . F.,) (F,j F ,) d6

(III.2)

q dx=
(G,n G,n)(G,n G,n) d

R

We now need to bound the second integral on the right in terms of So (OG/On)2 dx.
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For a region whose boundary is star-shaped with respect to the origin (which we
take at the center of the section z 1/2), we have the following two identities:

(Iii.3)

--Iols fs lls 21
G,G,dx+ dx,

2
G,G, G,23] dxd- oUS,

(III.4)

G, dxd- sto,

Upon rewriting (111.3) and (III.4), we see that

(III.5)

L G,,,,G,,,,dX= fsoUS1 oUSt

and

Igrads GI= d,, G,O, G,3] d,, d/ dx

xn[grads GI2 d6e xoG,,,,4 dx + G,3 dx d(111.6)
s[o,]

where Igrads G]2 denotes the tangential derivatives, i.e.,

Igrad G[2 1/2(nkG,j n.iG,k)( nkG,. nG,k).
An application of Schwarz’s inequality and the arithmetic-geometric mean inequality
in (111.6) leads to the inequality

(III.7) Igrad, GI d dx+ G,G, dx+ G, dx de
OSx[O,l]

where r maXso xx, h minos xn, and is a positive constant. If we now add
(III.5) and (III.7) and choose lira, we obtain

(III.8) Igrad GI d 1] dx+ K G,G, dxd
R

where

2_2K max [ (1 +), (1 +-) ]
Let us now consider 0 s G,G, dx de J. Since

J= fso
GO dx<= ( fso G2 dx) i/2( fSo (t2 dx) l/2

it follows that
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where ’2 is the first positive eigenvalue of the free membrane problem. In view
of (III.5), we have

2j2 ME 2<- +- MJ
where M--So 2 dx. Solving this inequality, we conclude that

(III.9) G,jG,j dx d <---121 (1 +i +/2) dx.

Inseing this inequality into (III.8), we then obtain the bound

Iv ’grads G’2 d a, fs 02 dx
R

where

.2r r
a 1-+(1+1+12).

From (III.2), it follows that

[ dxff[ (-)(-,) d.
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FINITE-DIMENSIONAL ATI’RACTORS ASSOCIATED WITH
PARTLY DISSIPATIVE REACTION-DIFFUSION SYSTEMS*

MARTINE MARION,"

R6sum6. L’objet de cet article est d’6tudier le comportement quand le temps tend vers l’infini des
solutions de certains systmes de r6action-diffusion partiellement dissipatifs. On considre deux types de
problmes: des systmes avec des nonlin6arit6s polynomiales et des systmes poss6dant une r6gion positive-
ment invariante. L’article d6montre que le comportement infini peut ?tre d6crit par un attracteur universel,
et des majorations des dimensions Hausdorff et fractale de cet attracteur sont 6tablis. Ces r6sultats sont
appliqu6s h plusieurs systmes classiques issus de la biologie, de la physique et de la chimie.

Abstract. The long-time behavior of the solutions of some partly dissipative reaction-diffusion systems
is studied. Two types of problems are considered: systems with a polynomial growth nonlinearity, and
systems admitting a positively invariant region. It is shown that the long-time behavior can be described by
a universal attractor, and bounds of the Hausdorff and fractal dimensions of this attractor are derived. The
results are applied to several classical systems borrowed from mathematical biology, physics and chemistry.

Key words, attractors, reaction-diffusion equations, partly dissipative systems, fractal dimension
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0. Introduction. It is now well known that many parabolic dissipative evolutionary
equations possess a universal attractor that has finite Hausdorff and fractal dimensions.
All trajectories converge to this attractor as time goes to infinity so that the long-time
behavior of solutions depends actually on a finite number of degrees of freedom (see
Temam [26] for an extensive review on the subject). In particular, in the case of
reaction-diffusion equations, such questions have been investigated by Babin and
Vishik [1], [2], Kopell and Ruelle [15], and Marion [18]. However, in these works, a
strong dissipation assumption is required; namely, all diffusion coefficients are assumed
to be positive.

The aim of this article is to derive the existence of finite-dimensional attractors
for reaction-diffusion systems with vanishing diffusion coefficients. The mathematical
study differs from the ones in [1], [2], [15], [18], mainly for two reasons:

(1) The semigroup associated with the problem is no longer compact.
(2) The methods used in [1], [2], [15], [18] to prove the finite dimensionality fail;

the upper bound on the dimension of the attractor derived there goes to + as the
diffusion tends to zero.

We will investigate two types of systems" those with a polynomial growth non-
linearity, and those admitting a positively invariant region.

We first study systems with a polynomial growth nonlinearity. A typical sample
of systems we consider is

(0.1) ---dAu+h(u)+crv=O, --+ tv + 3u 0,
Ot Ot

where 5 > 0, o-, 3’ R, and h is a polynomial of odd degree with a positive leading
coefficient. The precise assumptions on the equations are stated in 1. In 2, we derive
the existence of a universal attractor by applying a general criterion of existence of

* Received by the editors December 1, 1987; accepted for publication July 1, 1988.

" Laboratoire d’Analyse Num6rique, Bfitiment 425, Universit6 Paris-Sud, 91405 Orsay Cedex, France.
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attractors used by Ghidaglia and Temam [10] for abstract nonlinear wave equations
(see also the review of Hale [27] and the presentation in Temam [26]). We then prove
an important regularity property of the attractor. Section 3 contains the estimates of
the Hausdorff and fractal dimensions of the attractor; these estimates rely on the
general method of Constantin, Foias and Temam [6] and on generalizations of the
Sobolev-Lieb-Thirring inequalities proved in Ghidaglia, Marion, and Temam [11].
We conclude the section by applying our results to problem (0.1).

We then consider systems of reaction-diffusion equations admitting a positively
invariant region as described by Chueh, Conley, and Smoller [3]. Section 4 contains
the description ofthe equations; we assume in particular that the equations take the form

Ou cgv
DAu +f(x, u, v) O, --+ G(x, u)v + g(x, u) O,

ot ot

where u (respectively, v) takes its values in R m, (respectively, R m2) and G(x, u) is a
square matrix of order m2 with definite positive symmetric part. The existence of a
universal attractor is proved in 5. We also derive there the estimates of the Hausdortt
and fractal dimensions of the attractor. In 6 we apply our results to several classical
systems, namely the nerve equations (Hodgkin-Huxley equations and FitzHugh-
Nagumo equations), some equations related to solid combustion, and the Feld-Noyes
equations arising in chemical kinetics.

The results presented here were announced in [28].
A few words about notation follow. Let f/be an open bounded set of Rn with

boundary F. For pc[l, +], we denote by LP(f/) the space of measurable scalar
functions on f/for which

lull,<.): lu(x)l" dx <+ for 1 -p <

lulLoo(a) ess sup lu(x)l <+ for p +c.

We denote by Hk(f/) the Sobolev space of scalar functions that are in L2(f/) together
with their weak derivatives of order less than or equal to k *. H(f/) is the Hilbert
subspace of Hi(f/) made of functions vanishing on F.

We will also consider vector-valued functions and use the notation _2(1))=
(L2(I))) m, Hk(f/) (Hk(f/))m, H(f/) (H(f/))". We denote by (.,.) the scalar prod-
uct on [[_2(f/) and we equip H(f/) with the norm

1/2.

Let I be a bounded interval of R and let X be a Banach space. We denote by
LP(I X), l_-<p_-<+oo, the space of measurable functions f from I into X such that
Ilfll, L(I). This is a Banach space for the norm

Part I. Systems with a Polynomial Growth Nonlinearity

1. The equations and the semigroup. Let denote an open bounded set ofn with
boundary F. We consider the following initial-boundary value problem involving a
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vector function (u, v) from fl xR+ into R2; (U, /)) satisfies

(1.1)

Ou
m-dAu+ h(x, u)+f(x, u, v)=0
Ot

in f xI+,

--+o’(x)v+g(x, u)=0 in flxR+,
Ot

together with the initial conditions

(1.2) u(x, O)= Uo(X), v(x, O)= Vo(X),

and a boundary condition of either Dirichlet type

(1.3)1

or of Neumann type

u 0 on F,

Ou
(1.3)2 m=0 on F,

0v

or of periodicity type

(1.3)3 lI (0, L) u is O-periodic.

Here, the diffusion coefficient d is positive. Also, the functions h, f, o- and g are
assumed to be twice continuously ditterentiable in all variables and to satisfy

(1.4) alul-<-h(x,u)u<-=lul+, p>2,

(1.:5) If(x,u,v)l<-4(l+lul’+lvl), 0<pl<p-1,

(1.6) o’(x)-> > 0,

(1.7) Ig2(x, u)l <-,%, ]g’,(x, u)]-< 85(1 + lull, i- 1,,, ,, ,
where the 8’s are positive constants. We finally require the monotonicity assumption

(.8) (h’(x, u)+f’(x, u, v))l+f’o(x, u, v)>--6(1+) V(,),

with 86 => 0.
For the mathematical setting of problem (1.1)-(1.3), we introduce the functional

spaces

where

H _2(f) L2()2 V= V x L2(II),

H(f) for a 1,

V1 Hl(f) for a 2,
H(a) for a 3,

where Hk(f), keN, II (0, L) denotes the space of functions that are locally in
Hk(N") and are periodic with period L in each direction.

With the above assumptions and using classical methods (see, for instance, Lions
16]), we can prove the following existence and uniqueness result.

u(x + Lei) u(x), where (el, , en) denotes the canonical basis of R".
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PROPOSITION 1.1. For (Uo, Vo) given in H, there exists a unique solution (u, v) of
(1.1)-(1.3), satisfying

(u, v) (/, I-I),

uL2(O, T; V1)f’ILP(QT-), QT=flx]0, T[ for all T>0.

The mapping (Uo, Vo)-->(u(t), v(t)) is continuous on H.

2. The universal attractor. This section is devoted to the existence and to some
properties of the universal attractor associated with (1.1)-(1.3),. We first give in 2.1,
general definitions and results. We then prove in 2.2 the existence of a universal
attractor. Finally we conclude the section by deriving a regularity property of the
universal attractor.

2.1. A general result on the existence of attractors. Let H be a subset of a Banach
space (E,] 1) and let S(t), t_-> 0, be a semigroup of operators from H into itself. We
recall that the to-limit set of a subset qg of H is defined by

H
to() n U S(t)

s:>0 ts

A functional invariant set for the semigroup S(t) is a set c H such that

s(t) vt > 0.

If an invariant set , compact in H, possesses an open neighborhood o//such that
the image by S(t) of any bounded subset of 0// converges to as t--> +oo, then .d is
called an attractor and the largest open set that contains and that enjoys the same
property as is called the basin of attraction of . The universal attractor, if it exists,
is the only attractor that admits H for basin of attraction, i.e., the image by S(t) of
any bounded set in H converges to when +oo.

A set c H is said to be absorbing for the semigroup S(t) if, for every bounded
set 930 of H, there exists T= T(go) such that S(t)go c g, for all >- T(o).

The following assumptions are made on the semigroup S(t). First:

(2.1) S(t) is continuous from H into itself, for all > 0.

We also require that, for every t, S(t)= S(t)+ S2(t), where the operators S, $2 map
H into E and satisfy the following:

(2.2) The operators S(t) are uniformly compact in the following sense: for every
bounded set in H, there exists to_>0, such that U t>=to Sl(t) is relatively
compact in E.

(2.3) For every bounded set c H, r(t)=sup IS=(t),l- 0 as t--> +.

We now recall a general result ensuring the existence of a universal attractor.
TrEOREM 2.1. We assume that (2.1)-(2.3) are satisfied and that there exists a

bounded absorbing set 3. Then, the to-limit set of3, to 3 ), is the universal attractor

for S(t) in H. Furthermore, ifH is convex, then is connected.
We conclude the section by a remark that will be useful in the sequel. Under the

assumptions of Theorem 2.1, the universal attractor is also the to-limit set of for
the family of operators $1, i.e.,

,E

N U S,(t)3
s>=O
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Hence, u s if and only if there exist a sequence u 3 and a sequence tt --> +00 such
that

(2.4) Sl( tl)Ul -’> U as 1-->+oo.

The reader is referred to Temam [26] for more details and in particular for the proof
of Theorem 2.1.

2.2. Existence of a universal attractor. We apply here the concepts and the results
of 2.1 to the semigroup associated with (1.1)-(1.3).

THEOREM 2.2. Under assumptions (1.4)-(1.8), the semigroup {S(t)} ta/ associated
with (1.1)-(1.3) possesses a universal attractor 4 that is connected in H.

Proof of Theorem 2.2.
(a) Energy estimates and the existence of an absorbing set. We multiply the first

equation (1.1) by u and the second one by v and integrate over fl. Using the Green
formula and (1.3), we obtain

1 d
2 dt

+ Ir (f(x, u, v)u + g(x, u)v) dx O.

Due to (1.7), there exists a constant t7 > 0 such that

(2.6) [g(x,

Using also (1.4)-(1.6), we deduce from (2.5) that

1 d
(lul= + I1=) + dllull = + 11= + ( lul" dx2 dt

(2.7)
-< zlal + c | <lul + lul "’/) dx / c | I1(1 / lul) dX,

with cl 4+ 7" The last integral in (2.7) is then majorized as follows:

Cl Il(l/lul) dx<-- I1=dx/ (lul/l dx,

Also, when we set q max (Pl + 1, 2), there exists a constant c2 > 0 such that

Cl le[ + [el p,*l +2(1 + lel c=(lel o + 1) we N.

Hence

c, lul + lul PI+I +.lul + 1)2 dx <= c2 lul a + lal- lul dx+ c4
(using Young’s inequality).

Combining the above inequalities, we infer from (2.7) that

1 d
(2.8)

2 dt---(lul=/ll=)/dllull=/lol=/--2- lul’dx<-_lal/c.
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Again using Young’s inequality, we have- lu dx- lul’dx/c4.

Hence (2.8) implies

d
(2.9) d---(lu +lvlE)+2dllull +6(lul2

where cs 2(631fl+ c3+ c4); (2.9) gives in paicular

d
d(lu + Ivl=)+ (lu + Ivl=) c,

which yields, using Gronwall’s lemma,

(2.10) lu<t)l=+lv(t)l=<luol=+lVol2) exp (-Bt)+(1-exp (-6t)).

We deduce from (2.10) that any ball of H centered at zero and of radius
fiE Pl (C5/)1/2 is an absorbing set. Indeed, if is a bounded set of H, included
in a ball B(0, R) of H centered at zero and of radius R, then S(t) = B(O, P2) for

To To(,

1 R2

To= lg 0_0"
Let 0> O and r > 0 be fixed. We infer from (2.9) after integrating in that

l,(2.11) 2d Ilull = d+x luldxdrc+lu(t)l=+lv(t)l= VtO.

Hence, for (Uo, Vo) = B(0, R) and t To,

(2.2) 2a I111 d+l

Again integrating (2.9) in t, we also get for (uo, vo)e N c B(0, R),

(2.13) Ilull 2 ds(cst+e2) vto.

(b) The solution v of (1.1) can be written v(t) Vl(t) + vz(t) with

v(x, t)=- g(x, u(x, s)) e-((’- s,
(2.14)

v(a t)= vo(x) exp (-(x)t),
and we define two Nmilies S, S of operators from H into H by setting

(.5

It is straightforward that S(t) satisfies (2.3); indeed, for every bounded set N c H,

r(t) N exp (-) sup

Our aim now is to check the uniform compactness of the operators S(t) by using
uniform in time a priori estimates on u(t) and v(t).
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We multiply the first equation in (1.1) by -Au and integrate over f. Thanks to
(1.3) and the Green formula, this gives the energy-type relation

d-;[lull-/dlau h(x, u) audx+ f(x, u, v) Audx.

Due to (1.4), there exists a constant 68 > 0 such that

]h(x, :)1 <_- a(1 + I1- w , Wx .
Hence, using also (1.5), we get, setting c6 max (88, 84),

2 dt Ilull= + alau c6 (2 + lul , + lull-l+ Iol)laul dx

1+ (2+11+11-+ I1 dx,

Thus

(2.16)

d 4c62 Icat II. --< (4 + lul= + I.I--+ I1) d

<- c7 fc (1 + I.I-+ I1=) dx (since Pl < P 1). [3

We then apply the uniform Gronwall lemma, which we recall.
LEMMA 2.3. Let g, h, y be three locally integrable scalarfunctions on to, oo[ satisfying

dy dy
d L?oo(]to, +oo[) and -<= gy+ h for >= to,

g(s) ds <- al, h(s) ds <- a2, y(s) ds <- a3 for >- to,

where r, al, a2, a3 are positive constants. Then

(2.17) y(t+r)<--(-+a_) exp(al) Vt>-to.

The proof of this lemma can be found for instance in Foias, Manley, and Temam
[9]. Thanks to the techniques of Lemma 2.5 below for k 1 and (2.12), we can check
the existence of a constant Ca such that for (Uo, Vo) and _-> To + r

t+r

ff lul2p-2 dx ds <__ c8"

Hence, again using (2.12) and the existence of the absorbing set B(0, P2), we conclude
that we can apply the uniform Gronwall lemma to (2.16) and we infer from (2.17) that

(2.18)
Ilu(t)ll2<-c9 Vt >- To+2r,

1
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We now derive a time-uniform estimate of vl(t) in Hl(f). First, it is easy to
deduce from (2.14) and (2.10) that there exists a constant clo clo(R) such that, for
(Uo, Vo) (0, ),

(2.19) Iv(t)l= co(R) lt >--O.

We then set wj Ovl/Oxj, j 1,. ., n; w satisfies

aw
(2.20) ---+at (r(x)w -Crxj(X)V gxj(X, u) g’(x, u) ax

w(O) =o.
The right-hand side of (2.20) satisfies the pointwise inequality (see (1.7))

ou a_.U_U(Cll - aS)(1 + lul / Io, I) / a oxO’xj(X)D1 + gx(X, u) + g(x, u)
Ox

where Cll maxl, maxxa [g(x)[. Hence, by multiplying (2.20) by w and integrat-
ing over , we find

2

d
12 + 6[Wj[2 ,Wj[2+6 1 f {(Cll+85)(l+’u’+[Vl[)+65 OXO }2 dx,

a[l+a[w a(,,+a, (+[u[+[,l ax+7 ox
which, thanks to (2.19) and (2.10), for (Uo, Vo)e N c B(0, R), gives

(2.21)

d 28 fN C12--Tdt lWl= / alwl
2

8 )2( R2 C5 )C,2 c12(R)=’(c1 + t5 I1+ ++ Co

Summing (2.21) from j 1 to j- n, we finally obtain, for (Uo, Vo) = B(0, R),

(2.22)
d 2652
dT Ilvlll2/ 81111=<- nc=/Tllull=,

We then integrate this inequality; this gives, since Vl(0)= 0,

c1: 2]
Ilvl(t)ll=<=--/-- Ilu(s)ll= exp ((s- t)) ds Vt >-O

nc= 2,S f ro+2r
--</ t Ilu()ll = exp (8(s- t)) ds

6 6 Jo

(2.23) + u(s)ll’ exp (8(s- t)) ds

<--+-lcstTo+2r)+R}+ Vt>=O

(using (2.13) and (2.18)).
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The estimates (2.23), (2.19), (2.18), and (2.10) provide the uniform compactness
ofthe operators S1. Indeed, if (Uo, Vo) 9 c B(0, R) and _-> To + 2r, then $1 (t) (Uo, Vo)
belongs to a set bounded in 1(1)) independently of and relatively compact in H.

In conclusion, the assumptions (2.1)-(2.3) are satisfied and we have proved
the existence of a bounded absorbing set. Hence, Theorem 2.1 applies and gives
Theorem 2.2.

2.3. A regularity property of the attractor. The goal of this section is to prove the
following regularity result.

THEOREM 2.4. Under assumptions (1.4)-(1.8), the universal attractor M defined in
Theorem 2.2 is bounded in _().

We start by proving the following weaker result.
LEMMA 2.5. The attractor M defined in Theorem 2.2 is bounded in _q(f), for all

q[1,
Proof. Let a(k)=k(p-2)+2. Since ct(k)+oo, as k-+oo, it suffices to prove

that M is bounded in _,(k)(f), for all keN. Let r>0 be fixed; we shall prove by
induction on k that

(2.24)k M is bounded in Ik(k)(),
t+r II)(2.25)k sup lUl ’(k+l) dx ds <-_ K Vt >- O,

Uo, Vo)e Sg

where (u, v) is the solution of (1.1)-(1.3)4; hereafter, we denote by K any constant
that depends on the data and on k.

(a) k =0; a(0)= 2, and a(1)=p; (2.24)0 has been proved in Theorem 2.2. Let
(Uo, Vo) 4; we infer from (2.11) that

t+r I’1 lul dx ds <-_ rc5 + lu(t)l + Iv(t)l- Vt=>O

=< K (thanks to (2.24)0);

hence we have (2.25)0.
(b) We now assume that (2.24)k-1 and (2.25)k_1 hold for k_-> 1. In particular,

there exists a constant K > 0 such that

(2.26) fa 161(-1)dx = K v(a, tT) .
Let (Uo, Vo). By multiplying the first equation in (1.1) by ]l,/la(k)-2U and

integrating over , we obtain

(2.27)
(k) at lul Aulul   )-=ud 

Thanks to the Green formula and (1.3), we have

-In ZXulul=(’-audx=((k)-l) f IV/dl2]’/la(k)-2 dxO.



FINITE DIMENSIONAL ATTRACTORS 825

Hence, using also (1.4) and (1.5), we deduce from (2.27)

1 d Ia(k) dt

Pl+(k)-1) dx

dx

(since p+a(k)-I <a(k+ 1)),

(2.28) -- lul+) dx + g + 4 I1 lul)- dx
4

1

a(k) dt lul+ dx

4 Il lul- d K,

Let =a(k+l)/(a(k)-l) and let be such that 1/ff+1/=1. With the Young
inequality, the last integral in (2.28) is majorized as follows"

Since (-1), using the Hlder inequality, we also have

r (by (m26)).

Combining the above inequalities, we finally obtain

f 6, f,= 1) dx=K"2,29
1 d

.(k) dt 2

Thanks to the induction assumption (2.25)k_, we can apply the uniform Gronwall
lemma to (2.29) and we conclude from (2.17) that there exists a constant K such that

fa lu dx V r.

Since S(r) , this implies

(2.30) lal

Then integrating (2.29) between and + r and using (2.30), we find

sup

i.e., (2.25).
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It remains to check that

(2.31) llk) dx-<- K V(a, ) .
Let (if, 5) . We claim that there exists a sequence (U0/, V01 and a sequence
t -->+ such that

Sl(tl)" (Uo/, /)0/)">(/, /) in H as 1-->+,

where Sl(t) is given by (2.15). Indeed this follows from the functional invariance of
and the property (2.3) for S2(t)=S(t)-S(t).
Then, by (2.14),

-,-s) ds (6 given by (1.6))

(2.32) -,-s ds (with (2.6))

1
----< 67K-- t_>-0 (thanks to (2.30)),

which implies (2.31), since there exists a subsequence l, such that

Ilo,<_-lim inf lvll,.( tlm)l<k).
-t-oO

The proof of Lemma 2.5 is therefore complete.
Conclusion of the proof of Theorem 2.4. We now show that the attractor is

bounded in fl_(II). Let (if, ) and let ?>0. Since is a functional invariant set,
there exists a solution (u, v) of (1.1)-(1.3) satisfying (Uo, Vo) and (u(’), v(’))
(if, ). Introducing the semigroup (t) associated with the linear operator 0/0 dA + I
and with the boundary condition (1.3), it is classical that u can be written as

(2.33) u(t)=E(t)Uo+ E(t-s){-h(x, u(s))-f(x, u(s), v(s))+u(s)} ds for t_->0.

The semigroup E(t) satisfies the regularity property (see Rothe [22])

I:(t) ,<a)--< cm(t)-1/2

where m(t) min (1, t), A is the smallest eigenvalue of the operator -dA+ I associated
with the boundary condition (1.3), and c is a positive constant. Also, by Lemma 2.5,
there exists a constant K > 0 such that

I-h(x, u)-f(x, u, v)+ ul.o.) < K.

Hence, we deduce from (2.33) that

lu(t)la) <-cg e-Xtm(t)-l/2+ e-X(t-S)m(t-s) -1/2 ds 7t>-O

<-cK m +2+ Vt_->-.
2
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In particular, t u(?) satisfies

la[LOOm)<=cK m +2+ V(t, t)M.

Finally, the bound on fonows from the one on as in Lemma 2.5
above. This concludes the proof of Theorem 2.4. D

3. Dimension of the universal attractor. Our aim is now to prove the finite
dimensionality of the attractor introduced before. We start by giving a few results
borrowed from Constantin, Foias, and Temam [6] and Ghidaglia and Temam [10]
( 3.1). We then derive in 3.2 estimates of the Hausdorff and fractal dimensions of
the attractor. Finally, we conclude the section by applying our results to an example
(3.3).

3.1. Some general results on the dimension of functional invariant sets. Let E be
a Hilbert space (norm 1"1) and let be a compact functional invariant set for a
semigroup {S(t)},__>o. We assume the following for all t->0:

S(t) is uniformly differentiable in , which means that for every u there
exists a linear operator L L(t, u) (E) such that

(3.1)

IS(t)v-S(t)u-L(t, u) (v-u)
sup 0 as e-O,
u,ve Iv- ul

o<lo-ul__<

(3.2) sup [L(t, u)[()< +.

For L (E) and N N*, we denote by ton(L) the norm of the exterior product
AnL in AnE

sup ILIA’’’A LN[.toN(L)
t,..., E

We then introduce for N e N*

(’N(t) sup toN(L( t, Uo)), >-- 0,
Uo’

IIN lim N(t)

and we define the uniform Lyapunov numbers /ZN by

/2, l=lOgl-I1, /xN=lOgIIN--logHn_l, N>=2.

A general result on the Hausdortt and fractal dimensions of functional invariant
sets states the following.

THEOREM 3.1. Under assumptions (3.1), (3.2), if, for some integer N >- 1,/Xl +" +
tXn < O, then the Hausdorff dimension of is less than or equal to N and the fractal
dimension of is less than or equal to

(____l_’3t" "3t" [.l)+
l1+

The reader is referred to Constantin, Foias and Temam [6] for the proof of this
result when the linear operators L(t, u) are assumed to be compact and to Ghidaglia
and Temam [10] for the extension to the noncompact case that we use here. We
conclude this section by recalling the definitions ofthe Hausdorff and fractal dimensions



828 MARTINE MARION

(Federer [7], Mandelbrot [17]). The d-dimensional HausdortI measure of is the
number

/.n(, d)= lim/zn(, d, e)
e-0

where

,(, d, e) =inf rla,

the infimum being taken for all the coverings of by balls of radii rl <-- e. There exists
d=dn()[0,+c] such that /.n(,d)=0 for d>dn() and is equal to for
d < dn(); dn() is the Hausdorff dimension of .

The fractal dimension of is

where

dF() inf(d > 0,/XF(, d)=0}

/zF(, d) lim sup canoe(e),

and ne(e) is the minimum number of balls of radii e necessary to cover . Since
/xF(, d)_->/zn(, d), it is clear that the fractal dimension of a set is larger than or
equal to its Hausdortt dimension, the converse being false in general.

3.2. Estimate of the dimension of the attractor. We now return to the universal
attractor M defined in Theorem 2.2. According to Theorem 2.4, there exists a constant
a > 0 such that

and we introduce

(3.3) c3 inf
lul_<-.lvl_-<

(3.4) C4 sup
xe

lul<_-.lvl_<-<

(h’,,(x, u)+f’,,(x, u, v)),

If’o(x,u,v)/g’,,(x,u)l.

(Note that ca-> -86 given by (1.8).) The aim of this section is to prove Theorem 3.2.
THEOREM 3.2. Under assumptions (1.4)-(1.8), the Hausdorffandfractal dimensions

of the universal attractor M defined in Theorem 2.2 are finite. Moreover, they are both
bounded by

(3.5) c 1+ ,1.o.1_i,,,+ +7(f)"1+1+1
where c denotes a constant depending on n and the shape of ’.2 nl 1 + n/2, c
max (0,-Ca), and 8, Ca, c4 are given by (1.6), (3.3), and (3.4), respectively.

Remark 3.3. In the course of the proof of Theorem 3.2 below, we derive the
following sharper bound of the Hausdorff and fractal dimensions:

{ d ("/21’ C5 }c

This means that the constant is invariant by homothety and translation of [1.
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where

(3.6)
c5 lim inf sup

t-+ (uo,vo)

and c is as in Theorem 3.2.

( Io Ia (((h’(x, u)+f’,,(x, u, v))-) "
+ ’’f’(x’u’v)+g’(x’u)’2"l} ), dxds

Theorem 3.2 is proved by using the general result recalled in 3.1. We start
by checking the assumptions (3.1) and (3.2) for the semigroup S(t) associated with
(1.1)-(1.3).

LEMMA 3.4. For every to> O, S(to) is uniformly differentiable on M. Its differential
at (Uo, Vo) is the linear operator on H:(:, r/)- L(to, Uo, Vo). (, r/)=(U(to), V(to)),
where U(to), V(to)) is the value at time to of the solution U(t), V(t)) of the linearized
problem

OU
(3.7) -dAU+[h’(x, u)+f’(x, u, v)]U+f’(x, u, v) V= 0,

Ot

V
m+cr(x)V+g’(x, u)U=O,
Ot

(3.8) U(0) :, V(0) r/,

U satisfies 1.3)

where (u, v) is the solution of (1.1)-(1.3)4. Furthermore, we have

sup IL(to, Uo, Vo)]ze<u)< +oo.
(uo,vo)

Proof of Lemma 3.4. The proof of this technical result is left to the reader. We
only note here that it relies essentially on Theorem 2.4.

For (Uo, Vo) , let us denote by 9(u, v) the linear operator from H2(fl) x
into H occurring in (3.7), (3.8), i.e.,

9(u, v) (U, V)=(-dAU+(h’+f’)U+f’oV, crV+g’U).

For N => 1, we introduce

(3.9) qv limsup( inf lfo )inf Tr(9(u, v) Q) ds
t-,+ (uo.vo)M rank Q=N

where Q denotes any orthogonal projector in H of rank N such that QH W with

W= {( U, V) H2(f) x L2(f), U satisfies (1.3)4}.

Returning to the definitions of 3.1, it can be shown exactly as in [6] that

/x +. +/xs -<-qv, N_->I.

Thus, we infer from Theorem 3.1 that, if qs > 0 for some N, then the Hausdorit
dimension of M is less than or equal to N and its fractal dimension is majorized by

(3.10) N. max (l+(--ql)+.
I<=IN-1
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We next estimate the qN’s. Let Q be an orthogonal projector in H of rank N such
that QHc W and let {(, $)}N be an orthonormal basis of H such that
(1, $1),..., (, $v) is a basis of QH. Then

N

Tr 9(u, v)o Q= Z (9(u, v)" (g, ), (p2, b))
j=l

j=l

+ In (h’(x, u)+f(x, u, v))q "2 dx

+ fn (f(x’ u’ v)+ g(x’ u))P2d/ dx)
N

>-d E I1
j=l

(3.11)

11=+ X I1-- (h+f’,,)-p(x) dx
j=l

"+j’l’= (f" + g)..i dx

where we have set

N

p(x)= E ((x)).
j=l

After majorizing the last integral as follows"

(by (1.6)),

In (f’ + g)qd/i dx
j=l =<=1 [@[ dx + (f’ + g’,,)2p(x) dx,

we have that (3.11) gives
N

(3.12) Tr 9X(u, v) Q >- d Y I1
j=l Jli24;’j= I@1=- ’,(X, t)p(X) dx

where

1
(3.13) Ol(X t)= (h’,, +f,)- +_2_

2
(fro + g,,,)2.

We next apply the generalized Lieb-Thirring inequalities (see Ghidaglia, Marion, and
Temam [11] to the suborthonormal family ()1_---: there exist two constants
and K2 depending on n and the shape of l such that

(3.14) X IIII=K, p(X) 1+(2/") dx- V(X) dx,
j=l

where L denotes the diameter of . Thus, we infer from (3.12) that

Tr (u, )o Q y,_= (ll=+ levi=)

+ dK, p(x) 1+/" dx- ++a,(x, t) p(x) dx.

3We say (cf. [11]) that the family o.ie L2(), 1-<_j- N, is suborthonormal if Yi,j=t
k- SC for all e R N.
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Since the family (J, l]j) is orthonormal, we then have
N

x = + =) N.
j=l

Also, with the Young inequality, the last integral in (3.15) can be majorized as follows:

(3.16)
+ L2 Ol(X t) p(x) dxT p(x) l+(2/n) dx+a2(t),

2 ( 4n )n/2I’ ( dK2 )n, n+-+ al(X, t) dx, hi=l+-.z2(t)
n+2 (n+2) dK n 2

Combining these inequalities, we finally obtain

6 +dK faTrg(u, v) Q->--N p(x) +2/") dx-a2(t)
(3.17)

>--N- a2(t).
-2

Hence, we conclude from (3.17) and definition (3.9) that

(3.18) qr >--N- a,

where

(3.19) a lim inf sup O2(t) dt.
t-->+ (Uo,Vo)S

Let now N be the integer such that

(3.20) -(N-1) <= 2a <- N.

Then qm> 0. As observed before, the Hausdorff dimension is majorized by N and,
by (3.10) and (3.18),

d(M) _-< N ma_x 1 + 2N.
1NINN--1

To conclude, we express the bound on N given by (3.20). We find

4a
N<__I+

c +  lal /o + d,,/ (by (3.19), (3.16), and (3.13)),

where c is given by (3.6), and c depends on n and the shape of 1. This gives (3.5)
by using the constants c and c4 given by (3.3) and (3.4). The proof of Theorem 3.2 is
therefore complete. S

3.3. eple. Here we apply our results to the system

Ou Ov
(3.21) -dAu+h(u)+v=O, +6v+yu=O,

Ot Ot

where 6 > 0, 6, y R, and h is a polynomial of odd degree greater than 1 with a positive
leading coefficient.
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Assumptions (1.5)-(1.8) are satisfied. Theorems 2.2 and 3.2 apply and give the
existence of a universal attractor that describes the long-time behavior of the solutions
of (3.21) (the boundary condition is either the Dirichlet or the Neumann or the periodic
boundary condition). This attractor has finite Hausdorff and fractal dimensions and
these dimensions moreover are bounded by

d ,/2 1 1
c 1 + t[.121 +"7- t +(C)" + 6.t+ ]tr + y[ 2"1

where c denotes a constant depending on n and the shape of fl, n 1 + n/2, and

c max (0,-c3), c3 min h’(u).

Part II. Systems with an Invariant Region.

In the second part of this work we consider partly dissipative systems of reaction-
diffusion equations admitting a positively invariant region. The precise assumptions
on the equations are stated in 4. Then, in 5, we prove the existence of a universal
attractor and we derive an estimate of the dimension of the attractor. Finally, in 5,
we apply our results to several classical equations borrowed from mathematical biology,
physics and chemistry.

4. The equations and the semigroup. We denote again by fl an open bounded set
of R" with boundary F. Let m m + m2 and let D be a positive diagonal matrix of
diffusion coefficients

D diag (d,. , d,,), di > O.

The system of ordinary differential equations coupled with partial differential equations
to be considered involves a vector function (u, v) from fl x R/ into ml X R m2 and takes
the form

(4.1)

On
DAu +f(x, u, v) O,

Ot

--+G(x,u)v+g(x,u)=O,
Ot

where f= (f,.. ",fro,) is a function of class 2 on (lx", g= (gl,"" ", gin2) is a
function of class c2 on 1xm, and G (gk) is a square matrix of order m2 whose
coefficients are functions of class c2 on 1 R’. We supplement (4.1) with the initial
conditions

(4.2) u(x, O)= Uo(X), v(x, O)= Vo(X) in

and a boundary condition of either Dirichlet type

(4.3)1 U 0 on F,

of Neumann type

On
=0 on F,(4.3)2
Ov

or of periodicity type

(4.3)3 fl ]0, L[", u is O-periodic.
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The following assumptions are made on the initial boundary value problem
(4.1)-(4.3 ),,. First:

(4.4) There exists a closed convex region @cR" that is positively invariant.
Moreover, is compact for a 2, 3.

This means that any solution (u, v), with boundary data and initial data (Uo(X), Vo(X))
in for every (or almost every) x in f, satisfies (u(x, t), v(x, t)) 2 for all > 0 for
which the solution exists. We refer to Chueh, Conley, and Smoller [3] for the derivation
of sufficient and of necessary and sufficient conditions that guarantee the existence of
a positively invariant region (see also Tartar [25], Sermange [23]).

For the mathematical setting of the problem, we introduce the functional spaces

H L2(f, ) {(u, v) L2(I)), (u(x), v(x)) for a.e. x

V-- V1 X (L2()) m2

where

H(II)", if a 1,

VI Hl(f) m’ if a=2,
Hp(f) if a 3.

We assume that (4.1)- (4.3) is well posed, for (Uo, Vo) in H, in the following sense:

(4.5) For (Uo, Vo) H, (4.1)-(4.3) possesses a unique solution (u, v) for all time,
(u(t), v(t)) H, for all t, (u, v) L2(0, T; V), for all T>0. The mapping
(Uo, Vo)(u(t),v(t)) is continuous in H. Moreover, if (Uo, Vo) V, then
u L2(0, T; H2(t)m’), for all T> 0.

Finally, we assume the following:

(4.6) There exists 8 > 0 such that, for all (x, u, v) x ,
k,l=l k=l

(4.7) g and the paial derivatives of order one and two of g and G are bounded
on Ox.

We also set

(4.8) c, sup If(x, u, v)l
(x,u,v)x

(4.9) c2 sup Ig(x, u)l.
(x,u,v)x

5. The universal attractor.
5.1. Existence of a universal attractor. Our goal in this section is to prove

Theorem 5.1.
THEOREM 5.1. Under assumptions (4.4)-(4.7), the semigroup S( t) associated with

(4.1)-(4.3) possesses a universal attractor that is connected in H.
Proof of Theorem 5.1. The proof relies on technical a priori estimates and on the

general results given in 2.1.
We first note that when the positively invariant region is compact (Neumann

and periodic boundary conditions), the existence of an absorbing set is straightforward
and Theorem 5.1 then follows by using the same arguments as in step (b) below for
the Dirichlet case. So, in the sequel, we restrict ourselves to the Dirichlet boundary
condition.
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(a) Existence of an absorbing set. We multiply the first equation (4.1) by u and
integrate over gl. Using the Green formula and (4.3), we obtain

2 dt lu 12 + d, u, = + f(x, u, v). u dx o.
i=1

Introducing the constant

(5.1) do min di,
li<--ml

and using the constant Cl defined in (4.8), we get

1 d
(5.2)

2 dt

Thanks to the Poincar6 inequality, there exists a constant C3> 0 such that
for all u V. Hence, we infer from (5.2) that

ld dolulClln]l/lu ldo 122 at lul2 + c-3 ]<=- c3 lu +

do
dt c do

which gives, by integration,

(5.3) ]u(t)12<_lUol2exp( do ) ccl’( ( do ))-c3 + d 1-exp -c-3 Vt=>O.

Let p2> p ClC]]’]l/2/do be fixed and let be any bounded set of H included
in a ball B(0, R) of H centered at zero and of radius R. We deduce from (5.3) that,
if (Uo, Vo) , then

(5.4) ]u(t)l<=p2 Vt>= TI(J, p2),

where

c3 R
Tl =-oo lg o_ o2

Also, by integrating (5.2) between and + r, r> 0 fixed, we have

cllfll,/ I ’+’ lu(t)l=
u - a, < lul a,+,

do 2do

and, if (Uo, Vo)c B(O,R) and t>= TI(, p2),

1 p.
(5.5) Ilull dsc4, c4=-;-rcllf]’/2p2+.

ao 2do

Integrating again (5.2) between zero and and using (5.3), we get furthermore that,
if (Uo, Vo) c B(0, R),

1 ,11,/4R_ R2

(5.6) Ilull d <-_ + p,t+o Vt >- O.
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Now, multiplying the second equation in (4.1) by v and integrating over 12, we
obtain

2 dt Iv + G(x, u)v" v dx + g(x, u) v dx O.

Hence, using the constant defined in (4.6), we have

2 dt Iv12 + 61vl2 <-- g(x, u)" vdx

c=ll’/=ll (c2 given by (4.9))

< 12 cll
2

-la 12+11= clal
dt ’v

which gives

(5.7) Iv(t)l=[Vol= exp (-6t)+., 62 (1-exp (-6t)) Vt>_--O.

Let/94> f13 C2[-11/2/6 be fixed. It follows from (5.7) that if (Uo, Vo)6 c B(0, R)
then

(5.8)

where

Iv(t)l /94 T2(o,/94),

1 R2

T2(o,/94) log 2 2"
P4--P3

We conclude immediately from (5.4) and (5.8) that the ball of H of radius
{p2 + p]}1/2 and of center zero is absorbing in H.

(b) We now write v(t)= vl(t)+ v2(t), where vl(t) is the unique solution of

(5.9) Ov--!+ G(x, U)V + g(x, hi) O,
ot

(5.10) Vl(O "-0,

and v2(t) is the unique solution of

(5.11) Or2-t- G(x, u)v2 O,
t

(5.12) v2(0) Vo.

We define two families S1, S2 of nonlinear operators from H into E _2(f) by setting

SI(t)" (U0, /)o)-’> (U(t), /l(t)), S2(t)" (U0, t0)--> (0,

Our aim is to derive properties (2.2) and (2.3) for this decomposition. It is easy to
check (2.3). Indeed, multiplying (5.11) by v2 and integrating over 12, we get

2 dt
I/’)212 + G(x, lg 02 /)2 dx O.
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Hence, by (4.6),

which yields

1 d
2 at Ivlz + lvl- <- O,

Iv2( t)l= <= exp (-2t)lVol2.

This implies immediately (2.3).
Next, we multiply (4.1) by -Au and integrate over f. We obtain

2 dt
Ilu(t)ll2+(DAu’Au)-- f(x, u, v). Audx.

Thus, using the constants do and Cl defined in (5.1) and (4.8), we have

(5.13)

1 d
122 dt

Ilu(t)ll 2 + dolAu <- c, lal’/=lAul

_< do IAI+ dln___Jl
2 2do

d = clal
d Ilu(t)ll=+almu

do

Thanks to (5.5), we can apply the uniform Gronwall lemma to (5.13). We conclude
from (2.17) that if (Uo, Vo) c B(0, R), then

(5.14) Ilu(t)ll=-+ for t>-_ T+r.
r do

Now we aim to establish time uniform estimates for v,(t). We first claim that

2c2(5.15)

where and c2 are given by (4.6) and (4.9). Indeed, for any given q > 2, let us multiply
(5.19) by Ivl-=v, and integrate over f. We get

(5.16)
q dt

]Vllqdx+ IVllq-2G(x, u)v,. v, dx-- IVlla-2g(x, u). v, dx.

Due to (4.6), we have

(5.17)

Also, by (4.9),

(5.18)
Io, l-=g(x, u).o dx . q<=- Iv, dx + cs(q)

2
(by Young’s inequality),
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where

1 c,fl (2(q-1)) q-1

c5( q
q 6q

Hence, combining (5.16)-(5.18), we obtain

qe I,1oex+ I ex

This implies by integrating, since Vl(O)=0,

Il(t)l<m_-< t-> 0,

which yields (5.15) by taking the limit q-> +.
We now derive an estimate of IIv(t)[[. For j-1,..., n, we set wj =Ovl/Oxj; w

satisfies

(5.19) Ow G(x, u)w +OG + , Oui vaOG +Og + 1,.. Oui Og
-0.

Ot Ox
vl

i=l OXj OU OXj i=l OXj OU

Thanks to the assumption (4.7) and to (5.15), it is easy to see that the vector functions

OG oG og og, j=l,...,n, i=l,’’’,ml,

are bounded in [((0, +) x ). Hence, if we multiply (5.19) by w and integrate over, we find

2 dt Iw + a(x, )Wj" Wj dX C6 IWjl
OXj

+ 1 dx,

where c6 denotes a constant depending only on the data. Using (4.6), we then have

=lw +
d [2<2c{ 0 2}d5 [w’l+alw’ =T la[+ o,

Summing these inequalities from j 1 up to j n, we finally obtain

2c--IIIId , i1= 2ncla+llull(5.20)
dt ’ +

This inequality is similar to (2.22) and, as in the proof of Theorem 2.2, we can infer
from (5.6), (5.14), and (5.20) that there exists a constant C7=c7(R) such that, if
(Uo, Vo) c B(0, R),

(5.21) IlVl(t)ll<c7
It is now easy to conclude the proof of Theorem 5.1. It follows from (5.21), (5.15),

(5.14) and (5.3) that the operators $1 are uniformly compact. Hence, the assumptions
(2.1)-(2.3) are satisfied and there exists a bounded absorbing set in H. Theorem 2.1
applies and yields Theorem 5.1. [3
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Remark 5.2. The proof of Theorem 5.1 actually shows that

2C2(5.22) Ivl-.-<-T V(u, ).
This result, which follows from (5.15) and (2.4), will be useful in the next section.

5.2. Estimate of the dimension of the attractor. We introduce the following con-
stants:

/ 2} 1/2

(5.23) C sup of
(x,u,v)x i=1

(5.24) C4 sup + +
(X,U,O,X Ol

where and c2 are given by (4.6) and (4.9). Our aim is to prove Theorem 5.3.
THEOREM 5.3. Under assumptions (4.4)-(4.7), the universal attractor M defined in

eorem 5.1 has finite Hausdoandfractal dimensions. Moreover, both dimensions are
bounded by

C4

where c denotes a constant depending on n, m and the shape of ; n 1 + n/2 and, do, c3, c4 are, respectively, given by (4.6), (5.1), (5.23), and (5.24).
Remarks 5.4. (1) A remark similar to Remark 3.3 could be made here; the details

are left to the reader.
(2) In all the examples of 6 below, the positively invariant region is bounded

in the v direction; i.e., there exists a > 0 such that lvl N a, for all (u, v) e N. It follows
that the universal attractor satisfies

lvl(.) u(u, v)ea.
Using this bound (instead of (5.22)) and the same arguments as in the proof ofTheorem
5.3, we can derive another estimate of the Hausdorff and fractal dimensions of the
attractor:

do(5.25)’ c 1 +

where

c:= sup {(x,u,v)lx 1=1

og 2 1/2.
We shall use the estimate (5.25)’ in all the examples of 6.

Proof of 771eorem 5.3. The proof follows the same steps as for Theorem 3.2 and
most of the computations in the proof of Theorem 3.2 will be adapted here. For
(Uo, Vo) M, let us denote by 9(u, v) the linear operator from (H2(-))m X (L2(’)) m2

into E .2(f/) defined by

[(U, /))" (U V)= ([l(U, v)" (U V), [2(u, l)). (U V)),

m20f,m of (X U, 19)U -at- E --(x, u, I)) Vl,[l(U, I))" (U V)=-DAU+ / /=1 0l),

OG
2(t/, I))" U V)- G(x U)V+ i=11 U/(x’ U)

ogvu, + ,--,;’ (, u)u,,

where (u, v) is the solution of (4.1)-(4.3).
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We first show that, for every to> 0, S(to) is uniformly differentiable on . Its
differential at (Uo, o) is the linear operator on E (, ) L(to, Uo, o)" (, )
(U(to), V(to)), where (U(to), V(to)) is the value at time to of the solution (U(t), V(t))
of the following linearized problem:

O-["[I(U /))" (U, V)-0, r-[2(U /))" (U, V)---0,
u(o): , v(o) n,

U satisfies (4.3)
(we omit the details).

We then define

qN li sup( inf llo )inf Tr(9(u,v) oQ)ds
+ (uo, v0) rank Q N

where Q denotes any orthogonal projector of rank N in E such that

QE c {( U, V) e (HE(fl)) m, x (LE(f)) "2, U satisfies the boundary condition (4.3)}.
As in Theorem 3.2, if qN > 0 for some integer N, then the Hausdorff dimension of g
is majorized by N and its fractal dimension is bounded by (3.10).

To estimate the qs’s, let Q be an orthogonal projector satisfying the above
conditions and let {(qg,g,J)}j be an orthonormal basis of E such that
(pl, 01),..., (q, 0v) is a basis of the image of Q. Then

(5.26)

Also

j=l i,k=l

where we have set
N

p(x)-- E I(x)l=.
j=l

Using (5.22) and the constant 4 defined in (5.24), we have that the last integral in
(5.26) is majorized as follows:

N

% I1 leVI ( i iva constant)
=1

C5C4 fa- I + (x&.
-2.=

y, d, llll=+ GO" d/"idx >- do E IIll=+a Z I
j=l i=1 j=l j=l

(Ca given by (5.23)),

Using the constants do and defined in (5.1) and (4.6), we have



840 MARTINE MARION

Combining the above inequalities, from (5.26) we infer that

Tr N(u, v) Q >_- do 11112+ 2 I1, c3 -1- o(x) dx.
=1 28 ]j=l

This estimate is analogous to (3.12). Moreover, the generalized Lieb-Thirring
inequalities for the vector functions () read like the ones (see (3.14)) for the
scalar functions with constants K, K2 that depend on n, ml, and the shape of
Hence, we can conclude the proof of Theorem 5.3 thanks to computations similar to
the ones from (3.12) in the proof of Theorem 3.2; the details are left to the reader.

6. Examples. We describe some examples of reaction-diffusion systems satisfying
the hypotheses (4.4)-(4.7).

Example 6.1. Hodgkin-Huxley equations. This system, proposed by Hodgkin and
Huxley [13], describes the nerve impulse transmission. Here n 1, (0, L) and the
system is of the form (4.1) with ml 1, m= 3:

0 dOu

Ot- Ox
-f(u, v, v, v3),

(6.1)

We have

t

k2(u)(h2(u)-v2),
Ot

Or3 -k3(u)(h3(u)-v3).
Ot

f(u, v)= -T1/)12D2(0"1 u) ’2v(o"2 u) T3(o" u),
with yi > 0, rl > tr3 > 0 > r2. Furthermore, d > 0, ki, hi are oo functions and satisfy
ki > 0, 1 > hi > 0, 1, 2, 3; u represents the electrical potential in the nerve, while
v, v2, v3 represent chemical concentrations and vary thus between zero and one.

It is proved in Chueh, Con!ey, and Smoller [3] and Sermange [23] that any
rectangle

{(U, /21, V2, /)3), O0 U O1, 0 /)i 1, 1, 2, 3}
is an invariant region provided al_>- 6 (> 0), ao=< 2 (< 0). Assumptions (4.6) and
(4.7) are obviously satisfied and (4.5) follows from the existence of the compact
invariant region (see [18] for more details).

Theorems 5.1 and 5.3 apply and give the existence of a universal attractor M
whose Hausdortt and fractal dimensions are finite (the boundary condition is the
Dirichlet, the Neumann, or the periodic boundary condition). This attractor describes
the long-time behavior of the impulse transmission in the nerve. Its Hausdortt and
fraetal dimensions are more precisely bounded by

( 1 1(1/21c/1))c l+-d+-L 5 +- +-c34
where c is a universal constant and

B= min min ki(u),
1<__i<-3

C max
(u,v)e
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C4
(u, v) i=

)1/2+]k,(u)h(u)l:+lk(u)]

Example 6.2. FitzHugh-Nagumo equations. These equations introduced by
FitzHugh [8] and Nagumo, Arimoto, and Yosimzawa [21] are also intended to describe
the signal transmission across axons; they read as follows:- h(u) v, cru Sv.

O 19X2 19t

Here n 1, (0, L), ml m2 1, tr > O, 5 > 0 and

h(u)=-u(u-)(u-1), 0</3 <1/2.
As in (6.1), u represents the electrical potential in the axon, but v has a more complicated
interpretation.

It is proved in Chueh, Conley, and Smoller [3] that any rectangle

is an invariant region provided the edges v a4 and v =-t3 of are, respectively,
included in the half spaces o-u-v<O and o-u-v>O and the edges u a2 and
u =--a are on both sides of the zero set of h(u)-v. Assumptions (4.6) and (4.7) are
obviously satisfied and (4.5) is proved as in Example 6.1 above.

Theorem 5.1 and 5.3 apply and give the existence of a universal attractor having
finite Hausdorff and fractal dimensions (the boundary condition is either the Dirichlet
or the Neumann or the periodic boundary condition). Moreover, both dimensions are
bounded by

( 1 (1/21c33/21))C I+-+L t +-d +g7c34
where c is a universal constant and

c3- max Ih’(u)l, c,-- {1 + 0"2} 1/2.

Example 6.3. A system of solid combustion type. In the theory of combustion of
solids, there arises the following system"

--=Au+trvh(u), rvh(u)+k(x).
19t Ot

Here n => 1, m m2 1; tr> 0, k(x) is a (2 function on 1) with k >=0 and we have

h(u)=exp -l+y(u--i)
where fl > 0, y e ]0, 1[; u represents the temperature while v represents the concentra-
tion of the solid reactant. The original model where k =0 (see Matkowsky and
Sivashinsky [20]) leads to a trivial attractor; here we introduce a source term of reactant
k 0. From a physical point of view, a useful variant of the model consists in assuming
a constant flux of reactant across the boundary (Clavin et al. [4], Clavin [5]); the
corresponding problem, which requires some modifications of the above framework,
will be studied in another paper [19].

Using the classical truncation method, we can show that the rectangle

={(u, v) u>=O,O<-v<-_o}, a =--exp sup Ik(x)l
tr 1
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is a positively invariant region. Also, assumptions (4.6) and (4.7) are satisfied and (4.5)
is proved thanks to an estimate of

Theorems 5.1 and 5.3 apply and give the existence of a universal attractor with
finite Hausdorff and fractal dimensions (for a Dirichlet boundary condition). These
dimensions are majorized by

where c depends on n and the shape of fl, n 1+ n/2, and

(5 o" exp
1

c3 =-- exp
y(1 ),), sup,,a Ik(x)l,

c4= o"exp +c3

Example 6.4. Feld-Noyes equations. The equations of this last example serve as
a model for the Belousov-Zhabotinskii reactions in chemical kinetics (cf. Howard and
Kopell [14], Hastings and Murray [12]). Here, n_-> 1, ml-1, m2=2 and (u, v, 1)2)
satisfy

ot

(6.2) Ov 1
(y1)2-1)1 U1)l),

ot a

01)2 O’(U 1)2)
ot

where a,/3, y, tr are positive constants. The constant d can usually be greater than or
equal to zero, but we impose d > 0; u, 1)1, 1)2 represent chemical concentrations.

For convenience, we introduce the new unknowns Wl Vl, WE- SV2, where s> 0
will be chosen later. Then the system (6.2) becomes

dAu + a(wa- uw + u flu2),
Ot

ot

OW2 w:).
ot

It is proved by Chueh, Conley, and Smoller [3] that

@ {(u, Wl, w2), 0=< u =< a, 0=< W b, 0=< w2 =< see}

is invariant provided a > max (1,/3-1), c > a, b > yc. Assumption (4.7) is obvious and
(4.5) is proved as in Example 6.1; (4.6) is satisfied provided 72< 4trasc2 and we choose

= yl(2cra) 1/2.
Theorems 5.1 and 5.3 apply and give the existence of a universal attractor whose

Hausdorff and fractal dimensions are bounded by
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where c depends on n and the shape of 1), n 1 + n/2, and

ue[O,a]

C a(b + + fla),
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LOCALIZED CLUSTER SOLUTIONS OF NONLINEAR DEGENERATE
DIFFUSION EQUATIONS ARISING IN POPULATION DYNAMICS*

YUZO HOSONO" AND MASAYASU MIMURA*

Abstract. The stationary problem of a nonlinear degenerate diffusion equation with nonlocal advection
term including the aggregative mechanism is investigated. The spatially clustering phenomena of individuals
in population dynamics is modeled. The existence of two kinds of stationary solutions with connected
compact supportma large as well as a small cluster solution--is proved by the matched asymptotic expansion
method and the geometric singular perturbation method, respectively.

Key words, nonlinear degenerate diffusion, nonlocal advection, aggregation, clustering, singular
perturbation
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1. Introduction. In this paper, we will study stationary patterns of a one-
dimensional phenomenological population model that describes the spatially clustering
phenomena of individuals:

(1.1) ut=e2(Um)xx-e(K[u]u)x+f(u), (x,t)nx(O, o),

where u(x, t) denotes the population density at position x and time and the constants
m and e satisfy that m > 1 and e > 0. Here, K[u] is given by

(. :[ul(x, u(y, ay- u(y, t y

with parameters A > 0 and r (0<= r_< c), and f is assumed to be a cubic-like function.
First, we briefly give the ecological interpretation on the model equation (1.1)

with (1.2). The dispersal of individuals involves two processes. One is the density-
dependent random movement that possesses "population pressure effect" (see Gurney
and Nisbet [8], for instance). The other is the directed movement to cluster for oneself;
that is, if the total population in the interval (x-r, x) is less than that in (x, x + r),
that is, -r u(y, t) dy <+ u(y, t) dy, the individuals at position x move to the right
and to the left if the inequality is reversed. Hence, (1.2) includes the aggregative
mechanism of individuals through nonlocal interactions, f(u) means the growth term
ofindividuals. Let us show one specific form off(u) often used in mathematical ecology:

fp(U)= a- U-l+u
where a is the intrinsic growth rate of the individual. K is the carrying capacity,
ku/(1 + u) is the predation rate of a predator with the maximum rate k, and P is the
population density of the predator. If P remains constant and takes a suitable value,
fp(u) 0 has three solutions, say O, A, and I as in Fig. 1. In this paper, we specify
f(u) as

(1.3) f(u)=u(1-u)(u-a)

with a parameter a (0 < a < 1), because it is a quite simple but suggestive nonlinearity.

* Received by the editors May 16, 1988; accepted for publication October 7, 1988.

" Institute of Computer Sciences, Kyoto Sangyo University, Kyoto, 603, Japan.
Department of Mathematics, Hiroshima University, Hiroshima, 730, Japan.
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fp (u)

FIG. 1. Functional form offp (u).

This kind of model has been discussed recently by several authors. For f--0 and
m> 1, Nagai and Mimura [14]-[16] have fully discussed the case r=o and have
shown the existence of stationary solutions localized in a finite interval and their
stability, and Ikeda 11] and Ikeda and Nagai 12] have investigated the case r < +o.
See also Alt [1] for chemotactic models.

If A -0, that is, if there exists no aggregative effect, then (1.1) is reduced to the
nonlinear degenerate diffusion equation with bistable kinetics (1.3):

(1.4) ut eE(um)xx+f(u), (X, t) g x (0, o).

Suppose that the initial data have compact support. Then, if S(a, m) =- lof(u)um-1 du <
0, the solution u(x, t) of (1.4) tends to zero uniformly in xR, while if S(a,m)>O
and u(x, O) > a for all x (-L, L) with sufficiently large positive L, u(x, t) tends to 1
uniformly on any compact subset of R. Moreover, the support of solutions is compact
for each t>0 and monotone nondecreasing, that is, supp [u(., tl)]C supp [u(., t_)]
for any 0_-< tl < t2 (see Hosono [9]). This compactness property of support is one of
the main features of nonlinear degenerate diffusion equations such as the porous media
equation (see, for example, Aronson [2]).

The linear diffusion case (1.1) for m- 1 and r oo has already been studied by
Mimura, Terman, and Tsujikawa [13] for the case of bistable kinetics (1.3). The above
results motivate us to consider (1.1) for m > 1 and r < +, and show the existence of
localized cluster solutions due to nonlocal advection (1.2).

In this paper, we assume that e is sufficiently small, namely, the dispersal rate is
much slower than the rate of dynamics, and consider the stationary problem of (1.1):

(1.5)
e(um),,x-e(K[u]u),,+f(u)=O, x.g,

u(+) =0.

We show that two types of solutions with compact connected support exist, depending
on r and a: a large single cluster solution that has O(1)-length support and a small
one that has O(e)-length support (see Fig. 4). The numerical simulations suggest that
the former is stable while the latter is unstable. Here, it should be noted that the
degeneracy of diffusion at u 0 requires the weak definition of solutions. A solution
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of (1.5) is defined by a nonnegative function u on R satisfying the following: (i) u is
bounded and continuous; (ii) u" satisfies the integral identity

f oo {-[e:(u),,-eK[u]u],+fq} dx=O
for all CI(R) such that -> 0 and vanishes for large values of Ixl. To prove the
existence of single cluster solutions, we employ two different approaches by exploiting
the smallness of e, that is, the singular perturbation method (the matched asymptotic
expansion technique) for a large one and the shooting method used in [6] for a small
one. In both cases, the degenerate character of the problem makes the proofs more
complicated than for linear diffusion cases.

Due to the compact support of the stationary solutions, there also exist multiple
cluster solutions. Figure 2a-f shows several cluster solutions; the number of clusters
depends on the magnitude of the initial function in an appropriate sense. Such
phenomena are drastically different from the linear version (m 1).

2. Formulation of the problem and the main results. We consider a symmetric
solution u(x) at x 0, with connected compact support, that is, it satisfies u(x) u(-x)
for all x R and supp [u] I-co, co] with some co > 0. Then our problem is to find a
solution u (x; e, co) of

(2.1) e2(um)xx-e(K[u]U)x+f(u)=O, x /,o (-co, co),

u=0, (Urn)x=0 at x=i+/-o,,

(2.2) u(x) u(-x) > 0 for x e/,

u(x) 0 for x R\/,

where co is a parameter to be determined. We note that solutions of (2.1), (2.2) become
a solution of (1.5).

We will first construct a formal approximation to a large cluster solution of (2.1),
(2.2). Set e 0 in (2.1). Then we have f(u)= 0, and define Uo by

1,
(2.3) Uo(x,

for any fixed/3 e (0, m). We discuss the jump discontinuity of Uo only at x =/3. Let
us introduce the stretched variable -(x-fl)/e. Then the equation in (2.1) is

(um)ee-(K[u]u) +f(u) =0,

where

K[u] A u(y) dy- u(y) dy
L .I e+13 ,e+13-r

We may expect that the solution u is given by Uo(x, co)+o(1) for Ixl<-fl-K(e) and

Ixl>-fl +K(e) with some positive K(e)=O(1), SO that

K[u] , Uo(y, fl) dy- Uo(y, 13) dy + o(1)= -t min (r, 2)+ o(1).
ll3

Setting e 0 and k min (r, 2/3), we have the inner problem:

(2.4)
(um)li+ Akuli+f(u)=O,
u(-oo) 1, U(I) (Um)x(131) O, u(0) a e [0, 1),
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". X

(a) L= 10.

(b) L=ll.

,,,,,, ,&,, /
,’-

(c) = 13.

FIG. 2. Time development of initial functions into multiple cluster solutions for the initial data Uo(X)=
fo Ixl d o(X) o fo Ixl L, wh 1.0, 0.2, 2, d .0.
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(f) L=2.

FiG. 2--continued

where the last condition is imposed to fix the translation invariance and /31 is an
unknown to be determined. For this problem, it is shown in [7] that there exist a
unique c*(a) and a unique positive ol such that (2.4) has a unique monotone decreasing
solution Ui(:,/31) in the weak sense if and only if k c*(a)/;t and/l ol. Moreover,
c*(a) is a strictly monotone decreasing function of a (0, 1) satisfying c*(a)= 0 for
a=a* (m+l)/(m+3) and c*(a) > 0 according to S(a, m) >:0 (see [7]) Therefore,
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if a(0, a*) and r satisfies r->_ 2tOo with tOo=c*(a)/2h >0, we can choose/3 as/3 =tOo
so that k=min (r, 2fl) attains the value c*(a)/h. Thus, we have obtained the lowest-
order outer and inner solutions as Uo(x, too) and Ui(, to1)= Ui((x- too)/ e, tol),
respectively.

Next, we consider a small cluster solution. Taking its outer solution as identically
zero, we may construct only the inner solution. Put to er and x/e, and rewrite
(2.1) as follows:

(2.6)

where

(u")nn-e(K[u]u)n+f(u)=O 7 J= (-tr,

u=(u"),=0 ate=
u()=u(-)>0 for7J,

u(r/)=0 for r/ R\J,

K[u]=h

Setting e 0 in (2.5), we have

(2.7) (um)nn +f(u) =0, r/6 J,

and

(2.9) supp Ul] [-too- ,(e), too+ o31(e)],

where (e) is a positive function of e satisfying lim_o (’1 E 0.
(B) For eachfixed r >= 6 > O, there exists an e > 0 such thatfor any e (0, e), (2.1),

(2.2) has a small single (symmetric) cluster solution Us (x, e) satisfying

(2.10) lim Us(en, e)= ui(7; O’o) uniformly in n =- R
e-O E

and

(2.11 supp Us [- eo’, er ],

where r is some positive function of e satisfying lime_o cr cro.
Let Ul and u2 be any two solutions of (1.5) satisfying that the distance between

supp [u] and supp [u] is not less than r; that is, dist (supp Ul], supp [u]) _-> r. Then,
it is easily seen that Ul+ u becomes a solution of (1.5), so that our theorem directly
gives the following corollary.

lim Ul(x, e) 1 uniformly in x (-too+ K, too- )
--0

(2.8)

which can be solved under the conditions (2.6) (see Lemma 4.1 and its remark). We
see that, for each a (0, a*), there is a unique O-o> 0 such that a solution ui(t, tro) of
(2.7) uniquely exists for tr ro and is monotone decreasing for _-> 0. Moreover, tro
is a strictly monotone increasing function of a satisfying lima_a*r0=+C and
lima_o Cro 0. This is the lowest-order approximation to a small solution. Now we state
our theorem.

THEOREM 2.1 (Existence of single cluster solutions). Assume that 0 < a < a* and
let be any small positive constant. Then, we have the following:

(A) For each fixed r->2too+, there exists an Co>0 such that for any e(O, Co),
(2.1), (2.2) has a large single (symmetric) cluster solution UI (x, e) satisfying thatfor any
small > O,
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COROLLARY (Existence of multiple cluster solutions). Let {Xi}iA (A: an index
set) be a finite or countable sequence of real numbers and A1, A2 be index sets satisfying
A=A1UA2, A1 f’IA2= b, and denote Ui Ul(X-Xi, e) for iA1 and uj= Us(x-xj, e)
for jA2. If dist(supp[u],supp[t])>_-r for any U,{Ui}iA1U{U}A2 such that
u , then (1.5) has also a solution u(x, e) represented by

(2.12) u(x, e)= Ui+ u
iA jA

(see Fig. 2).
Remark 1. If a -> a*, then c*(a)<-0, so that there exists no solution for (2.4) since

k min (r, 2/3) > 0. Also (2.7) and (2.6) have no solution for a >_- a*. By this result and
the complementary numerical simulations, we may conjecture that (2.1) and (2.2) have
no spatially heterogeneous steady state solution when a >_-a*.

Remark 2. Let r be fixed in (0,2Oo*) with Oo*-=lim,,+o c*(a)/2h and define a*
by the relation r=c*(a*)/A. Then k<=r<2w*o for all/3>0, which implies that there
exists no solution of (2.4) for a [0, a*]. Hence, for small e > 0, we can expect that
there is some at(e) satisfying lime+o ar(e) a*r such that for 0 <= a <= ar(e) there exists
no large cluster solution and any solution expands into R, as in Fig. 3, or decays to
zero when initial data have compact support.

> X
FIG. 3. An expanding wave solution for 1.5 < 2Wo, e A 1.0, a 0.1, and rn 2.

These results suggest the global branch of single cluster solutions in
(a, Ilullc)-space as e-+0, where Ilull’ denotes the Ll-norm of a solution u. For each
fixed r=>0, we consider the branch Ilullc as a function of a. For r=>2Wo*, the solution
branch is as in Fig. 4(a) where there are large (bold line) as well as small (bold broken
line) singular solutions (as e 0 for 0 < a < a*), and for 0 < r < 2Wo*, the branch is as
in Fig. 4(b), where there is a large singular solution only for a* < a < a*. For r =0,
there is only a small singular solution branch for 0< a < a*. From the result of the
singular case, we may conjecture the following global structure of single cluster
solutions for e > 0. We first note that there are two numbers r,(e) and r2(e) satisfying
lim+o rl(e) =0 and lim+o r2(e) 2Wo*, such that for each fixed r >- r2(e), the (unstable)
small solution branch starting from the origin goes right up to a limit point, say
(at(e), lc(e)) and through this point, it goes back to the left with the recovery of
stability. Then it arrives at a point on a=0, say (0, l(e)). Here it should be noted
that a(e)-, a*, lc(e)-O, and l(e)- 2tO*o as e -0. For a fixed re (rl(e), r2(e)), there
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is a large solution only for at(e) < a < ac(e), and for r (0, r*(e)) there exists no large
cluster solution. The cases when e > 0 are depicted in Fig. 4a-c by solid lines.

We devote the remaining part of this paper to the proof of our theorem.
3. Existence of a large single duster solution. Set v(x)= o u(y) dy and assume

r => 2to. This implies that v(x + r) -v(x- r) o u(y) dy for Ixl--< and u(x) =- 0 for

Ixl> so that we see K[u]u -A2vu. Here, we introduce the new variable q um-1.

Ilull L1

Ic(8)(

2u

0 a*
(a) r_-> 2to0

Iluil L1

la

,.,, > a

(b) a < < 2o

/\ Ilull L1

(ac(S),lc(S))

0

(c) r= O(e) and >- eo"o.

FIG. 4. The global solution branch in (a, IlullL’)-space for e -o and e >o.
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Then our problem is to find a solution (q, v) and to of

e-qqx, + e la,qx+ 2emvq + F(q)
(3.1) N(q,v) m =0

Vx q"

and

for x e/ (0, to)

q(0) q(to) (q’’),(to) 0,

(3.2) q(x) > 0 for x I,,,, q(x) 0 for Ro [to, +co),

v(0) =0,

where/z 1/(m 1) and F(q) (1/mtz)[ql-’f(q")+ 2eAql+"]. To solve this problem,
we employ the singular perturbation method with the patching argument (see, for
example, [7]). Hence, we split it into the following two problems. Let a be a fixed
constant satisfying a "-1 < a < 1, and let/3 and y be parameters in some neighborhood
J (tOo-6, tOo+ 6) of tOo with a small 6 > 0. The first problem is to find a solution
(q, ) of

(3.3)
N(q, v)=O, xeI=(O, fl),

qx(O) O, q(fl a, v(O) O.

The second is to find a solution (q, 6) and tO of

N(q, v) =0, xR (/3, +),

(3.4) q()=a, q(tO)=(q’’)(tO)=0, q(x)>0 for xe[,tO),

v(t) r,

which has the degenerate character passed from (3.1), (3.2). We first discuss (3.4) and
later (3.3).

Throughout this paper, we will use the following Banach spaces: For I (0, 1)
and J R/ (0, +oo).

C(I) ulue C1(I), sup lu(x)l+ xx(X) <+az, u(0)=0

C,o(I) ulu e C2(I), sup Z u(x) < +, u,(O)= u(1)=0
xI i=0

XP(J) ulu e CV(J), sup e p _, u(x) <+oo
xJ i=0

" x(), u(0) 0},X.,o() ={.I.
o xO()},x.() {.I. Xo,o(), .

xO() Xo().
We often write C(I) as simply C, and do other spaces in a similar way. C
(j O, 1, 2,...) always denote positive constants independent of e.

3.1. Construction of solutions of the degenerate problem. Set (x-/3)/e and
p q, and introduce the new independent variable " by

de(3.5)
d"

q’ :(0) 0.
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Then, (3.4) is written as

q pq,

2A
(3.6) Pc -IxP2---vP- F(q), R/ (0, +),

m

and

l+tv eq

(3.7)
q(0) a, q(+c) 0, p(sr) < 0 for sr R/,

v(0)- .
For e 0, assuming that 3 is sufficiently small, we already have the result that for
Y s Js, there exists a unique solution yo(sr; y)= (qo(sr" y), po(sr; y), Vo(’; y)) of (3.6),
(3.7) which satisfies that qo, po+ 2hy/m/x Xo_(R+ with p_= -2hy/m/x, Vo(’; y)= y,
and po(0, y) is monotone decreasing with respect to y (see [10, Lemma 5.6]). For
(3.6), (3.7) with a small e > 0, we will look for a solution of (3.6),, (3.7) in the form
: yo+y, where y t(ql, Pl, Vl). Let Yl t(ql, Pl). Then, (3.6) is written as

(3.8) / Qlyl gl(Y, e) \
Vl g2(ql, e)

where

d
Q1 ---/(),

with Fo(q) q’-f(q")/ mtx,

PoB()
-F(qo)

qo )-2( Po+ Ay/m)

Plql

gl(Y, E) 2As
-[Fo(qo+ ql)- Fo(qo)- F(qo)ql]-/xp1-2A (Po+pl)r-(qo+ ql)l+

m

and g2(ql, e) e(qo+ ql)l+C The boundary condition is

(3.9) q(0) ql(+) 0, Vl(0) 0.

From (3.8), (3.9), for a small eo> 0 and some p (0, psi with p =-/9_-3 (3 > 0), we
define a nonlinear mapping

G(y, e)" zlp,o x [0, o) -= xl o o X0 XO.,o xXxX x [0, o) --> Z X x x

Then our problem is to find a solution y(e) Z,o of G(y, e) O. Let us further rewrite
this as follows. Integrating the second equation in (3.8), we see that if q Xp,o, then

(3.10) v(’) e [qo(’)+ql(’)]+d’=eRl(q)eX,.o

for any p e (0, p]. Therefore, (3.8), (3.9) is reduced to

(3.11)

where

Qly, gl(yl, eR(ql), e)= hi(Y1) + eh2(Yl),

hi(y,)
h,2(Yl) -[Fo(qo+ ql)- Fo(qo)- F(qo)ql]-ia,p21
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and

(0)h2(Yl)
h22(yl)

t 0

2A(p+pl)R(q’)m
mlz

(q+ql)l+"

For the linear mapping Q1, we have Lemma 3.1.
LEMMA 3.1. Let be sufficiently small. Then for each p (0, p], the map QI" Y =-

Xlv,o x X--> Yv=-- X xX has a bounded inverse Q-I.
Proof. See the Appendix for the proof.
Applying Q-I to (3.11), we have the equation

(3.12) Yl Q-lgl(yl, 2R(ql), e)--- (yl, e).

The nonlinear operator : Y [0, Co) yl c y, satisfies the following lemma.
LEMMA 3.2. Let p befixed in (0, p and y J. Then there exist a small closed ball

BK(0) {Yl Ilylll . -< } and a small constant Co> 0 such that is a uniform contraction
on BK(O) and continuous from BK(O) x[0, Co) into B(O).

Proof. See the Appendix for the proof.
Thus, we can apply the uniform contraction principle [4, Thm. 2.2] to (3.12) and

obtain a solution yl(e)=(ql(; e, T), Pl(’; e, "y))E Yv satisfying yl(0) =0. Moreover,
(3.10), (3.12) shows that y(’; e, y)=(ql(sr; e, y), pl(sr; e, y), vl(sr; e, y)) Zo with
Vl(Sr; e, y)= egl(ql(; e, y)) and it satisfies lime-o IIY(’; e, Hence we have
a solution Yo(’; Y)+Y(’; e, y) of (3.6)e, (3.7). Note that the above argument is valid
uniformly in y 6 J for a small 6 > 0, so that y is uniformly continuous in e and y.

Next, we examine relation (3.5). Let bo(’)=oCqo("; y) d" and be(’)
joc [qo("; Y)+ ql("; e, y)] d". Then

sup < sup Iql("; e, y)[ d"_-< Ilq, llxo e-C’d’O
eR+ eR+

as e-->0 uniformly in yI. Set limc_ be(’)=toe(y)<+ for e[0, Co). Since
dche/dsr > 0 for " [0, c), be is a ditteomorphism from [0, c) onto [0, too), so that we
have an inverse function b -1 of be. Using this, we define a pair of functions (q, 3) by

T) to(:;. T)+ ql(t-’(:); e, T),
E,

(0, w_-<f<+,

3(; e, 3,) y+ e [q( e, y)]" d’

O<< toe,

with = (x-)/e, where Co(:; y)= qo(-l(); T). This is a solution of (3.4). Thus we
have Theorem 3.1.

THEOREM 3.1. Let 6 > 0 be sufficiently small. Then, for y I there exists a small
Co>0 such that for e(O, Co), (3.4) has a solution ((; e, y), 3(c; e, y)) with
=(x-fl)/e satisfying >0 for O<=<toe(y)<+c, 7t=0 for >-_toe(y), and
lime_o (d/ d:) (0; e, y) (d/ d:) o(0; y) uniformly in y. Moreover, (q, ) is uniformly
continuous in e and y relative to the norm of C2(I,) C2(I,) with I K, [0, too- K’] for
any K’>0 and (d/d)to(O; y) is strictly monotone decreasing with respect to y.
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Remark 3.1. to(:; 3’) is a unique monotone solution of

(3.13)
qq + txq2 + 2

A 3"
m
q+ F(q) 0’ : (0, too),

q(0) a, q(too) 0.

3.2. Construction of solutions of the nondegenerate problem. To make the parameter
dependency of solutions clear, we normalize the interval by z--x/fl and set 0.- eft.
Then, (3.3) is

]Q(q, v)
tzqz+ 20.Avqz + F(q)

m

(3.14) Vz-q
zI=(0, 1),

qz(O) o, q(1) , v(O) o,
where F(q) [ql-,f(q) + 2A0.flql+,.]/mtx. For sufficiently small 0. > 0, the standard
singular perturbation method gives the lowest-order approximation as

4o(Z; ,/3) 1 + O(z- 1)[qo(n;/)- 1],

o(; , o(’; ," d’,

where (z- 1)/ and qo(, ) is a unique monotone decreasing solution of

(3.15) qqnn+q+2qn+Fo(q)=O, n e - (-, 0,

q(- , q(0 e (0, ,
and 0() is a C cutoff function such that 0N 0()N 1, 0(z)= 1 for IIN and 0() 0
for lzle. Note here that Iqo(n;- decays exponentially with exponent [-I+
((I) F( 1 )/]/m and (d/d qo(0; is strictly monotone increasing with respect
to . Using this approximation, we seek a solution in the form (q, v) (o, o) + (q, v).

For small positive o and , let us define a nonlinear mapping

s( , , N(o+ q, o+ v. g x (0, o x

where (q, v), Y C,o x C, and Cx C. The Frchet derivative of S,

s,( t, , s s]

is given by

S,,(t, 0.,fl)=0. q +20" tx0"qz+V -z+[0"2qzz+F’(q)],

$12(t, 0", fl) 20"--A qz, S21(t, 0", fl) -txflq-1, $22 d.
m dz

< u}. It follows from this expression thatLet B(0) { Iltll:
IIs,(t, , )- st(t2, , )11 o g[lt t=ll

for t, t B(O), (0, o), and J, where K is some constant. We show the
uniform inveibility of St.
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LEMMA 3.3. There exist small positive tro and such that for any trs (0, ro),
c(1-,l), and flJ, St(0; tr, fl) has an inverse S satisfying IIs[loK,
where K is a positive constant independent of and ft.
oo We first consider

Sal(0, , fl) 2ao +al+ a2" C2
,0 C

where ao=4o, al=2(4oz+(A/m)o), and a2=2ozz+F(o). Since o satisfies
SUpz, I((a/az)’[4o-1]l c,<1- <i=0,1,2 with Co 1, we easily find that ao
a>0 and a2C2(1-a)+F(1)+F(o)-F(1)+2(A/m)-<O for a
(1- , 1), fl J, (0, o) if we choose and o sufficiently small. Therefore, the
maximum principle for usual two-point boundary value problems shows that S has
a uniformly bounded inverse S?" C C,o satisfying IIsVll g, where K denotes
a positive constant independent of , a, and ft. It is obvious that $22(0, , fl)" C C
has an inverse S satisfying IIsll cOc: 2. s1= and $21 are multiplication operators
satisfying

ISle<0, , 1sup d. 2x
:qo <--C1<1-m

and

1S21(0, o-,/3)1 sup I/x/3t-ll =</xfl max (1, (1 a )/x-l) < C3"
zI

These estimates assure the uniform invertibility of St. Actually, consider
S,(O, tr, )t k for k (kl, k2) yO. Then we can easily rewrite it as follows:

ql S-(ll kl S12S21 k2) S-(S12S-$21 ql,

v Sk2-SS21ql

Since IIST?S,2SgSllc,o_C,o<-(4,X/m)C, C3K,(1-a)<-1/2 if we choose
< C411kll.o and1-m/8ACC3K, it follows from the above equations that

,11 --< Cllkll o. Here all constants Ci are independent of tr, a, and/3. This completes
the proof.

LEMMA 3.4. lim_o IIs(0, , )11 o=0 uniformly in fl Jfor small >0.
Proo This lemma can be proved by the standard matched asymptotic technique

(see, for example, [10]), so we omit the proof.
Now Lemmas 3.2 and 3.3 enable us to apply the implicit function theorem to

S(t, , #)=0. Then we see that there exists a solution t(, fl)= (ql(z; , fl), Vl(Z; , fl))
of S( t(, fl), , fl) 0 satisfying that limo t(, )11 ,,o: 0 uniformly in fl I and
t(, ) is uniformly continuous in and fl relative to the norm of 2C,o. Thus we
obtain a solution (o(Z; , fl)+ ql(z; , fl), o(Z; , fl)+Vl(Z; , fl)) with z= x/fl and

= e/#.
THEOREM 3.2. ere exist small positive constants eo and such that for any

e (0, Co), a (1-, 1), andfl J, (3.3) has a solution ((x; e, fl), (x; e, fl)) satisfying
limol[4(x;e,)-lllc<)=o with I=[0, fl-r] for any small >0 and
limo e d/ dx) (; e, fl d/d qo(O; fl uniformly in ft. Moreover, , ) is uniformly
continuous in e and fl relative to the norm ofC,o and d/d)qo(O; fl is strictly monotone
increasing with respect to ft.

3.3. Patching of solutions. We proceed to construct a solution of (3.1), (3.2) by
patching two solutions (, ) and (, ) as

e, ), (x; e, )), x ,,
(q(x; ,, e), v(x; e,, r))=

(4(; , ), (; e, )), =(x-#)/eg,.
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To do this, it is sufficient to show that at x -/3, v is continuous and q is C1-continuous.
We first choose y 3,(/3)--5(/3; s,/3) =/3 + O() to assure the continuity of v. Next
consider (,/3)-= (d/dx)(; , )-(d/dx)(O; , y(/3)). It follows immediately
from Theorems 3.1 and 3.2 that @(,/3) is uniformly continuous in (0, o) and/3 Is
and

(0,/3) -= lim (,/3)
d d

qo(0; qo(0, ).

Note (3.13), (3.14) and choose /3 =Wo (= c*(a)/2h ). Then the unique existence of
solutions (2.4) proves (0, Wo) 0. (0,/3) is strictly monotone increasing with respect
to /3 since (d/dr/)qo(O,) and (d/d)o(O,) are strictly monotone increasing and
decreasing, respectively. Therefore, it is easy to see that there exists a function/3 =/3 (e)
defined for (0,o) for sufficiently small o>0 that satisfies (,/3())-=0 and
lim+o/3(e) Oo. For this/3(), (q(x; e,/3(e), T(/3(s))), v(x; ,/3(), y(/3()))) is a
solution of (3.1), (3.2) satisfying supp [q] [0,/3() + sw(T(/3(e)))]- [0, Wo] as e -0.
Thus, we have obtained a large solution U(x, e)= q(x; ,/3(), y(/3()))" of (2.1),
(2.2) satisfying all properties required in the theorem of 2. This completes the first
half of our theorem.

4. Existence of a small single duster solution. For a small solution, we assume
that r_-> 2w 2ecr and set 5(r/)= u(r/’) dr/’. Then, as in 3, our problem (2.5), (2.6)
is to find solutions (u, v) and o- of

(4.1) (urn)"" + 2ca (u)n +f(u) O,
tT,-u=O, n =[’

with

(4.2) u,(0) 0, U(O’)=(lm)rl(O’)=O, U(r/) > 0 for r/e J,
v(o) =o.

In a slightly different manner from that of 3, we introduce the new dependent variable
(U, V, W) and the independent variable r by

U= u"-1, V= t, W= (u"-l), +2ev= U, +2evV,
(4.3) dr/ U with r[,=o=0,

dr

where v X(m-1)/m. Now we rewrite (4.1), (4.2) as the first-order system

u u( w-2evV),

(4.4) V Ul+u, r e R+ (0, oo),

W -tx W( W-2euV) Fo( U),

with the conditions

(4.5)
V(O) W(O) O, U(+oo) W(+oo) O,
W(r)<O for all r>O,

where /z=l/(m-1) and Fo(U)=I/(I+Ix)UI-t’f(U"). We should note that (4.4)
has the one-dimensional critical manifold 2-= {(U, V, W)[U =0, W =0} in the half-
space {( U, V, W)[W-<-0}. In the following, we use vector notation for convenience.
Let us write (4.4) as y =f(y) with y (U, V, W) and let y(r; so) denote the solution
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of (4.4) satisfying y(0; :) s. We simplify this further by writing :. r y(z; :) and. S={yly=. r rS}.
We first discuss the problem for (4.4)0, namely,

u,= uw,
(4.4)0 V U1+ E R+,

W -W2- Fo(U),

with (4.5). This is easily solved by phase plane analysis. Let Yo be a unique positive
number satisfying

fro U"f( U) dU urn-lf( u du 0
o

for each a (0, a*). Let Yo(r; Y) Uo(r; y), Vo(r; y), Wo(r; y)) be a solution of (4.4)0
satisfying yo(0; y)=o with o=(y, 0,0). Also, set D={(U, V, W)J0< U<I, V>0,
W< 0} and Eft {( U, V, W) 10 < U < ao, V 0, W 0}. Then we have Lemma 4.1.

LEMMA 4.1. For each a (0, a*), Yo(r; yo) is a unique solution of (4.4)0, (4.5) such
that Uo(r, yo) O(r-2) and Wo(r, yo) O(r-1) asr+, limo Vo(r; yo) V < +.
Moreover, if Yo < Y < 1, limo Yo(r; y) (0, V, -) holds with some V<+, while

ifao < y < yo, there exists a uniquefinite r(y) > 0 such that yo(r; y) Dfor r (0, r(y))
and yo(r(y); y) Eft.

Proo We can prove this lemma by the standard technique. In fact, the first and
third equations of (4.4)0 give the relation

1 d
(4.6) -(UW)2=U2-Iw2uz+ U2r=-U2-aFo(U)Uz.

2 dr

When we assume that there exists a monotone solution U, we can integrate this over
(0, ) as

S"f(S" ds O,(4.7)
2
U"W)+ i +

since U(0)= % W(0)= 0. The condition U(+)= W(+)= 0 requires o, so we
have

dr
UI-" 1’+ ds -( U; Yo).

Integrating (4.8) with U(O)= Yo, we see that U(r) satisfies r (s; yo)- ds. There
exists a unique function Uo(r; yo) satisfying this relationship. Conversely, such a
function gives a solution of (4.4)0, (4.5). To see the decay rate of Uo, it suces to
examine (4.8) near U =0 as

s"f(s) ds
dr 1+

(4.9) / a U3/2(1 + O(U")).
(1+)

Integrating this proves the estimate Uo(r; yo)= O(r-2) as r +, which also assures
Wo(r; yo) O(r-1) as

The behavior of solutions yo(r; y) is easily derived by examining relation (4.7)
in a way similar to the above. This completes the proof.
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Remark 4.1. We see Uo LI(R/) since Uo satisfies 0 < Uo -< y for z R/ and
Uo O(--2) as z +oo. Hence, 4o(’) --- Jo Uo(z’; Yo) dz’ is monotone increasing
and lim,_,oo /(z) %< +c, so that the inverse function -= 41(/) is defined on [0, tro)
and satisfies 41(0)=0 and lim,_o 41(/)=+oo. Set ui(/; tro)= Uo(41(/); yo) t’.
Then it is a unique solution of (2.7), (2.6) since

d_(u7,([,--o (1 +/)UWo]=+ O.

Next we will prove the existence of solutions of (4.4), (4.5) for e > 0. To do this,
we apply the variant of the Wazewski theorem formulated by Dunbar in [6]. We begin
by constructing a Wazewski set fl c R3. For small 81 > 0, define H(U) by

-8 U (0_-< U-<_ ao/2),
H(U) 81( U- ao) (ao/2 < U <- ao),

0 (ao< U-<l).
For a sufficiently small positive 82 (< 1) and a large C, define the set bounded by

’+ ={(u, v, w)
+: =((u, v, w)
+ ={(u. v. w)
+a. ={(u, v. w)

;={(u. v. w)
;={(u. v. w)
o={(u. v. w)

0 < U <-_ 1, V O, -ifU/82 < W< H( U)},
ao<U<=I,0<-eV<=C+e(1-U),W=0},
U= I, O<- eV <-_ C, -1/4< W_-<0},
0< U<l, eV=C+e(1-U),-x/U/S2< W<H(U)},
0<U<-ao,0<-_eV<-C+e(1-U), W=H(U)},
U= SE WE, O<-_ eV<- C + e(1- U), -1/s/--22 <-_ W<0},
U= W=O,O<=eV<-C+e},

where 8i (i 1, 2) and C will be specified later so that f becomes a Wazewski set (see
Fig. 5). The boundary 0I of 1 is represented by 0f=fotAO+tAf-(30, where
-+ [,.j4i=l f-. Note that f- and f are disjoint. Let 1- be the immediate exit set of
f, that is, for all Yo f-, Yo" [0, z) f for any z > 0. Then, we have the following lemma.

LEMMA 4.2. Let 8 (i= 1, 2) be sufficiently small, and let C be sufficiently large.
Then, - f-; t.J f.

Proof. Set (f-)c =0f\f-. It is obvious that lc (O-)c for i= 1,2, 3. We have
that lo c (f-) since any point in o is a critical point of (4.4). Therefore, we may
only consider 1/4, 1-1, and -2. First consider 1-. n4 (1, 1, 0) is an outward normal
for f at y e 1-. For y e 1-, 0 < U < 1, W< 0, and eV C + e (1 U) > C, so that the
inner product n4" f(y) is estimated as

n4 .f(y) U(W-2evV)+ W1+it <(1-2vC)U<O,
if we choose C > 1/(2v). This implies f-c (f-) for any C > 1/(2v).

The outward normal at yf; is given by n2= (-1, 0, 282W). For y;, V->0,
W< 0, 0< U _-< 1, and U 82W-. Hence, we have

n2 f (y) U( W-2evV) 282 wE( W-2evV) 282 WFo( U)
-( 1 + 2/x )82 wE( W-2evV) 282 WFo(82WE)

> -(1 + 2/x)82W +28 Wako
82 wa[282ko (1 + 2/.t)],

where ko=-info<u<=,(Fo(U)/U) (=a/(l+/x)). If we choose 82<(1+2/x)/2ko,
hE" re(Y) 0, which proves 1 1- Consider l- and define E+ by E+
{(U, V, W) Ill-[0< U<ao/2} and E_ {(U, V, W)12-[ao/2<-_ U<=ao}. The outward
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V

/ (1, Ck,O)

U

(1,0,-1/--)

normals for at yeE+ are n+=(+6,O, 1), respectively. For yE+, W=-6U,
0 < U < ao/2, and eV < C + e < C + 1, so that

n+ f (y) 6, U(W-2evV)-IXW( W-2evV)- Fo( U)

> --1(1 --i-- IX)U{, U+ 2 V(C Jr" 1)}4" k U> 0

with kl=info<u<,,o/2(-Fo(U)/U), if we choose 61<kl/(l+ix){l+2v(C+l)}.
Analogously, for y e E_ we have

n_ f,(y) -8, U( W-2evV) tx W( W-2eV) Fo( U)

> -ix8,(ao- U) {8,(ao- U) + 2v(C + 1)} + k2(ao- U) > 0,

with k2=inf,o/2<U<,o(-Fo(U)/(ao-U)), if we choose 81<k2/ix{l+2v(C+l)}.
Hence, we have fl - E+ U E_ c l’l-. This completes the proof.

Let 80 be a small positive constant satisfying X u -= 3’0 80, 3’0 + 80] c (ao, 1), and
set X--{(U, V, W)IUeXu, V= W=0}. Let E={:oeE[ with a Zo= Zo(so) such that
sCo.roefl}. For ’oeX, define T(:o)=sup{zlo.[0, z]_f}. Suppose oeY-, and
so [0, z]_ cl (l’l), where cl (fl) denotes the closure of l-l. Then :o" [0, z] c II since fl
is closed. Suppose oE, r< T(so), y(r; sCo) fl-. Then, y(r; o) int flLJfloU fl+.
Here, rio consists only of critical points, so y(z; o) 12o. After some calculation, we
can show that for any : II/, there exists ro > 0 such that :. z’ l-I for all z’ I-to, 0),
which proves y(z; o) fl+. Hence, we have y(z; :o) int fl. This implies that there
is an open set S, about sCo r disjoint from fl-. Thus, it turns out that l’l is a Wazewski
set.

Next, consider the mapping (:o)= :o" T(:o) from Eo into ll-. For given 3’, 3"2
satisfying ao < 3’ < 3’0 < 3’2 < 1, set :i (3"i, 0, 0) (i 1, 2). Then from Lemma 4.1 and

FIG. 5. The Wazewski set for a small cluster solution.



862 Y. HOSONO AND M. MIMURA

the continuous dependence of a parameter e, it follows that there exists a small eo > 0
such that for each e [0, Co), Ye(7.; sol) and Ye(7.; :2) intersect fl- and l-l in finite time,
respectively, that is, -(:1) 12- and -(:a)612. Note that E is compact and intersects
a trajectory of (4.4)e‘ only once in fl. Then, if E E, Proposition 1 of [6] proves that
9- is a homeomorphism of the connected set E to its image in the disconnected set
1)-. This is a contradiction, so that E # E. Therefore, there is a see‘ (,e‘, 0, 0) E such
that the solution ye‘(7.; o) of (4.4)e remains in fl for all 7.=>0.

LEMMA 4.3. There is a small Co> 0 such that for any e (0, Co), (4.4)e‘, (4.5) has a
solution y(7.; e)= (Ue(7.; ye‘), Ve(7.; ye), We‘(7.; ye)) satisfying

(4.10) lim ye(7.; e) (0, V*, 0),

where V* satisfies 0 < C1 < V* < Ca. Moreover, oe 7.; e‘ satisfies
2(1 + l)uV*

(4.11) lim Ue‘(7.; ye)/We‘(7.; ye‘)= e.
F(0)

Proof. It suffices for us to show (4.10) and (4.11). Any point y 1)\12o is an ordinary
point of (4.4)e, where U < 0 and V > 0, so that Ye(7.; e) must approach some point
(0, V*, 0) 1)o as 7.-. This implies that for any small e there exists some 7.e‘ > 0
satisfying Ue (7.e) ao/2 and 0 < 7" < 7.e < 7.2 with some constants 7.1, 7.2 independent of
e. Since We‘ <-61Ue‘ for 7. >- 7.e, it follows from the first equation (4.4)e‘ that

dU Ue. We. 2El,,Ve U We -61U2e

Integrating this over (7.e‘, 7.), we have

ao(4.12) Ue (7.) <=2 +
where Ue‘(7.) simply denotes U(7.; Ye). Then the second equation of (4.4)e‘ shows

Ve‘(7.) Ue‘(7.’) ’+" dT.’+ Ue‘(7.’) ’+" d7.’

a 1

61 [2+ ao81(z- )]"= C

with some positive constant C independent of e. It is obvious that there is C > 0
independent of e such that V(z) C1. Since V (r) is monotone increasing, V (z)
has a unique limit V* satisfying C1 V* C as z .

Let us prove (4.11). We first note that for any 6 > 0, there exists a large ro such
that V* V() < V* for all z o. The first and third equations of (4.4) are written
as follows:

U. -2evV* U+ gl

W. 2ep,vV* W- F’o(O) V + g2,

where g UW- 2ev( V- V*) U and ga -tzW
a + 2evp,( V- V*) W-{Fo(U)-

F(0) U}. Set Z t( U, W) and G(Z, V) t(gl, ga). By the linear transformation Z P
with

P=
F’o(O)/2euV*(l + tx)

we have the equation for "
dT. 0 2ep,uV*

2 + G(2,
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where (, z)= P-1G(P, V(r)). By applying the result in Theorems 4.1 and 4.2 of
[5] to this equation, we can prove (4.11), which completes the proof.

Now we can show the properties of a small solution stated in Theorem 2.1. To
do so, we need further information on the solution. Consider the plane El=
{( U, V, W) 10 < U 6, 2, 0 V C2, W -62 U/e having the normal vector m
(62, 0, e) with 62 e (0, 1). Then the inner product ml f is estimated as

ml f 82 U( W- 2eb,V) et. W( W-2euV) eFo( U)

U{62(1 +/)( W-2euV)+ e(-Fo( U)/U)}

> U{k,- 62(1 +tz)(62+2euC2)}>O,

if we choose 6e< k/(l+l)(l+2uC2). Also, consider the surface E2--
{(U, V, W)le2< U<=ao/2, 0<= V<-_C2, W2=6U, W<0} having the normal vector

m2 (6, 0, -2 W). Then for

m2 f 822 U( W-2eV) + 2tz We( W- 2euV) + 2 WFo( U)
-> U[(1 +21)6(W-2euC2)-2Wkl]
_-> U[{(1 +2/z)622- kl} W- 62e{2(1 +2tz)uC26e-k1}]

>0

for sufficiently small positive 62. Here we have used the estimate V=< C2. Together
with (4.11), these two estimates prove that the orbit y(z; :) cannot intersect
E1 CJ E2. That is, we choose U as the independent variable in place of z through
U= U(z; y)---q(z) and denote the solution orbit as S’(U, V(U), WE(U))=
U, Ve(I]tl( U); Ye), We(l( U); Ye)) defined for U (0, y), where 1 is the inverse

function of . Then W(U) <-Ue for 0 < U e and W(U) <-2 for e
U ao/2. Also, we denote the solution orbit of yo(z; yo) as So: (U, Vo(U), Wo(U))
U, Vo(( U); o), Wo(( U); yo)) for U (0, yo), where U= Uo(z, o) o(Z) and

its inverse is 1.
Let us study the e-dependence of S. It follows from (4.4) that for U (0, y)

with min (o, ),

s"+f(s" V(s (s s(4.13) ( U"W (U"W) 1 +
(see (4.6) and (4.7)). Note that for small >0 there is a large ro such that
VV*-V for o and 0<info<<oU(o)U<ao/2 with small eo>0.
Then Idg/dr(g)l=lg(w-2ev)le U(aU/e+2eV) for O< Ue2 and
IdU /d (U)I u for e U U, so that for 0 < U e,

I0U (dUe -1

V*KlfoU ES2+IMs
b s+lf(s)V dr ]

dr
62 S(S+ eZa)

N Ue log 1 + C3eU2,
2

with Ka supo<,< If’( U)[ and a 2V/6. For e2< U U1, we know
v s" ds

b c()" + 62+2euV
V*K1 x/) U21 <--_ C4 U21=< C3e +
282
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Furthermore, we easily see that for small 6’>0, [dU/d’r(U)-l[<=C5 for U
[U1, y- 8’] and lau/a-(t)-’l <- c6/,/v,- t for Ue[T,-8’, 3’). Applying all these
estimates to Iy, we have [W,(U)- Wo( U)2 C7e for all U (0, ), so that

(4.14) sup [W,(U)- Wo(U)]C8.
O<U<

At the same time, this proves lim+o y To. Since U(0; y)= y Uo(0; To)= To as
e 0and V(0; y)= Vo(0; To) W(0; y)= Wo(0; To)= 0, the continuous dependence
of solutions on initial values and parameters shows that (U(; 7), V(z; y),
W(; y)) Uo(z; To), Vo(z; To), Wo(z; To)) uniformly on any compact subset of R+
as e 0. Also note that (4.12) and Lemma 4.1 show [U(z; r)l, [Uo(; ro)l c/ as
z . Therefore, we have

(4.15) lim sup [U(z; y)-Uo(z; yo)] =0.
eO R+

To prove the compactness of suppo, let us consider the difference between
(z) o U(r’; y) dr’ and o(Z) o Uo(r’; yo) dr’, which is written as

follows:

Io r vo(,o) dU,. )- Uo(’; o)] d’+()-o() [U(,
(o W U) eV U)

+
o(,o w( u) v( u) Wo( U)

dU-
ev u,( Wo( U)

I + I+ I3 + I4,

for suciently large to- For any finite ro fixed, I and I obviously tend to zero as
e 0. I3 is evaluated as follows:

Ihl sup w(g)- Wo(g)l +2v*
o<<o(o o Wo(U)[W(u)-2ev]"

Since (4.9) assures us that Wo-83for U (0, Uo(zo)) with small 3 > O, elementary
calculus shows that

r Io foo dU e dU oo dU

o Wo(W-2ev)- (u+) . (+)
o(o) +ta-+lg
(+

where b 2V/. Together with (4.14), this proves Ihl c,ollog e 0 as e o. It
follows from (4.15) that

1 [ u(

uniformly in r R+ as e + 0. Finally, we have

(4.16) lim sup 16(+)- 6o(+)1 =0,
e0

which means, in paieular, that [g-g0[ ](+)- o(+)Jo0 as o0.
Next, let us show (2.10). Let z=2() be the inverse function of =(z)

defined on [0, g), and let U() be u(2(n); y). It is obvious that

{g() (0 <),
u=

()
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is a solution of (4.1), (4.2). Set g=min (try, tro) and consider U(rl)-Uo(q) for
r/ [0, g), which is represented as

U(T)-- Wo(’Y)= W(-l(’/); ’Ye)- Wo(l(n); 70)

W(l(n); e)-Uo(l(n); o)+ W(;l(n); e)

w(’(n); ).
The first difference on the right-hand side tends to zero uniformly in z ()R+
as e O, so that we only consider the second difference as follows:

= W(&’(n); )-U(l(n); )= W(l(o()); e)-W(; e)

with =&(). Hence, noting a@’/an(n)=r(a@/a)()]-l= u,(; )-1 with
z 1(), we easily have

dU dlal= ("’)d (#)(-) c,11()-6o()1

0 uniformly in r R+ as e0,

where # =() is an intermediate value between and . Thus, we have
limo supo<< [U()- Uo()[ 0. This completes the proof of Theorem 2.1.

5. Appendix.
5.1. Proof of Lemma 3.1. Let (qo,Poc)=(, 2). Differentiating (3.6) with

respect to , we see that ’(, 2) satisfies the linearized equations of (3.6)o, that
is, Q =0. Since () <0 for all ff0, by reducing the order of the system, we have
the linearly independent solution ’(, 2) of Qff 0 as

,() 1()x(),

(5.1)
0() ()X()+ exp A(’) d’

o

where

and

As " --> +,

A(r) i() qo(’)+ 2z Po(’)+-

[ qo(") exp A(sr’) d’" dsr’.

B(+oo) ( -2AT/ ml’
-F’o(O) o)2A’y/ m

so that its eigenvalues are p+ 2hy/m and p_=-2hy/mtz, and the corresponding
eigenvectors are t(0, 1) and t(2Ay, F(0)), respectively. By the standard argument in
the theory of ordinary differential equations, noting Fo(q) C 1’’, where C1’" is the set
of functions whose first derivative is H61der continuous with the exponent/x, we see
that qo and po+(2hy/mlz) belong to the class X2__,_(R+), which means Ol, 02
X,_(R/). Knowing this, we have Proposition 5.1.
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PROPOSITION 5.1. I(dld),l,()l O(exp ,o+’)and I(dld),l,,(.)l
O(exp (p+ + p_)’) as -Proof Noting 01 dqo/d and o_ dpo/d, we see that

oa(sr) @o 1

(01(’) dqo 2A’),
F(0)(1 + Tl(qo)) as sr - +oo.

Hereafter, Yi(qo) (i 1, 2, .) denote some appropriate functions satisfying yi(qo)
O(Iq01min0z’l)). Also, we see that

2/z po(sr)+ =2/z Po(’) qo() qo()-

2AT/z F(0)(1 + Y2(qo))qo-.

Thus, we have

m+l 2Ay
A() F(0)(1 + Y3(qo))qo-.

2Ay/x m

Integration of this gives

m + 1F)(0) [l+y3(qo)]qod’A(st’) d"
2A,//x m

O(1) 2A___

so that we have

exp A(sr’) dsr’ O(exp p+’).

Since (1 dqo/d qoPo and Po O(1) for r _> 0, we have

fol (fo’ )X(sr) po(") exp A(’") d’" dsr"= O(exp p+).

By using these estimates, elementary calculation proves () O(exp (p+ + p_)ff) and
(ff) O(exp p+ff). Differentiating (5.1) with respect to ff and applying the estimate
that dl/d, d2/d=O(exp p_), we also have dl/d=O(exp(p++p_)) and

dOffd= O(exp p+). This completes the proof.
Using these solutions, we can write the general solution of (d/d-B())y=k

with y t(ya, Y2) and k ’(kl, k2) as

y() c,+ D(’)[2(’)kl(’)- 1(’)k2(’)] d’ ()

( )+ c2+ D(sr’)[-qa(sr’)k,(’’) q- pl(’)k2(’)] dsr’ q(’),

where D(’)=[det (q(sr), q(sr))]-1 and cl, ca are arbitrary constants. Since D(’)-1=
,q2-oa6, 1(’) exp (-o A(’) d")= O(exp (p_ + p+)’), it follows from Proposi-
tion 5.1 that

(5.3) D(r)
-(o2(’) (1(") ] O(exp- p+’) O(exp- p+’)
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The boundary condition on yl(0) determines c1=0. Using (5.3), we consider the
behavior of y as " +oe for k X x X with p -p_ 6 => 0 (6 > 0) as follows"

() D[2kl-q,lk2] d’ C e--’e-’e’k(’) d’
o

+ Ca Ik2(ff’)l d’ e

[(eC-1)llk, llx+ C,llkllxo] e

C(llk, II:+ Ilkllo) e-.
Similarly, we have

c
D[-O2kl + Olkz] d’ <- C4 e-+C’ e e’C’k,(’)l d’ + C, e k2(C’)l dC’

c6(11 k, o+ IIk21lo).

These two inequalities show that the uniform boundedness of a solution requires

(5.4) c + D(")[-(")k,(sr’) q- p,(’)k2(’)] d’-- 0.

Conversely, if (5.4) holds, then the second term in the right-hand side of (5.2) is
evaluated as

< C7
1 -(t,+p+)C o-t---e-+Cllk=lxo e(p+e IIk, llxo p+p++p

Hence, (5.4) is sucient to assure y e X x X, so that we have a unique solution
y() e X,o x X given by

y D[-]’+ D[-+] ’.

Differentiating this, we easily see that y xlo, o x X. Thus we have proved Lemma 3.1... Proof f Le 3.. We first show that for small e (0, 1) and e 0,
Q-g maps B(0) into B(0). To see this, we evaluate g(y, eR(ql), e) for y=
(q, p) e B(0) as follows:

IIh()ll= sup lep()q()l IIpllollqllg I11
R+

(y)llo o(qo+ q- o(qo)- F(qo)q o+ IIell
< Clllql/’llxO+ [[pll[o< c=lly, y,p
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[R(ql)[ (qo+ ql)
o

<__ e-O(l+.C[eOC;’(qo+ ql)]1+ dsr’

h22(Yl) h22(Y2)[[ x
<= Clo(llR(ql)- R(q2)llxo+ IIpiR(q)-p:R(q2)llx

+ ll(qo+ ql) 1+" -(qo+ q2)1+" [Ixo)
----< Cl1(11 ql- qall xo/ lip,-p=ll x)

It follows from these estimates that

< (C,u’+Cge)lly y=ll .(5.5) II(y, e)- (y, e)[[

we have

1+< C3[[qo+ ql]] < C4(1 + ]]y[[ yp)l+/zXp

Ilhdy,)ll,o<= --(po+p)R(q) + (qo+ ql)l+g
m x x

Combining these estimates, we have

Q-’g, - --< K,[ IIY = ’+’- / GllY, - / eG(1 / IlYlI-
_-< K,[2 + G’+’+ eG(1 + )2,+,],

where K1 IIQ;’II Y.-..
Thus, we choose K and eo(K) as "’----1 1/2Kl(1 +C2) and el r./23+2"KC7,

so that ;ll Y -< for all e [0, eli.
Next we consider the contracting property. We easily have

(y,, e)- ;(y, )11 . --< g(llh,(y)- h(ya)II oo+ (h,_(y)- ha(Ya) o)

+ eKl]h2a(y)- ha2(Ya)II o,
where Yi ’(qi, Pi) for 1, 2. The right-hand side is estimated as follows"

lih,,(y)- h,,(y=)II xo--< II(p,-p=)q, llx/ p=(q,-
-<_ q, I1,o11 p,-p=llo/ pall ollq,- q=ll o

ha(y)- h2(y2)llx

<--II G(qo/ qa)- Fo(qo/ q2)- F’o(qo)(q- qa)ll,,/ p,-Pll x
--< F,(qo/ q / O(q2- q))- F’o(qo)llxllq,- q=ll/2 p,-pall
_-< (c8(2)"’+ 2)lly, yall -,

where 0 is an appropriate value in (0, 1) and C8 is the H61der constant of the first
derivative of Fo. Since

IR(q)-R(q)}= I(qo+q)+’-(qo+q)+’ tiff’

-< 1 + ]qo + ql + O(q= ql)l" e-’ eC’lq ql tiff’

--< GIIq q=ll,,o,
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Hence for K"= min (K1, 1/4C12) we choose eo()=min (el, 1/4CllK1). Then for all
e [0, eo()], ; is a contracting mapping. Inequality (5.5) also ensures the uniform
continuity of (yl, e) with respect to Yl in (yl, e)B,,(O)[O, eo()]. The form of
(y, e) directly proves its uniform continuity with respect to e. This completes the
proof.
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SMALL PARAMETERS IN STRUCTURED POPULATION MODELS
AND THE TROTFER-KATO THEOREM*

H. J. A. M. HEIJMANS AND J. A. J. METZ:I:

Abstract. The justification of some (often implicit) limit arguments used in the development ofstructured

population models is discussed via two examples. The first example shows how a pair of sink-source terms

may transform into a side condition relating the appearance of individuals in the interior of the individual

state space to the outflow of individuals at its boundary. The second example considers the usual equation
for size-dependent population growth in which it is implicitly assumed that discrete finitely-sized young are

produced from infinitesimal contributions by all potential parents. The main mathematical tool for dealing
with these examples is the Trotter-Kato theorem for one-parameter semigroups ofbounded linear operators.

Key words, structured population, limit transition, Co-semigroup, Trotter-Kato theorem

AMS(MOS) subject classifications. 92A15, 35A35, 47D05

1. Introduction.
1.1. Biological motivation: structured populations, semigroups of operators, and the

need for model simplifications. The tenet of the physiologically structured approach to
the modeling of the dynamics of populations as set out in Metz and Diekmann (1986)
is that, provided all individuals experience the same environmental inputs such as
food availability or chance of running into a predator, we may (and should) represent
a population as a frequency distribution over a space ll of potential states of the
individuals comprising the population. (As we frequently need corresponding concepts
on the individual and population levels we will, where necessary, use the prefixes i-
and po to distinguish the corresponding terms, for example/-state versus p-state, where
the latter refers to the frequency distribution.) The main effort in model construction
is the determination of an appropriate state representation of/-behavior, where the
/-behavior consists of (i) any contributions to population change such as giving birth
or dying, and (ii) any quantities relevant to the calculation of the output from the
population model, such as the rate at which the individual consumes food. If we make
the assumption that the number of individuals is sufficiently large, then for any given
course of the environment the present p-state should determine the future p-states in
a deterministic and linear fashion. For a constant environment the maps relating
subsequent p-states should form a linear semigroup.

The transition from /-model to p-model is made through their differential gen-
erators. It is here that we leave biology and start doing mathematics" did we really
write down a genuine differential generator, and what can be said about the properties
of the semigroup so generated?

Until now the attention has been mostly restricted to models where the /-state

space [l is a subset of R k, and where the individuals move through 12 according to the
solution of an ordinary differential equation (ODE), possibly alternating with (usually
randomly occurring) state jumps, for example, due to an individual losing weight when
it splits off a daughter. The reasons for this restriction are twofold. First, models
allowing continuous random /-state movements contain many more coefficient func-
tions, which are difficult to specify on a mechanistic basis starting from known

* Received by the editors October 1, 1986; accepted for publication (in revised form) October 4, 1988.
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.

$ Institute of Theoretical Biology, University of Leiden, Groenhovenstraat 5, 2311 BT Leiden, the
Netherlands.
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underlying biology. Second, it is generally easier to obtain biological information from
less complex models. After all, the goal of the whole exercise is gaining, preferably
quantitative, insight into the relation between concrete, though possibly idealized,
mechanisms operating in the individuals and consequent population dynamical
phenomena. In fact random state jumps are already a bit of a nuisance in that they
preclude the sort of simple calculations that a practicing biologist can perform all by
himself.

In the present paper we will consider the systematic simplification of two models
that both contain random /-state jumps. In the first model, which derives from cell
kinetics, we will remove the random character of the jumps by concentrating the
takeoffs at one place in f only. In the second model, which derives from the population
dynamics of ectothermic animals (compare Sinko and Streifer (1967); Streifer (1974);
Murphy (1983); Metz, de Roos, and van den Bosch (1988); and in particular Metz
and Diekmann (1986)) and also from the dynamics of fungal pellet cultures (compare
Edelstein and Hadar (1983); and Chipot and Edelstein (1983)), we will let the size of
the jumps become infinitesimally small, while at the same time increasing their occur-
rence rate. The mathematical tools we use to justify the limit transitions are derived
from the theory of one-parameter semigroups of operators (see Pazy (1983)). Par-
ticularly important is the Trotter-Kato theorem, which relates the convergence of a
sequence of infinitesimal generators (respectively, their resolvents) to the convergence
of the associated semigroups. The resulting limit models both allow simple alternative
representations in the form of renewal equations for the rates at which newborns
appear into the population with kernels, which can easily be calculated in terms of
the model ingredients, making possible the routine calculation of biologically relevant
quantities such as the asymptotic rate of population increase. Moreover, the limit
models contain a smaller number of coefficient functions, making it easier to calibrate
them against experimental data.

1.2. Simplification procedures in two special models. In both models considered in
this paper the /-state variable of interest will be size; the growth rate of an individual
of size x will be denoted as g(x), and f will be an interval of R/. The rate at which
individuals of size x die will be denoted as/x(x).

In the first family of models we consider cells that divide into two at a rate b(x),
where e > 0 is a small parameter. It is assumed that cells that have passed size one
are no longer capable of dividing, but either differentiate or die, i.e., b(x)=0 for
x> 1. We will moreover assume that b(x)=0 for x < 1-e. The two daughter cells
may differ in size, but the distribution of their relative sizes is constant. This distribution
is represented by the probability density d (p), d :(0, 1) R/, where p is the fractional
size of the daughter relative to that of its mother. As the sizes of the two daughters
add up to the size of the mother, d is symmetric around 1/2. We will moreover assume
that d(p)=O outside (1/2-A, 1/2+A). Finally we assume that e is so small that the size
of the largest newborn daughter is less than the size of the smallest mother, i.e.,
1/2+ A < 1- e. Then the size of the smallest daughter, Xmin, satisfies

Xmin--(1- E)(1/2--A)> (1/2+ A)(1/2-A)--: 0.

This allows us to choose to be [a, 1 independent of e. The growth rate g is assumed
to be positive and continuous on f. Let n(t, denote the density function of the cell
sizes present at time t; then

o
(1.1a) -2s.n(t,x)=--2-(g(x)n(t,x))-b(x)n(t,x)+2 b n t, dp,

P
(1.1b) n(t, ce)=O.
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Now assume that when we let e 0, the quantity

b(y_)
1- g(Y)

dy

converges to a number larger than zero. This means that the probability that a newborn
cell is eventually going to divide

(1.2) - 1-exp dy- g(Y)

converges to a value ro> 0. In the limit cells will only divide on reaching x--1, and
they do so with probability 7to. The corresponding population equation is

(1.3a)
0 0
--n(t,x)=- (g(x)n(t,x))+Ed(x)og(1)n(t, 1),
Ot

(1.3b) n(t, )=0.

This limit model may be used as a convenient approximation when cell division occurs
only in a narrow size window.

In 2 we show that under suitable assumptions on the functions g, d, and b, the
solutions of (1.1) on the space L[a, 1] indeed converge to the solutions of (1.3).

In the second family of models we consider individuals that reproduce at a rate

fl(x) by splitting off young with size e, e small, while concurrently their size is
decreased by the same amount. We assume that newborns have viability p due to the
necessity to suive an infinitesimally sho laal stage. The corresponding population
equation reads as follows:

On 0
(1.4a) (t,x)+(g(x)n(t,x))=-(x)n(t,x)+(x+e)n(t,x+e)-(x)n(t,x),

(1.4b) g(e+)n(t,e+)-g(e-)n(t,e-)=O (x)n(t,x)dx,

(1.4c) g(O)n(t, 0) 0,

(1.4d) n(O, x)= (x).
In (1.4b),

g(e+)n(t, e+)-g(e-)n(t, e-)=lim[g(e+h)n(t, e+h)-g(e-h)n(t, e-h)].
hO

It is assumed that growth stops at x-1, i.e., g(1)=0, and that g is positive for all
smaller sizes including zero. Although the model structure is still compatible with
representing the population state as a density function n (t, ), the jump condition (1.4b)
makes the problem technically troublesome. A natural way out of this dilemma is
provided by the observation that the only interesting quantities to be derived from a
structured population model are population averages such as total population size,
total biomass, or population feeding rate, i.e., linear functionals of n(t, ). This brings
us to consider the so-called backward equation

(1.5a)

Om Om
O---( t, x)- g(x)-x t, x)

-fl(x)m(t, x) + (x)m(t, x e) + pfl(x)m(t, e) i(x)m(t, x),

(1.Sb) m(O, x)= b(x),
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satisfied by the clan averages

(1.6) m(t, x)= ()Nx(t, d),

where the Borel measure Nx(t,’) represents the expected state at time of a clan
descending from an ancestral individual sized x at time zero. If me(t, x; qb) is the
solution of (1.5), then every p-output is of the form 1o m(t,x; c)q(dx), where q is
the initial condition in (1.4d). In 3.3 we give a precise description of the duality
relation between solutions of the forward and backward equations in terms of semi-
groups and generators (also see Heijmans (1984) and Clement et al. (1987)).

In nature usually roughly the same amount of energy is available for reproduction,
which, depending on the species, may be spent on producing a few large or many
small young. Therefore we set

(1.7) (x)=e-lb(x).
Moreover, in species with many small young, infant mortality is generally much higher
than when the young are large. If recruitment is to stay bounded when we let e go to
zero we have to put

(1.8) p er.

Inserting (1.7) and (1.8) into (1.5a) and letting e 0, we obtain

(1.9)
Om Om(O---(t,x)-(g(x)b(x))--x t,x)= rb(x)m(t, O)-i(x)m(t,x),

which corresponds to the forward equation

0 0
--n( t, --x y(x)n( t, x))- Ix (x)n( t, x)

(1.10)
y(Xo)n(t, Xo) I rb(y)n(t, y) dy,

with

(1.11) y(x) g(x) b(x)

and Xo 0. Instead of being set back in size at each discrete reproductive event the
individual’s growth rate is reduced by an amount related to the energy spent in
reproduction. Note that in contrast to g the reduced growth rate 3’ is no longer positive
on [0, 1), in particular y(1) -b(1) < 0.

In 3.2 we show that under suitable assumptions on the functions g, b, and/x,
the semigroup generated by (1.5) indeed converges to the semigroup generated by
(1.9). In that section we will also discuss in somewhat more detail the relation between
the forward and backward equations.

Equation (1.10) is the equation usually encountered in the population dynamical
literature; only Xo is generally assumed to be positive. Biologically this amounts to the
assumption that either parents can time and again produce instantaneously additional
masses Xo, notwithstanding the fact that they can add to their own body mass only in
a continuous fashion, or else that live newborns are created by magic out of the added
infinitesimal contributions by all parents together. Both assumptions go against the
grain. Our limiting procedure provides a possible justification, provided Xo is vanish-
ingly small.



874 H.J.A.M. HEIJMANS AND J. A. J. METZ

Note for the biological reader. There remains the seemingly awkward assumption
that g(0)> 0. However, the most often encountered biological growth law, the Von
Bertalanffy equation, has precisely this property. Note that the Von Bertalanffy Ansatz
does not allow individuals to spontaneously spring into being by growing away from
size zero. What matters is that limxo g(x)>0. Individuals of size zero never exist,
only individuals that are very small.

Remark. Another way to guarantee that recruitment stays bounded for e $ 0 is to
keep p constant and to replace the usual integrability assumption on /x by the
assumption that

/x(x) 1
-f(x)

g(x) x

with f an L function. To see that this has indeed the intended effect, observe that the
probability that a recruited individual survives until it reaches size x > e equals

g(y)

(Note that any other choice for the behavior of t(x) near x 0 does not for s 0 yield
the needed survival proportional to e during the first moments after recruitment!)

2. From distributed to concentrated division.
2.1. The equation and the associated semigroup. In this section we make a thorough

mathematical study of (I.I) describing a size-structured cell population reproducing
by division. For the sake of convenience we recall the following equation:

On 0 /o’d(p) () ()(2.1a) --(t, x) +--x(g(x)n (t, x)) -b(x)n(t, x) + 2 b n t, dp,
P

(2.1b) n(t, a)=0,

(2.1c) n(0, x)= b(x).
We will prove that under the right set of assumptions solutions of this problem converge
for s $ 0 to solutions of the limit equation (1.3), i.e.,

(2.2a)
On 0
-(t, x)+-x(g(x)n(t x)) 27rod(x)g(1)n(t, 1),

(2.2b) n(t, a) 0,

(2.:c) n(O, x) 4,(x).
We refer to 1.2 for the interpretation of e, g, b, d, a, and 7to. As the underlying
population state space we choose X Ll[a, 1]. We make the following assumptions.

Assumption 2.1. (a) g C[a, 1]; g(x) > 0, x [a, 1].
(b) d C[0, 1]; d(p)>0 if and only if [p-1/2[<A; d is symmetric around p=1/2,
1/2+Aand i/-a d(p) dp 1.

(c) b 6 C[a, 1]; b(x) =0, x Ice, 1 e]; b(x) > O, x (1 e, 1].
We can write (2.1) with initial condition 4 X as the abstract Cauchy problem

dn
(2.3) d--(t) An( t), n(O) b,

where the closed operator A on X is given by

d [ 1/2+A d(p)
(2.4) (Ac)(x)=--x(g(x)d(x))-b(x)qb(x)+Z

al/2_ P
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for any in its domain

D(A) { X: ge wl’l[a, 1] and (a)=0}.

Using a standard perturbation result for Co-semigroups (Pazy (1983, 3.1)) we easily
show that A is the infinitesimal generator of a strongly continuous semigroup
{ T(t)},_>_o.

Let A be a closed linear operator on the Banach space X and let M => 0, to R.
We say that A G(M, w) ifA is the infinitesimal generator ofa Co-semigroup { T(t)},__>o
of bounded linear operators satisfying

IIT(t)llMe% t>=O

(e.g., Pazy (1983, 3.4)). The next proposition states, among other things, that there
exists a semigroup solution to (2.1).

THEOREM 2.2. There exist constants to and M >-_ 1 (which do not depend on e),
such that A G(M, to).

Proof Let I1" be the Ll-norm. Then the norm I1" is equivalent to the norm I1" I1’
given by

Let, for 0,

I111 ’= xl(x)l dx, x,

IIL(t)ll’--sup{llL(t)ll’/llll’: z, 0}.

Since T (t) is a positive operator, we have

IIz(t)ll’--{llL(t)ll’/llll’: x/, 0},

where. X+ is the cone of positive elements. If CeX+, then T(t)ll’ xn(t, x) dx,
where n(t, x) is the solution of (2.1). If, in addition, e D(A), then

dt
xn( t, x) dx g(x)n( t, x) dx xn( t, x) dx,

where > 0 is taken so large that g(x) x, x [a, 1]. So for D(A) X+ we find
that

lr()ll’=

Since D(A) X+ is norm-dense in X+, this holds for any X+, and we find that

Since I1" I1’ and . are equivalent norms, there exists a constant M > 0 such that

and the result is proved... JstetfteIRtrsRm In this section we give a formal mathemati-
cal justification of the limit transition e 0 which amounts to (2.2). That is to say, we
prove that the solution of (2.1) given by n(t,. )= T(t) converges to the solution of
(2.2) as e 0. For this purpose, we use the Trotter-Kato theorem. Besides Assumptions
2.1(a)-(c) we only assume there exists a oe,[0, 1) such that lim,o o.
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We rewrite (2.2) as the abstract Cauchy problem

dn
(2.6) d--- (t) An(t), n(O)

where A is the closed operator

(2.7)

with dense domain

(2.8)

THEOREM 2.3. For A R large enough we have

R(A, A,)-> R(A, A),

for every b X.
Proof. The proof consists of four steps.
(1) Let the isomorphism U: X--> X be given by

(U,6)(x)=
E(x)
g(x)" 6(x),

where E(x)=exp (_x (b(y)/g(y))dy). Let

d
(A)(x) --dx(g(x)(x)) + 2rod(x)g( 1 )6(1)

D(A) { e X" g e W’[a, 1] and (a)=0}.

e$0,

D= D(A)= D(A) { e X: gth e wl’l[o, 1] and th(a)=0},

Let , be the closed operator U-1AU with domain D(,I)=U-1D=jl. For
D(A) we have

d(A)(x) -g(x)--z-(x) + 2,n’o d (x)g(x)(1).
ax

(2) We show that for every e/,

AA as e$0.

Let D, then

r 6 dp-2o d(x)g(x)6(1).()(x)-()(x)=2E(x) o/-a P

(u)(x)- g(x)"
(x)

and

if)= UID=(X wl’l[a, 1] and (a) =0.
Let be the closed operator U-;1AU with domain D(,)=/. Then , is given by

r dp,(A$)(x)=-g(x)(x)+ E(x) al/2- P

where r(x)=(b(x)/g(x))E,(x) for x[,l]. We define the isomorphism
U’XX by
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We define maxxt,,11 g(x), d =maxptl/2_a,1/2+a d(p). Now

i. 12g(x fl/2+A d(p)r(-) 6 (-) dp-2"n’o d(x)g(x)6(1)

j 1/2+A

(1/2--A)(1--e)
2g(x) fl/2+A d(p)

d 1/2-A P
re b dp- 2ro d(x)g(x)qb(1)

1/2+A

(1/2--A)(1--e)

1/2+a d(p)

1/2--A P

This second expression at the right-hand side can easily be estimated. We write the
first expression as the sum of three integrals:

(1/2--A)(1--e) d(1/2--A)(1--e) 1/2--A (1/2+A)(1--e)

It is the middle integral that causes the most trouble, and we restrict our attention to
this term. Let 8 > 0:

2 f (1/2+A)(1--e)

al/2--A

1/2+Z d(p)

1/2--A P

--2--
d 1/2--A f x/(1/2-A) !

/(1/2+A) Y

2 f(1/2+A)(1--e)
,/1/2--A 1--rid r(y)6(y) dy-

1--e

d(x)r(y)6(1) dy

2 f(1/2+A)(1--e)
dl/2--A

1
d 6(y)-d 6(1) r(y) dy

1--e

f (1/2+a)(1-) { f }<-2 8r(y) dy dx<-2. 2A. 8.
dl/2--A

Here we have chosen e > 0 so small that

d 6(Y)--d b(1)

for every xe [1/2-A, (1/2+A)(1-e.)]~ and yell-e, 1],~and we used that Ill_ re(y)dy=
7r _-< 1. This shows that Ab Ab as e $ 0, for b D.

(3) We show that for A large enough (in particular A > to; see Theorem 2.2)

R(A,A)b- R(A,A)b as e0,

for e.very b e X. Choose. A > to so large that A e~p(A)= p(). Let b e X, and define

4’ e D as 4, R(A, A)4. For e >0, let 4 (A-A)4,. From
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we get b --> as e$0. Since R(A, A) U-IR(A,A)U, we deduce from Theorem 2.2
that

[[R(A, ,)[] _-<,
A--to

Here we have used explicitly that ro < 1. Now

lim0 R(A,) lio JR(A, )( t)+] R(A, ).

(4) We finally show that for h R large enough,

g(h,A)g(h,A) as e0,

for every X. It is easily checked that

U UO, e0 and ulo U-I, e0,

for every X, and that there exists a constant L> 0 such that ull, ull, ul[,
u- L, > 0. For every X we have

JIg(A, A) R(A, A)[I UR(A,

II( U U)(R(A,)U71- R(A, )U-1 + R(A,) U-’
g(, ) U- + g(, ) U-1)

+ u(g(, )-g(, ))(U71- U-’ + U-1)
+ UR(, )(U:1- U-)

+ [l(u- U)R(A,)U-’II
+IlUI IIR(A, )-g(m, )111U: U-II

and all these terms go to zero as e
We can now apply the Trotter-Kato theorem (Pazy (1983, 3.4)), which yields

that (i) A is the infinitesimal generator of a Co-semigroup (in paicular this means
that (2.2) is well posed) and that (ii) the solution of (2.1) converges to the solution of
(2.2) as e 0.

THEOREM 2.4. A G(M, ), and if (T(t)),o is the semigroup generated by A, then
for every O X, O,

L(t) T(t) as eO.
Moreover, the convergence is uniform with respect to in bounded subsets of (0, ).

3. From size jumps to reduced growth.
3.1. The semigrouo solution to the backward equation. In this section we show that

under some reasonable assumptions we can associate a Co-semigroup of bounded
linear operators on X C[0, 1] with the backward equation (1.5), which we recall
below for convenience. Throughout this section we will assume that the death rate
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is identically zero. However, all the results obtained here remain valid for nonzero
death rates. The backward equation reads as follows:

0m
(3.1a) -(t,x)-g(x) (t,x)=-(x)n(t,x)+(x)m(t,x-e)+O(x)m(t, e),

(3.1b) m(O, x)= (x).

Assumption 3.1. (a) g is Lipschitz continuous on [0, 1]; g(x)> O, xe [0, 1);
g(1) =0.

(b) /3e is Lipschitz continuous on [0, 1]; there is an a> e such that fie(x)=0,
x[0, a] and fie(x)> 0, x(a, 1].

Here a denotes the minimum size at which an individual can reproduce. We can
write (3.1) as the abstract Cauchy problem:

dm
(3.2a) -( t) Aem( t),

(3.2b) m(0) X,

where the closed unbounded operator Ae with domain

D(Ae) {Xl’q Wloc[O, 1 ]" g’ 6 X},

is given by

d(Ae)(x) g(x)"7"-(x) fle(x)(x) + fle(x)(x e) + Oefle(x)( e ).
ax

We write Ae as the sum of two operators:

(3.3)

where the closed unbounded operator Ao has the same domain as Ae and is given by

(Ao )(x)= g(x)-x(X),
and where Be is a bounded operator given by

(Be)(x) -fle(x)(x)+ fle(x)(x- e)+

It is quite easy to show that Ao generates a strongly continuous semigroup { To(t)},_o,
and therefore Ae, being a bounded perturbation of Ao, also generates a strongly
continuous semigroup {Te(t)}to (see Pazy (1983, 3.1)).

Both {To(t)}to and {Te(t)},_o are positive semigroups, which is intuitively clear
from the biological interpretation, but can also be shown rigorously (see Heijmans
(1986)). Let 1 be the element of X that is identically one on [0, 1]. Then

Define the positive scalar toe by

(3.4) We=sup{perle(X): xc[O, 1]}.

We see immediately that

O--< Ael <- wel.
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We show that Ae G(1, toe). First suppose that toe < s(Ae), where s(Ae) is the spectral
bound of Ae, i.e., s(Ae)=sup {Re A: h cr(Ae)}. Since {Te(t)}to is a positive semi-
group, s(Ae) cr(Ae) if cr(Ae)# , and R(A, Ae) is a positive operator if h > s(Ae)
(see Nagel (1986)). Choose h > s(Ae). Since R(A, Ae) is a positive operator we get that

1
0_--< R(A, Ae)l_-<l;

hence IIR(x, A)II [IR(A, m)ll 1/(h -toe), and we find that IIR(,X, A)II remains
bounded if h ,s(Ae), which is in contradiction with

s(Ae) tr(Ae).

Therefore toe => s(Ae). Using the same arguments as above, we find that for A > toe,

1
IIR(A, A)ll,

A -toe

which yields that for n 1, 2,...

(X -o)"’

and it follows from the Hille-Yosida theorem that Ae G(1, toe). In particular this
implies that Ae is the generator of a Co-semigroup { Te(t)},o on X.

3.2. The limit transition justified. Assuming (1.7) and (1.8), i.e., fie(x)= e-lb(x)
and pe er, we find the limiting equation

0m 0m
(3.5a) ---f t, x) y(x)--x t, x) rb(x)m( t, 0),

(3.5b) m(O, x)= ck(x),

where 2, is the reduced growth rate

(3.6) y(x)=g(x)-b(x).

Note that it follows from Assumption 3.1 that (i) b is Lipschitz continuous on [0, 1],
b (x) 0 for x -< a and b(x) > 0 for a < x =< 1, and that (ii) y is not positive on the
whole interval [0, 1 ], in particular y(1) -b(1) < 0.

In the rest of this section we will show how the Trotter-Kato theorem can be used
to justify the formal transition from (3.1)-(3.5). In the next section we interpret these
results in terms of the forward equations (1.4) and (1.10) (with Xo=0).

First we reformulate (3.5a) supplied with initial condition (3.5b) as an abstract
Cauchy problem:

dm
(3.7) - (t)= Am(t), m(O) b X,

where the closed operator A is given by

d6(Ab)(x) 3,(x)-x (X + rb(x)qb(O)

for every b in its domain

Wlo[0, 1 ]: 3,b’ e X}.D(A) {b X f’l 1,1
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It is not difficult to show that A generates a strongly continuous positive semigroup:
this, however, will also follow from the forthcoming analysis. Let

(3.8) to := {rb(x): O<-x<= 1}.

Obviously, to to and from the results of 3.1 it follows that

(3.9) a G(1, w).

Assumption 3.2. There exists a unique (0, 1) such that g(:)= b().
In combination with the other assumptions of this section this means that

y(x)> O, O<=x<
y(x) <0, :<x=<l.

Now let D C[O, 1 ], i.e., the subspace ofX containing all continuously differentiable
functions on [0, 1]. Clearly

D(A)D, D(A)D.
PROPOSITION 3.3. (A-A)D is dense in Xfor A sufficiently large.
Proof. Consider for F e X the inhomogeneous equation

A6(x)- y(x)6’(x) F(x),

where A is sufficiently large (A > to). The solution of this equation for 0-< x < is
given by

(*) 4(x)
F(Y)

exp -A dy,

and a similar expression can be found for b(x), if x is greater than . It is easy to
check that b s D if F D. Now, for f X, the solution of

(**) Ab -A4 =f,

on (0, ) is given by (*), with F(x)=f(x)+ rdp(O)b(x) substituted. Hence b D if
F D. Letf X and let b be the solution of (**); then

f(y) + r(O)b(y)
exp -Ad(O) dy.

y(Y) ()
We assume that A R is so large that

Iob(Y) { Io dse }(se)ax:: (-)exp -A dy<-,r
and for f X we define

riof(y) { fodse)} dy"Ha (f) := ’i’- axr ’y(y) exp -A

Then the solution b of (**) satisfies

r(O) Hx (f).
So we get that b D if f+ Hx (f)b 6 D. We define V

_
X as

V= {f X: f+ Hx (f)b D}.
Then V_ (A- A)D, and it suffices to show that V is a dense subset of X. Let f X
and define g X as

g f+ Hx (f)b.
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Let {g.} be a sequence in D converging to g as n- c. The solution of

g.=f.+Ha(f.)b

is given by

Ha(g,)
f. g.- b.

1 +Ha(b)
Now fn V and

Ha(g)
fn-+ g- b f n c.

1 +Ha(b)
Therefore V X.

PROPOSITION 3.4. A->A as e , O, for every D.
Proof Let D. Then

le
/ rlb(x)l"

for every x [0, 1], and thus

Ila A sup I(a)(x) (A)(x)[-> 0,
x[0,1]

We are now ready to apply the Trotter-Kato theorem which gives us the following
theorem.

THEOREM 3.5. A G(1, to), and if { T(t)}r_>_o is the semigroup generated by A, then

T(t) -> T(t), e$0,

for every X, where the convergence is uniform for in bounded subsets of (0, ).
This theorem tells us that a solution of the limit equation (3.8) is indeed an

approximation of solutions of equation (3.2a), presupposed that their initial condition
is the same.
We can give a very precise description of the relation between the backward and

the forward equations and their respective solutions in semigroup terms. It is the
backward equation that can be derived rigorously and that is to be solved on the space
of continuous functions. Let A be the differential operator on X associated with the
backward problem (see (3.2)). Then, by definition, the abstract forward equation is

dn
(3.10) d--(t) A* n( t), n(O) e X*,

where A*, the dual operator of A, is defined on the dual space X*= M[0, 1], the
space of regular Borel measures on [0, 1]. The solutions of (3.10) are given by
n(t, .; /)= T*(t)/. Here the notion of solution must be understood in terms of the
weak* topology on X*. The dual semigroup {T*(t)},_>_o is a weakly* continuous
semigroup with weak* generator A* (see Butzer and Berens (1967)). There exists the
following duality relation between solutions ofthe forward and the backward equations.
For e X we have

dP(x)n(t, dx; )=(, n(t, .; ))= (, T*(t)d/)
(3.11)

<T(t), q)=(m(t, .; ), b)= m(t,x; )0(dx),

where (.,.) denotes the duality pairing between X and X*, and where me(t, "; ) is
the solution of the backward problem (3.1).
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Let X(R) be the closed subspace of X* where {T*(t)}t>=o is strongly continuous.
Then X(R)=D(A*) (see Butzer and Berens (1967)). It can be shown (compare the
remark below) that in the present situation X(R)= LI[0, 1] (e.g., C16ment et al. (1987);
(C16ment, Heijmans et al. (1987)). Obviously, X(R) is invariant under {T*(t)},=>o, and
the restriction { T(t)},__>o is a strongly continuous semigroup. If we denote its generator
by A, then

dn
-( t) an( t), n(O) q X(R),

is the abstract formulation of (1.4) and with this observation the circle is closed.
Remark. To prove the latter statement, we have to calculate A* and its domain

A*D( fromA and D(A). This calculation involves the following steps (e.g., Heijmans
(1984)):

(i) compute the resolvent operator R(A, A)
(ii) compute its dual R(A, A* R(A, A)*
(iii) find the domain D(A*) from the relation

D(A*) Ran (R(A, A*)),
Ran(. denoting the range

(iv) calculate A*, where D(A*), from the relation

(b, A*q)= (Ab, q) for b D(A)

(v) X(R) D * A(A)and is the part ofA*inX(R)

(e.g., Butzer and Berens (1967)).
Our main result of this section, Theorem 3.5, can be restated in terms of solutions of
the forward equation by using the duality relation (3.11). We find that for any

M[0, 1],

n(t,.; d/)n(t,.; d/) as e,O

where convergence holds with respect to the weak* topology of X*= M[0, 1], and is
uniform for in bounded intervals of (0,

4. Discussion. In the previous two sections we have proved the essential correct-
ness of two limit arguments initially derived in a heuristic manner. We expect these
cases to be exemplary for a general procedure: (i) start imagining how any model
simplification works on the level of the individual, (ii) take good care that birth rates
keep behaving, (iii) translate individual behavior into a structured population model,
both before and after the simplification, (iv) use the Trotter-Kato theorem to connect
the two. The upshot from the examples discussed in this paper is that our intuition
derived from the individual level appears to be essentially correct when applied to the
population level, at least when we are careful. To emphasize the latter point we finish
with three cautionary notes.

(i) From a biological point of view the models from which we started in our
examples were already fairly metaphorical. In deriving them we made a great number
of simplifying assumptions about the underlying biology, comparable to the ones we
spelled out in our limit arguments. The nice thing about apparently being able to make
our simplifications with impunity already at the level of the individual, is that usually
for the more complicated pictures of individual behavior that lie at the start of our
considerations we do not even know how to formulate a full population model. Yet,
it is of great importance not to be too naive about our simplifications. A thorough
analysis of some metaphorical examples such as those we consider in this paper should
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help to clarify the issues. In this context we may point to the work of Chipot and
Edelstein (1983) on the dynamics of fungal pellet cultures. Their heuristic model
formulation basically seems comparable to the formulation that we chose in our second
example. Therefore we feel that the limit model embodied in (1.10) also should be the
correct model formulation for that particular class of biological systems, and we fail
to understand the rationale that led these authors to a different type of equation.

(ii) The Trotter-Kato theorem only gives information about what happens in
finite time intervals. Often our main interest is in the long-term behavior of the
population model under consideration. Whether the limit argument extends to such
properties has to be ascertained in a separate manner. As an example we may refer
to Heijmans (1984) who considers both the transient behavior and some properties of
the stable /-state distribution (the dominant eigenfunction of the forward equation),
as well as the eventual convergence of the p-state towards this distribution, for a model
of satiation dependent predatory behavior.

(iii) The proofs in this paper only apply to the linear time-invariant case, i.e., we
did not allow any direct or indirect interactions between the individuals. Ultimately,
we will wish to extend the limit theorems to the nonlinear case as well. After all, the
greatest strength of the structured population methodology is that it allows us for the
first time to incorporate various biologically realistic mechanisms for density dependent
population regulation, such as a feedback through the limiting of individual growth
by food shortage, into analytically formulated population models. Two approaches
are possible. Either we could take recourse to direct nonlinear extensions of the
Trotter-Kato theorem (compare, e.g., C16ment, Heijmans et al. (1987, 2.3)), or we
could try to fall back on the specific mathematical structure of the equations of
structured populations, whose main property is that for a given course of the environ-
ment the equations are linear (but time-inhomogeneous). Abstractly, such equations
take the form

dn
(4.1) --(t) A(E(t))n(t), n(O) qb X.

Here the vector E(t) describes the environment at time t, and can be calculated as the
p-output

E(t)=(n(t),)

for some sc X*. Assuming that, for a given input E (.), the linear time-inhomogeneous
equation (4.1) has a solution n(.) we can compute the p-output

E(t)=(n(t),).

Solving (4.1) amounts to solving the fixed-point equation

E(.)=E(.).

This fixed-point equation still depends on the parameter e. If this dependence is
continuous (in a sense to be specified) then we might expect that the same is true for
its solution.

However, all this is music of a distant future as only the first hesitant steps toward
a proof of existence and uniqueness theorems for somewhat more general structured
population models of the form (4.1) are being taken at this very moment. Therefore
the present paper should only be considered as an introduction to the fascinating
problem of putting a more rigorous basis under the structured population mthodology.
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SOME BLOWUP RESULTS FOR A NONLINEAR PARABOLIC EQUATION
WITH A GRADIENT TERM*

M. CHIPOTt AND F. B. WEISSLER$

Abstract. Under some conditions, a blowup result is proved for the solution u of:

u,-zXu-lVul/lul’-u, t>0,

u(t,x)=O, t>0, x6F,

u(0, x) ,(x), x a.
The associated elliptic problem is also studied.

Key words, blowup, nonlinear parabolic equations
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1. Introduction. In this paper we study the solution of the following semilinear
parabolic problem:

ut=Au-]Vulq+lulp-lu, t>0, XEa,
(1.1) u(t,y)=O, t>0, yEF,

u(O,x)=(x), xe.
Here 12 c RN is a bounded domain with smooth boundary F, u u(t, x), A and V
apply only to the spatial variables, and p > 1 and q > 1 are fixed (finite) parameters.
Our main goal is to show that under appropriate conditions on q, p, and n, there exists
a suitable initial value so that the corresponding solution of (1.1) blows up in a
finite time.

In the case where there is no gradient term, i.e.,

ut=Au+ltllP-ltt, t>O,

(1.2) u(t,y)=O, t>0, yF,

u(O,x)=(x), xea,
the following result due to Levine [35] has been known for some time (see also Ball [2]).

TI-IZORZM 1.1. Let p > 1 and let 49 "fi- R be sufficiently smooth (e.g., C2) with

elf=-O. If 49 is large enough in the sense that its "energy,"

1 1
(1 3) E() I111 p+p+lp+l

is negative, then the corresponding solution of (1.2) blows up in finite time.
We remark that local existence of solutions for (1.2) follows by standard iteration

methods (see, for example, Segal [28]) on the Banach space Co(O). Thus, if the
existence time T of the maximal solution to (1.2) is finite, i.e., if the solution blows
up in finite time T, then limt_ T
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France.

$ Department of Mathematics, Texas A&M University, College Station, Texas 77843. The work of this
author was supported in part by National Science Foundation grant DMS 8201639.
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In the past few years, a great deal of work has been done to study the precise
behavior of solutions to (1.2) as approaches the finite blowup time (see [3], [12],
14]-[ 16], [24], [25], [29], [32], [33]). A corresponding theory is also being developed

in the case where [u[p-lu in (1.2) is replaced by he (see [4]-[8], [12], [22], [23], [30]).
We are naturally led to consider more general parabolic problems of the form

(1.4) U Au +f(u, Vu).

To our knowledge, there has not been much study of solutions to equations of the
form (1.4) that blow up in finite time. (For an example, see [11].) Moreover, we are
not aware of any finite-time blowup results that would apply to (1.1). Furthermore,
the gradient term in (1.1) has a damping effect, working against blowup; and so it is
not clear if problem (1.1) has solutions that blow up in finite time. Our goal is therefore
somewhat modest: to find an analogue of Theorem 1.1 for problem (1.1).

THEOREM 1.2. Let 1 < q<-_2p/(p+ 1) and let dpe W3’S(-) for s sufficiently large,
not identically zero. In addition suppose the following:

(i) 0 on F;
(ii) A -IV[q "q-I1 p--l 0 on F;
(iii) >-0 in ;
(iv) A -IVlq + Cp >= 0 in 12;
(v) E(6)<=O;
(vi) If q<2p/(p+ 1), then I1 11 /, i sufficiently large;
(vii) If q=2p/(p+ 1), then p is sufficiently large.

Then the corresponding solutionof (1.1) blows up in finite time, in the L norm.
The obvious difficulty with this result is that it is not at all clear if such a & exists.

A natural candidate for is a regular solution of the following elliptic problem"

A-IVIq+hp=O in 12,

(1.5) >0 in12,

=0 onF,

where A > 0 is sufficiently small.
THEOREM 1.3. Let Ct= B={xII": lxl<R}. Suppose l <q<2p/(p+ l) and (if

n >- 3), p < (n + 2)/(n 2). Then for all A > 0 there exists a regular solution of (1.5).
If A is sufficiently small, then qb satisfies conditions (i)-(vi) in Theorem 1.2.

Suppose n 1 and q 2p/(p + 1). Then for all A > Ap, where

(2p)p
(1.6) ,p

(p + l )2p+l

there exists a regular solution of (1.5). If in addition h _-<2/(p+ 1), then satisfies
conditions (i)-(v) in Theorem 1.2. ("Regular" above means regular enough to apply
Theorem 1.2.)

The paper is organized as follows. In 2 we prove local existence and uniqueness,
and regularity for problem (1.1) with initial values in an appropriate Sobolev space.
Moreover, we indicate precisely the conditions on s required for Theorem 1.2 and
prove that conditions (i)-(iv) on imply u(t,. )-> 0 and ut(t,’) >- 0 throughout the
trajectory. In 3 we prove Theorem 1.2, using energy arguments based on the methods
found in Ball [2]. We have attempted to write 3 so that it is, at least formally,
independent of the technicalities of 2. In 4 we begin the study of (1.5) and prove
Theorem 1.3. Finally, in 5 we present some additional results concerning (1.5). In
particular, we show that the value of hp claimed in Theorem 1.3 is in fact sharp,
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We remark that the value q=2p/(p+l) is "critical" in many respects. The
condition q <= 2p! (p + 1) arises naturally in the energy arguments. When q 2p/(p + 1),
both (1.1) and (1.5) have the same scaling properties as the same equations without
the gradient term; and the character of solutions to (1.5) changes considerably as q is
smaller than, equal to, or bigger than 2p/(p + 1).

2. Local existence and regularity for the evolution equation. In this section fl c R"
is a bounded domain with smooth boundary F =012. Also, p and q are fixed real
numbers, strictly larger than 1. Our goal is to construct a local theory for the parabolic
problem (1.1). The first step is to write the corresponding variation of parameters
integral equation

(2.1) u(t)= etap+ e(t-)aJ(u(s)) ds,

where u (t) u (t,.) and J J1 + J2 with

/l(U)-- -iVul, J_(u) lul -lu.
Also, e ta denotes the heat semigroup on 12 with Dirichlet boundary conditions. Recall
that for 1 < s < oo, e ta is an analytic, contraction, Co semigroup on L LS(12). Further-
more, the domain of its generator in L is

Ds(A) W’(l)f’l W’(12).
lsMoreover, it is known 10] that e ta restricts to a Co semigroup on Wo’ (12), 1 < s <.

We will construct a local theory for the integral equation (2.1) in the Banach
space W’s= W’S(12), s sufficiently large, using the framework developed in [31]. Note
that for suitable rl, r-> 1,

Jl" W"s "-> Lr’, J2" W"s --> Lr2
1,sare continuously Fr6chet differentiable maps, Lipschitz on bounded sets in Wo

Indeed, r can clearly be chosen s/q, provided s => q, and allowable values for r2 can
easily be computed by first determining when W"s is embedded in Lr:v. Moreover, if
l=<r=<s<c, then for t>0

eta. Lr_.> W,
is bounded with norm bounded by Ct-’, where

a = +2
and C can be chosen uniformly up to any finite time. (See [31, Lemma 4.1] and [1,
Thm. 4.17].) Therefore, for each t>0, the map K,=-etaj is a continuously Fr6chet
ditterentiable mapping of W’ into itself, Lipschitz on bounded sets. To apply the
results in [31], it suffices to choose s so that a < 1 with both r rl => 1 and r =r2 -> 1.
Routine calculations (albeit somewhat tedious) show that this can be done if

s>--q, s>n(q-1),
(2.2)

s>-np/(n+p), s> n(p-1)/(p+l).

(The conditions on the left side of (2.2) come from the requirement that rl, r2 => 1; the
conditions on the right side come from the requirement that a < 1 for both rl and r2.)
From now on we assume that s satisfies (2.2). (Later we will need an additional

1.assumption on s.) Thus, by Theorem 1 of [31], for every Wo there is a unique
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maximal solution u C([0, T); Wol’s) to the integral equation (2.1). T is the existence
time of the solution starting at 4; and if T6 < oo, then u(t)II w,-, as t-, T,

We remark that if q < 2, then a local theory for the integral equation (2.1) can be
constructed in Lr(), using the framework developed in [34]. In fact, Theorem 2 of
[34] needs to be modified slightly to handle a nonlinearity of the form J Jl+J2.
(Two spaces EI, and EI are needed instead of just E.) We omit the details and simply
indicate that if

r>n(p-1)/2,
(2.2a)

r>n(q-1)/(2-q), q<2,

then we have local existence and uniqueness for (2.1) in Lr. In particular, if the existence
time T6 is finite, then [In(t," )llr oo as t T6. It follows, of course, that Ilu(t,.
as t T6. Since q <= 2p/(p + 1) implies q < 2, this is the case under the hypotheses of
Theorem 1.2.

We would like to show that if b is sufficiently regular, then the resulting solution
of (2.1) is also a solution of the original problem (1.1) and has some additional
regularity properties. Recall that the integral equation (2.1) gives rise to a "semiflow"

1,sWt on Wo i.e., Wt takes & e W’s to its value at time under the action of (2.1). In
other words, Wtb u (t), where u (t) is the maximal solution in W’ of (2.1) with
initial value b. In particular, Wtb is defined precisely for [0, T6). The generator of
the semiflow W, is

(2.3) Bb lim,
t-O

where the limit is taken in ’Wo The domain of B, i.e., D(B), is simply the set of
b W’* for which the limit (2.3) exists. Formally, B A + J, i.e.,

(2.4) Bb A -IVI / I1-.
However, the characterization of B and D(B) in Theorem 3.1 of [31] is somewhat
abstract, and some care is needed to describe B and D(B) in the present context. For
technical convenience, we make the following additional restrictions on s"

(2.5) s -> 2q, s > nq.

PROPOSITION 2.1. Suppose s R satisfies (2.2) and (2.5)..Let Wt be the semiflow
on W" resulting from the integral equation (2.1), with generator B and domain D(B).
Then D(B) is the set of all d W3’Sf3 W’ such that

(2.6) A6 -Iv61 / I1-1 w’.

For ck D(B), Bob is given by (2.4).
Proof First suppose b e D(B). By Theorem 3.1(iv) in [31], it follows that

(2.7) Aeta6 + e’a(-Iv 61" + 14’1 -4’)
converges strongly in W’" to Bb as t0+. Now certainly Ivl L/ and, thanks to
(2.5), 141P-4 W’ L/. Thus, the second term in (2.7) converges in L"/q as 0+

to (-IV4,1" +14,1p-16). Furthermore, again by (2.5), 6 6 W’c H(I)); and so Ae’a4,
Ab in H-I(fl) as 0/. Thus, the distributional limit of (2.7) as 0+ is the desired
expression

This must be the same as the W’ limit, which proves (2.6) and (2.4).
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To prove that b W3,s, note first that Bob W’s c Ls/q and -IVb[ q +lblp-lb
ts/q. Hence Ab Ls/q. Since b W"s/q, elliptic regularity gives us that b W=’s/q.
Therefore Vb Wl"s/q. Again by (2.5), wl’c Wl"/qc L. Thus [Vb[ q and I1-1
are both in L. Since Bk W"sC L, it follows that Ab L. Thus w=’r() for
every finite r. Therefore [Vb[ q and [b[P-lb are both in WI’; and since Bb WTM, we
get that Ab W,s. By higher-order elliptic regularity (see, for example, [9, Thm.
IX.32]), it follows that b W3’.

On the other hand, suppose b W3,s f) W’ satisfies (2.6). To show that b D(B),
we must show, by Theorem 3.1(iv) in [31], that for all > 0, etab is in the domain of
A as a semigroup generator in W’ and that (2.7) has a limit in W’ as 0/. Now
e ta is an analytic semigroup on Ls. Thus, e ta restricts us to an analytic semigroup on
D(A), considered as a Banach space with its graph norm. Since bD(A)=
W2,s 0 1,sWo it follows that for all > 0, e tadp is in the domain of A as a semigroup
generator in D(A). Since Ds (A) is continuously embedded in Wlo’, etab is in the
domain of A as a semigroup generator in W’. Finally, again since b D(A), Aetab
etaAb, where both expressions make sense in L. Consequently, (2.7) equals

eta(Ab -IV bl q + p--l( ),

which clearly has a limit in W’ as 0/ because of (2.6).
Remark. The proof above shows that Proposition 2.1 remains correct if W3’ is

replaced by W2,s. Higher-order elliptic regularity allowed us to conclude b W3,s.
PROPOSITION 2.2. Under the same conditions as in Proposition 2.1, let qb D(B)

and u (t) Wtqb; i.e., u (t) is the maximal solution of (2.1). Then we have the following:
(i) u cl([0, T,); W") and

(2.8) u’(t) Au(t)-[Vu(t)] q +[u(t)Jp-lu(t),

where each term on the right side of (2.8) is in C([0, T6); Ls/q)
(ii) u C([0, T,); W2’/q);
(iii) Ilu(t)l[ and IlVu(t)ll are bounded on any interval [0, T] with T< T,.
Proof. ByTheorem2.2in[31],u C1([0, T6); W’), u(t) D(B) forall [O, T,),

and u’(t)= Bu(t). The previous proposition now implies (2.8). Furthermore, [Vu(t)l q

and lu(t)lp-lu(t) are clearly continuous into Ls/q (again using (2.5)), and since Bu(t)
is continuous into 1.sWo it follows that Au(t) is continuous into Ls/q This proves (i).

Since u(t) D(B), the previous proposition implies u(t) W=’/q f’l W"’/q. Also
u(t) and Au(t) are both continuous in Ls/q. Since the graph norm for A on W=’s/q

W"/q is equivalent to the W=’/q norm, it follows that u(t) is continuous into W2,‘/q,
which proves (ii).

Finally, (iii) follows easily since W’/q is continuously embedded in L, thanks
to assumption (2.5).

PROPOSITION 2.3. Under the same conditions as in Proposition 2.1, let b W"
with b >= 0 almost everywhere in f. Then u( t)= Wtd >-_ 0 for all [0, T).

Proof. Any b >=0 in W’s can be approximated in W’ by nonnegative C
functions with compact support in f, in particular by nonnegative functions in D(B).
By the continuity properties of the semiflow W, (see [31, Thm. 1]), we may therefore
assume b _>-0 is in D(B). (In fact, we only need the result for b D(B).)

Multiplying (2.8) by

u(t)-=-
lu(t)l-u(t)
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and integrating over f yields

f u,u-=f (Au)u--f lVulqu-+ f lul,’- uu -,
where we have suppressed the dependence on t. By the previous proposition, we clearly
have u C1((0, T6); L2) and u C((0, T); H). Thus

fu,u-= laf--d--t (u-

and

(au)u- f IVu-I=.
The first formula above follows from the definition of u- (multiply out (1/-)2) and the
second formula from well-known facts about Vu- 17, 7.4]. We now restrict ourselves
to [0, T] for a fixed T < T,. By part (iii) of the previous proposition, there is a
constant C C(T) such that

and

where e > 0 is arbitrary, but C depends on the choice of e. Putting all this together,
and choosing e > 0 so that eC-< 1, we get that for (0, T],

2 dt
[u <-_- -I2

<-cc I In-I="
Since u- C([0, T]; L2) and u(0)- b- 0, Gronwall’s lemma now implies lu-I=- 0
for all [0, T]. Since T < T is arbitrary, we see that u(t)-= 0 for all [0, T6).

For the energy arguments in the next section we need not only u(t)_>-0, but also
u’(t) _>-0, throughout the trajectory. To prove this with the weak maximum principle
methods of previous proof, we need some higher-order regularity in t. We begin with
the following lemma. Its proof is modeled on the proof of Theorem 3 in [20]. (See
also [31, Prop. 1.2].)

LEMMA 2.4. Under the same conditions as in Proposition 2.1, let p D(B) and
u(t)= Wtb C1([0, T6); W’S). Denote v(t)=u’(t), so v C([0, T6); W’s). Then for
any compact subinterval e, T]c (0, T, ), v" e, T] Wo’ is H61der continuous.

Proof. By Theorem 2.2 of [31], v(t) satisfies the following integral equation:

v(t)=e(B4)-q e(’-’(lVu(s)lO-Vu(s) Vv(s)) ds

(.9

/p e<’-)lu(s)l"-v(s) ds.
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Since Bb s W’Sc L and e ta is an analytic semigroup on Ls, it follows that eta(Bqb)
is in C1((0, ); Ds(A)) and thus is certainly H61der continuous in W’ on [e, T].
Thus, it suffices to show that the two integral terms are Hflder continuous on [e, T].
We consider only the first one, the second one being easier to handle.

By Proposition 2.2(ii) and the fact that W’/qc L by (2.5), we have that Vu,
and hence ]TU] q--271/must be in C([0, T]; L). (Obviously, we mean that [Vulq-2Vu -0
in the case where ]Vu =0. This presents no problem since q > 1.) Moreover, V v is
clearly in C([0, T]; L). Therefore

w(t)=lVu(t)lq-2vu(t) Vv(t)(2.10)

is in C ([0, T]; Ls). Let

z( t) et-S)aw(s) as.

Since w"s= D(v--A), the domain of in L (see [26], [27]), to show that z(t) is
H61der continuous in W"s it suffices to show z(t) H61der continuous in L. For
0-< < + z <- T, we have

(z(t+r)-z(t))=x/s (e’a- I) e’-)aw(s) as

+ eaw(t + 7.- s) ds

(e"a- I)(-A) f (-A) +’/2 e<’-Saw(s) as

+ (-A)’/2 eaw(t + 7"- s) ds,

where 0 < a < 1/2. Using the facts [21, Thms. 11.3, 12.1] that for (0, T] and 0 < t, < 1

(-m) e’lls __< ct-, II(e’ I)(-A)- I1. _< Ct,
we deduce that

II,/:X (z(t+7")-z(t))ll <= C7" (t-s) --’/2 ds sup
[0,T]

+ C s-1/2 ds sup IIw(t)ll.
[0,T]

This proves the H/51der continuity of z(t) in L’ and thereby completes the proof
of the lemma.

Remark. For the above result we do not need the rather strong result that W’s=

Ds(v/L--). The easier result that D((-A)) is continuously embedded in W’ [21,
Thm. 9.2] can be used with only a slight modification of the proof.

PROr’OSITION 2.5. Under the same conditions and with the same notation ofLemma
2.4, we have that v cl((0, T); Ls/q) and

(2.11) v’(t)=Av(t)-qlVu(t)[q-2Vu(t) Vv(t)+p[u(t)lp-lv(t).

Proof. Since b D(B) u C1[(0, T6) Wo’ ), and so Vu cl([0, T6); L).
Furthermore, by the previous lemma Vv is H61der continuous in L on e, T]. It follows
that w(t) given by (2.10) is H/lder continuous in Ls/q on [e, T]. Similarly, lulP-v is
H61der continuous in Ls/q on [e, T].
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We now consider the integral equation (2.9) as an equation in L/qo The semigroup
is analytic in Ls/q and the two integrands (not including e(t-s)a) are both H61der
continuous functions into Ls/q on any compact subinterval [e, TIc (0, T6). The result
now follows from well-known properties of analytic semigroups. (See, for example,
[19, Thm. 1.27, Chap. IX]).

We are now able to prove.the desired positivity of u’(t).
PROPOSITION 2.6. Suppose s e R satisfies (2.2) and (2.5) and that cb is in D(B).

Let u(t) Wqb and v(t) u’(t), and suppose further that v(O) u’(O) B O. en
u’( t) O for all t[0, T6).
oo We know that veC([0, T); W’)c C([0, T6);H) and that ve

C((0, T6); Ls/q) cl((0, T6); Z2). Thus, multiplying (2.11) by v(t)- and integrating
over yields

1 df _12 f 2 IlVulq_2u v(v_ pIlulp_vv-2dt Iv =-IVv-I +q

I + I
where we use Proposition 2.2(iii) to estimate Vu and u, and C can be chosen uniformly
for (0, T], T < T6. The proof is completed exactly as in the proof of Proposition 2.3.

3. Energy arguments. In this section we prove Theorem 1.2. Throughout this
section, , F, p, and q are as in the Introduction, and we assume s R satisfies (2.2)
and (2.5). Also, we take W3’, not identically zero, satisfying hypotheses (i)-(iv)
of Theorem 1.2. In the language of 2, that means D(B) W" with 0 and

B 0. T is the existence time of the maximal solution u(t) of the integral equation
(2.1). By Propositions 2.2, 2.3, and 2.6, u C([O, T6); W’), satisfying equation (2.8),
with u(t) 0 and u’(t) 0 for all [0, T6).

LMMa 3.1. e energy of the solution u( t),

1 1
E(u(t)) IlVu(/)ll- [u(t) p+p+lp+l

is a nonincreasing function of [0, T6).
Proo Since u C([0, T6); W’) and, by (2.5), W’ c H and W’ L, it

follows that E(u(t)) is a C function of [0, T6). We easily calculate from (2.8) that

d
d E(u(t))=(-Au(t), u’(t))-(u(t)p, u’(t))

:-(u’(t)+lVu(t)l, u’(t)>

0.

LEMMA 3.2. Suppose E()=E(u(O))O and that q2p/(p+l). en for all
tz[0,

[(u(t) IVu(t)l>l < C(p, q)llu(t)ll "+-p+lp+l

where

q(p+l)__> 0
2

and C p, q) 1 in case q 2p/ p + 1).
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Proof From H61der’s inequality, it follows that

q(p+l)/p"

Since q<-2p/(p+ 1), we have q(p+ 1)/p_<-2; and so

I<u, IVul>l =< C(p, q)llull/lllVull,
where C(p, q) 1 if q 2p/(p + 1).

By the previous lemma E (u (t)) _-< 0 for all [0, T6), or

IIV u < u q(p+l)/2
p+l+1

The result follows by combining the last two inequalities.
Proof of Theorem 1.2. Suppose to the contrary that T =o. Let F(t)= Ilu(t)ll.

Then F C([0, )), F(0)= I]bll> 0, and

F’(t)=2(u(t),u’(t))

2117u(t)l122 2(u(t),lVu(t)lq)+21Ju(t)ll v+l
p+l

-4E t) + 2(Pp ll ) u( t) P+l 2(u, [Vp+l

v+l-2 C(p, q)llu(t)ll +1-p+lp+ +

where we have used Lemma 3.1 (E(u(t))<=E(ck)<=O) and Lemma 3.2. Continuing the
calculation, we have

P+ + 1 p+ 1
C(p, q)llu(t)llv-

>_CF(t)<p+l)/2[(p_i) (2_ .)q/2p+ p+l
C(p, q)llu(t)llp+l

Suppose first q <2p/(p+ 1) and that IIbJlp+l is sufficiently large so that

C(p, q)lJt{Ip-l k>0.
p+ +1

Then since u’(t)-> 0, it follows that

F’( t) >- kCF( t) p+l/2

for all t[0, oo). Since (p+ 1)/2> 1, this is impossible for a function F C1([0, ))
with F(0) > 0. This contradiction shows T < o.

Now suppose q 2p/(p+ 1). Then C(p, q)= 1 and c =0, so

+ 1

This again yields a contradiction ifp is large enough that the coefficient above is positive.
Remark The expression

(Pp----+i)--(p’21)
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is increasing in p for 1 <p < with limit 1 as p . Thus, if we let p. be its unique
zero in this range, then the above argument works for all p > p.. An easy computation
shows 3.3 <p, < 3.4.

4. The elliptic problem. For the moment, 12, F, p, and q are as in the Introduction.
Also, h is always positive. Our goal is first to show the connection between the elliptic
problem (1.5) and the hypotheses of Theorem 1.2. Then for 12 BR we will study the
existence of solutions to (1.5). Together, this will prove Theorem 1.3.

PROPOSITION 4.1. Let 2 <= s < oo and suppose dp W’() is a solution of (1.5) with
A 2/(p+ 1). en satisfies hypotheses (i)-(v) ofeorem 1.2. If in addition s satisfies
(2.5), then W3".

Proof Hypotheses (i) and (iii) are stated in (1.5), and so there is nothing to prove.
Now

a-Ivl +, (1 -A)p,
1,swhich immediately gives (ii) and (iv). Finally, since 0 on F implies Wo

1 1
E(6) Ila I1- II[I "+lp+l

p+l

lfa 1 fn P+I

=- 14 p+
Thus ()N0 because I N2/(p+ 1). The regularity of follows exactly as in the
proof of Proposition 2.1. Simply note at the sta that, thanks to (2.5), 4 e W’" and
SO

B (1-A)O" e W".
PROPOSITION 4.2. Assume that p (n + 2)/(n 2). (If n 1 or 2, this condition is

vacuous.) Suppose that H, k 1, 2, 3,..., satisfy

(4.1) A+A0, 0, 0,

where A > 0 and X o as k . en 6 +1 as k .
oof Suppose not. Then, by passing to a subsequence, we may assume 6 I1+1

M independent of k. Let I111+, N and

/N.

Obviously I111+ 1. (N 0 since 0.) Moreover, multiplying the inequality in
(4.1) by and integrating over , we have that

p+l

or

p+l

Since I111,+,: a, NM, and A0, it follows that 1161120 as k, i.e., 60
in H(fl) as k. However, the condition on p implies that H(fl) is embedded in
Lp+, and so 0 in tp+. This contradicts the fact that [1,+ 1, thereby proving
the proposition.

The following corollary to the above two propositions states explicitly how solu-
tions of (1.5) yield solutions of (1.1) that blow up in finite time.
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COROLLARY 4.3. Assume s R satisfies (2.2) and (2.5). Suppose first that 1 < q <
2p/ p + l and that l < p < n + 2 / n 2 (l<p<oo if n=l or 2). If dp W2"s is a
solution of (1.5) with A sufficiently small, then qb satisfies all the hypotheses of Theorem
1.2; and so the solution of (1.1) with initial value blows up in finite time.

Suppose next that q 2p/(p+ 1) with p > p.. (See the remark at the end of 3.) If
dp W2,s is a solution of (1.5) with A =<2/(p+ 1), then ck satisfies all the hypotheses of
Theorem 1.2; and so the solution of (1.1) with initial value ck blows up in finite time.

Now we let f BR----{x Rn" Ixl < R}, and we look for solutions of (1.5) on BR.
In fact we are going to look for radially symmetric solutions of (1.5). This is not a
genuine restriction, because the techniques of [13] can be used to show that any
solution of (1.5) in BR must be radially symmetric. We are therefore led to consider
the following initial value problem:

n-1
u"(r)+u’(r)-lu’(r)lq+Alu(r)lP=O, r>0,

(4.2)
u(0)= a>0, u’(0) 0.

If uC2([O,R]) is a solution of (4.2) with u(r)>0 for 0-<r<R and u(R)=0, then
u(Ixl) is the desired solution of (1.5). (Note that, for the rest of the paper, we

will no longer be directly concerned with problem (1.1). Thus, the letter "u" will
henceforth be used to denote solutions of (4.2).)

PRoPOSrrio 4.4. Fix )t > O. For every a > 0 there exists a (unique) maximal solution
u C2([0, R)) of (4.2). Furthermore, we have the following"

(i) u’(r) < 0 for all r, 0 < r < R;
(ii) The function

1
,(r)/ lu(r)lu(rH(r)=u p+l

is decreasing on [0, R,);
(iii) If u r) > 0 for all 0 <= r < R, then R o and

lira u (r) O, lim u’(r) O, lira u"(r) O.
r-o r-oo

Proof. We first prove the existence of a unique solution to (4.2) on some interval
[0, e]. Consider the system

u(r) a + v(s) ds,

(4.3)
v(r) r-"-1) s-(Iv(s)l-;lu(s)l) as.

It is easy to see that a solution of (4.2) is also a solution of (4.3) with v u’. Indeed,
simply multiply the equation in (4.2) by r"- and integrate. On the other hand, by
standard iteration techniques, there is certainly a unique solution u, v C([0, el) to
(4.3) for some e>0. Clearly, u C1([0, el) with u’( r) v( r). In particular, u’(0) =0.
Moreover, v is immediately seen to be in C1((0, el) and so u C2((0, el) and satisfies
(4.2). It remains to show that u is C2 at r=0, i.e., that v is C at r=0. From (4.3),
l’H6pital’s rule easily gives

v(r) Aap

v’(0) lim
r-O r n
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On the other hand, from (4.2)

n 1)Aap Aap

lim v’(r) lim u"(r) Aap -.
r0 r-0 /1 r/

Thus, u e C([0, e]).
Since for r>0, there are no singularities in (4.2), the solution on [0, e] can be

locally continued to a maximal solution u e C2([0, R)). Since the continuation pro-
cedure treats (4.2) as a system (u(r), v(r)) with u’(r)= v(r), it follows that if R < o3

then either lu(r)l-c or lu’(r)l- as r Ra.
To prove (i), note first that u’(0) 0 and u"(0) < 0. Hence u’(r) < 0 on some interval

(0, ). Let ro be the first positive zero of u’. Then u(ro) 0 since, if u(ro)= u’(ro)= O,
it follows by uniqueness that u(r)= O. Consequently, from the equation in (4.2)

u"(ro) -A lu(ro)l < 0,

which implies that u’(r)> 0 for r in some interval (ro-e, ro). This contradicts the
choice of ro, and thereby proves (i).

Next, we compute easily that for r > 0

H’(r) u’(r)u’(r)+ Alu(r)lPu’(r)

u’(r)[-( n -1) u’(r)+lu’(r)lq

<0.

This proves (ii).
Finally, if u(r) > 0 for all r [0, Ra), then 0< H(r) <= H(O) for all r [0, R). Thus,

u(r) and u’(r) are a priori bounded and so R . Now u’(r) < 0 and u(r) > 0. Hence,

lim u (r) u (finite)

exists. Likewise, H(r) has a finite limit as r . It follows therefore that

lim u’(r) v

exists. In fact we must have v 0 for lim_ u(r) to exist. Finally, from (4.2) we now
deduce that

lim u"( r) -A lul,
Thus, the only way we can have limr_ u’(r)= 0 is if u 0. This completes the proof
of (iii).

For a fixed A > 0, we denote the first zero of the solution to (4.2) by z(a). We set
the convention that z(a)= in case u(r)>0 for all r>=0. Thus, the solution u(r) of
(4.2) yields the desired solution of (1.5) precisely if z(a)= R. This certainly motivates
studying the function z(a).

PROPOSITION 4.5. {a>0: z(a)<oo} is open and z(.) is continuous on this set.
Moreover,

(4.4) lim z(a) .
a->0

Also, if z(ao) oo for some ao R, then lima-ao z(a) oo.
Proof. If z(a)<o, then u(r)<0 for r slightly larger than z(a). By continuous

dependence on the data, if we change a by only a little bit, u(r) must still be negative
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somewhere, and must therefore have a zero. Continuity of z(. follows from continuous
dependence of u(r) on a and the fact that u can have at most one zero since u’(r)< 0
for r>0.

To prove (4.4), we note that since H(r) is decreasing, it follows that

1 u,(r)2 <_ H(r) <- H(O)
2

Aap+l

p+l

or

(4.5)

Consequently,

lu’(r)l<-42x/(p+ 1) a<p+>/.

a=u(O)-u(z(a))
z(a)

u’(s) ds--dO
<= z(a)a<P+l)/2x/2A/(p+ 1),

or

(4.6) z(a) >-
--(p--l)/2a

x/2A/(p + 1)"

This proves (4.4).
For the last statement; we show that given M > 0, then z(a) > M if a is sufficiently

close to ao. Now for a ao, u(r)> 0 for all r> 0; hence u(r)-> 6 > 0 on [0, M]. By
continuous dependence on the data, if a is sufficiently close to ao then u(r)=> 6/2 on
[0, M]. Hence z(a)> M for such a.

Next we would like to study the behavior of z(a) as a --> . We first consider the
case q < 2p/(p + 1).

PROPOSIa’ION 4.6. Assume that q<2p/(p+l) and (in the case where n=>3) p<
(n + 2)/ (n 2). Then, for all A > O, we have

(4.7) lim sup a(P-)/2z(a) < cx3,

(4.8) lim z(a) 0.

Proof Fix A > 0. Denote by u(.; a) the solution of (4.2) with initial value a; and
for all a > 0, set

V,,(r) a-u(ra-<p-1)/2" a)

Then va is easily seen to satisfy

n-1
r

(4.9)
/.)a (0) 1, /)a(O) O.

Also, v’(r) <0 for r>O and va(r)>O for O<-r<aP-)/2z(a). Hence

(4.10) 0<--_ v,,(r) <--_ 1, 0 <- r <- a(P-)/2z(a).
Moreover, (4.5) translates into

(4.11) Iv’(r)l<-x/ZA/(p+ 1), r>-O.
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Now suppose there exists a sequence a,, oo such that a-l)/2Z(am)
By the Arzel-Ascoli theorem and a standard diagonal argument, there is a sub-
sequence, which we still denote am, and a continuous function v:[0, oo) [0, 1] such
that Yam V uniformly on all compact subsets [0, M] c [0, oo). In particular, v(0) 1,
v is nonincreasing on [0, oo), and v is Lipschitz continuous with a Lipschitz constant
no greater than x/2h/(p+l). (Each va has these properties.) Finally, since q<
2p/(p+ 1) and Iv’[ is bounded independent of r and a, it follows from (4.9) that

(4.12) v" +
n 1

v’ + hvp 0
r

in the sense of distributions on (0, ).
It is well known that since p < (n + 2)/(n 2), such a v cannot exist. This is proved

on pp. 293-294 of [33] in the case A 1. (See also [18, Prop. 3.9].) The same arguments
work for any A > 0, or else A can be scaled away by multiplying v by a suitable factor.
This proves (4.7), and hence (4.8).

We now turn to the case q 2p/(p+ 1). This will be quite different since the scaled
solution va satisfies the same equation as u.

LEMMA 4.7. If q 2p/ (p + 1), then for all a > O,
(4.13) z(a) a-P-)/Zz(1).

Proof By (4.9), we see that va u(. 1) for all a > 0. Hence the first zero of v is
z(1). However, by the definition of v, its first zero is a-/z(a). This proves (4.13).

In other words, whether or not z(a) is finite depends entirely on whether or not
z(1) is finite. This in turn depends on A.

LEMMA 4.8. Let ro-->0, A >0, q=2p/(p + 1), and suppose u’(ro, oo)R is C2 and
satisfies

(i) u(r) > O, r > ro, and lim_ u(r) 0;
(ii) u’(r) < O, r > ro, and lim_. u’(r) 0;
(iii) u"(r)-lu’(r)] + Au(r) p =0, r> to.

If in addition u(r) satisfies
(4.14) u"(r)<=klu’(r)l q, r> ro,

where k > 0 is a fixed constant, then u must also satisfy

u"( l _-< lu >

Proof. Since u’(r)<0, inequality (4.14) can be rewritten"

(-u’(r))-(q-u"(r) <- ku’(r).
Integrating this from r to oo, we get

(-u’(r)) 2-q <= ku(r),
2-q

or

>p+lu( r) -- (--u’( r) 2/(v+1).

(Recall that q 2p/(p + 1) < 2.) Hence

u"(r) (-u’(r))q Au(r)p

--< 1-A
k

(-u’(r))q"



900 M. CHIPOT AND F. B. WEISSLER

PROPOSITION 4.9. Suppose n 1 and q 2p/(p+ 1). If A _-> (2/(p+ 1)) p, then
z(a)< c for all solutions u(r) of (4.2).

Proof If z(a) c, then u(r) > 0 for all r > 0. By Proposition 4.4, and the fact that
n 1, u(r) satisfies conditions (i)-(iii) of Lemma 4.8 with ro 0. Furthermore, by (4.2)
with n 1, we have that (4.14) holds with k 1. Thus (4.15) holds with k-1. Since
A -> [2/(p+ 1)] p, it follows that u"(r)<-O for r>0. This is impossible because u’(r) <0
and u(r) > 0 for r > 0.

The result in Proposition 4.9 is already enough to give us a solution of (1.5) with
A _-<2/(p+ 1). Indeed, [2/(p+ 1)]p <2/(p+ 1). However, this result can be improved.

LEMMA 4.10. Suppose A > Ap, given by (1.6). Define the following sequence induc-
tively:

ko 1, k,, 1- A\2km_l]
as long as kin-1 > O. Then either km is eventually nonpositive or lim,_ k,, =0.

Proof It is easy to verify by induction that the sequence km is decreasing as long
as it is defined. Consequently, if the conclusion is false, then

lim k,, k > 0,

and k must satisfy

k= l-A\
In other words, k is a positive solution to

f(X)=xP+’-xP=-A

However, the minimum value off(x) for x 0 is easily computed to be

p+l

Hence we must have

A<_- =Ap.
p p+l p+l

Therefore, if A > Ap, the conclusion holds.
PROPOSITION 4.11. Suppose n= 1 and q=2p/(p+ 1). IfA > ,p, then z(a)<oo for

all solutions of (4.2).
Proof If z(a) oo, then u(r)> 0 for all r>0. By Proposition 4.4 and the fact that

n- 1, u(r) satisfies conditions (i)-(iii) of Lemma 4.8 with ro- 0. Furthermore, by (4.2)
with n-1, we have that (4.14) holds with k= 1. Hence by Lemma 4.8, (4.14) and
therefore (4.15) hold with all values k- k, defined in Lemma 4.10. Thus, by Lemma
4.10, u"(r)<-O for all r>0. This is impossible since u’(r)<0 and u(r)>0 for r>0.

Proof of Theorem 1.3. Suppose first that l<q<2p/(p+l) and (if n_->3) p<
(n+2)/(n-2). By Propositions 4.5 and 4.6, for all A >0 and R>0, there exists a>0
such that z(a) R. In other words, if u(r) is the solution to (4.2) with this initial value
a, then u(r)>0 for O<-r<R and u(R)=0. Then ck(x)=u(Ixl) [xi<-_R, is the desired
solution of (1.5). The other properties of b follow from Corollary 4.3.
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Now suppose that n 1, q 2p/(p+ 1), and h > hp. Then by Proposition 4.11 and
Lemma 4.7, there exists (a unique) a > 0 such that z(a)= R. The rest of the proof is
as in the previous case.

5. Further results on the elliptic lrolflem. In this section we continue in the same
context and with the same notation established in the previous section. In particular,
for a fixed h > 0, z(a) is the first zero of the solution to the initial value problem (4.2),
with the convention that z(a)-- in case the solution always remains positive. Our
goal is to study more completely the problem (4.2), i.e., the elliptic problem (1.5) in
BR. We first gather as much information as we can in the general case, and then
specialize to dimension n 1. The following result is a variation on the estimate (4.6).

LEMMA 5.1. Let h > 0 and u(r) be the solution of (4.2), with z(a) the first zero of
u(r). Then

(S.1) z(a) >- h -1/q a 1-(p/q.

Proof. We may certainly assume z(a) < o. We claim first that the maximum value
of-u’(r) on [0, z(a)] is achieved in the interior. Indeed,

Aap

-u"(0) =>0,
n

-"((a))=
(a)

((a))-Iu’((a))lq<o.

So if ro is such that -u’(ro) is a maximum on [0, z(a)], then u"(ro)= O, i.e.,

--1
--(--u’(ro)) q + AU(ro)p u’(ro) e 0

ro
or

(-u’(ro))q <_ Au(ro)p <--_ Aap.

This implies that for 0 =< r =< z(a),

Hence,

-u’(r)<=A1/qap/q.

a=u(O)-u(z(a))
z(a)

u’(s) ds
o

z(a)A1/qap/q,

which proves (5.1).
LEMMA 5.2. Let q > 2p/(p + 1) and in case n >- 3) p < (n + 2)/(n 2). Then, for

all A > O, we have

lim sup aP-l/Ez(a) <
a-0

In particular, for all sufficiently small a, z(a) < and

(5.2) z(a) <- Ca -<p-l/2.

Proof This is an obvious modification to the proof of Proposition 4.6.
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Let us consider for a moment whether or not a regular (i.e., C2) solution of the
elliptic problem (1.5) exists on f BR. As noted in 4, the methods of [13] can be
used to prove that such a solution b(x) must be radially symmetric. In other words,
b(x) u(Ix]), where u(r) is a solution of (4.2) with z(a)= R. Therefore, for a fixed
A > 0, the number of solutions to (1.5) on BR is precisely the cardinality of the set
z-l(R). For each A > 0, we define

(5.3) R(A) inf z(a).
a>0

Note that if R(A)<c, then by Proposition 4.5, z(a)= R has at least one solution
whenever R(A) < R <

PROPOSrnON 5.3. (i) If q >-- p then R(A) > 0.
(ii) If q > 2p/(p + 1 and in case n >- 3) p < (n + 2)/ (n 2), then R(A) <
(iii) Ifq > p and (in case n >= 3) p < (n + 2)/(n -2), then z(a) R(A) < oo for some

a > O, and z(a)= R has at least two solutions a > 0 for each R > R(A).
Proof. Statement (i) follows from the lower estimates for z(a) given by (4.6) and

(5.1). Statement (ii) follows from Lemma 5.2. For statement (iii) note that (4.6) and
(5.1) imply iima_,o z(a) =oo and lima_oo z(a)=oo. Moreover, by Lemma 5.2, z(a) is
finite for some values of a, and hence, by Proposition 4.5, assumes its (positive)
minimum R(A) at some am, O< am < o. Clearly, then for each R > R(A), there exist
al and a2 with 0< al < a,, < a2 < oo such that z(al) z(a2) R.

COROLLARY 5.4. (i) If q >= p and 0 < R < R(A), then there is no regular solution

of (1.5) on BR.
(ii) If q > 2p/(p + 1 and in case n >- 3) p < n + 2)/ (n 2), then for R > R(A),

there is at least one regular solution of (1.5) on BR.
(iii) If q > p and (in case n >= 3) p < (n + 2)/(n 2), then for R R(A), there is at

least one regular solution of (1.5) on B; andfor R > R(A ), there are at least two regular
solutions of (1.5) on B.

We next focus our attention on the case q= 2p/(p+ l). This is particularly
interesting since it is the critical value for both the energy arguments in 3 and the
scaling argument in (the proof of) Proposition 4.6.

PROPOSXON 5.5. Let q 2p/(p + 1) and A > O. Suppose first n 1, 2 or n >= 3 and
p < n/(n- 2). Then there exists a positive constant k such that

U(r) kr-2(5.4)

satisfies

if and only if A <_- Ap.,, where

u’(r)-lu’(r)l q + Au(r)" -0

1[ 2p
p+l (p+l)(2p-np+n)

On the other hand, if n >-_ 3 and p >-_ n(n- 2), then such a solution exists for all A > O.
Proof. By direct calculation, we see that U(r), given by (5.4), satisfies (5.5)

precisely when

(5.6) Akp- , kq-1
p-1 Z1 n

If n-->3 and p>=n/(n-2), then the right-hand side of (5.6) is nonnegative. In this
case, since q=2p/(p+ 1)<p, a positive solution k to (5.6) can always be found.
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Suppose instead either n 1, 2 or in the case where n->3, p < n/(n-2), so the
right-hand side of (5.6) is negative. Then a positive solution k of (5.6) can be found
precisely when

(5.7) inff(x) _<-
x>o p- 1 --1 n

where f(x)= AxP-l-[2/(p-1)]qxq-a. Using elementary calculus, and not forgetting
that q=2p/(p+ 1), we can verify that (5.7) holds if and only if A NAp,,.

Remark. Note that Ap, Ap, defined by (1.6). Also, Ap,, is increasing as a function
of n.

PROPOSITION 5.6. Assume q=2p/(p+ 1) and A NAp= Ap,1. Then z(a) =oo for all
a > O. In other words, there is no regular solution of (1.5) on BR, for any R > O.

Proof In dimension n 1 there is a particularly easy and elegant proof, which
we present first. Suppose a C2 solution b of (1.5) exists in dimension n 1. Let U(r)
be the solution of (5.5) given by (5.4) with n 1. (Recall A -< Ap.a.) Set

/5=sup {p R" the graph of qb(r-p) does not touch the graph of U(r)}.

Clearly, /SeR. Also, the graphs of b(r-/) and U(r) touch at some point ro, i.e.,
ok(to-) U(ro)> 0; and by the definition of/5, we must also have b’(ro-/5)= U’(ro).
However, both b(r-/5) and U(r) satisfy (5.5) with the same Cauchy data at to. Hence
b(r-/5)= U(r) wherever both functions are defined. In particular, b cannot be
C2([-R, R]) with b(+R)=0.

For the case n -> 2, we assume that z(a) < oo for some a > 0. For any fixed y > 0,
let

u’(r))

G(r)--- ylu(r)[Pu(r).
2

Then G(O) < 0 and G(z(a)) > O. (u’(z(a)) =0 by local existence and uniqueness.) Thus,
the first zero of G(r) is between zero and z(a); call it to. Clearly, G(ro)=O and
G’(ro) --> 0. However, since G(ro) 0, we have

lU’(ro)l 2x U(ro) (p+l)/:z.

Therefore, at r ro

where

G’= u’u"-y(p+ 1)ttPu

u’( -nro-1 u,+lu,[q_Aup_y(p+l)ue)
< u’(I u’l -(A + v(p+ 1)) up)

u’((2y)q/)u(V+a)q/z-(A + y(p+ 1))u e)

=u’u"f(r),

f(y)=(2y)v/(v+a-y(p+ l)-1.

(We have used the fact that (p+ 1)q/2=p.) Now G’(ro)>=O, u’(ro) <0, and u(ro)> 0.
Consequently, we must have f(y)< 0. Since , > 0 was arbitrary, this must be true for
all 7 > 0. A straightforward calculation of the extreme points for f(y) shows that we
must have A > A,,a. This proves the proposition.
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Remarks. The estimate for G’(ro) depends on the fact that n >= 2 in order to get
strict inequality. Thus, it seems that for n 1, the second argument misses the case
h hp,1. However, since for a fixed value of a, the set of h > 0 for which z(a)< is
clearly open, we recover the case h hp,1 when n 1.

Also, in the case n 1, Proposition 5.6 and Theorem 1.3 give a complete description
of when there are solutions of (1.5) on BR with q 2p! (p + 1). There exists a solution
ifand only if h > hp. It is natural to conjecture an analogous result for higher dimensions.
We wonder what the sharp cutoff value would be, in particular if it is hp,

A variation on the proof of Proposition 5.6 yields the following result.
PROPOSITION 5.7. Assume q < 2p/(p + 1) and fix A > O. Then there exists a. > 0

such that z(a) o for a <-_ a..
Proof. Suppose z(a)<. Let u(r) be the corresponding solution of (4.2) and set

u’(r)
G(r)- xlu(r)lVu(r).

2

Then G(0) < 0 and G(z(a)) > 0. Let ro be the first zero of G; so G(ro) 0 and G’(ro) >= O.
Reasoning as in the proof of Proposition 5.6 (with 3’ A), we see that at r ro

G’ <_ u’((2A )q/2up+’)q/2- A (p + 2)up)

Utu(P+I)q/2((2A )q/2__ A(p+ 2)aP-[(P+l)q/2]).

Since p > (p+ 1)q/2, it follows that for a sufficiently small, G’(ro)< 0. This contradicts
the earlier observation that G’(ro)>-_ O.

Hence z(a) for a > 0 sufficiently small.
We now restrict ourselves to the special case n- 1. The problem (4.2) becomes

the autonomous problem

(5.8)

Problem (1.5) becomes

u"(r)-Iu’(r)l / ;t u(r)l --0,

u(0) a>0, u’(0) 0.

"-I’1 +A,-0 in (-R, R),

(5.9) b > 0 in (-R, R),

b(+R) =0,

where b C2([-R, R]).
Consider the case q<2p/(p/ 1). By Propositions 4.5 and 4.6, i.e., the first part

of Theorem 1.3, for all Z > 0 and R > 0, there is a solution to problem (5.9). We will
show it to be unique. (Note that in the case q-2p/(p+ 1) the solution of (5.9) is
unique when it exists because of formula (4.13). If q > p, we know it is not unique for
R large enough.)

LEMMA 5.8. Let v(r) be the maximal solution (as in Proposition 4.4) to the problem

v"( r) b v’( r)l q / A lt (r)[ p O,
(5.10)

v(0)= Vo>0, v’(0) 0,

where b > 0 and A > 0 are parameters. Then v( r) is an increasing function of b.
Proof. The existence and uniqueness of v(r) follow exactly as in the proof of

Proposition 4.1. In particular, v’(r)< 0 for r < 0. It is clear from the integral equation
corresponding to (5.10) that v is a C function jointly in r and b. We denote vr Ov/Or
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and Vb =Ov/Ob. Then considering Vr and Vb as functions of r, and using to denote
ddr, we have

tt --1Vr-l-bql)’[ q- Vrq-Aplvl p 1)r’--O

v’ + bqlv’lq-lV’b + Ap]vlp-lvr (-v’) q.

Hence, setting w 1)tbDr DrDb, it follows that

w’ + qb(-v’) q-lw (-v’)qv < O,

or, if f denotes a primitive of qb(-v’) q-l, that

(5.11) (efw)’<O.
Since Vb(O)=Vr(O)=O, we have w(0)=0. Hence by (5.11), w(r)<0 for r>0. This
implies (Vb/Vr)’ < 0 for r > 0. Moreover,

lim
Vb(r) V’b(r) 0

r-0 Vrir)=lrimo V’r(r)- v"(O)

and so Vb/Vr<O for all r>0, i.e., vb(r)>O for r>0.
PROPOSITION 5.9. Let q <2p/(p+ 1) and n 1. Then, for all A >0, a<p-1)/2z(a) is

a decreasing function of a. In particular, z(a) is decreasing.
Ifq> 2p/(p+ 1) and n 1, then for all A >0, a<P-1)/2z(a) is an increasingfunction

ofa.
Proof By the previous lemma, if n= 1 and q<2p/(p+ 1), then Va(r) defined by

(4.9) is a decreasing function of a. Consequently, the first zero of v, i.e., ap-1)/2z(a),
is a decreasing function of a. More precisely, a<’-a)/2z(a) is nonincreasing for all a > 0
and strictly decreasing where it is finite.

An analogous argument works for q> 2p/(p+ 1).
COROLLARY 5.10. Let q<2p/(p+l) and n=l. Then for every A>0 and R>0,

the C2 solution of (5.9) is unique.
Finally, we have a result that further contrasts the cases q<2p/(p+l) and

q>2p/(p+l).
PROPOSITION 5.11. Suppose q > 2p/(p + 1) and n 1. Let A > 0 be arbitrary. Then

z(a) <o for all a > 0 and lima_o z(a) .
Proof. By Lemma 5.2 and Proposition 4.5 we already know that z(a) < oo for small

a>0 and lima_,oz(a)=oo. Suppose z(a)=oo for some a>0, and let u(r) be the
corresponding solution of (5.8). Let v(r) be a solution to (5.8) with a smaller initial
value a such that z(a)< oo. Let

t=sup {pR: the graph of v(r-p) does not touch the graph of u(r)}.

As in the proof of Proposition 5.6, it is clear that 5 R and that u(r) and v(r-)
would have to coincide, which is impossible.

Remarks. We can make a few more observations in the case n 1. First, if
q<2p/(p+l), then by Propositions 4.6, 5.7, and 5.9 there exists a,>0 such that
z(a)= for a<=a, and z(a)<c for a>a,. Next, in the case q>2p/(p+l), if ba
and b2 are two different solutions of (5.9), then bl(x)# b2(x) for all x in (-R, R).
This follows from a translation argument similar to the proofs of Propositions 5.6 and
5.11. We mention without proof that if q > 2p! (p + 1), there can exist singular solutions
of (5.9), i.e., solutions in C2([-R, R]\{0}) with limx_,o b(x)=.

Clearly, solutions of (1.5) exhibit radically different behavior depending on the
relationship between p and q. However, the picture is certainly not complete.
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Note added in proof. After we completed this paper, we learned that B. Kawohl
and L. Peletier obtained, among other interesting results, blowup in the case q 2.
(See B. Kawohl and L. Peletier [36].)
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POLYMER FLOODING*
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Abstract. The global Riemann problem for a nonstrictly hyperbolic system ofconservation laws modeling
multicomponent polymer flooding is solved. The solution is constructed by first generating the Riemann
solution of an associated one-phase problem.
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1. Introduction. In this paper we construct the global solution of the Riemann
problem for a nonstrictly hyperbolic system of conservation laws of the following form:

st +f(s, Cl, Cn) -"0,
(1.1)

[sci+ai(ci)]t+[cif(s, cl,’’’ cn)]x =0, i=l,2,...,n,

where the unknown state vector (s, Cl," , cn) (s, c) n+l andf: n+l --> and ai fl--> l
are given smooth functions. Here denotes the unit interval fl= [0, 1].

The results presented here generalize the results of Johansen and Winther [9]
where the general Riemann problem for the model (1.1) is solved for n- 1.

The main purpose of this paper is to extend this solution to the case where n > 1.
We show that a certain "projection principle" makes it possible to construct the
Riemann solution in this case from a coupled sequence of Riemann problems of the
form studied in [9]. This construction is the main result of the paper.

The system (1.1) models simultaneous one-dimensional flow of two immiscible
phases (the aqueous phase and the oilic phase) in a homogeneous porous medium. It
is further assumed that n chemical components are dissolved in the aqueous phase.
These components could, for example, be different polymers that all have different
influence on the flow properties. The equations are derived from conservation of mass
of the two phases and of the n chemical components. The variable s denotes the
saturation of the aqueous phase. The term ai in (1.1) models the adsorption of
component on the porous medium. It is assumed throughout the paper that a is a
given function of concentration that depends only on the variable c; i.e., ai ai(c).
As in [9] we will assume that each of the adsorption functions a are of Langmuir
type; i.e., ai is a concave, increasing function such that ai(0)= 0. No relation between
the different adsorption functions will be assumed. The function f=f(s, Cl,’’’, c,)
is the fractional flow function of the aqueous phase. We will assume that this function
is a decreasing function with respect to each of the variables c. This corresponds, for
example, to the effect that the viscosity of the aqueous phase is increasing with respect
to the concentration c. For any fixed concentration vector c the function f is assumed
to be an increasing function of s with one inflection point. For more details on the
physical derivation of the model (1.1) we refer to [9] and references given therein.
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A model, where the effects of polymer and surfactants are modeled as described
above, is for example proposed by Lake and Helfferich 11 ]. A more realistic description
of the adsorption effects would be that the different components compete for the vacant
adsorption sites. In [13], Rhee, Aris, and Amundson solve the Riemann problem for
such a model in a one-phase situation. They assume that the adsorption effects are of
generalized Langmuir type; i.e., the adsorption functions ai are of the form

(1.2) ai--ai(Cl,2,’’ ",cn)=Kici/(l+ Kjcj)
j=l

for 1, 2,..., n, where K1 < K2 <’’’ < Kn are given positive constants. The tech-
niques developed in this paper can also be used to construct the Riemann solution for
a two-phase model of the form (1.1), but where the functions a(c) are replaced by
adsorption functions of the form (1.2). This construction will be discussed in a
forthcoming paper.

The model (1.1) is an example of a system of hyperbolic conservation laws.
However, under the present assumptions on the fractional flow function f, the system
is not strictly hyperbolic; i.e., there exist regions in the state space where the eigenvalues
of the appropriate Jacobian matrix are not distinct.

The Riemann problem for the model (1.1) consists of constructing a weak solution
of the pure initial value problem for (1.1) with initial condition

(S L, CL) if x < O,
(1.3) (s, c)(x, O)= (sR, cR if X>0,

where the left and right states (s t, ct) and (s R, cR) in i,/1 are arbitrary. To distinguish
the physically meaningful weak solutions we will also require that any discontinuity
of the solution satisfies an "entropy condition" obtained from traveling wave analysis.
As in [9] the entropy condition will allow overcompressive shocks. In particular, this
condition will guarantee the uniqueness of the solution of the Riemann problem.

The interest in Riemann problems is partly motivated from their potential applica-
tion as building blocks in the construction of numerical methods. Examples of such
methods are the Random Choice Method [1]-[3], Godunov-type methods [6] and
front-tracking techniques [4], [5]. It is therefore of interest to develop a computer
program that computes the desired solution of the Riemann problem. Such a program
has been implemented from the constructive existence proof given in this paper. In a
forthcoming paper we will discuss this implementation and also present some examples
of solutions.

If n 1 and if the adsorption term a(ci) is neglected, the model (1.1) corresponds
to a 2x2 system of conservation laws analyzed by Keyfitz and Kranzer [10] and
Isaacson [7]. In [9] the adsorption term is included. The effect of this term is that the
linearly degenerate characteristic field appearing in the analysis of [7] and [10] is
replaced by a nondegenerate field. A further consequence of the adsorption term is
that the state-space solution of the Riemann problem becomes unique. A multicom-
ponent version of the nonadsorption model of [7] and 10] is studied by Isaacson and
Temple [8]. In the present paper the model (1.1), with adsorption terms included, is
analyzed in the case when n > 1. The results depend heavily on the results of [9] and
on the fact that the Riemann problem decouples according to a "projection principle."
As a consequence of this principle the Riemann problem for (1.1) can be constructed
by first solving the Riemann problem for an associated one-phase problem. Thereafter,
the solution for (1.1) can be obtained from a finite sequence of coupled 2 x 2 Riemann
problems.
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The precise assumptions on the system (1.1) are stated in 2. In 3 the properties
of the elementary waves (rarefactions and shocks) are described. The "projection
principle" is discussed in 4, while the complete construction of the Riemann solution
is performed in 5. The main conclusions obtained from this paper are given in 6.

2. A precise formulation of the model. The model (1.1) is a system of n + 1
hyperbolic conservation laws with n + 1 unknowns s, cl,’’ ", c,. We frequently let c
denote the n-vector (cl, c2,"’, cn). For the partial derivatives of the flux function
f =f(s, c)=f(s, c,. c,) we use the notation

fs =0--f and fi =Of for i=l,2,...,n.as ac
Furthermore, f denotes the row vector f (f, f2," ", f.).

The derivatives of the adsorption functions a a(c) are denoted by h da/dc,
and H(c) is the n x n matrix

H(c) diag (hl(C),-.’, h,(c,)).
The assumptions on the functionsfand a are similar to those made in [9]. In particular,
the adsorption functions a are assumed to be smooth, strictly increasing, strictly
concave functions of c such that a(0)--0 (cf. Fig. 2.1); i.e.,

(2.1) h,(c,)>0 and dhi(
dci

c) < 0 for ci 0.

The flux function f is assumed to be a smooth function such that (cf. Fig. 2.2):
(2.2a)
(2.2b)
(2.2c)
(2.2d)

f(O,c)O, f(1, c)= 1,

fs(S,c)>O forO<s<l, csO",
f(s,c)<O forO<s<l, csfl,
for each c ", f(., c) has a unique point of inflection s x sX(c)fl such that

fs(s,c)>O fors(O,s), f(s,c)<O fors(st, 1).

FIG. 2.1

FIG. 2.2. Cj C for j i, ci < ci.
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Let uER"+1 denote the state vector u=(s, c). If the solution of the system (1.1) is
smooth, then the system can be rewritten in the form

u,+A(u)u,=O,

where A(u) is the (n + 1) x (n + 1) matrix

A(u)=(f(s c) f(s, c) )f(s, c)(sI + H(c))-’
Here I denotes the n x n identity matrix. The eigenvalues of A are As =fs and Ai
f(s + hi). In general these eigenvalues are not distinct.

For a given c E " there is at most one value of s > 0 such that As Ai (cf. Fig. 2.3).
In particular, for constant values of c, for j i, the set {(s, c) ]As(s, c) Ai(s, c), s > 0}
defines a curve in (s, q)-space similar to the transition curve T appearing in the analysis
of [9]. We impose the same regularity requirements on all of these curves as we did
on the corresponding curve in [9]; i.e., for arbitrary constant values of c, for j # i,
there is a unique value cf such that the curve Ai As exists for 0-<_ ci -<- c (cf. Fig. 2.4).

Furthermore, the relation Ai At defines an n-dimensional surface in state space
given by

hi(c.i) hi(c,) or ci h-f(hi(c,))=-- g,.i(ci).

We observe that it follows from the assumptions on the functions hi that the functions
gi. are increasing functions of ci (cf. Fig. 2.5).

3. Elementary waves. In this section we determine all the elementary waves of the
model (1.1); i.e., we determine the rarefaction waves and the shock waves. The

-h (C

f(.,c)

Xi(s,c) X,(s, c)

Fo. 2.3. A A,.

"":"’" )’i>ks
,"

FIG. 2.4

=-$



912 T. JOHANSEN AND R. WINTHER

FIG. 2.5

construction of the solution of the general Riemann problem will thereafter be
performed by composing different elementary waves and constant states.

Any weak solution ofthe pure initial value problem for (1.1), with initial conditions
of the form (1.3), depends only on the variable x/t. The rarefaction waves are the
possible smooth solutions. Let u(x, t)= (s, c)(x, t)= v(x/t) be a smooth solution of
(1.1), (1.2). It is well known that the values of v must lie on an integral curve of one
of the (right) eigenvectors of the matrix A(v), while :=x/t is the corresponding
eigenvalue A(v). Thus A(v(:)) must increase monotonically with . The requirement
gives a direction, corresponding to increasing values of s x/t, associated with the
integral curves. These directed integral curves are called rarefaction curves.

To determine the rarefaction curves we have to find the eigenvectors of the matrix
A(v). If the eigenvalue A A =f then the corresponding eigenvector r is given by
r--(1, 0) (i.e., c=0 for i-1, 2,..., n). Hence, the associated integral curves are the
curves c-constant. The associated rarefaction waves correspond to rarefaction waves
of the single Buckley-Leverett equation

(3.1) s+f(s)x=O,

where f(s)-f(s, c), c constant. These waves are referred to as s-rarefactions.
If A A for some then the vector c will be nonconstant along the associated

integral curves. These rarefaction waves will therefore be referred to as c-rarefactions.
An eigenvector corresponding to A A is given by

(3.2)

where
Hence, the associated integral curves are determined by

dci(3.3) f ss A, As, cj constant for j i,

where
and that dc! ds < 0 when As < A. Furthermore, a straightforward calculation shows that

dA Z dh dc
ds s + hi dci ds

along the integral curves. Since dh/dc < 0, this implies that the rarefaction curves are
directed toward increasing values of c (cf. Fig. 3.1). If A Ai Aj for j then any
linear combination of the eigenvectors r and r given by (3.2) corresponds to an
eigenvector associated with this eigenvalue. Furthermore, if such an eigenvector is
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FIG. 3.1

tangential to the surface hi hi, the corresponding integral curve is a curve on the
surface hi hi. Hence, if we choose

r= (f+f dgid(10)+(h-As)[(O,dci /

we obtain the integral curve

(3.4)

ei) +-ci (O, ej)

fi ’[-fj dgi’J di
dci /

h -As,

cj gi,j( ci ),

Ck constant for k i, j,

where Ci--Ci(S ). This is a curve on the surface hi=hi. Since f+f(dgi,j/dci)<O for
0 < s < 1, the same analysis as above shows that the projection of the integral curves
into (s, ci)-space have the form illustrated in Fig. 3.1. In particular, the variable ci is
increasing in the direction of the rarefaction curves.

The rarefaction curves generated by (3.4), where hi hi, will be referred to as
c-rarefactions of multiplicity two. The analysis above can easily be generalized to

c-rarefactions of multiplicity m + 1 on the surface Ai A A A. These curves
are determined by the system

( dgid) dCidci/-sY,

cj=gi,j(ci) for j J,
Ck constant for k and k J,

where J denotes the index set J {jl,j_,"" ,jm}. As above these rarefaction curves
are directed toward increasing values of ci (and cj,,..., cjm), and the projection of the
curves into (s, ci)-space have the form illustrated by Fig. 3.1.

We next determine the shock waves of the model (1.1); i.e., for given states
u L, u R fln/l we derive possible weak solutions of (1.1) of the form

(3.5) u(x,t)= uR if x/t>

where tr is the shock speed. We will also require that the shock waves satisfy an
"entropy condition."
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Any weak solution of (1.1) of the form (3.5) must satisfy the Rankine-Hugoniot
condition given by

C
R L, L) L),f(sR, )-f(s c =tr(sR-s

(3.6)
ciRf(s1, C

R cil;’f(s L, C t’) tr[sRci + a,(ciR) sLciI( ai(cf)]
for 1, 2," ", n.

If c= cL (i.e., c c for i= 1,2,’’’, n), then (3.6) reduces to the single equation

(3.7) f(sR, c)-f(s
where c cR cL. This corresponds to the Rankine-Hugoniot condition for the single
Buckley-Leverett equation (3.1). Corresponding to the theory for scalar conservation
laws, shock waves of this form satisfy an entropy condition if and only if

(3.8) [f(s, c)--f(s L, C)--tr(s--sL)]sign (s--sL)>--O
for any s between sL and sR (cf. [9], [12], [15] and references given therein). These
shocks, with c cR= cL and which satisfy (3.7) and (3.8), are referred to as s-shocks.

Consider the Rankine-Hugoniot relations (3.6) when cL cR. Shock waves of this
form will be referred to as c-shocks. If c # cR for some i, and c= cJ for j # i, the
relations (3.6) can be written in the following form (cf. [9])"

f(sR, cR) f(sL, cL)
(3.9) sR + h(cR sL + h(CR
where h(ci) is defined by

h(c,)=(ai(ci)-ai(c))/(ci-c) if ci c,
hi

We observe that the value h(cR) is determined from the values of c and c and that,
C
L Rif s L, and c are given, there are at most two values of s

g that satisfy the relation
(3.9) (cf. Fig. 3.2).

In [9] the entropy conditions for the c-shocks have been derived from a traveling
wave analysis. Here, it suffices to simply state the result of a corresponding analysis.
For the c-shocks, with c # c and c= c] for j i, the entropy conditions are

(3.10) c>c
and

(3.11) As(uR) < tr or As(uL), A(uR) =>

/-hi(c i)
FIG. 3.2
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Since the function hi is strictly decreasing, relation (3.9) implies that (3.10) is equivalent
to the eigenvalue/shock speed relation

,X,(u") > > ,,(u").
Hence, if in addition

x(u)->> x(u),
then we do allow overcompressive shocks where both characteristics on both sides of
the shock enter the shock (of. Schaeffer and Schearer [14]). An example of such a
shock wave is illustrated in Fig. 3.3.

FIG. 3.3. Overcompressive shock.

We recall from [9] that when n 1 an overcompressive shock can never be joined
to another wave in a Riemann solution. As we will see below, this will not be the case
when n > 1.

The c-shocks described above, with c cR, c= c] for j and that satisfy (3.9),
(3.10), and (3.11) will be referred to as c-shocks with multiplicity one. Shock waves

Rwhere c cR, e cj2,..., c, Cm and c c for k i, jl ,’", j,, will be referred
to as c-shocks with multiplicity m + 1. In this case we obtain from (3.6) that (3.9) must
hold for the index and for any j E J, where J {jl,j2,"" ,j,,}. Hence, in this ease
the Rankine-Hugoniot condition can be written as

(3.12)
f(sR’ cR) -f(st’ ct)
sR + h st+=

where

(3.13) h(c) h(c,)-- h for j E J.

We therefore observe that the structure of a shock with multiplicity m + 1 is similar to
the structure of a c-shock with multiplicity one, with the additional requirement that
the relation (3.13) holds. The entropy condition for a shock with multiplicity m + 1 is
similar to (3.10) and (3.11) above, but where (3.10) is replaced by

c> cn, c> cJ for j E J.

Finally in this section, let us consider the possible c-waves when s 0 or s 1. If
s =0 the /-rarefaction curves will simply be the lines s =0, cj =constant for j i.
Furthermore, along these lines the eigenvalue Ai is identically equal to zero. Similarly,
if sL= sR 0 the Rankine-Hugoniot condition (3.9) is satisfied with cr 0. Hence, the
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curves s 0, cj constant for j i, correspond to contact discontinuities with tr =0
and with two allowed directions. If s 1 the /-rarefaction curves are the lines s 1,
cj constant for j # i, but now the eigenvalue hi is given by

1 + hi(ci)"

Hence, hi is an increasing function of ci along the rarefaction curves. Similarly, for
given values of cL and c R, where c cR and cp= c] for j # i, the states (1, c) and
(1, cR) correspond to a c-shock with speed 1/(1 + h(cR)) if and only if c> cR. The
generalization of this description to c-waves of higher multiplicity is straightforward.

4. The projection principle. A solution of a Riemann problem for the model (1.1)
consists of a sequence of elementary waves that connects the left state u L and the right
state u R. We will adopt the notation that ul- u2 means that the left state u can be
connected to the right state u2 by an elementary wave. Two elementary waves u u2

and u2 u are said to be compatible if they can be composed to solve the Riemann
problem with left state u and right state u 3. Hence, the two waves are compatible if
and only if the final speed of the a-wave is less than or equal to the initial speed of
the b-wave. Furthermore, we require a strict inequality if both waves are shock waves.

Any compatible composition of s-rarefactions and s-shocks that corresponds to
a solution of the Buckley-Leverett equation (3.1) with f=f(., c) for some c I" is
referred to as an s-wave. We recall from the theory of the Buckley-Leverett equation
that for a given left state ul--(s 1, c 1) and a given right state u2=(s2, 2), where
c= c2=c, there always exists a unique s-wave that connects u and u2. Furthermore,
this s-wave can be constructed from a lower convex or an upper concave envelope of
the function f=f(., c) (cf. [9] and references given therein). This s-wave will simply
be denoted by u z_> u2. A c-wave is either a c-rarefaction or a c-shock. A c-wave that
connects the left state u with the right state u2 is denoted by u ---> u 2.

Associated with the two-phase problem (1.1) we consider the one-phase problem
given by

(4.1) (ci+a,(ci)),+(ci)x=O, i=1,2,...,n.

This model, which is an n x n system of conservation laws, describes a one-phase flow
including the same n components as the model (1.1). We observe that the n equations
of (4.1) are completely decoupled. Therefore, the rarefaction waves and the shock
waves of (4.1) are determined by n scalar equations. In particular, the rarefaction
waves are of the form

x 1
(4.2) c < ciR, =-=--1 +hi(ci)

and the shock waves of the form

x 1
(4.3) c> c/R, sc l+h/(c/R)"
The system (4.1) is in general not strictly hyperbolic, since it might occur that hi(ci)=
h(c) for ij. Also observe that, for any c-wave of the system (1.1), we obtain an
elementary wave of (4.1) by projecting the wave curve into c-space and by letting the
speed x/t be given by (4.2) or (4.3). Hence, if

(s’, c’)- (s, c)
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is a c-wave for (1.1), we obtain a projected elementary wave for the associated system
(4.1). This wave will be denoted by c Pc)r c2.

The following lemma explains the importance of the system (4.1) for the construc-
tion of the solution of the Riemann problem for the system (1.1).

LEMMA 4.1. Assume that the three waves

(s, c) (s 1, c) (s:, c) (s ", c")
are compatible for the system (1.1). Then the two waves

C
L P(cl)

>C P(c2)’ >cR
are compatible for the corresponding system (4.1).

Proof. Let hi, h2 > 0 be such that the final speed of the Cl-wave, v{, and the initial
speed of the c2-wave, v2, are given by

f(s 1, c) f(s2, c)v{= i and v= s2+h2.
By exactly the same argument as was used in the proof of Lemma 5.1 of [9], we then
deduce that hi => h2 or

1 1

l+hl-l+h2
Hence, the final speed of P(Cl) is less than or equal to the initial speed of P(c2). T!

A consequence of the lemma above is that, if a solution of the Riemann problem
for (1.1) with left state (s L, cL) and right state (sR, cR) is given, then the projection of
the wave curves into c-space corresponds to a solution of the Riemann problem for
the associated system (4.1) with data ct and cR. Furthermore, since (4.1) is a decoupled
system, the Riemann problem for (4.1) has a unique solution for any values of ct and
cR in 0". In each component the solution either consists of a single rarefaction wave
or a single shock wave. The solution for the complete system is therefore obtained by
superimposing the x, t-diagrams corresponding to each component (cf. Fig. 4.1). In
particular we observe that the wave cones corresponding to the different components
may overlap.

We have therefore seen that for any given Riemann problem for (1.1), the only
possible projection of the wave curves of the solution into c-space can be determined
by solving n scalar Riemann problems (cf. Figs. 4.1 and 4.2).

-wove,,, -wov
/

/

I/////////
FIG. 4.1. Component wave cones.
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h (c) h2(c 2)

FIG. 4.2. Projection of wave curves.

In our construction of the solution of the Riemann problem for (1.1) we will
utilize the fact that the projection of the wave curves of the solution into c-space can
be easily determined. Our strategy will be first to compute the solution of the associated
Riemann problem for (4.1) and thereafter the complete Riemann solution for (1.1)
will be constructed from the computed sequence of projected wave curves.

5. The solution of the Riemann problem. The purpose of this section is to present
the construction of the solution of the Riemann problem for the model (1.1) for
arbitrary left and right states in fl,+l. As above, we let ut= (s t, ct) and uI= (s R, c)
denote the left and right states, respectively. We already know from Lemma 4.1 that
if a solution of the Riemann problem for (1.1) exists, then the projection of the wave
curves into c-space must correspond to the wave curves of the unique solution of a
Riemann problem for the corresponding.model (4.1). Hence, the projection of the
wave curves into c-space will form a path in c-space. This path will be referred to as
the composition path or simply the c-path.

Since the c-path can easily be derived by solving n scalar Riemann problems, we
will assume throughout this section that this path is given. In particular this means
that cL and c are fixed and that the data of the Riemann problem only varies with
st and s.

In most of the discussion below we will also assume that the wave cones in
x, t-space, corresponding to the Riemann solutions of the different components of
(4.1), do not overlap. Hence, if the c-components are ordered with respect to increasing
wave speed, we assume that

(5.1) i< fl < i<.. < .< f1 /9 D2 /)n /)

where vj and vf denote the initial and final speed of the wave which solves the Riemann
problem for the jth component of (4.1) (cf. Fig. 5.1). The assumption will be removed
at the end of this section.

A consequence of (5.1) is that no c-wave occurring in the Riemann solution of
(1.1) has multiplicity greater than one, i.e., no (i, jl, ,jm) wave with m > 0 is included
in the solution. In particular, the c-path consists of n straight lines parallel to the axis.
The solution of the Riemann problem for (1.1) will therefore be located in a region
of (s, c)-space which can be considered as n strips in R2 as illustrated in Fig. 5.2,
where the line c cR is identified with the line Ci+ "--c/L+I This region will be referred
to as the state space associated to the given c-path. Each state (s, c) in the ith strip
of this region can be joined to other states by either an s-wave (i.e., c const.) or a
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C1-WaVe

// /// /// /’Ic.-wave

/IIiii/I //// ..-/
.-

///

FIG. 5.1. n 3.

)ath

-S Cn=C

Cn-1 -1

cL3
=-S

C2 cl

C
Cl C1R
C1= C

FIG. 5.2. The state space associated with c-path.

c-wave. The admissible c-waves are all directed upwards on Fig. 5.2. The c-waves in
the ith strip are /-rarefaction if c< cR and /-shocks if c> cR.

For each strip of the state space we can associate a transition curve T. First, for
any ci between c and cR we define the associated wave speed by

f(s, ci)
s + hi(ci) if c/ < c/R,

,(s, c,)=
f(s, ci)

s+ h(cR) ifc>cR,

where here and belowf(s, ci) denotes the valuef(s, Cl
R ciR_I C, C

L
i+1, ", C). The

transition curve T in the ith strip is defined from the relation

(5.2) tri(s, ci)=fs(s, ci);

i.e., (s, c) T if and only if s > 0 and (5.2) holds. For each value of c there is at most
one value of s, called sf(ci), such that (sf, c) T. If no such value of s exists, we let
sf(c) +oo. We note that ifc < cR, i.e., the/-waves are rarefaction waves, the transition
curve T corresponds exactly to the curve where A As (cf. 2). On the lines c cR

Tor c,+l c+l there are two possible values of s , sf(cR) and s,+l(c+l), corresponding
to the strip below and above this line. Assumption (5.1) implies that

T(5.3) s[(c) >= s,+,(c+,).
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The transition curves T, in the n strips of the state space associated to the given c-path,
are therefore located as illustrated in Fig. 5.3.

To construct the solution of the global Riemann problem we have to characterize
the possible compatible compositions of elementary waves. In each strip of the state
space this analysis corresponds to the analysis given in [9] for the case n 1. To state
the desired results from [9] we need some notation. For each state (s, c,) in the ith
strip of the state space we define the associated critical value s(s, c,)from the relation

(5.4) tr,(s/r, ci)= tr,(s, ci).

If s>=sf(c,), s is the unique value such that sff <=sf(c,) and such that (5.4) holds
(cf. Fig. 5.4). If s<=sf(ci), sff is either the unique value greater than or equal to sf(ci)
such that (5.4) holds, or, if no such sff exists, we let sff +o.

Now consider possible compositions of pairs of waves of the forms

(5.5)
and

(S 1, C)-’ (sM C/2) " (S2, C/2)

(5.6) (s 1, c)- (s4, c) (s2, c)
in the ith strip of state space. Necessary and sufficient conditions for the compatibility
of these compositions can be obtained directly from the analysis given in [9]. However,

ath

C

.." To
."

Tn_ Cn-1 On_

..,"

..:" cL3
C2.:" =C
c =c

/.T

FIG. 5.3

FIG. 5.4
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to make these conditions as simple as possible, we will make a minor change in
terminology with respect to the overcompressive c-shocks.

The admissible overcompressive shocks have the property that

h> (r> hR and hL> 0"> hR

where A L and A R denote eigenvalues to the left and to the right ofthe shock, respectively.
They are illustrated in Fig. 3.3. These shocks may be thought of as a composition of
a c-shock and an s-shock with the same speed. Usually such compositions are not
allowed. However, in the analysis below, statements about the compatibility ofcomposi-
tions of elementary waves will simplify if we do allow compositions of two shocks
with the same speed starting with a c-shock and do not allow the overcompressive
c-shocks. With this change in terminology the overcompressive c-shocks are described
as a composition of the form (5.5). Furthermore, the entropy condition for the allowed
c-shock takes the form

This change of terminology is used in all the lemmas below. The following result is
now a direct consequence of Lemmas 6.1 and 7.1 of [9].

LEMMA 5.1. Consider a composition of a c-wave and an s-wave in the ith strip of
state space.

(i) The composition (5.5) is compatible if and only if
s<-_s(c2) and O<-s<=s(s,c).

(ii) The composition (5.6) is compatible if and only if
S
M Sf(C) and siK(sM C) SI 1.

Remark. Ifwe had not changed the terminology as described above, the statements
of the lemma above would only be correct if the admissible c-waves in the ith strip
were rarefaction waves. If the c-wave is a shock the proper condition for composition
(5.5) is

T 2
S
2sM < si and 0 <= < siK(sII Ci),2

while the case s2 s(sM, c2) corresponds to an overcompressive shock from (s 1, Ci)1
to (s2, c2). Similarly, the proper condition for (5.6) is

sM>-si(c) and siI((s,ci)<s <=1.

We also note that when the c-wave is a shock, the compositions (5.5) and (5.6) only
2 Roccur when C C

L and C C

Consider next the composition of three waves of the form

" (S 1, CY)"- (S2, CY)"-
on the ith strip, where we assume that c< cR such that the c-waves are rarefactions.
If c<c < cR it follows from Lemma 5.1 that this composition is compatible if and
only if

S’ ST(CY), S2 S(C), S2 s/K(sl, C).
However, at the intersections of two strips, where the transition curve is discontinuous,
there are more possibilities. Consider a composition of the form

(5.7) --% (S 1, C/R) " (S2, c/L+I)"’>
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The precise conditions for the compatibility of (5.7) can be derived by combining
statements (i) and (ii) of Lemma 5.1. We summarize this result in the following lemma.

LEMMA 5.2. The composition (5.7) is compatible if and only if either

s ,,c,)]SI< Si+I(C+I) and [Si+I(S 1, c/L+1), siK(s
or

s’ [s,+,(c+,), s(c)] and s- [s 7 s’
The two cases of the lemma are illustrated in Figs. 5.5 and 5.6.
Before we proceed to construct the solution of the Riemann problem for (1.1) we

will first review the main structure of the solution in the case when n 1. For a more
precise description of this solution we refer to [9]. Consider first the case when c< cR,
i.e., when the c-waves are rarefactions. We divide this case further into two subcases.

First, assume that sL<s(c) and that the rarefaction curve through the point
(s L, c) intersects the line cl Cl

R at a point (s, cR), where <- s(c). Typical solutions
of the Riemann problem, depending on the location of s R, are illustrated in Fig. 5.7,
where r= s(, cR). In particular, the Riemann solution terminates with a c-wave if
and only if sR= and sR> I.

The second subcase occurs when either s> Sl(C) or s <= s((cl), but the rarefac-
tion curve through (s, Cl) intersects the transition curve at cl c*, where c1" < cR.
Examples of Riemann solutions in this case are illustrated in Figs. 5.8(a) and 5.8(b).
In particular, the solution terminates with a c-wave if and only if sR >= SI(CR). Hence,
if we let =g=s((cR) in this latter case, we conclude that, if the c-waves are
rarefaction waves, the unique solution of the Riemann problem terminates with a
c-wave if and only if sR or sR > :.

Si+, > Is$2 Ci Ci

FIG. 5.5. S’<=Sf+,(C+l).

Si+1

.,L.
FIG. 5.7
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FIG. 5.8(a). s’<=s((c).

FIG. 5.8(b). sL> sTI (CI)"

Consider next the case when n 1 and c1> ClR. Again this case is divided into
two subcases. If sL<-s(cl) there is always a unique value g such that gSrl(CR) and
such that

(s, c)- (s, c)
is a c-shock. Let gK= Slr(S, ClR). The different Riemann solutions in this case are
illustrated in Fig. 5.9.

Finally, if sL> s(c) let s- be the unique value s-< s((clR) such that

+ s(s- cR) The different possible Riemann solutionsis a c-shock. Furthermore, let s 1,

are illustrated in Fig. 5.10.
Hence, if we let s S and gr= S in this latter case, the structure of Riemann

solutions in the shock case has the property that it terminates with a c-shock if and
only if sR g or S

R > K. We have therefore seen that this property of the Riemann
solution is shared both by the rarefaction case and the shock case.

FIG. 5.9
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C1

FIG. 5.10

(We remark again that the correctness of this description of the Riemann solution
depends on the change of terminology introduced at the beginning of this section. A
more correct description of the solution in the shock case is that it terminates with a

^Kc-shock if and only if sR g or sR >= s .)
Let us return to the case when n > 1. Motivated by the structure of the Riemann

solution above, we introduce some extra notation. If the/-waves are shocks, we define

s- as the unique value satisfying

s:, < s.r, (c) and such that (S.T, (C), C) -- (S:, C)

corresponds to a c-shock. Furthermore, we let s-f s(sT,, c). The location of these
points on the line ci c and ci+ c+ are illustrated in Fig. 5.11. The two s--points
indicate that s- can be located on any side of T+I, but always to the left of T. In
particular,

T

while s can be greater than or less than Si+l(C+l). If the/-waves are rarefactions we
let s-= s: s(c).

We are now in a position to construct the general solution of the Riemann problem
for (1.1).

We recall again that since c and cR are considered fixed, the data of the Riemann
problem only varies with s and s R.

LEMMA 5.3. Assume that the associated Riemann solution of (4.1) satisfies condition
(5.1). The Riemann problem for (1.1) has a unique solution for arbitrary s and sR.

^KFurthermore, for any given s there exist values and s with <- s- and r >_ s+,, such
that the Riemann solution terminates with c-wave if and only if

Here and are related by sff (g, c, ).

.." Ci, :Ci/I
-’1’ -s

F;G. 5.11
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Proof. The proof uses induction on n. We have already seen in the discussion
above that the result holds for n 1. Assume that the result holds for n- 1; i.e., any
states (s L, cf) and (sR, RC,-1) can be connected by a unique composition of compatible
elementary waves.

Throughout the rest of the proof we consider sL as fixed. By the induction
^K < S_ and ^r r Rhypothesis there exist values s.-1 and s.-1, where S._l S._l S._l(S.-1, C._l),

Rsuch that a Riemann solution that connects (s, c2) to (sR, c._) terminates with a
c-wave if and only if sR sRSn_ or > nK_l

To show that the desired result holds for n, we have to construct the Riemann
solution for any right state (s, c,) and to show that this solution is unique. In the
analysis below we will concentrate our ettort on the construction of a solution. The
uniqueness of this solution can easily be established in all cases by applying the results
of Lemmas 5.1 and 5.2. We will start the construction by identifying the desired values
g and .

L RAssume first that the n-waves are rarefactions; i.e., assume that c, < c,. If s,-1 <
sr,(e) and if the rarefaction curve through (s_, c) intersects the line c, e., we let
g be the unique value less than or equal to s(c) such that the rarefaction curve

Rintersects the line e, c, at (g, e,). In this case the composition

(s c, c ,) c.),

where here and below => denotes the unique Riemann solution from the induction
T Lhypothesis, is a Riemann solution that terminates with a c-wave. If g,_ => s, (c,) or if

Rno rarefaction curve connects (s,_, c,) to the line c, c,, we let g= s,(c). To see
that the Riemann solution with s= g terminates with a c-wave, in this case we let
s,_, be the unique value such that S,_l> s,(c,) and such that (s,_,, c,) and (s, c,)
are connected by a rarefaction curve (cf. Fig. 5.12).

^KIf s,-1 > s,-1 it follows from the induction hypothesis that the solution

R(s c, (s._,, c._,)

terminates with a c-wave. Therefore, the composition

(S L, CL1) (Sn-1, CLn). (Sn, CRn
is compatible and terminates with a c-wave. If S,_l =< g-i it follows from the result
for n 1 that the unique compatible composition that connects (s,_, c,) and (s, c,)
either starts and terminates with a c-wave or is of the form

(5.8) (fin--1, CnL) " (Sn-1, CLn) (S CR)
In particular, the states are connected by waves of the form (5.8) only if g,-1 >- s,(c,)
or if S,_l [s(s,_,, c,), g,_]. But in these cases it follows from Lemma 5.2 and the

n=

en Cn
Sn

Cn_l =Cn_

FIG. 5.12
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induction hypothesis that the complete composition

eL1) := (’-n-1, c Ln " Sn -1, C Ln - ’- C Rn
is compatible (cf. Figs 513 a,b). We have therefore seen that if the n-waves are

T Rrarefactions, then in all possible cases a value -< s, (c,) can be constructed such that
if sR= the Riemann solution terminates with a c-wave.

Consider next the case where the n-waves are shocks. If g,-i =< sT,(cL,), we simply
let g be the unique value such that -< s and such that

(e._, c)- (e., c)

is a c-shock. If s,,_l > s’( Lc,), we let = s. Since it follows from Lemma 5.2 and the
induction hypothesis that the composition

(S L, cL1) z: (Sn_l, cLn) - T L R(S,,(C.), C.)_ (S, C.)

(cf. Fig. 5.14) is compatible, we have, in all cases where the n-waves are shocks,
generated g <- s such that the Riemann solution with sR terminates with a c-wave.
Hence, we have completed the construction of the values g and K SK,(, C,).

Furthermore, it follows from Lemma 5.1 that if the solution that connects (sL, cL)
and (, c,n) is extended by an s-wave of the form

R R, R(, c.)- (s c.),

Sn-1

T LFIG. 5.13(a). s._l => s. (c.).

Sn(n-1, Cn) Sn.1 Sn-I

FG. 5.13(b). s,_,e[s(,,_, Cn) ,’,KSn-l].

"/n / Tn-1

FIG. 5.14

Cn Cn

$

Cn_ Cn_
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then the complete composition is compatible as long as sR<- i. Hence, to complete
the proof of the lemma, we have to construct a Riemann solution that terminates with
a c-wave when sR > gr,. If sR > gr >_ s+, there exists a unique value s,-1 > s,(c,) such
that

c. c.
^Kis a c-wave (shock or rarefaction). If S.-a > s.-a the induction hypothesis implies that

the Riemann solution is given by

(S L, C)zzz (Sn_l, CLn)-- (SR, CRn).

Otherwise, if s.-a < K
=Sn_ we first consider the compatible composition that connects

(.-1, c.) and (sR, cR). This composition either starts and terminates with a c-wave
(this is only possible if s._a < s.r(c.) and the n-waves are rarefactions) or it is ofthe form

(5.9) (.-a, c.) - (s.-a, c.) --% (s,c.).

As above, the composition is of the form (5.9) only if ._a>=s’r.(c) or if s.-1
K ^KIs, (s,-a, c,), s,-1]. Hence, Lemma 5.2 and the induction hypothesis imply that

c, (s._,, cf)

is a compatible composition of waves. We have therefore seen that the Riemann
,Ksolution always terminates with a c-wave when s> s This completes the induction

argument and therefore the proof of the lemma. [3

The construction of the Riemann solution given above can be thought of as a
"factorization" of the general Riemann problem associated with a given c-path. First,
the values si and si for 1, 2,. ., n, are constructed from s/ and the given c-path.
Thereafter, the Riemann solution is constructed from sR and all the values i and ff.
This interpretation of the proof makes a computer implementation of the construction
rather attractive.

The proof of Lemma 5.3 above completes the discussion of the Riemann problem
for (1.1) under the additional assumption (5.1). To remove this assumption, we finally
do allow the wave cones, corresponding to the different components of the system
(4.1), to overlap. Hence, c-waves of multiplicity greater than one may occur in the
Riemann solution of (1.1). However, since the structure of such c-waves is similar to
the structure of simple waves, their occurrence will not change the logical structure of
the construction of the Riemann solution. The occurrence of c-waves of multiplicity
greater than one will only increase the possible number of strips of the state space
along the given c-path. For example, if n 2 and the two wave cones intersect, the
state space along the c-path will consist of three strips as illustrated in Figs. 5.15 and
5.16. Hence, by possibly increasing the number of strips to at most 2n 1, the construc-
tion given in the proof of Lemma 5.3 also applies when assumption (5.1) is removed.
We have therefore established the main result of this paper.

THEOREM 5.1. For arbitrary states u L (s, c) n+l and l
g (sR, cg) fln+l there

exists a unique solution of the Riemann problem for the system (1.1) with left state u
and right state u R.

Before we end this section we would like to point out one property of the Riemann
solution constructed above. We recall from [9] that in the case when n 1 an overcom-
pressive shock can never join any other wave in a Riemann solution. However, it can
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be seen from the construction above that this property does not hold when n > 1. An
example of a Riemann solution of the form

where both c-waves are shocks and where the first shock is overcompressive, is
illustrated in Fig. 5.17.

6. Conclusion. The solution of the general (n + 1) x (n + 1) Riemann problem for
the model (1.1) has been constructed. The construction is based on the fact that a
projection principle, described in 4, decouples the Riemann problem into a finite
sequence of coupled 2 x 2 Riemann problems. This sequence of coupled Riemann
problems is then solved in 5. The construction done in 5 establishes a factorizati0n
algorithm for the coupled sequence of Riemann problems. In a forthcoming paper we
will discuss further the practical implementation of this algorithm and also present
examples of numerical results.

The projection principle described in 4 is valid independent of the structure of
the adsorption functions ai. Hence, if for example the functions ai(ci) in (1.1) are
replaced by a family of generalized Langmuir adsorption functions of the form (1.2),
the general Riemann solution can still be found from a construction of the form studied
in 5. The only difference would be that the corresponding one-phase problem would
be changed. Hence, a different procedure for the construction ofthe desired composition
path would be required. In a forthcoming paper we will discuss how the techniques
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///,
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(c) g-h

FIG. 5.17. fL=f(., C(, C), y=f(’, CR, C2), fR =f( ’, C, C2).

developed in this paper can be combined with the results of[ 13] to obtain the Riemann
solution of a two-phase model of the form (1.1), but where the functions ai(ci) are
replaced by a family of generalized Langmuir adsorption functions.
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PERSISTENCE IN DISCRETE SEMIDYNAMICAL SYSTEMS*
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Abstract. Conditions are established for the persistence of a discrete semidynamical system formulated
in terms of the global attractor of the boundary semiflow and its stable set. An application to an ecological
model of a predator-prey system is given.
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1. Introduction. Let X be a metric space with metric d. A map f:X X defines
a discrete semidynamical system T:Z/ x X X by T(n, x)=fn(x), where Z/ denotes
the set of nonnegative integers and f"(x) denotes the nth iterate of x under f, i.e.,
f"(x) =f f f(x) (n times). Such discrete semidynamical systems are frequently
used in the modeling of ecological systems where X is the set of all possible states of
the populations in the ecosystem (for example, X =R, the nonnegative cone in R")
and f describes what happens to each state after a fixed period of time (for example,
a year or a generation).

Let Y be a subspace of X. We say that f is persistent (with respect to Y) if for
all x X\ Y, lim inf,_. d(f"(x), Y) > 0. This means that Y is in some sense a repeller
(or is ejective). Stronger or weaker forms than the above notion of persistence have
also been introduced (Butler, Freedman, and Waltman 1 ]). In the context of ecological
modeling, Y could be the set of extinction states in X (for example, Y=0(_), the
boundary of 1_ in "). In that case, persistence captures the idea of nonextinction or
coexistence.

The object of this paper is to obtain criteria for persistence that are testable at
least in some elementary applications. Roughly speaking, these criteria are conditions
imposed on the global attractor offl y, the restriction off on Y. More specifically, we
will derive the discrete semidynamical systems analogue of the results given in Butler
and Waltman [2].

Recently, Fonda [4] has derived criteria for persistence in discrete semidynamical
systems of ecological models. His criteria involve establishing the existence of a certain
persistence function. However, the question of how to construct such a persistence
function for a given model remains open. We emphasize that our technique is a testable
one in that the criteria can be checked provided only that the boundary dynamics can
be analyzed.

This paper utilizes the notation and theory of dynamical systems (see [13]), as
modified to discrete semidynamical systems (see [12]). The required modified
definitions are stated in 2 for completeness.
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The rest of the paper is organized as follows. In 2, we introduce some basic
notation and definitions in the theory of discrete semidynamical systems. We prove in
Propositions 2.2 and 3.2 that an acyclic covering gives rise to a Morse decomposition.
Our main results on persistence of discrete semidynamical systems (Theorem 3.3) are
presented in 3. We also prove a Butler-McGehee type lemma for discrete semidynami-
cal systems (Theorem 3.1) in this section. Section 4 consists of an application of this
theory to an ecological model of a predator-prey system. Finally, a brief discussion
and concluding remarks are given in 5.

2. Preliminaries. Let yc X and letf:X- X. Letfn(x) denote the nth iterate of
x under f.

DEFINITION 2.1. f is said to be persistent (with respect to Y) if for all x e X\ Y,
lim infn_ d f x Y) > O.

The main objective of this paper is to answer the following question.
PERSISTENCE QUESTION. When do we have persistence (with respect to Y)?
In [2] Butler and Waltman study the Persistence Question for a continuous

dynamical system. Our aim here is to carry out the same program as in the above
paper for the discrete semidynamical system defined by f. As we shall see, the results
we obtain are similar. However, the noninvertibility offmakes the proofs more difficult.

In the applications we have in mind X -N_, the nonnegative cone in N. It is the
set of all possible states of the populations in an ecosystem. Y-0(_), the boundary
of N_ in R, is the set of "extinction" states of the populations in the ecosystem, f is
a map that describes what happens to a state of populations after a certain fixed period
of time, such as after one year or one generation. Note that f is autonomous, in the
sense that its action is the same independent of year or generation.

Based on the above discussion, we will make the following assumptions.

(A1) X is a metric space with metric d.

(A2) Y is a closed subset of X.

(A3) f: X - X is continuous.

(A4) f(y) c Y.
(A5) f(X\ Y) X\ Y.

Under these assumptions, fl Y" Y Y is continuous.
DEFINITION 2.2. Let x X. Let 7/denote the set of integers and let 7/+ denote the

set of nonnegative integers.
(i) A sequence {x,}/ of points in X is called a positive orbit through x if

Xo x and f(x,) X,+l for all n e 7/+.
(ii) A sequence {x_n},e+ of points in X is called a negative orbit through x if

Xo x and f(x__) x_, for all n e 3’+.
(iii) A sequence {x,}, of points in X is called an orbit through x if Xo x and

f(xn) x,+ for all n 7/.

The positive orbit through x always exists and is unique. In fact, it is the sequence
O/(x) {x,f(x),f2(x), .}. The negative orbit and the orbit through x may not exist,
and even when they exist, they may not be unique.

DEFINITION 2.3. A positive orbit {xn}.z/ (respectively, a negative orbit {x_n},z+)
through x is said to be compact if, when considered as a subset of X, it is precompact.

(A6) For all x X, O+(x) is a compact positive orbit.

DEFINITION 2.4. (i) Let {x,},z/ be a positive orbit. The omega limit set of{xn},.+
is the set A+({x,},+) {y X :y lim,_oo x. for some subsequence {x.},+ of
{x}.+}.



932 H.I. FREEDMAN AND J. W.-H. SO

(ii) Let {x-,},z+ be a negative orbit. The alpha limit set of {x_,},z+ is the set
A-({x_,},z+) {Y X’y lim,_ x_i. for some subsequence

The omega limit set (respectively, alpha limit set) of a positive orbit (respectively
negative orbit) is the set of all limit points of the positive orbit (respectively, negative
orbit) when considered as a sequence. We also denote the omega limit set of the
positive orbit through x by A/(x).

DEFINITION 2.5. Let M X. M is positively invariant (respectively, negatively
invariant, invariant) iff(M) M (respectively, M f(M), f(M)=M).

The union of invariant sets is invariant. For a continuous f, the closure of a
positively invariant set is positively invariant, the closure of a precompact negative
invariant set is negatively invariant, and the closure of a precompact invariant set is
invariant.

DEFINITION 2.6. Let M X be invariant. M is said to be compactly invariantly
connected if whenever M M1 [-J ME, where M1 and M2 are disjoint nonempty, com-
pact, invariant sets, then either M M or M

PROPOSITION 2.1. (i) If {Xn}nZ/ is a compact positive orbit, then A+({xn}nz/) is
nonempty, compact, invariant, and compactly invariantly connected, and
limk_. d(Xk, A+({xn}nz/)) =0.

(ii) If {X-n}nZ+ is a compact negative orbit, then A-({x-n}nz+) is non-
empty, compact, invariant, and compactly invariantly connected, and limk_. d(X-k,
A-({x_}+)) =0.

Proof. (i) See Theorem 1.5.2 of [12].
(ii) Since {x-n}n/ is a sequence in a compact set, it has a convergent subsequence.

Therefore, A-({x-n}nz/) is nonempty. Since the set of all limit points of a sequence
is closed, therefore A-({x-n}n/) is closed and hence it is compact. Let y
A-({x-n}n/). Then y limn_. x_i. for some subsequence
Clearly, f(y)= limn_.o x_i+l e A-({x-n}n/). On the other hand, if z is the limit of
any convergent subsequence of {x-i.-1}n/ then z e A-({x-n}n/) and f(z) y. Thus,
A-({x_n}n/) is invariant.

To show that A-({x_n},,/) is compactly invariantly connected, let M1 and M2
be two disjoint nonempty, compact, invariant sets such that A-({x_n} nz/)c M1 t_J M2.
Then e=d(M1, M2)>O. Let Ui--B/3(Mi) the e/3-ball about
(i 1, 2) and U1 U2 . For all x e M,f(x) e M1 c U1. Therefore, there exists 8, > 0
such that cl (Bx(x))c UI and f(cl (B(x))) U. Since M1 is compact, there exist
Xl," ", xre M1 such that M1 V1, cl (V1) U, and f(cl (V1)) U1, where V1
t.J= B.(xi). Suppose that A-({x_n}n/) f3 Mi for i= 1,2. Then {x-n}n/ inter-
sects boh V and U2 an infinite number of times. This implies the existence of
subsequences {x_l.},/, {x-2.},/ of {X-n}nL such that x_. e V and x-2. e U2.
Define the subsequence {x-3.}nz/ of {X-n}nZ/ by the following properties" -In =<
--3n<--2n, Xke V1 for all k, -ln=<k-<-3n and x-3n+l V1 for all ne;7+. Since
A-({x-n}n/) is compact, by going to subsequences if necessary, we can assume that
{x-3.}n/ converges. Let p limn_. x-3.+1 limn_f(x_3.). Since x-3.+1 e U\ V1 for
all n e 7/+, p e UI\ V1. Thus, p e A-({x_n} nz/) is neither in V1 nor U. This contradicts
A-({x_.}.) V, t U.

Suppose lim SUpk-, d(x_, A-({x-n}n,/)) > O. Then there exists r/> 0 and a
subsequence {X-i}k/ of {X-k}kZ/ such that d(x_i,A-({X_n}nz/))>-q. Since
{X-i,,}k,/ contains a convergent subsequence whose limit is in A-({x-n}nz/), this is
a contradiction.

Under assumptions (A2), (A3), and (A6), f is not persistent if and only if there
exists xX\Y such that A+(x) Y (that is, d(A+(x), Y) =0).
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DEFINITION 2.7. f is said to be dissipative if the set l-l(f)= O {A+(x)" x X} is
precompact.

Under assumptions (A3) and (A6), if f is dissipative then l(f) is invariant and
so is its closure, (f).

DEFINITION 2.8. A nonempty, closed invariant subset M of X is an isolated
invariant set if it is the maximal (under the order of inclusion) invariant set in some
neighbourhood of itself. A subset N of X is an isolating neighbourhood if the maximal
invariant set in N is nonempty, closed, and contained in int (N), the interior of N.

Let M be an isolated invariant set and let x X\M. Then there exists a closed
isolating neighbourhood N of M such that x X\N.

DEFINITION 2.9. Let M c X be an isolated invariant set.
(i) A compact positive orbit {x,},z+ is said to be in the stable set of M (under

f) (in notation, {x,}z+ W+(M)) if A+({x,},+) M.
(ii) A compact negative orbit {x_,},+ is said to be in the unstable set of M

(under f) (in notation, {x_,},+ W-(M))if A-({x_,},z+) m.
(iii) A compact positive orbit {x,},z+ is said to be in the weakly stable set of M

+(under f) (in notation, {x,},z+ Ww(m)) if A+({x_,},+) fq m .
(iv) A compact negative orbit {x_,},+ is said to be in the weakly unstable set

of M (under f) (in notation, {x_,},z+ W(M)) if A-({x_,},z+)fq M
Under (A4), fly" Y Y defines a discrete semidynamical system. We will have

occasion to consider the dynamics of fly. To distinguish the notions of stable sets,
etc., in this case with those defined previously for f, we will employ the notation
w+(m;f[v), etc. when we refer to fly.

DEFINITION 2.10. Let M1 and M2 be two isolated invariant sets. We say that
is chained to M2 if there exists an orbit {x,},z with Xk M1U ME for some k/ such
that {x_,},+ W-(M1) and {x,},+ W+(M).

DEFINITION 2.11. A finite sequence M1, M,. ., Mk of isolated invariant sets
will be called a chain if M1 - ME" - Mk. A chain is called a cycle if

In the following definitions, we will assume that (A3)-(A5) hold.
DEFINITION 2.12. A covering II={M1,M2,... ,Mk} of l)(flv) is called an

isolated covering offl v if M1, Mz, , Mk are pairwise disjoint, compact and isolated
invariant.

Note that each Me Y (i 1,..., k) is required to be an isolated invariant set
in X under f and that fi(flY)c [,.J/k=l Mi.

DEFINITION 2.13. An isolated covering II={M1,..., Mk} of fig is called an
acyclic covering of flY if no subsets of II form a cycle for fiE in Y.

Note that the "acyclic" condition is a requirement on an isolated covering off] y
but not on fig itself.

In the statements of our main results on persistence in the next section, we always
assume (A1)-(A6) and the following hypotheses"

(H1) fly is dissipative.

(H2) fly has an acyclic covering II {M1, M2,’’’, Mk}.

PROPOSITION 2.2. Let (A1)-(A6) and (H1), (H2) hold. Then for any positive orbit
{x,},+ in Y, there exists one and only one such that {x,},+ 6 W+(M; flv).

Proof Since the positive orbit {x,},z+ is compact, by Proposition 2.1,
A+({x,},+) is compactly invariantly connected. On the other hand, A+({x,},z+)=
f(fl.) t_J= M. Thus, A+({x,},+) M for some and {x,},+ W+(Mi).
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3. Persistence. Various forms of the following theorem have been referred to as
the Butler-McGehee lemma. In the original form (Freedman and Waltman [7, App.
A, Lemma 1]), the setting is for. a hyperbolic restpoint of an autonomous ordinary
differential equation. Since then it has been extended to an isolated invariant set for
a continuous flow on a locally compact metric space by Butler and Waltman [2] and
for continuous semiflows by Dunbar, Rybakowski, and Schmitt [3]. Our version here
is similar to that in [2] except that now we have a discrete semiflow.

THEOREM 3.1. Let X be a metric space with metric d. Let f" X-X be continuous
and let M be an isolated invariant set in X.

+(I) If {x,},z is a compact positive orbit and {x,},z+e Ww(M)\ W+(M), then
(a) There exists a positive orbit {y,},+ in A+({x,},+) such that yoV: M and

{y,},+e W+(M), and
(b) There exists a negative orbit {z_,},+ in A+({x,},z+) such that Zo M

and {z_.}.+e W-(M).
(II) If {x_.}.+ isacompactnegativeorbitand {x_.}.z+e W(M)\ W-(M), then

(a) There exists a positive orbit {y.}.z+ in A-({x_.}.z+) such that Yo: M
and {y.}.z+e W+(M), and

(b) There exists a negative orbit {z_.}.+ in A-({x_.}.+) such that Zo: M
and {z_.}.+e W-(M).

Proof (I)(a). It suffices to show that there exists a positive orbit {y.}.z/ in
A+({x.}.+) such that Yo M and y. e N for all n eZ+ sufficiently large, where N is
any closed isolating neighbourhood of M. (Since then A+({y.}.g+)c N and
A+({y.}.z+) is invariant, this implies A+({y.}.+) = M and hence {y.}.z+ e W+(M).)

+ W+Since {x.}.+e Ww(M)\ (M), there exist pl,P2eA+({X.}ng+) such that peM
and P2 M. Let N be a closed isolating neighbourhood of M such that P2 ! N. Let
{Xl.}. and {x2.}. be two (convergent) subsequences of {x.}.z+ such that
lim._ xa,, p and lim._ x2. P2. By going to subsequences if necessary, we can
assume that x. e int (N), x2. N, and 2. < 1. <2.+a for all n e 7+. Define a sub-
sequence {X3n}n7/+ of {x.}.,+ by the properties" (i) 2. <3. <-1., (ii) X3n_ N, and
(iii) Xk e N for all k, 3. -< k <= 1.. Again by going to subsequences if necessary, we can
assume that lim._ox3._=yo exists. Then lim._oox3.=y also exists. Moreover,
yo int (N) (and hence M), Yl e N, and Yl =f(Yo). Let {y.}.z+ be the positive orbit
through Yo. Then {y.}.e+c A+({x.}.z+). There are two cases to consider.

Case 1. {1.-3.}.+ is unbounded. By going to subsequences if necessary, we
can assume that {1.-3.}.+ ]’ c. Fix any keZ+, k=> 1. Since y lim._ x3.+,_ and
3. -<3. + k- 1 _-< 1. for n eZ+ sufficiently large, we have Yk e N. Thus, A+({y.}.e+) N
and {y.}.+e W+(M).

Case 2. {1.- 3.}.z+ is bounded. By going to subsequences if necessary, we can
assume that 1.-3.=m for some me;Z/+. Therefore, y.+=lim._oox3.+.+_=
lim._oox.=pleM. Since M is invariant, y. eM for ne7]+, n>m. Thus, again
{y.}.,+ e W+(M).

(I)(b). It suffices to show that there exists a negative orbit {z_.}.+ in A+({x.}.e+)
such that Zo is not in M and z_. e N for all n e Z+ sufficiently large, where N is any
closed isolating neighbourhood of M. (Since then A-({z_.}.e+) c N and A-({z_.}.z+)
is invariant, this implies A-({z_.}.+)c M and hence {z_.}.+e W-(M).) Since

+ W+{x.}.+e Ww(M)\ (M), there exist p,pe A+({x.}.e+) such that Pie M and
P2 M. Let N be a closed isolating neighbourhood of M such that P2 N. Let {xa,,}
and {x2.}.e+ be two subsequences of {x.}.e+ such that lim._ox.=pl and
lim._ x2. P2. By going to subsequences if necessary, we can assume that Xl. e int (N),
x. N, and 1. < 2. < 1.+1 for all n e Z+. Define a subsequence {X3n}n. of {x.}
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by the following properties" (i) 1,<-3, <2,; (ii) X3n+lli N; and (iii) XkE N for all k,
1,_-< k-<3,. Again by going to subsequences if necessary, we can assume that
lim,_.oo x3. Z_l exists. Then lim,_oo x3.+1 z0 also exists. Moreover, Zo int (N) (and
hence M), Z_l E N, and Zo =f(z_l). We construct a negative orbit {z_,},z+ through
Zo in A+({x,},z+) as follows, z_2 is the limit of any convergent subsequence {x(_2).},g+
of {x3._1},+, z_3 is the limit of any convergent subsequence {x(_3).},z of
{x(_2)._1},+, etc. There are two cases to consider.

Case 1. {3,-1,},+ is unbounded. By going to subsequences if necessary, we
can assume that {3, 1,},z+ ’ oo. We will show that Z-k N for all k Z+, k => 1. Fix
any k Z+, k >= 1. Recall that Z-k lim,_oo X(-k).. Since {(-k),},g+ is a subsequence
of{3,- k+ 1},z+ and 1, _-<3,- k+ 1 _-<3, for n 7/+ sufficiently large, therefore
N for n 7/+ sufficiently large. Thus Z-k N. Hence, A-({z_,},g+) c N and {z_,},g+
W-(M).

Case 2. {1,-3}+ is bounded. By going to subsequences if necessary, we can
assume that 3 1. m for some m /+. Now, Zo lim._ xs.+l lim._o x.++
f+l(pl) E M, since Pl M and M is invariant, which is a contradiction. This shows
that {1.-3}.+ must be unbounded.

The proofs of (II)(a) and (II)(b) are similar to (I)(a) and (I)(b).
The following proposition together with Proposition 2.2 shows that an acyclic

covering of fly is a Morse decomposition for f(flY).
PROPOSITION 3.2. Let (A1)-(A6) and (H1), (H2) hold. Then for any compact

negative orbit {X-n}n+ in Y, there exists one and only one such that {X_n}n+6
W-(M,;fl).

Proof Note that we are only interested in fly and not f here. Suppose
A-({x__.}.+) Mi for all i. Let y A-({x_.}.z+). Since A-({x_.}.+) is invariant,
by (A4) and (A5), there exists an orbit {y.}. through y such that {yn}. is in Y
and {yn}.c A-({x_.}.z+). Thus, # A+({yn}.+)= A-({x_.}.z+). Moreover,
A+({y.}.+) = Mi, for some i, by Proposition 2.2. Thus, A-({x_.}.+) (’1Mi, # , that
is, {x_.}n+6 W(M;fly). Since {x_n}.+ W-(M;fly by assumption, by
Theorem 3.1 there exists a negative orbit {z_.}.+= A-({x_.}.+) such that Zo M
and {z_.}nz+E W-(Mi;flg). Let {z.}. be the (full) orbit extending {z_.}.+. By
Proposition 2.2 again, there exists i2 such that {z.}.+ W+(MiE’,fly). Clearly, there
exists n such that zn M2. Therefore Mi,-* M2. Since A+({z.}nz+) = A-({x_.}.+)
and A+({z,,},g+) c Mi2, A-({x_,},+) (’] Miz y (, that is, A-({x_,},z+)
WT(Mi;fly). Since {x_,},g+ W-(M2;fly), we can repeat the above argument to
get an i3 such that Mo M. Since there are only a finite number of M’s, we will
eventually arrive at a cycle. This contradicts (H2).

THEOREM 3.3. Under assumptions (A1)-(A6) and hypotheses (H1) and (H2), f is
persistent (with respect to Y) if and only if we have the following:

(H3) There is no positive orbit {x,},+ in X\ Y such that {x,},+ W+(M) for
some (in notation, we write W+(M)f3X\Y= for all i= 1,2,..., k).

Proof ( part.) If (H3) fails to hold, then there exists a positive orbit
in X\Y such that {x,}n+ W+(M) for some i. Then lim,_ood(x,, Mi)=0 and
lira sup,_oo d(fn(x), Y) 0, where x Xo. Thus,f is not weakly persistent (with respect
to Y) and hence not persistent (with respect to Y).
( part.) Suppose f is not persistent (with respect to Y). Then there exists a

positive orbit {x,},+ X\ Y such that A+({x,},+) f’l Y . Let y E A+({x,},z+) ["1 Y
and denote the positive orbit through y by {y,},g+. Then {y,},+c Y and
A+({y,},g+)cA+({x,},g+)f’l Y. By Proposition 3.2, there exists il such that
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A+({y.}.z/) C Mi,. Thus, h+({x.}.z/)fq Mi, # , that is, {x.}nz/ e W+w(M,). Since,
by (H3), {x.}./ W+(M,), we can apply Theorem 3.1 to geta positive orbit
A+({x.}./) such that Zo M, and {z.}.z/ e W+(M,). By (H3), {z.}.z/c Y. Clearly
Zo Mi for all i. Let {z.}. be an orbit through Zo. It exists because Zo e A+({x.}.g/)
and A+({x.}./) is invariant. Clearly, {z.}.c Y and {z.}.zc A+({x.}.z/). Since
{z_.}.z/ is a compact negative orbit, by Proposition 3.2, {z_.}./ e W-(M2) for some

+i2. Therefore, M2-> M,. Clearly, {x.}./e Ww(M2) and we can repeat the above
argument to get an i3 such that Mi -> M. Since there are only a finite number of M’s,
we will eventually arrive at a cycle. This contradicts (H2). 13

4. Application to a lredator-lrey model. It has been shown that models of
arthropod parisitoid-host systems [8] and models of predator-prey systems when
population numbers are small [5] can be best described by a discrete semidynamical
system. In this section we describe such a system, which includes models considered
in [9]-[ 11 as special cases.

Let x, be the prey or host population numbers in the nth generation and let y
be the predator or parasitoid population. Then the model takes the form

(4.1)
x"+l=X"F(x"’Y")’ x>=O’
y,,+ x,,y,,G(x,,, y,,), yo >- O.

In this case, X + {(x, y)" x => 0, y -> 0} and Y {(x, 0)" x => 0} t.J {(0, y)" y _-> 0}, the
nonnegative x and y axes. Moreover, persistence is synonymous with the survival of
both populations over all.time.

The mathematical assumptions and their biological interpretations, where
appropriate, are as follows"

(PP1) F, G ([0, c) x [0, c)). Small changes in population numbers in any gener-
ation result in small changes in the succeeding generation.

(PP2) F(0, 0) > 1. In the absence of predators, the prey population will grow if its
numbers are small.

(PP3) F(x,y)>-O, G(x,y)>=Oifx>-O,y>-O; F(x,y)>O, G(x,y)>Oifx>O,y>O.
In general there cannot be a negative number of populations. Further, if
both populations are present, extinction of either population cannot occur
in finite time.

(PP4) F(x, y) is monotonically decreasing in y. Further, limy_o F(x, y)=0. The
larger the number of predators, the smaller the growth rate of the prey. For
a very large number of predators, the prey population is driven to near
extinction.

(PP5) There exists x > 0 such that F(x:, 0) 1 and F(x, 0) < 1 for all x > x.
There is a carrying capacity of the environment beyond which the prey
population cannot be sustained, even in the absence of predators.

(PP6) xG(x, y) is a strictly increasing function of x with xG(x, 0) > 1. The more
food for the predator, the higher will be its growth rate. Further, at some
prey value prior to carrying capacity, and thereafter, the predator population
can sustain itself on the prey population.

(PP7) G(x, y) is monotonically decreasing in y. The per capita growth rate of the
predator is diminished for larger values of its population due to intraspecific
competition for its food.
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Before stating the final hypothesis for model (4.1), we need to study the single-
species dynamics of the prey in the absence of predators. This dynamics is given by
the equation

(4.2) Xn+l xnF(x, 0), Xo >- O.

The dynamics of system (4.2) is discussed in [6]. Let =supox_xK xF(x, 0). Then
_>-x/( and if {x}nz/ is a positive orbit of (4.2), then lim supn_ x-< .

Further, assuming (PP1), (PP2), (PPS), it is shown in [6] that there exists > 0,
/computable, such that for Xo>0, A/({x}z/)c [,/, ].

The final hypothesis is the following.

(PP8) ,/G(/, 0) > 1.

By (PP6), (PPS) implies xG(x, 0)> 1 for all x_-> 7, which in turn implies the
semi-axis {(x, 0)R+’x_-> 7} repels in the y direction.

To show that system (4.1) is persistent under assumptions (PP1)-(PP8), we need
to check that (A1)-(A6) and (H1)-(H3) are satisfied.

Clearly (A1)-(A5) are satisfied. To show (A6) and (H1), let {(x, y)}/ be a
positive orbit of (4.1) in RE+. Then since F(x, y)<-F(x, 0), lim supn_.oo x _-< . For the
purpose of the following discussion we can assume that xn _-< g for all n, where g / 1.

Let (y)= supox xF(x, y). By (PP4), b(y) is a decreasing function of y and
lim_.oo b(y) 0. Let > 0 be such that

(4.3) 8gG(g, O)G(8, O)= 1

which exists by (PP6) since XG(X, 0)> 1. Further, choose )7 so large that b(y)< 8 for
all y _-> )7 and define )3 g)TG(g, 0). Clearly )3 > 97. Moreover, X.+l x.F(x., y.) <-_ ck(y.).

Let us make the following observations.
Observation 1. Suppose y. is such that 0< y. _<-)7. Then Yn+l x.y.G(x., y.) <-_

gG(g, O)y, <-_ gG(g, O)fi .
Observation 2. If yn is such that y, >fi, then X,+l--< (y,) < 8 and Yn+2=

X,+lYn+lG(X,+l, Y,+I) X,+lx,yG(x,, yn)G(Xn+l, Y,+I) < SgG(, 0) G(tS, 0)yn y, by
(4.3).

We now consider two cases.
Case 1. y, >)5 for all n. In this case, by Observation 2, yo> y2 > y4 >’’" Let

y, limk_o YEk. Since YEk+l G(, 0)YEk lim sup_oo y <- y,gG(g, 0). Claim: y, )5.
Suppose not, that is, suppose y, > 35. Let {XEkj} be a convergent subsequence of {XEk
and denote its limit by x,. Also denote the map on the right-hand side of (4.1) by f.
Then fE(x,,y,)=fE(limi_oXEkj, limj__.oYEk) SO that the second component of
rE(x,, y,) is limj_ YEk+2 Y,. This contradicts Observation 2 since y, > 3 > ft. Hence,
we have shown that lim supn_ yn => figG(g, 0).

Case 2. There exists no such that Y,o --< 3. If Yo -<)7, by Observation 1, Y,o+l -< 3. If
37 < Yo -<- 35, then Yo+l <-- figG(g, 0) and, by Observation 2, Y,o+2 --< Yo --< 35. Proceeding
inductively, we can easily show yn <-_ figG(g, 0) for all n _-> no and thus lim sup,_o y, =<
xo(x, o).

This shows that (f)c[0, X][0, jG(X, 0)] and hence (A6) and (H1) are
satisfied.

To show (H2) is satisfied we note that {M1, M} is an isolated covering of f[ y,

where M {(0, 0)} and M is the maximal invariant set in {(x, 0)" r/=< x =< }, and that
this covering is acycli.

Finally, we show (H3). We first show that W+(M)Vint (R+) =. Suppose not.
Let {(x, y)}+ be a positive orbit in int (R+) such that limn_oo (x, yn) (0, 0). Since
F(0, 0)> 1, F(x, y)> 1 for (x, y) near (0, 0). Thus for sufficiently large n, xn+
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x,,F(x,,, y,) > x,,, contradicting limn_oo xn =0. Next, we show that W+(M2) flint (R2+). Again, suppose not. Let {(x,,y,)},z+ be a positive orbit in int (R2+) such that
lim,_.oo d((x,,, y,), M2) 0. Then lim inf,_.oo x, _-> r/, lim sup,_ x, _-< , and limn_ yn
0. Since by (PP8) r/G(r/, 0)> 1, let e >0 be such that (1- e)r/G(r/, 0)> 1. Since G is
continuous, for sufficiently large n, we have G(x,y,,)>=(1-e)G(x, 0) for all 0_-<x_-<

+ 1. Thus, Y,,+I =x,,y,,G(x,,, y,,) >- (1- e)x,,G(x,,, 0)y,>y for sufficiently large n,
contradicting lim n-.oo y 0.

Hence all the hypotheses for Theorem 3.3 are satisfied and model (4.1) exhibits
persistence.

5. Discussion. The notion of persistence, originating in the theory of dynamical
systems in locally compact metric spaces 1 ], [2], has been extended in various manners
in recent work. In this paper we have extended the notion of persistence to discrete
semidynamical systems. To obtain testable persistence criteria, we have proved a
Butler-McGehee type lemma for such systems.

In [6], we have obtained testable uniform persistence criteria for one-dimensional
maps. Here, we extend that work to obtain testable criteria for persistence in higher-
dimensional systems.

We have applied our results to a class of discrete predator-prey models, which
have been discussed in the literature as to their relevance, but not as to persistence
and extinction of the modeled populations. In particular, a feature of these models is
that all solutions initiating on the y-axis map to the origin in one iteration (in the
absence of food, all predators die). By continuity, solutions initiating close to the
y-axis are mapped to a neighbourhood of the origin. Hence, it is not obvious that the
omega limit set of such an orbit is bounded away from the axes (persistence). Here
we give criteria, with reasonable biological interpretations, for persistence to occur.
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OSCILLATION AND NONOSCILLATION FOR SYSTEMS OF
SELF-ADJOINT SECOND-ORDER DIFFERENCE EQUATIONS*

SHAOZHU CHEN" AND LYNN H. ERBEt

Abstract. The self-adjoint second-order difference system (1) A(RnA Yn) + P. Yn+ 0, n _-> 0, where
A Yn Y.+I Y., {R}.--o, {P.}n=o are sequences of d x d Hermitian matrices with R. > 0 (positive definite)
are considered. Oscillation and nonoscillation criteria for solutions of (1) are obtained by Riccati and
averaging techniques.

Key words, difference equation, oscillation, nonoscillation, Riccati, averaging

AMS(MOS) subject classification. 39A10

1. Introduction. Consider the self-adjoint second-order difference system

(1.1) A(R,,AY,)+P,Y,,+I=O, n>-O,

where A is the forward difference operator A Y, Y,+I-Y,, and R {R,},=o, P=
{P,},=o are sequences of d x d Hermitian matrices with R,>0. We remark that
Hermitian matrix inequalities A>0 (_->0) are in the sense of positive (nonnegative)
definiteness. In this paper we are interested in establishing oscillation and nonoscillation
properties of solutions of (1.1) that may be considered as discrete versions of results
for the second-order linear differential system

(1.2) (g(t) Y’(t))’+ P(t) Y(t) 0,

where R(t), P(t) are continuous Hermitian-matrix valued functions defined on [0, +c)
with R(t)> 0. This problem has attracted substantial interest recently (we refer to
[1]-[4], [8] for a careful discussion of disconjugacy and related properties of (1.1)
and its relation to the continuous case (1.2)). We refer to [5]-[7] and [9] for additional
results in the scalar case. In particular, in [5] the authors used Riccati and averaging
techniques for the scalar case of (1.1) (R,, P, real numbers) to obtain a number of
oscillation results. These, in turn, may be considered analogues (and, in some cases,
a strengthening) of criteria in the scalar case of (1.2).

The results involve "averaging" methods that have previously been used in scalar
differential and difference equations which allow us to obtain more sensitive tests for
oscillation. As a corollary we obtain the discrete analogue of a recent test for oscillation
of matrix differential equations obtained in [4] and [8] (cf. Corollary 2.16) which has
generated considerable activity. To be specific, if R,- I (the d x d identity matrix)
for all n, and if lim,_o j=o P does not exist (finite), then

AY,+P,,Y,+=O
is oscillatory. The same conclusion holds if

j=0

* Received by the editors February 24, 1988; accepted for publication (in revised form) October 26, 1988.

" Shandong University, Jinan, Shandong, People’s Republic of China. Present address, Department of
Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1., Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1. The work
of this author was supported by the Natural Science and Engineering Research Council of Canada.

939



940 s. CHEN AND L. H. ERBE

where hi(’) denotes the largest eigenvalue. (This is the extension of the result of [4]
and [8] referred to above.)

Let U { Un }, V { Vn } be two sequences of d x d matrices. We define the "bracket
function" by

(1.3) {U, V}= U*RAV-(RAU)*V, n>-O,
where * denotes the conjugate transpose. It is straightforward to establish that

(1.4) { U, V} -{ V, U}*
and if U, V are solutions of (1.1), then

(1.5) A{U, V} 0,

so that { U, V},---C (a constant matrix).
We say that a solution Y of (1.1) is prepared in case { Y, Y}, 0, n _-> 0. We refer

to [1] and [2] for an additional discussion of this and remark only that the analogue
of the "preparedness" for (1.2)is Y*(t)R(t)Y’(t)=- Y*’(t)R(t)Y(t), t>-O. It is easy
to establish that a solution Y of (1.1) is prepared if and only if Y*,/IRnY, is Hermitian
for each n _>-0. We also have the following result whose proof is omitted.

LEMMA 1.1. Let Y be a prepared solution of (1.1) and assume det Y, 0 for n >-_ N
for some N >- O. Then RnYn+ y-l is Hermitian for each n >- N.

We say that a prepared solution Y of (1.1) is nonoscillatory if there exists an
N_-> 0 such that

(1.6) Y*+IR.Y>O for n>-_N;
and Y is said to be oscillatory otherwise.

The next result gives a simple characterization of nonoscillatory solutions of (1.1).
LEMMA 1.2. Suppose that Y is a prepared solution of (1.1). Then Y is nonoscillatory

if and only if there exists an N >-_ 0 such that

(1.7) R,Y+ Y- > 0 for n >-_ N.

Proof. Suppose that Y is nonoscillatory. Then Y*RnY+ Y,*+ Rn Yn for n N
and hence

RYn/ yl= y).(Y*RnY,/I) Y-I> 0 for n _-> N.

Conversely, if RnYn+lY > 0 for n >_- N, then

gn+lRnY gnRnYn+ yn(RnYn+l yl) Yn > 0 for n _-> N.

Hence Y is nonoscillatory.
Remark. It is easy to see that (1.7) is also equivalent to R,Y,Y-+I >0 for n _>-N.

We also remark that by a Sturm-type separation theorem for (1.1), it follows that either
all nontrivial prepared solutions of (1.1) are nonoscillatory or none of them are. To
be specific, if in our notation, Dn --- Rn + Rn+ P > 0 holds for all large n, the separation
theorem is given in 1]. Moreover, if there exists a sequence nk-- o such that D, is
not positive definite, then it follows from Lemma 1.2 and some manipulation that there
does not exist a prepared nonoscillatory solution of (1.1). We also remark that the
fact that nonoscillation implies that D, is eventually positive definite follows immedi-
ately from Corollary 3.1 of [2]. Furthermore, to avoid complications in applying the
Sturm theory, it is necessary to restrict attention in this paper to solutions of (1.1) for
which the 2d x d partitioned matrix

RAY)
has full rank (for some and hence all values of n).
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Suppose that (1.1) is nonoscillatory and let Y be a solution with RnYn+IyI>o
for n _-> N (Lemma 1.2). We define the Riccati difference operator by

(1.8) Z,=(R,AY,)Y-1, n>=N.

Then since Z, R,Y+I y-l R, it follows by Lemmas 1.1 and 1.2 that Z, is Hermitian
and Z, >-R, for n-> N. A simple computation gives

(1.9) AZ, + Z,,(Z + R,)-’Z, + P, O, n >-_ N.

Equation (1.9) is called the Riccati difference equation associated with (1.1).

2. Oscillation and nonoscillation results. We shall assume henceforth in this paper
that D, > 0 holds for all large n. For any Hermitian matrix A, we will assume its
eigenvalues Ak(A), 1-< k_< d, are ordered so that

and as usual

AI(A) ->’" "_>- Aa(A)

d

tr A A,(A), IIAI[ (AI(A*A)) 1/2.
i=1

THEOREM 2.1. Equation (1.1) is nonoscillatory ifand only if there exists a sequence
of d x d Hermitian matrices with Z, > -R, for n >-_ Nfor some N >-_ 0 satisfying (1.9).

Proof We need only to prove the sufficiency. Let Z be the solution of (1.9) with
-R, for n _-> N. Define Y by YN =/, the d x d identity matrix, and for n -> N/ 1

(2.1)
n-1

Y, 1-I (R-f’Zj + I) (R,Z,, + I) (RZs + I)1
j=N

Then Y is a solution of (1.1) for n-> N and moreover the matrix

Y*.+IR.Y. Y*.(Z.R-I + I)R.Y. Y*.(Z. + R.) Y.
is Hermitian for all n=> N and hence Y is a prepared solution of (1.1). Since
R,Y,+I y-l R,(R-IZ, + I) Z, + R, > 0 for n -> N, it follows by Lemma 1.2 that (1.1)
is nonoscillatory. This completes the proof.

Next suppose that (1.1) is nonoscillatory and let Z be a Hermitian solution of
(1.9). Then by Lemma 1.2 we have

ZN --ZN(ZN + RN)-IZN ZN(ZN + RN)-IRN ZNYNYv+I
RN RNYNYv+I < RN.

Hence, from (1.9) for all n-> N+ 1 we have

(2.2)

n-1 n-1

E Pj=ZN- E Zj(Zj+Rj)-Izj-zn
j=N j=N

<ZN-ZN(ZN / RN)-’ZN / Rn
<RN/Rn.

In particular, letting n N+ 1 and replacing N by n, we have

(2.3) P, < R, + R,,+ for n => N,
which is the condition D, > 0 (see the remark following Lemma 1.2). Actually, that
(2.2), a generalization of (2.3), holds for all large N and n => N+ 1 is a necessary
condition for (1.1) to be nonoscillatory. This establishes Theorem 2.2.
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THEOREM 2.2. Ifthere exist two sequences ofintegers { Nk} and { nk} with nk >-- Nk + 1,
Nk-> c as k--> o such that

(2.4) Ad R,+Rv- 2 P <=0, k=l,2,...,

then (1.1) is oscillatory.
From this we may easily obtain Corollary 2.3.
COROLLARY 2.3. If there exist three sequences of integers {Nk}, {Mk}, {nk} with

nk >= Mk + 1, Mk >= Nk + 1, Nk o as k o such that

(2.5) >=
j=Nk

and

nk_1
(2.6) Ad g,k- Y P -<0, k=l,2,...,

h4

then (1.1) is oscillatory.
Proof. We have

Ad R,,+RN,-E Pj =Ad Rn-E P+ RN,--E
j=N j=M j=N

so that (1.1) is oscillatory by Theorem 2.2.
From Corollary 2.3, more paicularly, we have Corollary 2.4.
CooA 2.4. Iffor any N there exists an n N+ 1 such that

and

noo j=0

then (1.1) is oscillatory.
Proof For any integer Nk by (2.8) we can find an Mk >= Nk + 1 SO that (2.5) holds.

Then it follows from (2.7) that there is an nk >= Mk + 1 SO that (2.6) holds. Therefore,
(1.1) is oscillatory by Corollary 2.3.

Remark. In the scalar case, Theorem 2.2 and Corollary 2.4 become Theorem 2.9
in [5] and Lemma 3.5 in [9], respectively.

Example 1. Let d 2. For any integer k _-> 3, we let Rk Rk2+9-" I (2 x 2 identity
matrix), let P,-diag (p,, q,) with p,=1/4 and q, arbitrary real numbers for n-
k2, k2+ 8, and let R, P, be arbitrary otherwise. Then (1.1) is oscillatory since
condition (2.4) in Theorem 2.2 holds for N-k2, n--k2+9. Note that (2.8) may not
hold if we define P, appropriately for k2 + 9 _-< n <= (k + 1)2 1.

We will denote by c the set of all Hermitian matrix sequences f-{f,},=o with
the property that

lim Y’, exists (finite).
n’x3 j=O j=0
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Clearly, if fe c then F, j=nfJ is Hermitian for all n =>0. If f is a sequence of
Hermitian matrices with f,, _-> O, n O, then

(2.9) f c:> X trf,<oo:> Y. IILIl<oo,
n=0 n=0

Set a, Ad(R,), A, AI(R,), n =>0. Then

(2.10) O<a,,I<_R,<-A,,I, O < A-II <=R <_ a-L
We will also denote by : the set of all sequences of real numbers b {b,}-o

with 0 =< b, =< 1 and

(2.11) b,, +m.
n=O

It will be convenient to set

j=0 j=m

Whenever we write (B,m)- we will take n>m sufficiently large so that B.,>0.
Obviously, we have

(2.12) lim BB.,N 1 for any fixed N_-> 0.

We also have the following lemma.
LEMMA 2.5. Letf= {f.}=o be a sequence either ofreal numbers or ofd d matrices.

If lim._.oof. C (where C is either a real number (or +oo) or a d x d matrix), then

(2.13) lim (B.,N)-1 bkfk C for N_-> 0.
no k=N

In the latter case, if C is a d x d matrix, then (2.13) is to be interpreted componentwise.
That is, "averaging" with respect to the class preserves limits.
We introduce the following conditions, which will be needed in the results to

The sequence A/a is bounded, i.e., there is a K > 0 such that A,/a, <= K,
n-> 0, and there exist b and M > 0 such that

B-3/2 . bjAj+l <- M for all large n.
j=0

(A2) The sequence A/a is bounded and there exist b and M > 0 such that

B- bjA+l <- M for all large n.
j=0

(A3) The sequences A/a and A are bounded.
Clearly, we have (A3)=>(A2)=>(A1).
THEOREM 2.6. If R satisfies (A1) and equation (1.1) is nonoscillatory, then the

following are equivalent:

(2.14) (i) limB bk P= C,
nc k=O =0

where C is a constant Hermitian matrix and may depend on b ;

(2.15) (ii) lim infB bk tr P > -c;
n.,:x3 k=O j=O

follow:
(A1)
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(iii) For any prepared solution Y of (1.1) with Y*.+IR. Y. > 0 for n >= Nfor some
N >= O, the sequence

(2.16) Z(Z+R)-’Z,
where Z is given by (1.8).

Proof Obviously (i):>(ii).
(ii)=:>(iii). Suppose not, and let p, =- Z,(Z, + R,)-IZ,. Then since p, => 0 we have

(2.17) E tr p. +oo.

From (1.9) we have

(2.18)

and hence

Zn+ Zj Zj 4t- Rj )- zj -I- .Pj ZN
j=N j=N

(2.19)

k k

Bn.N)-’ bk Z tr pj W Bn,N)-1 bk ’. tr P-tr ZN
k=N j=N k=N j=N

(,,.v) bk tr (--Zk+,)
k=N

Now by Lemma 2.5, (2.17) implies that the first term on the left side of (2.19) c as
n o. It follows from (ii) and (2.19) that

lim (B.,)-’ bk tr (--Zk+l)= q-iX)
k N

and hence

(2.20) lim (B,,,)- bllZ+lll- +c.
k N

Dividing (2.19) by (B,,,r) /, in view of (ii), condition (A1), and the fact that -Z+ <
R+, we have for all large n

Bn,N) -3/2 bk , trpj-<Ml<.
k=N j=N

For any fixed n _>- N+ 1, choose m > n so that B..v <- (Bin B,.) <- 2B..v and hence
B,,,, <-_ 3 B,,.r. Then we have

(Bn,N) -1/2 tr PS <= (Bn,N)-3/2(Bm Bn) tr PS
j=N j=N

(2.21) -<(B,,,)-/ Y. b 2 tr0
k=N j=N

N33/2(Bm,N) -3/2 bk 2 trp 33/2Ml<CX3.
k=N j=N

On the other hand, since

p. Z.(Z + Rn)-Izn Z.(R-’Z. + I)-IR-Izn

Z.R-Z.(I + R-Iz.)-1
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and A-IZn <_ Z, -lZn p (I+ R-IZ,,), we have

IIZ. =-- IIz=.ll _-<A. p.II +m" .1111Z.an

A"’e p II(a + z II)
an

=< 2A-----e" p max (a,, zn II)

and hence

(2.22)

2A,, 1/2)& -< max
\

p. II, (2 p. a,

--< 2Kll P.II + (211 p. Ila.) ’/=.

By the Schwarz inequality we obtain

k=N k=N

(2.23)

+x/ (Bn,N)-1 E b,c(llp,+,llm,+)
k=N

_-< 2K(B.,N)-’
k=N

+ (B,,.,,,)-’ IIp,+,ll bA+,
k=N k=N

Now from (2.23), (2.21), and (A1) we see that

(Bn,N)-I E b,ll&+,ll
k=N

is bounded above, which contradicts (2.20). This shows that (ii)=>(iii).
(iii)=>(i). From condition (iii) we have

(2.24) E II,o,+,11 < oo.
k=N

Hence, from (2.23), (2.24), and (A1) it follows that

(2.25) lim (Bn,v)-I y, bk &+, o.
k N

Since

(2.26)
k k

(Bn,v)-1 bk Y’, Pj=Zn+(Bn,N)-1 b(-Z+,)-(Bn,N)-1 bk Z &
k=N j=N k=N k=N j=N

and each term on the right side of (2.26) is convergent as n +oo, we obtain (i) by
letting n-+ oo in (2.26). This completes the proof of the theorem.
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COROLLARY 2.7. Suppose that R satisfies (A1) and that P satisfies condition (2.15).
if

k

(2.27) lim B bk , P does not exist (finite),
n-oo k=0 =0

then (1.1) is oscillatory.
Remark. Thus, if there exists b e 9 such that conditions (A1),(2.15), and (2.27)

are satisfied, then we conclude that (1.1) is oscillatory. It is easy to give conditions
under which the limit in (2.27) does not exist. For example, under the assumption that
(A1) and (2.15) hold, (1.1) is oscillatory if either of the following conditions holds:

k

(2.28) lim sup B-
noo k=0 j=0

or

(2.29)
k k

liminfB bk X tr P <limsup B- . bk _, tr P.noo k=0 j=0 n-oo k=0 j=0

We next introduce a Riccati summation equation. Suppose that (A1) and condition
(2.15) hold and that (1.1) is nonoscillatory. Since

k N-1 (NI) B_1
k

B- E bk X P B- X bk P +B B,,,m P +(BB,m) ,m b X P
k=0 j=0 k=0 j=0 j=0 k=N j=N

for n > N_>-0, we have after some computation
k N-1

(2.30) lim B-ln,N E bk Pj C-, Pj
n->oo k=N j= N j=0

(using B-IB,,N-> 1 as n-> oo), where C is defined as in (2.14).
THEOREM 2.8. Let (A1) and condition (2.15) hold for some b. Then (1.1) is

nonoscillatory ifand only if there exists a sequence Z ofHermitian matrices with Z, > -R,
for n >-_ Nfor some N >- 0 satisfying

1(2.31) Z, C- P + Z(Z + Rj)-Iz, n _-> N,
j=0 j=n

where C is defined in (2.14) and may depend on b.
Proof. Suppose first that (1.1) is nonoscillatory. By Theorem 2.6 there exists a

sequence Z of Hermitian matrices with Z, >-R, for n _-> N satisfying (2.26). Letting
n-->c in (2.26), using (2.30), and replacing N by n, we obtain (2.31). Conversely,
suppose that Z is the Hermitian matrix sequence in the theorem. From (2.31) we have

AZ.=-P.-Z.(Z.+R.)-’Z.
and so (1.1) is nonoscillatory by Theorem 2.1.

THEOREM 2.9. Let (A2) hold for some be 9. If (1.1) is nonoscillatory then the
following statements are equivalent:

k(i) lim,_. B Ek=0 bk j=o t.r P
-1(ii) lim inf,_.oo B, ,k=O bk j--o tr P

(iii) There exists a nonoscillatory solution Y of (1.1) with Y*+IRYN > 0 for n >--N
for some N >- 0 such that the sequence Zo R(A Y) Y, 1, n >- N, satisfies

E tr (Z(Z + Rj)-Izj)= .-[-oo,

Proof. Since (A2)(A1), (ii) and (iii) are equivalent by virtue of Theorem 2.6.
Since (i) clearly implies (ii) we need only show that (ii) and (iii)(i). From (2.19)
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we have

(Bn,N)-I bk Z tr P _--< tr Zn + (Bn,V)-I bk tr Rk+l
k=N j=N k=N

(2.32)
k

--(B,,N) -1 bk Y’, trp.
k=N j=N

Since the right side of (2.32) tends to -c as n-m, it follows that (i) holds. This
completes the proof.

COROLLARY 2.10. If (A2) holds for some b ; and

-c lim inf B- bk Y tr P < lim sup B- bk tr P,
n-x: k=0 j=0 n-cx3 k=0 j=0

then (1.1) is oscillatory.
THEOREM 2.11. Let (A3) hold. If (1.1) is nonoscillatory, then the following state-

ments are equivalent:
(i) P
(ii) lim_, B k=O bk k=o P Cfor some b , where C is a constant matrix;
(iii) The sequence P satisfies condition (2.15) for some b
(iv) For any nonoscillatory solution Y of (1.1) with Y*,+IR, Y,>O for n>-N for

some N >- 0 the sequence Z, R, A y, y-, n >- N, satisfies Z Z + R)-
Proof Since (A3)(A1), (iii) and (iv) are equivalent by Theorem 2.6. Obviously

(i)(ii)(iii). We need only show that (iii) and (iv)=>(i). Now from (2.18) it is
sufficient to show that Z, - 0 as n-* c. But this is immediate from (2.22) because of
the boundedness of the sequence {A,}. This completes the proof.

We observe that if P fig, then the limit C in (ii) of Theorem 2.11 is independent
of b r and C Ej=o ej. If we let

j=n

then we can get an analogue of Theorem 2.8 under the assumption (A3) instead of
(A1) as follows.

TIaEOREM 2.12. Let (A3) and condition (2.15) hold for some be . Then (1.1) is
nonoscillatory if and only if P c and there exists a sequence Z of Hermitian matrices
with Z. > -R. for n >- Nfor some N >= 0 satisfying

(2.33) Z, Q, + 2 Z(Z + Rj)-Z, n >_- U.
j=n

We can also obtain a counterpart to Theorem 2.11.
THEOREM 2.13. Let (A3) hold. If (1.1) is nonoscillatory then thefollowing statements

are equivalent:
(i) lim,_, hd (";=0 Pj) -cx3, lim sup._, AI(’j=0 Pj) <
(ii) lim,_,o tr ("=o P)= -o;
(iii) lim inf,_, B Y=o b Yo tr P -c for some b
(iv) There exists a prepared solution Y of (1.1) with Y*.+R.Y. >0 for n >= Nfor

some N >= 0 such that

2 tr (Z(Z + Rj)-’Z) c,
j=N

where Z, R,, (A y,,) y-l > R, for n >- N.



948 S. CHEN AND L. H. ERBE

Proof. Obviously (i)(ii)(iii). By Theorem 2.11 it follows that (iii) and (iv)
are equivalent. If Z is the sequence in (iv), then for all n -> N we have

E P ZN- Z,+I- Z(Z + Rj)-IZ

<Z + R.+,- (+R)-I.
j=N

Hence

tr( P)=<trZN+M1- tr(Z(Z+R)-Iz)-

as n-, i.e., (iv) => (ii). By the convexity of the functional /1(’), we also have

*1 Pj A,(ZN)-i-*I(R.+I)-t-*I- E Zj(Zj+Rj)-’Zj <=,,(ZN)+M,,
j=N j=N

i.e., (iv) and (ii)(i). This proves the theorem.
Remark. Theorems 2.11 and 2.13 show the significant dependence ofthe oscillation

of (1.1) on the divergence of the sequence P under (A3). The analogue of Theorem
2.11 for the differential equation (1.2) is only partially true. For example, if we let
R (t) I and assume

lim inf 110 Io tr P(r) dr ds > -,

then the nonoscillation of (1.2) does not imply the convergence of o P(t) dr
The following oscillation criteria are immediate from Theorems 2.11 and 2.13.
COROLLARY 2.14. Let (A3) hold and assume that P satisfies (2.15) for some b 9.

If P : , then (1.1) is oscillatory. In particular, (1.1) is oscillatory in case either

(2.34)

or

n-x j=0

no j=0 noo j=0

COROLLARY 2.15. Let (A3) hold. Iffor some b

k

lim infB , bk tr P -,
k=O =0

then (1.1) is oscillatory in case either (2.34) holds or

(2.36) lim sup tr P > -.
nx3 j=0

Combining Corollaries 2.14 and 2.15, we obtain Corollary 2.16.
COROLLARY 2.16. If (A3) and (2.34) hold, then (1.1) is oscillatory.
Remark. Corollary 2.16 shows that the discrete matrix analogue of a recent result

of Kaper and Kwong [8] and of Byers, Harris, and Kwong [4] for the continuous case
(eq. (1.2)) is valid. The criteria in Corollaries 2.14 and 2.15 may also be considered
analogues of some of the results of [3] for (1.2).
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Example 2. Let d 2, R, I and let P, diag (p,, q,) with p, + q, 0, p,, q, < 2
for all n, and

lim inf pj < lim sup pj.
n j=0 =0

Then (1.1) is oscillatory by Corollary 2.14.
Example 3. Let d 2, R, =/, and P, diag (p,, q,) with p, 1/.n if n is prime

and p, 0 otherwise. If

lim sup (p + q.) > -,
n-oo j=0

then (1.1) is oscillatory from the following result.
COROLLARY 2.17. Let (A3) hold. IfP and (2.36) holds, then (1.1) is oscillatory.
Proof. From (2.36) we can find a sequence of integers nr with nr as r-c

such that

lim Y. tr P C >-.
0

Let b, 1 if n n, r 1, 2,. and b, 0 otherwise. Then

k 1 ’B-in bk Y trP;=- 2 Y trP;-C asr.
k=O j=0 /" k j=0

Thus, (2.15) is satisfied and the oscillation of (1,1) follows from Corollary 2.14.
More sophisticated examples may also be given. We leave this to the interested

reader.

Acknowledgment. The authors are indebted to the referees for their detailed
Comments.
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CONDITIONAL ANALYTIC FEYNMAN INTEGRALS AND A
RELATED SCHRDINGER INTEGRAL EQUATION*

DONG MYUNG CHUNG" AND DAVID SKOUG$

Abstract. The concept of a conditional Feynman integral of a function F given a function X is

introduced, and its existence is established for various functions. Then the conditional Feynman integral is
used to derive an integral equation that is formally equivalent to the Schr6dinger equation.

Key words. Wiener integral, conditional Wiener integral, Feynman integral, conditional Feynman
integral

AMS(MOS) subject classification. 28C20

1. Introduction. In this paper we define the concept of a conditional analytic
Feynman integral of a function F on Wiener space given a function X. In particular,
for a certain choice of X we establish the existence of the conditional Feynman integral
for all functions F in the Banach algebra S introduced by Cameron and Storvick [3].
In [15] Johnson has shown that S is isometrically isomorphic to the class (H) of
Fresnel integrable functions as given by Albeverio and H0egh-Krohn 1 ]. The Banach
algebras (H) and S and related theories have been studied quite extensively; referen-
ces include [3]-[7], [9]-[11], [14], [15], [17]-[21].

To define the conditional analytic Feynman integral we use the conditional Wiener
integral as given by Yeh in [23], [24] and studied further in [8], [13], [22], [25]. In
[24] Yeh used the conditional Wiener integral to derive the Kac-Feynman formula.
Here we use the conditional Feynman integral to derive an integral equation formally
equivalent to the Schr6dinger equation. We also use the conditional Feynman integral
to provide a fundamental solution to the Schr6dinger equation.

2. Definitions and preliminaries. Let v be a positive integer and let Cg[0, t] denote
u-dimensional Wiener space, that is the space of RY-valued continuous functions on
[0, t] such that (0)= . Let M denote the class of all Wiener measurable subsets of
C[0, t] and let m denote v-dimensional Wiener measure. (C[0, t], ://Y, m y) is a
complete measure space. In case v=l, we delete the one and simply write
(Col0, t], , m). Of course, C[0, t] Col0, t] x... x Col0, t] (v times). We denote
the Wiener integral of a function F by

F(:) dmY(,).
C[0,t]

A subset E of C[0, t] is said to be scale-invariant measurable [12], [16] provided
pE is Wiener measurable for each p > 0, and a scale-invariant measurable set N is
said to be scale-invariant null provided mY(pN)- 0 for each p > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.).

Next we give Yeh’s definition of the conditional Wiener integral from [24].

* Received by the editors July 20, 1987; accepted for publication (in revised form) October 4, 1988.
Sogang University, Seoul 121, Korea. The work of this author was supported by the Basic Science

Institute Research Program and the Ministry of Education of Korea.
$ Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323.
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DEFINITION 1. Let X be an R-valued Wiener measurable function on C[0, t]
and let F be a complex-valued Wiener integrable function on C[0, t]. Let Px be the
probability distribution of X, i.e., for all B , the Borel sets in , Px(B)-
m(X-I(B)). The conditional Wiener integral of F given X is by definition the
equivalence class of Borel measurable and Px-integrable functions on R, modulo
null functions on (, , Px), such that for all B ,

j F()dm"()=IBb()dPx()"x-l(B)

By the Radon-Nikodym theorem such a function exists and is determined up to a
null function on (,, Px). We let E(FIX) denote a representative ofthe equivalence
class and so for all B ,

J F() dm() E(FIX)()dPx(l).
X-’(B)

We are now ready to define the conditional analytic Feynman integral of a function
F given X.

DEFINITION 2. Let X be an -valued scale-invariant measurable function on
C[0, t] and let F be a scale-invariant measurable function on C[0, t] such that the
Wiener integral

F(A _1/2.) dm()
c[o,t]

exists as a finite number for all A > 0. For A > 0 let

J , F(-/. )1X(-/. ))( ,
denote the conditional Wiener integral of F(A -1/2.) given X(A -/2.). If for almost
every , there exists a function Jx*(), analytic in A on C/ {A C" Re A > 0} such
that J*() Ja () for all A > 0, then J* is defined to be the conditional analytic Wiener
integral of F given X with parameter A and for A C/ we write

Ea’W^(FlX)(q)=J*().
If for fixed real q # O, the limit

lim E’W(FIX)(I)
X--iq

exists for almost every where h approaches -iq through C+, we will denote the
value of this limit by Eanfq(F[X) and call it the conditional analytic Feynman integral
of F given X with parameter q.

Remark 1. The notation E"W(F[X) does not mean "conditional expectation
with respect to a probability measure" but rather an extension of such a conditional
expectation.

Remark 2. In [24] Yeh (in this paper he worked with v 1 but clearly his results
in 3 hold for general v) always chose X to be the function X()= (t) and in that
case

dPx(fi.__..) (2rt)_./2 exp (-,I,! 112d 2t J"
In addition, when we use his inversion formulas [23, Thm. 2] and [24, Thm. 3], a
version of E(FIX)() is given for all by the formula

(I) E(FIX)(I)=(dPx())-’ I,d
(27r) e-’(0"> e’<’(’)>F() dm()

CtE0,t]
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provided that the Wiener integral

e,(O,(t))F(, dm"(y)(2)

is an integrable function of U on
Remark 3. In [22], Park and Skoug have shown that if F is Borel measurable

and Wiener integrable and if X()) Y(t), then the conditional Wiener integral E (F X)
is given in terms of an ordinary Wiener integral by the formula

(3) E(FIX)()

Since all the functions F we consider in this paper are Borel measurable we can use
either (1) or (3) to compute E(F]X); one advantage of using (3) is that we do not
need to show first that the expression in (2) is an integrable function of U on ". It
has also been pointed out in [22] that if F is only Wiener measurable rather than
Borel measurable then the expression on the right-hand side of (3) is not necessarily
a Borel measurable function of ; however, in that case we can still choose a version
of E(F[X) that is equal almost everywhere to the right-hand side of (3).

We finish this section by stating the definitions [3 ofthe analytic Feynman integral
and the Banach algebra S(u).

Let F be a C-valued scale-invariant measurable function on C[0, t] such that
the Wiener integral

()
c8[0,]

exists as a finite number for all A > 0. If there exists a function J*(A) analytic in C+

such that J*(A)= J(A) for all A > 0, then J*(A) is defined to be the analytic Wiener
integral of F over C[0, t] with parameter A, and for A C+ we write

E"nW(F) y*(a ).
Let q 0 be a real number and let F be a function such that E"nW(F) exists for

all A C+. If the following limit exists, we call it the analytic Feynman integral of F
with parameter q and we write

E"nQ(F) lim E"nW(F)
A

where A approaches iq through C+.
The Banach algebra S(v) consists of functions on C[0, t] expressible in the form

(4) F()= exp i v(s) dx(s) d(P)
[0,t] j=l

for s-a.e. = (x,..., x) in C[0, t] where is an element of M(L[0, t]), the space
of C-valued, countably additive Borel measures on L[0, t], and the integrals
o v(s) x(s) are Paley-Wiener-Zygmund (PWZ)integrals. In addition, Cameron and
Stoick [3, Thm. 5.1] show that for F given by (4)

and

(5)

for each real q 0.

Eanfq(F)-- exp - . IIvjII = d(
’[o,t] j=l
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Finally we state the following well-known integration formula:

exp-ll,ll=+i<,,> d,= exp-llll= Reb>0,

which we use several times in this paper.

3. Conditional analytic Feynman integrals.
THEOREM 1. Let F S(,) be given by (4) and let X() (t). Thenfor all A C+,

the conditional analytic Wiener integral Eanw (FIX) exists andfor all l is given by
the formula

(6) Eanwx(FIX)() exp
[o,t]

where / (b,. ., b) (’o v(s) ds,..., o v(s) ds). Furthermore, the conditional
analytic Feynman integral Er(FIX) exists for all real q0 and for all is
given by the formula

(7) Eanfq(FIX)() fL exp { [tlll3j,12_ b]]+/(,/)} do’(’).
[0,t] --qtj=l

Proof. Using (3), the Fubini theorem, and a fundamental Wiener integration
formula involving PWZ integrals, we obtain that for

(F(X-,/ )I X(,-l/ ))(,)

exp vj(s) A-1/2xj(s)-A -1/2-s
cto,, to,, .#=

x(t)

+- q do’(Q) dm()

exp (s) dx(s)
[o,,1 [o, tl --:, v vj(s) ds

(8 +-
tj=l

vx(s)- xx(s) dm()do’(Q)exp
J=l

exp -s, tllvsll- b +7 (fi’ ) d(Q).
[O,t]

But by the Cauchy-Schwarz inequality it follows that

9) b= r) d 1 d r]) d tllll.
Hence, since M(L[0, t]), we see that the last expression on the right-hand side
of (8) is an analytic function of A throughout C+ and is a continuous function of A
for Re A 0, A # 0. Thus (see Definition 2 above) (6) and (7) are established, which
concludes the proof of Theorem 1.
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In our next theorem we show that if we multiply Eanq(FIX)() by
(q/27rit) "/2 exp {(iq/2t)[l[[2}, the analytic extension ofthe Radon-Nikodym derivative
evaluated at X =-iq, and then integrate over R we obtain the Feynman integral
Eanfq(F). However, to do so we need a summation procedure; we will use the same
one as in [19, p. 340]. Let

(10) f(fi) aft lim f(fi) exp dfia+ 2A J
whenever the expression on the right exists. Of course, iff L(), it is clear using
the Dominated Convergence Theorem that

f
TnOM 2. Let F S(v) be given by (4) and let X() (t). enfor all C+

(11) exp -lll= EanW(FlX)() d Eanw*(F)

and for all real q # O,

(12) exp I111 = Eanq(FlX)() d Eanfq(F).

oo We will establish (12); the proof of (11) is similar, but easier since the
summation procedure is not needed. Let q #0 be given. Then using (10), (7), the
Fubini theorem, and (5), we obtain

q / iq qexp 1111
i Ia ()/2 exp ((-)

c;to, tl
exp --j=l [tl[vll=-b]+ (q’> d(f)dq

{ }()/lim exp - E [tllvll=-b]] q
A-+ [O,t] j=

_1

lim exp [tllvll = b]
a-+ [0,t] --j=l

.(2A,/ { A
kt-Aiq]

exp -2(t-Aiq)t I111

exp 11+ I111 exp I111 d(f)

=fto,tlexp{_
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In our next theorem we obtain the existence of the conditional analytic Feynman
integral for a class of functions that are not necessarily in $(v).

THEOREM 3. Let @ R - C be a Borel measurable function such that

I@(q)l exp {-allqll =) dq < oo

for all a > O. Let F S( v) be given by (4). Let G() F()C,((t)) and.let X() ( t).
Then Eanf(GI X) exists for all real q #O and

(13) Eaf(GlX)() ()Ef(F[X)()

for almost all .
Proofi We first note that

IG(;-’/:)I dm"() < oo
c[o,t]

for all A >0 since F is bounded. The existence of Eanf(GIX and (13) now follows
from (3) (with F replaced by G) and Theorem 1.

Remark 4. Note that G is not necessarily in S(v) since 0 may be unbounded.

4. The integral equation. Let d be the set of all C-valued functions on [0, c) x
of the form

(14) O(s, 0)= Ia exp {i( , I)} d/xs(I7’)

where {/Xs: 0 <- s < oo} is a family from M() satisfying the following two conditions:
(i) For every B (), tzs(B) is Borel measurable in s.
(ii) IIsll t[0, t] for all > 0.

In [19], it is noted that O(s, O) and O(s, (s)) are Borel measurable and that F()=
exp {’o O(s, (s)) ds} is in S(v).

Remark 5. Note that S(v) actually depends on and so we could write S(v)=
S,(v). But for 0< s <-t, F Ss(v)=:>F St(v). So we will usually delete the subscript
unless the meaning is unclear without it.

THEOREM 4. Let 0 be given by (14), let

F() Ft() exp O(s, (s)) ds

and let X() Xt() (t). For (t, , A (0, oo) x x (0, oo) let

(x)/ { x } -,/ -1/(15) n(t, ,A)= t exp - 11, 11 = ,E(F(A .)IX(A .))(’).

Then for t, , A (0, oo) x x (0, oo), H t, 1, A satisfies the integral equation

H(t, ,I)= exp - 11 11
(16) +

2or(t- s)
O(s, OH(s, A)

exp -2(t-s) ll-ll-
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Proofi Let (t, , A (0, oo) x R x (0, oo) be given. Then by differentiating the func-
tion exp {j O(u, A-1/2(u)) du} with respect to s and then integrating the derivative
on [0, t] we obtain the formula

} Ioexp O(s, h-/Y(s)) ds 1 + O(s, A-1/2y(s)) exp O(u, h-/Y(u)) du ds.

Hence, taking conditional expectations, using (3) and the Fubini theorem, we obtain

E(F( -1/2 )IX(A -1/ ))()

1+ 0 , a-/ ()-7 (t) +7c[o,t]

exp 0 u,-/ (u) -(s)

+- (s)- (t) + du dsdm()

+ 0 , -/ (-( +
exp 0 u, I -/ (u) -(s)

+- I (s)
s s

But a-/[(s)-(s/t)(t)]+(s/t) is a Gaussian random variable with mean (s/t)
and variance s(t-s)/It for 0N s < t. Also it is independent of the random variable
(u) (u/s)(s) for 0 < u < s < t. But Brownian motion (u) has stationary increments
and so using (15) we obtain

H(, q, 1)= exp -1111
+

2(t-s)
O(s, )exp -2(t-s

exp - I111 E(F(A -1/2")IX(A -1/2"))() dds

exp - I111

+
(_

o(s, (, ,
exp -2(t-s)- dds,

which concludes the proof of Theorem 4.
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THEOREM 5. Let F and X be as in Theorem 4. Then for (t, , A) (0, oo) x R x C/

the function

(17) H( t, , A (t)/2

satisfies the integral equation (16).

exp - [[l]2,Eanw(Flx)()

Proof. By Theorem 4 we know that H(t, q,A) given by (17) satisfies the integral
equation for h > 0. Thus it suffices to show that both sides of (16) are analytic functions
of h throughout C+. But by Theorem 1, H(t, q, A) exists and is analytic throughout
C+. Thus it suffices to show that the second term on the right-hand side of (16), which
we will denote by h(h), is an analytic function of A on C+. We will use Morera’s
theorem to show that h (h) is analytic. First an application of the Dominated Conver-
gence Theorem shows that h(h) is continuous on C+; an appropriate dominating
function is obtained almost exactly as in the following argument and so will be omitted
here. Now let A be a triangular path in C+. We need only show that A h(h) dh =0.
But this will clearly follow from the Cauchy Integral Theorem if we can justify moving
the integral with respect to A inside the other two integrals. Let D=sup {[h[: h A}
and E inf {Re A: h A}. Then

Ilmll exp -7711, 11’- I1 11 exp [[-ll2

is a dominating function that is integrable with respect to (s, , A) on [0, t] x x A.
THEOgEM 6. Let F and X be as in Theorem 4. Then for (t,,q)

(0, oo) x x (-{0}) the function

(18) H(t,l,-qi)= exp ll,ll= (FIx)(,)

satisfies the Schr6dinger integral equation

H(t, l,-qi)= exp I1’ 11 

(19) +
2ri(t-s)

O(s, )H(s, -qi)

qi

Proof We first note that the techniques used in Theorem 5 will not work here
since limx__q (]A I/Re A +o and so it is not possible to find an integrable dominating
function. Next note that by Theorem 1,

(20) lim n( t, , A) H( t, 1, -qi).
A qi

Next let

O(s, )H(s, , A) exp -2(t-s)
for ss(0, t), (E[ and h #0 such that Re h>-0. Because the integral equation (16)
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holds for all h C/ it suffices in view of (20) to show that

Io’I (21) x-,-o,lim G(s, (, A) das G(s, (, -qi) a(ds.

But this follows from the following calculations provided that the use of the Dominated
Convergence Theorem can be justified in steps 3, 4, and 6 below"

lim G(s, x dds.
h --iq

To show that we can apply the Dominated Convergence Theorem we will find a
function that dominates the function

L(s) I G(s,(,h)exp(-[-l[A2)d
for all A sufficiently large, for all h C+ sufficiently close to -qi, and that is in LI[0, t]
as a function of s. Actually we will find a dominating function that is independent of
A and dominates for all h rs 0 such that Re h -> 0 and IAI -< Ao-21ql / 1. Also it suffices
to take the limit as h ->-qi along a horizontal line since we know that the limit in (21)
exists.

First using the definitions of L(s) and G(s, (, h), and then (14) and (17), we obtain

L(s)=(27r(t_
{ h 2} { (s+ah)i,ll=}exp

2(t- s) #- 11 exp
2as

exp s [sllvll=- by]
[o,s] j=l s

where b o v() d, (b, ., b) and q M(L2[O, s]) is such that

exp o(, ())d exp v() dx() d<( ).
[o,
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Next we use the Fubini theorem, then carry out the integration with respect to
simplify, and obtain

L(s)=(2_t)v/2( Aht { 1 }
h As(t s) if’+-- dtr() dl(if’).exp -2(t-s)[lTll2-2[s(t-s)+aAt] s t-sll

Now we claim that for all A>0 and all A S0 such that Re A ->0 and IAI-<_ Ao= 21ql / 1,

(22) IL(s)l--<

Once this claim is established, the proof is complete because the expression on
the right-hand side of (22) is in LI[0, t] as a function of s.

(i) Clearly, IAAt/(s(t-s)+AAt)l<-_ 1 for all A>0 and Re A ->0.
(ii) lexp {-(1/2As) jL1 [sllvjll2-b}]}[ <-- 1 by the Cauchy-Schwarz inequality

since Re (-1/2As) <_- 0.
(iii) Formula (22) will follow once we show that

exp
2(t s)I111=- q -< 1

2[s(t-s)+AAt] s t-s

for all appropriate values ofthe variables involved. It suffices to consider one coordinate
at a time and show that the real part of the exponent is nonpositive. We will work
with the jth coordinate and to simplify notation we let r/ r/, b b, and w w. Then,
recalling that A p qi and letting y w + bs qrl/ s), we obtain

A’I 2 As(t-s) b iAr
Re-2(t-s)-2[s(t-s)+AAt] w-

s t-s

As(t-s)[s(t-s)+Apt] [ prlAqt
2[i’)5iqt)2] Y/(t-s)[Apt/s(t-s)]

Pq2 { A3spq2t2+Asp[Apt+s(t-s)] }-2(t-s) 1-[(Apt+s(t-s))2+(Atq)2][Apt+s(t-s)]
which is nonpositive since for p _>-0 and 0 <-s <_-t,

A3spqEt2 + Asp[s(t- s) + Apt]2 <- Is(t- s) + Apt][(Apt + s(t- s))2 + (Atq)2].
As a consequence of our next theorem we will see that H(t,-,-qi) is a funda-

mental solution to the Schr/Sdinger partial differential equation.
THEOREM 7. Let F and X be as in Theorem 1. Let b M(); that is to say

(23) ,() fa exp {i(, /.)} db(

for some dp M(I). For (t, ") (0, oo) x I, let

Then for all real q 0 we have that

F(t, , q)-= Eanf(G)

[o,t] --qtj=
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{exp i<, u>-q-q I1
In addition, we have the alternative expression

(25) Ear() Earq(FIX)(-)

where Efo(FX)( is given by (7).
Proo Since Px(.+q(d) (2t)-/

it follows that

+ t/.ll 2} de( )] do-(’).

11 }exp
2t

O((’) d

exp {-11- ]12/2t} d, by Lemma 1 of [24]

xll?-,ll=/ dexp
2t

exp
2t

for all A > O. Then, using Theorem 1 and Morera’s theorem, we obtain

(26) E""W"(G)= -E""W"(FIX)(-) t exp
2t

() d

for all I eC+. Next we substitute for E""W,(FIX)(-) and q() in (26) using (7)
and (23), use the Fubini theorem, and then carry out the integration with respect to :
and obtain the formula

Eanwx(G)
L;[0,t] j=l

(27)
exp i(, 0)-- I1+ Crll d4,(Cr d(9)

for all A e C+. Next we note that the right-hand side of (27) is continuous in A for
Re A _-> 0, A 0, and hence E""fq(G) exists and is given by (24).

To obtain the alternative expression (25), we use (10), (7), the Dominated Conver-
gence Theorem, and (24):

"
Ean(FIX)( ) exp I17- gll (0 d

lim E""rq(FIX)(-)
A+oo

iq 1 }exp - I17-,11:- IIll - ()
lim exp -c---:jEl(tllvjll2-b) (-,) do-()

A.-.-> +oo ii, [O,t]

exp I1-,11 -y I111: exp {i(s 0)} d(O) d
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lim exp (tl]vll2_b)_7(,B) -A-+oo L[0,t] qTqt j=l

lim exp -qt i
A++oo L[O,t] j=l 2

(t- Aiq) i111+ (,

_
qq + tO) d d6(O) do’(exp 2At 7

( q )/2(27rAt/2Iu { A
\i’ai] exp -2t(t-aiq)

exp i (t vj =- b)
L[O,t] qt j=

exp i(q, O>-q II/+ toll 2 dO(O) do’(

Eanfq (G).
Remark 6. Note that (25) can be written as F(t, , q)= H(t, -(. ), -qi)*g/()

where * denotes convolution and H(t, ,-qi) is given by (18). Next consider the
Schr6dinger partial differential equation"

OF h2

(28) it, AF+ 0(t, q)F, F(0, q) (q)
Ot 2m

where A is the Laplacian on R, h h/2r where h is Planck’s constant and O(s,. is
a time-dependent potential.

If O(s,. )= 0(. is a time-independent and an R-valued potential in ]/(R), and
g is in M(R) fq L2(R), then by the results of [15], [20] combined with the results of
[1, Thm. 3.1], it follows that Eanfq(F()(:(t)+)) (with q=m/h) for some F in
S(v) is a (weak) solution of the Schr/Sdinger equation (28). Hence, (25) shows that
H(t,-,-qi) is a fundamental solution to the Schr/Sdinger equation (28).

If O(s, ) is the time-dependent potential given by (14), then by [19, Thm. 7.1]
F(t, , q) is a solution of the following integral equation that is formally equivalent to
the Schr6dinger equation (28) (with q m h):

q 4’(t) exp dOF(t,,q)=
u 2t

+
27ri(t-s)

O(s, 0)F(s, /, q) exp
2(t s)

dUds.

Theorem 6 shows that the solution F(t, , q) of this integral equation can be obtained
by use of (25).
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5. More general conditioning functions. In this section with v 1 we obtain results
corresponding to those in 3 but for conditioning functions of the form X(x)=
(X(t), ,X(t.)).

Let n be a positive integer and let 0 to < t <. < t, be a partition of [0, t].
For each x ColD, t], define the polygonal function Ix] on [0, t] by

[X](S) X(tic-1) + (x( tic) X( tic-1)),
k tk_

tk_ <= $ tk, k 1, , n.

Similarly, for each fi (r/,..., r/,)", define the polygonal function [fi] of fi on
[0, t] by

[fi](s) =,_,+
S tk_

(k k-1), tk-1 S tk, k 1, , n.
t-t_

As noted in [22], {x(s)-[x](s), tic_ <=s <- tic}, k 1,..., n are independent Brownian
bridge processes. Furthermore, the processes {x(s)-[x](s),O<=s<=t} and X(x)=
(x(t),. , x(t,)) are stochastically independent.

In [22] Park and Skoug have shown that if F is Borel measurable and Wiener
integrable then the conditional Wiener integral E(F(x) IX(x) (x( h)," ", x( t, )( fi
can be expressed in terms of an ordinary Wiener integral by the formula

(29) E(F(x)lX(x))=(x(h), x(t,,))() Ic F(x-[x]+[]) am(x).
o[O,t]

DEFINITION 3. Let 0 to < tl <" < t, be a partition of [0, t]. Then for each
function v L2[0, t] we define the sectional average of v by letting

1 f,k v(u) dus
tk tk-1 tk-,

on each subinterval (tk_, tk] and by letting (0)= 0.
Note that t7 is a step function ofbounded variation on [0, t]. The following theorem

gives a relationship involving and Ix] that is very useful in computing conditional
expectations.

THEOREM 8. Let v L2[0 t]. Then

(30)

(31)

(32)

v(s)e(s) as e(s) as,

v- 11==- vll- 11@ 0, and

v(s) d[x](s)= (s) dx(s)= (s) d[x](s) for each x Col0, t].

Proof Equation (30) follows easily from the definition of while (31) follows
from (30). To obtain (32) note that for each k 1,..., n,

" v(s) d[x](s)=
tk--I

X(tic) X(tic-l) f ‘ v(s) as
tic tic_ Jt_

(tk)(X(tk)--X(tk_l)) (S) dx(s).
tk-I
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THEOREM 9. Let F(x)=jt,2to,t]exp{i to v(s) ax(s)} art(v) be an element of S(1)
and let X(x)=(x(tl),. ,x(t,)). Then for all A sC+ and each , =(rtl,""", r,) R"

(33) Eanw(FlX)() exp v(s) d[](s)-- (v(s)-(s))2 as art(v),
2[O,t]

and for all real q 0,

}(34) Eanr,(FlX)()= exp v(s) d[](s)-q (v(s)-f(s)) ds do’(v).
Lz[0,t]

Proof Using (29), the Fubini theorem, and Theorem 8, we see that for each
and each

(35)

E(F(A -/2 )IX(A -1/2 ))(,)

exp v(s) g(A-/2x(s)-A-1/2[x](s)
Co[O,t] L2[O,t]

+[](s))} do’(v) dm(x)

IL2to.,]exp {i lo V(s) d[l](s)} fCotO.,j
exp /A -’/ (v(s)-O(s)) x(s) din(x) dtr(v)

exp v(s) d[](s)
2[O,t]

(2"/r’) -1/2 fn exp{iux-1/llv-ell-u/2} dudtr(v)

exp v(s) d[](s)-- (v(s)-O(s) ds do-(v).

But since cr M(L2[0, t]), it is not hard to see that the right-hand side of (35) above
is an analytic function of A throughout C+ and is a continuous function of A for
Re h_>-0, h 0.

THEOREM 10. Let F and X be as in Theorem 9. Then for all h C+,

fi 2r( tk tk
exp - Eanw(FIX)() d

k=l -1 k=l tk- tk-1
(36)

exp --Ilvll d(-

andfor all real q 0,

= 2’i(t- t_l)
(37)

k=l tk- tk-1

exp Ilvll = do’(v)= Eanfq(F)
Lz[O,t qq

where Eanwa (El X) and Eanfq (El X) are given by (33) and (34), respectively.
Proof Let A e C+ be given. Note that in view of (32) we have that

v(s) d[](s) 7(s) d[](s)= v(s) ds.
k tk tk- k-1
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Thus using (33), the Fubini theorem, and Theorem 8, we see that the left-hand side
of (36) equals the expression

2A k=l tk--tk-1 ’k-,

V(S) ds dtr(v)

1 1 1 }exp - Ilvll+-Ilell--Ilell d,(v)

1

which establishes (36). To establish (37), use the summation procedure (10) and proceed
as above; carrying out the integration with respect to fi (r/l,. , 7,) is rather long
and tedious.

Remark 7. Theorems 9 and 10 have ,-dimensional counterparts. For example, if
F S(u) and if X()= ()(tl),... (t.)) for in C[O, t], then the equation corre-
sponding to (33) is

E F(.) X())(’, ")

exp vj(s) d[j](s)--qj=/[o,t]

where 1/" (Vl,. ", v) and (r,, .., r.,,) for j 1,. ., ,.
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THE RIEMANN-HILBERT PROBLEM
AND INVERSE SCATTERING

XIN ZHOU"

Abstract. The connection between the Riemann-Hilbert factorization on self-intersecting con-
tours and a class of singular integral equations is studied with a pair of decomposing algebras. This
provides an effective way of treating the inverse scattering problem for first-order systems. We also
show that the matrix functions with positive definite real parts on the real axis and Schwarz reflection
invariant elsewhere only have zero partial indices. In particular, this implies the solvability for the
inverse scattering problem with skew Schwarz reflection invariant system coefficients J(z) and q(., z).
This includes, for instance, the system associated with the generalized sine-Gordon equation.

Key words, factorization, inverse scattering, partial indices

AMS(MOS) subject classifications. 34B25, 35Q15

1. Introduction. Recent progress in the theory of the inverse scattering method
motivates the study of the Riemann-Hilbert problem with self-intersecting contours.
This paper shows that although it is inadequate to study the Riemann-Hilbert problem
with this type of contours for a single decomposing algebra, we may still acquire, by
working on a pair of decomposing algebras (see 9), the classical results which have
been obtained in the case of nonself-intersecting contours [7]. This provides a new
approach for the study of the inversion of the Beals-Coifman scattering data.

It is by now well understood [3], [6], [12], that the inverse scattering problem for
the first order n n system

d
(1.1) dm ad J(z)m q(x, z)m

for certain rational J(z) and q(., z) can be formulated as a Riemann-Hilbert problem
with zero partial indices and a parameter x. The inverse scattering of AKNS system
(2x2 and J(z) zJ, q(x,z) q(x) [2]) has been formulated as a Gelfand-Levitan-
Marchenko integral equation with its integral operator being compact and vanishing in
norm as x -oc (or +oc). These nice properties give the existence and the desired
decay for the solution of the Gelfand-Levitan-Marchenko equation near x -(or+o). They also aid in showing the solvability of the inverse scattering problem for
skew Hermitian J and q(x) [2], and the generic solvability for general J and q(x). The
solution of a Riemann-Hilbert problem with zero partial indices may also be obtained
by solving a singular integral equation. However, the singular integral operator thereof
need not have the nice properties stated above for the Gelfand-Levitan-Marchenko
equation. Yet the complexity of the contours involved in the inverse scattering problem
forbids the direct application of the existing general theory of the Riemann-Hilbert
problem. With all of these difficulties, the inverse scattering problem for the n n
AKNS system was rigorously treated in [3] by splitting the problem, via a careful
rational approximation, into a small norm problem of a singular integral equation and
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1988.
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a linear algebraic problem. Thereafter the same method was applied to the inverse
scattering for two other systems [1], [9].

In this paper we study the inverse scattering problem of system (1.1) for a class of
J(z) and q(., z) (see 8) with a more direct method based on the Fredholm theory of
singular integral operators. Our extended theory of the Riemann-Hilbert problem for
decomposing algebras makes it possible to establish a singular integral equation which
may be viewed as a natural extension of the Gelfand-Levitan-Marchenko equation.
More precisely, we obtain a singular integral equation

(1.2) m I -F Cxm
for all x real (also for all t real in the time evolution problem) with the following
properties:

(1) The operator Id- Cx admits an explicit regularization in the form

(1.3) (Id ’x)(Id- Cx) Id + Tx
where Cx is the operator for an associated Riemann-Hilbert problem and Tx is a
compact operator.

(2) (The Fredholm alternative.) The Fredholm index of Id- Cx is zero.
(3) Tz 0 in norm as x - -oc.

(4) When the scattering data (less I) is supported away from an open set contain-
ing the poles of J(z), Cx is entire in x (also in t in the time evolution problem). We
remark that for the 2 x 2 AKNS system the regularization is not necessary. In this case,
on a Hardy space Cz in (1.2) is compact and vanishes in norm as x -oc. In fact,
the Fourier transform of (1.2) on the Hardy space is the Gelfand-Levitan-Marchenko
equation.

Many useful results for the inverse scattering problem may be deduced directly
from (1.2) with the above properties. For instance, properties 2 and 3 provide the
invertibility of Id- Cx near x -oo. The decay of m I near x -oo depends on
the oscillatory integral CxI by

m I (Id- Cx)-lCxI O(C.I).
Moreover, in case the scattering data is supported away from an open set containing
the poles of J(z), the analytic Fredholm theorem helps to invert Id- C:. This
enables us to give a proof of the generic solvability (Theorem 6.3) with an explicit
perturbation. We point out here that the x-dependent data is not bounded as x oo
in the Sobolev spaces. In [3] the x-dependent norms on Sobolev spaces were introduced
to obtain the small norm problem on these spaces. By our method, this can be avoided
by using the Fredholm alternative, which shows that if Id-Cx is invertible on L2, then
it is invertible on every space set theoretically contained in the span of the constant
functions and L2 as long as the regularization is valid for such a space.

In addition, our method exhibits the following advantages in comparison with
that introduced in [3]"

(1) The rational approximation used in [3] is local to the parameter t although for
x it can be done once for x _< 0 and once for x _> 0. The produced algebraic systems
for x _< 0 and for x _> 0 are not well connected. In case of Schwartz class scattering
data (the scattering data and their arbitrary order derivatives having arbitrary orders
of polynomial decay at all the poles of J(z)), to derive the arbitrary polynomial decay
for corresponding potentials, infinitely many different algebraic systems are required.
While (1.2) stands for x and t globally. This, for instance, enables us to obtain the
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density part of the generic solvability independent of the winding number constraint
(see [3, p. 79]). Although for the asymptotic behavior as x --+ + we still need
a different operator Id- Cx#, this operator is connected with Id- Cx simply by a
right invertible multiplier (see (7.5)). Also, for Schwartz class scattering data, the
single equation (1.2) is adequate for deriving the arbitrary polynomial decay for the
corresponding potentials at x -.

(2) The underlying spaces are less restrictive. In general he condition for the
regularization (1.2) is weaker than requiring the density of the rational functions. For
instance, the HSlder spaces are not separable (see [5], [7, p. 60]), but the regularization
is still valid (see [10]). We remark that, for unbounded contours, the HSlder continuity
of f at o is required in the sense that z-1 f(z-) is HSlder continuous at 0. Note
that the transform f z- f(z-) commutes with the Cauchy integral operators.

(3) The operator of the algebraic system used in [3] does not have property 4
above.

It is a classical result [8] that the matrix functions with positive definite real
part on a line have only zero partial indices. This result implies that the inverse
scattering problem for the n x n AKNS system with Re J Re q 0 is always solvable
[4]. We show in this paper (Theorem 9.2) that the matrix functions with positive
definite real parts on the real axis and the Schwarz reflection invariant elsewhere only
have zero partial indices. This applies to the systems with J(2)* / J(z) 0 and
q(x, 2)* + q(x, z) O. The contours involved could be very complicated. For example,
when J(z) = zn J, J + J* 0 [9], the contours consist of finitely many straight lines
intersecting at the origin; for the generalized sine-Gordon equation (we replace the
spectral parameter z by iz in [1]), the contour consists of the real axis and the unit
circle.

In 2, the required decomposing algebras Hk(+) are constructed based on
Sobolev spaces. We point out here that the Cauchy integral operators are under
no circumstances defined componentwise. In 3, the Riemann-Hilbert problem is in-
troduced in a narrow sense merely to meet the requirements for the study of the inverse
scattering problem. However, the related singular integral operators constructed there
play central roles in the study of the Riemann-Hilbert problem in the general sense
as well. Section 4 gives the regularization. Several immediate results are given with
short proofs. Some of these results can be generalized by means of the techniques
introduced in 9.

In {}5, the generalized triangular factorization is introduced in order to accommo-
date the systems in which J(z) may have some equal diagonal entries. In 6, the in-
verse scattering problem is studied. We introduce the factorized scattering data which
differ from the transformed scattering data in [3]. Also the augmented contours are
introduced to convert the discrete scattering data into the "continuous." The resulting
Riemann-Hilbert problem is completely equivalent to the original one. In 7, by means
of the generalized triangular factorization, we study the Riemann-Hilbert problem for
the systems in which J(z) may have some equal diagonal entries. This may also help
to obtain the conditions for the decay of the potentials at the nonoblique directions
for the generalized wave equation and the generalized sine-Gordon equation [1]. In 8,
we construct q(x, z) from the fundamental solutions of the Riemann-Hilbert problem
of exadJ(z)v for arbitrary rational diagonal matrix functions J(z) when eradJ(z)v is
in the Sobolev spaces. We see that the z dependence of q is far from arbitrary. For
the class of q obtained this way, the direct problem can be worked out by virtue of
the method introduced in [3].
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In 9, the general theory of the Riemann-Hilbert problem is studied. Certain
classical results are extended to the case of self-intersecting contours with a pair of
decomposing algebras. A partial index argument is used in the proof of Theorem 9.2
to attain generality. This is useful for the problem in which we only wish to construct
solutions for certain nonlinear PDEs for which the "scattering data" and the contours
need not be characterized as in this paper. Certainly, the partial index argument may
be avoided if we only consider the Riemann-Hilbert factorization for scattering data,
since then we have the Fredholm alternative.

2. H spaces and the Cauchy operators. To avoid a flood of parentheses we
follow the rule that when operator actions and matrix multiplications are mixed in a
row, we do them in order from right to left. For example,

(2.1) AbcBd d-e-fA(b(c(Bd))).
We denote by Mn the complex n n matrix algebra with the inner product

(2.2) (a, b)d-e-f tr b*a.
The corresponding norm is denoted by I" I. An element h E Mn may also denote the
functions constantly equal to h on the spaces understood from the context. In the
sequel, we will simply call an Mn-valued function a matrix function.

Let E c be a finite union of simple smooth curves that can be either closed
on the (:: plane or extended to be closed on the Riemann sphere. The set of the
intersections of these contours is denoted by S and assumed to be finite. Clearly E is
smooth except at the points of S. It is readily verified that E admits an orientation
in the sense that E is the positively oriented boundary for an open set gt+ and the

negatively oriented boundary for _d__ef \ (E U +).
Clearly + and 2- can only have finitely many components and E has two

possible orientations. Any other "orientations" fail to make the Cauchy operators
defined below complementary projections. The oriented E is still denoted by E while
-E is used to denote E with the opposite orientation. The symbol E+ (E-) is also
used to denote E when it is viewed as the boundary of gt+ (-). The Lp norm of a
function f E Mn is defined as

(2.3) I]fl]p

We will simply write Lp(E) for Lp(E, M,).
The Cauchy integral operators C+ and C_ on L2(E) are defined as

(2.4) C+f(z") z,-z,,lim 1/E f
z’

where the nontangential limit z --. z" is taken from +, -, respectively. We make
the assumption on E that C+ are bounded from I2 to L2. The recent development
in the Lp theory of singular integral operators on curves typically allows the curves
to have corners with positive angles. Since E is a positively oriented contour for
and a negatively oriented contour for -, -+C+ can be shown to be complementary
projections. A function in ker C+ has an analytic .extension to t- while a function in
ker C_ has an analytic extension to

Let F be a piecewise smooth simple curve. We denote by H(F) all the matrix
functions f such that f(J) E L2(F) for all j 0,... k in the distribution sense. For
the details of constructing such functions, see [3, pp. 70-71].
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We make a further assumption that O2v for each component 2v of C \ E does
not have self-intersections. Hk(E \ S) for k > 0 is the Hilbert space of all the matrix
functions f on E such that f E E Hk(Ev) for every component Ev of E \ S. The

def/xk /2 will be called the nk norm.norm of this Hilbert space Ilfll2,k- [2-,j=o IIf(J)ll])
We point out that for f E Hk(E \ S), f() for j 0,... k 1 are continuous on
with limits on 0Ev after a correction of the function on a set of measure zero. Since
the Cauchy integral operators are not bounded on Hk(E \ S), we. need the subspaces
nk(E+) and Hk(E-) for k > 0 of nk(E \ S). Hk(E+) contains all f on E such
that f 02 Hk(0Ft) for every component gt of + and Hk(E-) such that
f O Hk(0v) for every component of t-. Hk(E)d-----efHk(E+) C Hk(E-).

The H spaces defined above are Hilbert spaces with continuous pointwise mul-
tiplication. This follows from the fact that the norm Ilfll2,k dominates the norm

k-1’]=o IIf(’)ll o" These spaces are Sanach algebras if their norms are replaced by cer-
tain equivalent ones. For convenience, sometimes we denote E \ S, E, E+, or E- by
E*. For consistency, sometimes we also denote L2(E) by H(E*), but it is not an
algebra under pointwise multiplication.

The rational functions are dense in Hk(0) for every component gt of C\ E. In
[3] this is proven for sectors. The proof can easily be generalized. We denote by R+
(R-) the set of all the matrix functions with their restrictions on 0 rational (after
a possible modification at the self-intersections) for every component Fry of t+ (-).
Then R R+ N R- is the set of all the rational matrix functions. We also denote
by R+ (R-) the set of all. the functions in R+ (R-) extended to be componentwise+
holomorphic on gt+ (-). R+ R N R. Clearly, under this assumption, R+ N L2

(R- N L) is dense in nk(E+) (Hk(E-)). If u is a function on C \ E, by u+ and u_

we denote the limits, if they exist, of u(z) as z approaches E \ S from 2+ and
respectively.

PROPOSITION 2.1. C+, C- are bounded from H(E-), Hk(E+) to Hk(E), re-
spectively. And C+,C_ are bounded from Hk(E+), Hk(E-) to Hk(E+), Hk(E-),
respectively.

Proof. For instance, for C+, if r R- Lu, it is easily checked that C+r is
rational and therefore belongs to Hk(E). The boundedness of C+ is deduced from
the integration by parts on E-. Since R- L2 is dense in Hk(E-), we conclude
that C+ is bounded from Hk(E-) to Hk(E). We have a parallel argument for C_.
The remaining part of the proposition follows from that C+ -C_ Id. The proof
can also be made independent of the rational approximation to meet the need of the
decomposing algebras in which the rational functions are not necessarily dense.

A function f H(E) can be approximated in H norm by either functions
r+ E R+ I2 or functions r- R- L2. Since

(e.5) f (C+r- C_r+) C+(f r-) C_(f r+),

f can be in fact simply approximated by the rational functions C+r--C_r+. There-
fore R L is dense in Hk(E). Furthermore R+ L2 is dense in kerC_ and R: L2

+
dense in ker C+.

PROPOSITION 2.2. In the L2 space, if f kerC+ and g is componentwise
holomorphic on - and extends cont’nuously to the boundary of each component of-, then fg ker C+.

We have a parallel result regarding ker C_.
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Proof. Since g is bounded, C+fg can be approximated in L2 norm by C+rfg
where rf is an L2 rational approximation of f with no poles in it-. We may conclude
that C+fg 0 from C+rfg O.

For the uniformity of the demonstration, we assume that E is unbounded. We
embed Hk(E*) for k _> 0 into a larger Hilbert space H/k(E*) consisting of matrix
functions f on E with the limit f(oc) at oc such that

f- f(cx) Hk(*).
The norm for H(E*) is defined as the square root of

If(< )l2 + llf-
This norm is again denoted by I1" Ilk. The norm of a bounded operator A H/k(E*) --.

H/k(E*) is denoted by IIAIIk.
Clearly H/k (E*) is isomorphic to the Hilbert space direct sum of Hk(E*) and Mn.

For k > 0, H/k(E*) is an inverse closed Banach algebra with identity element I (see
9).

3. Riemann-Hilbert problem and the related integral operators.
DEFINITION 3.1. A matrix function v on F is said to be some data on F of

smoothness degree k _> 1 if v admits a factorization v b--lb+ for nonsingular b+
such that b+ I E Hk(F+).

Let w+ b+-I, w- I-b-. We call w (w+,w-) a factorized data of
v. The set of all the data defined above is denoted by Dk and all the corresponding
factorized data by FDk.

Clearly a data v may correspond to more than one factorized data. In the fol-
lowing the Riemann-Hilbert problem is described in a narrow sense in terms of the
factorized data. For the Riemann-Hilbert problem in a more general sense see 9.

DEFINITION 3.2. Let w FDk, a vector m H(F.) for some j 0,... k is said
to be a solution of the Riemann-Hilbert problem of data w if

(3.1) mb+/- m(oo) ran C+/-

Clearly m+/-de----fmb+/- H(E+/-). We denote by m the componentwise holomorphic
extension of m+/-. The function m is called a vanishing solution if m(oc) 0, and a
fundamental solution if m(oc) I and if detm vanishes nowhere. We also call m+/-

or m the solution of the Riemann-Hilbert problem of v or of w.

PROPOSITION 3.1. The Riemann-Hilbert problem of v has a fundamental so-
lution only if

1 /r d arg det v 0,(3.2) 2--
and conversely, if m Hk(E) with k > O, m(oc) I is a solution of the Riemann-
Hilbert problem of v and (3.2) is fulfilled, then m is a fundamental solution. Further-
more, if det v 1, then det m 1.

Proof. Suppose that v admits a fundamental solution m+/-, then det m+ is a fun-
damental solution of the scalar Riemann-Hilbert problem of det v. Therefore (3.2) is
fulfilled.

For the converse part, let m be a solution that meets the hypotheses and (3.2)
holds. It follows that det m is a solution for the scalar Riemann-Hilbert problem of
det v with det m() 1. Condition (3.2) implies that the scalar Riemann-Hilbert
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problem of det v admits a fundamental solution ml; then clearly (det m)m"1 is an en-
tire function with limit 1 at ec and therefore equals 1. The last part of the proposition
also easily follows from the fact that m 1 in this special case.

PROPOSITION 3.2. If the Riemann-Hilbert problem of w E FDk admits a fun-
damental solution m e H)(E) for some j > O, then it is unique in

Proof. Let n L(E) also be a fundamental solution. Applying Proposition 2.2
we have

nm- I nb+ (mb+/-)- I ker C+ Cl ker C_ 0.

The Riemann-Hilbert problem of w FDk is related to an operator Cw bounded
from H{(E) to H(E) for every j- 0,..., k defined as

C+w- + C_w+.
PROPOSITION 3.3. The vector m L(E) is a solution of the Riemann-Hilbert

problem of w with m(oe) h if and only if m is a solution of the system

(3.4) m h + Cwm
Proof. The above system can be written as

(3.5) m h + C+mw- + C_mw+.
Suppose that m is a solution of this system. From 3.5 clearly m(oe) h. Thus we
have

(3.6) C+m(w+ + w-) C+mw- + C_mw+ C_mw+ + C+mw+
m h + mw+ mb+ m(oe),

and similarly

+
Therefore 3.1 is satisfied. Conversely, suppose that m is a solution of the Riemann-
Hilbert problem of w with m(oe) h, then

C+mw- + C_mw+ C+ (m

+ C_(mb+ m(oe)) m h.

Therefore (3.5) is satisfied.
The following proposition gives the equivalence relation between Id- Co and

Id- Co, when w and w’ belong to the same v.
PROPOSITION 3.4. Suppose that w and w’ are the factorized data of the same

data v. Let u b,+b+-l(= b’-b--1 E H/k (E)) and define an invertible operator U on

H/k(E) as

u Cu.
Then we have the relation (Id- Cw)U Id- Cw,.

Proof.
(Id- Cw)V Cu C+u(I b-) + C_u(I b+)

Cu C+(u b’-) C_(b’+ u)
C+w’- C_w’+ (Id- Cvo,).
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4. Regularization. For w E FDk, we define the associated factorized data 5
of w as 5+ +b+-1 = I where b+ are determined by w as in Definition 3.1. Clearly

also belongs to FDk. Since 5 is determined by w, we define operator Tw as

(4.1) Tw C+(C_(w+ + w-))(v- + C_(C+(w+ + w-))@+.
Clearly Tw is bounded from H}(E) to H}(E) for any i 0,... ,k. It can be

shown by the rational approximations of @+ and @- that Tw is compact.
Remark. In general, the density of rational functions ensure the compactness of

Tw. Nonetheless, as mentioned in the introduction, Tw can be compact on certain
spaces without the density of the rational functions.

PROPOSITION 4.1. Id-Cw is Fredholm and

(4.2) Id / Tw (Id- C)(Id Cw).
Proof. Using the fact that :i=C+/- are complementary projections gives

c+ + c_

c+(c+w- + + c_(c+w- +
+ + +

+
Tw + C+(w- + -) + C_(w+ + +)
(Tw +C + Cw).

Since Cw and C are in the symmetric positions, Id-C is also a right regulator for
Id- Cw. Therefore the operator Id- Cw is Fredholm (see [10, p. 33]). [::]

In the rest of this section, we assume that w+ are nilpotent merely to meet the
requirements for the study of the inverse scattering problem. In 9, we will see that
this assumption can be replaced by (3.2).

PROPOSITION 4.2 (Fredholm alternative). The operator Id-Cw has zero Fred-
holm index and is invertible whenever Id + T is.

Proof. Since w+ are nilpotent, it follows from the fact that det(I :t: w+) 1 that
w is in FDk for any complex number . This continuously (analytically) deforms Cw
to zero. Therefore the Fredholm index of Id- Cw is zero. Now if Id/ Tw is invertible,
then Id- Cw is injective and therefore invertible. W1

PROPOSITION 4.3 (Analytic Fredholm alternative). If w w depends on a
parameter analytically, then either (Id- Cw)-I is meromorphic in or Id- Cw
is invertible for no .

Proof. The corresponding 5 is clearly also analytic in . Now suppose that
Id- Cw is invertible for " o. Then there is a compact operator B such that
Id-C / S is injective for ’o (see [10, pp. 34-38]). Therefore

(Id- C / B)(Id- C) Id /T / B(Id- C)
is injective for f fo and so its inverse is meromorphic in f. It follows from Proposition
4.2 that

(Id ewe)-1 (Id T Tw + B(Id Cw))-l(Id C + B)
whenever the right-hand side exists. Therefore (Id- C)-1 is meromorphic in

Combining Proposition 4.2 with Proposition 3.2 gives Proposition 4.4.
PROPOSITION 4.4. If the Riemann-Hilbert problem of w FDk admits a fun-

damental solution m n() for some j > O, then Id- Cw is invertible on H()
.for all j 0,... k.
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PROPOSITION 4.5. Suppose that w FDk. If Id- C on space H(E) is
invertible for any j < k, then it is invertible for all j g k.

Proof. Suppose that Id- Co is invertible on L(E), then ker(Id- Cw) 0 in

L(E) and so in H(E) for any j -0,..., k. Therefore by the Fredholm alternative,
Id- Cw is invertible on all these spaces.

Now suppose that Id- Cw is invertible on H(E) for some 3" with 1 <_ j _< k;
then m (Id- Co)-tI is a fundamental solution for the Riemann-Hilbert problem
in H(E). Therefore Id- Cw is invertible on L(E). [:]

5. Generalized triangular factorization. The study of the inverse scattering
problem for system (1.1) (in which J may have some equal diagonal entries) requires
the following notation.

For A 6 Mn, the operator adA on Mn is defined as adA(B) [A,B]d-e-fAB-BA.
Let A 6 Mn be real and diagonal, then adA is a self-adjoint operator on Mn. For
B e Mn, we call X(_o,o)(adA)(B), X(o,+oo)(adA)(B), and X{o}(adA)(B) the A lower
triangular, A upper triangular, and A diagonal part of B, respectively. The phrases
such as "A (off) diagonal," "A (strictly) upper triangular," and "A (strictly)lower
triangular" are understood.

To visualize the above terminologies, we permute the basis of Mn, such that the
diagonal entries of A are reordered nonincreasingly. Then A has the form

alI 0 0
o a212 0

(5.1) A

0 0 aI
where a,..., ak are distinct and I1,..., Ik are some identity blocks. Accordingly,
any matrix B Mn can be written as

BI B2 Bin

(.) B

Bnl Bn2 Bnn
where Bij, 1 <_ i,j <_ n, are blocks such that the orders of B,B=2,... ,Bnn are equal
to those of I, I2," In, respectively. Under this expression,

0 0 ...0
B= 0 0

(5.3) X(-oo,o)(adA)(B)

B’nl Bn 0

(5.4)

and

0 Bu Bn
0 0 B2n

X(o,+oo)(adA)(B)
0 0 0

Bll

X{o}(adA)(B)
0

B22 0

0 Bn
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We also call
Bl B12 Blk
B21 B22 B2k

(5.6) dk(B)de=f det 1 <_ k

_
n

Bkl Bk2 Bkk
the A upper principal minors of B, and respectively

Bkk Bk,k+l Bkn
Bk+1,k Bk+1,k+ Bk+,n

(5.7) dk(B)de---f det 1

_
k

_
n

Bnk Bn,k+ Bnn
the A lower principal minors of B. Note that these A principal minors are just a part
of the lower and upper principal minors of B in the usual sense. It is easy to check
that we have the following proposition for the generalized triangular factorization.

PROPOSITION 5.1. If no A upper principal minors of v E Mn vanish, then v
admits a unique triangular factorization
(5.8) v b-Aa

such that b- I is strictly A lower triangular, a- I strictly A upper triangular, and A
A diagonal.

6. The inverse scattering problem. Let J diag(Al(Z),... ,An(z)) be a
rational matrix function with its constant term being zero. We assume that J (z) and
ad J(z) have exactly the same poles on the Riemann sphere and denote the set of
these poles by Pj.

We define Eo c C as the closure of

(6.1) {z e CI Re(A(z) Ak(z)) 0, some Aj :p- A}.
and denote by S the set of all the self-intersections of Eo. Let Fro be the regions
corresponding to Eo. Clearly, all the poles of J(z) lie on E t2 {cx}. Since J(z)
is fixed, the phrases such as "ad(Re J(z)) diagonal," and so forth, will be simply re-
placed by "z diagonal," etc. The spectrum projection operators X(_o,o)(ad(Re J(z))),
X(o,+o)(ad(Re J(z))), and X{o}(ad(ae J(z))) are constant in each component of C \
Eo. For z 6 Eo \ S by z+, we mean a point in fro+ near z and by z- a point in ft- near
z. Thus we can use phrases such as "z+ upper triangular" and "z- upper triangular,"
etc. A simple fact we will use is that, if for z 6 Eo \ S, a is z- lower (upper) triangular
and z diagonal, then it is z+ upper (lower) triangular. This follows simply from the
fact that ae(A(z)- A.(z)) is harmonic in (Re z, Imz), and so it changes sign across
the curve {Re((z) .(z)) 0}.

At this stage, we make the assumption that all the diagonal entries of J(z) are
distinct. In the next section, we will consider the possibility of removing this restric-
tion. The data for the Riemann-Hilbert problem for inverse scattering depend on a

def xad J(z)parameter x as vx e v.
Let D be a finite subset of C disjoint from Eo (see the remarks following Definition

6.3). The continuous parts of the scattering data, denoted by Vc, are supported on Eo
and the discrete parts of the scattering data, denoted by Vd, are supported on D. In
the following the scattering data are characterized by five conditions. The first four
are essentially based on the characterizations for the scattering data given in [3]. The
last one is designed to ensure that e ud J(z)v is in the right Sobolev spaces.
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DEFINITION 6.1. The discrete part and the continuous part of the scattering data
of smoothness degree k _> 1 are defined as follows:

(1) vc I E Hk(F \ S), and Vd(Z{) is strictly z{ upper triangular with a single
nonzero entry for each z{ E D;

(2) For each z’ S \ Pj, there is a componentwise polynomial matrix function
ak,z,(Z- z’) on C \ F such that ak,z,(Z- z’) I is z strictly upper triangular and such
that near z z’

(6.2) v (z) + (z- z’) + o(Iz- z’l
(3) Vc(Z) is z diagonal and all the z- lower principal minors are 1;
(4) A winding number constraint about the z- upper principal minors of Vc(Z)

and Yd. Since the winding number constraint will not be explicitly used in this paper
we do not describe it here. For details see [3].

(5) If z is a pole of J(z) with multiplicity n, then

(6.3) zJ(n-X)(vc I)(k-J) L2 for j 1,..., k;

if z zo is a finite pole of J(z) with multiplicity n, then

(6.4) (z zo)-l(n+l)(Vc I)(k-l) L2 for j 1,... ,k.

DEFINITION 6.2. Let D be covered by IAI disjoint closed disks that do not intersect
with Eo such that each z{ D is the center of exactly one of these disks. We add the
boundary circles of these disks to form an augmented contour E. Since these added
circles do not intersect with Eo, we may keep the original orientation on the Eo part
of E and clearly this determines the orientation uniquely for E.

DEFINITION 6.3. Now we define the scattering data v supported on E as follows:
(1) v- Vc on Eo;
(2) On the added circle surrounding zi D N 12o v I =}: Vd(Zi)/(z zi).

We denote by SDk the set of all scattering data on E defined above.
Condition (6.2) guarantees that v Dk (see Proposition 6.1 below). Conditions

def(6.3) and (6.4) guarantee Vx- eTM J(z)v Dk for every x .
Let m(x, z) be the fundamental solution of the Riemann-Hilbert problem of vx.

Using the fact Vd(Z) 0, we see that m(x,z), from outside the added circle sur-
rounding zi D, extends meromorphically to inside the circle as

mi (i + x ad Y(Z)Vd(Zi)
Zi

Using Vd(Zi) 0 and (ad J’(Zi)Vd(Zi))Vd(Zi) 0 we obtain

m/,-1 mi,oex ad J(z,)Vd(Zi
where mi,_l (mi,o) is the -1st (0th) Laurent coefficient of mi at zi. This relation is
used in [3] to describe the Riemann-Hilbert problem with discrete spectrum.

For the inverse scattering problem, it often happens that, on a portion of Eo, only
certain columns of m commit the jump. Therefore the remaining columns may be
permitted to have poles. This gives rise to the discrete scattering data on the contour
Eo. In this case, the added circles may intersect with Eo. But if Vd(Zi)(V(Z) I)
(v(z) I)vd(zi) 0 for z in a neighborhood of zi, we may still define the scattering
data on the augmented contour in a similar fashion as in Definition 6.3.

DEFINITION 6.4. A factorized data w FDk of v SDk is said to be a factorized
scattering data if
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(1) w-(z) is z- strictly upper triangular and w+(z) z+ strictly upper triangular;
(2) w+/-(z) are z diagonal in an open set containing Pj.

The set of all the factorized scattering data obtained above is denoted by FSDk.
PROPOSITION 6.1. Every scattering data v E FDk admits a factorized scatter-

ing data w.

Proof. We cover S \ Pj by disjoint small disks in the way that each disk contains
exactly one z S \ Pj. Since all the z- lower principal minors of Vc are equal to 1, vc
admits a triangular factorization vc b--lb+ such that b+(z)- I, (b-(z)- I) is z-
strictly lower (upper) triangular. Since Vc(Z)is z diagonal, b(z) are also z diagonal
and therefore b+ (z) is z+ upper triangular. Clearly b I e Hk (Eo \ S). Define fz, (z)
on Eo near each z S\Pj such that on each curve of Eo ending at z, fz,(Z) equals the
Taylor polynomial of degree k- 1 for ak-,z,b- -1 at z which also equals, by condition

2 in Definition 6.1, the Taylor polynomial of degree k 1 for ak,z,+ b+-1 at z from
the very curve. It follows that fz,(Z) I is z+ and z- strictly upper triangular and
therefore z strictly upper triangular. Clearly there exists f H(Eo \ S) satisfying:

(1) f I outside these disks;
(2) f(z) I is z strictly upper triangular;
(3) For each z’ S \ Pj, f agrees with fz’ in a neighborhood of z.

It is easily checked that fb e HI(E) from conditions (2) and (5) in Definition 6.1.
Now we define b+ fb on Eo and b+ v, b- I on the added circles, then clearly
b+ give rise to the desired factorized scattering data. E]

We write Wx (eTM J(z)w+, eTM J(z)w-).
We remark that the factorized scattering data agrees with the transformed scat-

tering data defined in [3] in an open set containing Pj. Therefore it is z diagonal in
an open set containing Pj. This is very important because then the operator
is well defined for all x E . Also when v I has a support away from an open set
containing Pj, w has such a support as well. This preserves the analyticity in x.

THEOREM 6.1. If w is a factorized scattering data, IITw Iio "* 0 as x ---, -oo.

Proof. First we approximate t- in L norm by a function u R- r3 L2, where
u(z) is chosen to be z strictly upper triangular with only simple poles {i}. We
denote the residue of u at i by u,. Then C+(C_eadJ(z)(w+ + w-))exadg(z)5
is approximated in L2 norm by C+(C_eTM J(z)(w+ + w-))eTM J(z)u uniformly for
I111o -< 1. The latter equals

ex ad J()

Since u is strictly upper triangular, (6.5) approaches zero in L2 as x --.
uniformly for I11[o -< 1.

For C_(C+exdJ(z)(w+ + w-))exadJ(z)Cv+, a similar argument works. F’!
Near x -oo, (Id- C)-1 can be calculated through the expansion

(6.5) (Id- Cw,)-1 "](--1)kTkw,(Id- C,,)
k=O

with the estimate IIT$, (Id c ,)llo O(IIT , IIo ).
TItEOREM 6.2. If v FDk and v I is supported away from a neighborhood of

Pj, then for some transformed scattering data w of v, (Id- Cwx)-1 is meromorphic



978 XIN ZHOU

in x E C, viewed as a function from C to the space of all the bounded operators on

i 0,...

Proof. Clearly w can be made supported away from an open set containing
Therefore wz is entire in x. It follows from Theorem 6.1 and Proposition 4.5 that
Id Cw is meromorphic in x.

THEOREM 6.3. (Generic solvability). SD is an open and dense subset of SDk,
where SD is the set of all the scattering data v SDk such that the corresponding
Riemann-Hilbert problem admits a fundamental solution for every x .

Proof. If v SD, and w is some factorized scattering data of v, then Id-
is invertible for all x R. By Proposition 4.5, to study the invertibility of Id- Cwx,
we only need to work on L(E). Note that w can be chosen in a way that it varies
continuously with respect to v. If K is a compact subset of R, by the continuity
of Cw in x it must be still invertible for all x K when w varies slightly. For x
near -oo, ]IT Iio < 1. This inequality holds when w varies slightly. This says that
Id- Cw is invertible in a neighborhood of x -oo and an open set containing w.
Condition (4) in Definition 6.1 implies that the Riemann-Hilbert problem admits a
solution in L(E) in an open set containing x +oo and an open set containing w,
and so implies the invertibility of Id- Cw, in an open set containing x +oo and an
open set containing w. Therefore we may conclude that SD is open in SDk.

For the density part of the theorem, we assume that w FSDk is supported
away from an open set containing Pj. By Theorem 6.2 on almost all the lines par-
allel to real axis Id- CWx is invertible. This is tantamount to saying that for al-
most all the purely imaginary a, Id- C(w,) is invertible for all x R. Where

wcd_.--ef(ecz ad J(z)w+ eo ad J(z)w- is again a factorized scattering data. This proves the
density part of the theorem because a can be chosen to be arbitrarily small.

7. J(z) with some equal diagonal entries. Now we consider the inverse
problem with J which may have some equal diagonal .entries. Basically everything
still works with the generalized triangular factorization. In this case condition (3) in
Definition 6.1 is replaced by:

vc(z) is z diagonal and admits a factorization Vc b--lb+ such that b-(z) I is
z- strictly lower triangular and b+ (z) I z- strictly upper triangular (and therefore
z+ strictly upper triangular).

Note that this change is consistent with the direct problem. Set zo F. It is
easily seen that all the results obtained in 6 are still valid, except condition (4) in
Definition 6.1 cannot be simply described in terms of the winding numbers of certain
principal minors. This is because in condition (4) a Riemann-Hilbert problem of
a z0 diagonal matrix function (it is not necessarily diagonal) is involved. Since this
problem and, more generally, the problem of discrete scattering data describing all
possible multiple poles, has a great deal to do with the direct problem as well, we will
study it in a different paper. In the following, we only consider a special case which
assumes that E Eo and that the z- upper principal minors of vc(z) do not vanish.
By Proposition 5.1, v admits a factorization v b--lAb+ such that b+(z) I is z+
strictly lower triangular and b-(z)- I strictly z- lower triangular, and A(z) is zo
diagonal for a zo E. Since v(z) is z diagonal, b+(z) must also be z diagonal by the
uniqueness of the triangular factorization. It is consistent with the direct problem to
assume a statement similar to condition (2) in Definition 6.1 with the modification
that ak,z,(z- z’) is z lower triangular and nonsingular at z z’. We write (6.2) down
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again

(7.1) v(z) (a-,z,(Z- z’)) -1 ak,z,
+ (z- z’) T o([z- z’l k-l).

+ (Z ZLet bk,z, be the zo diagonal part of + (z- z). Then by the uniqueness ofak,z,
the triangular factorization,

,a(z) + (z- z,) + o(Iz- z’lk,z

It can be shown by virtue of the proof for Proposition 6.1, A(z) Dk. It is consistent
with the direct problem to assume that the Riemann-Hilbert problem of A admits
the fundamental solution 3+ (see the "winding number constraint" in [3]), we have

(7.3) A i_-+.
i+ are zo diagonal because A is. Define v# ti_v6 and b#+ 6+b+ti 1. Then v#
b#--Ib#+. It is easily checked that v# also satisfies condition (2) in Definition 6.1
with the modification that ak,z, (z--z’)- I is z strictly lower triangular, v# satisfies all
the conditions in Definition 6.1 with the upper and the lower triangularities switched.
Therefore near x-- +oo, exadJ(z)v# admits a Riemann-Hilbert factorization

(7.4) eTM J(z)v# m#_-m#+.
def #Since 3+ is zo diagonal, m+ =m++ is the solution for exadJ(z)v. It is easily seen

from system (1.1) that the potential constructed from v# equals that from v.
Remark. Now let w, w#, and wo be certain factorized data of v, v#, and A,

respectively, then (see (9.9))
(7.5) Id Cw (Id Cw,,,)V#(Id Co)U-1,
where U and U# are the invertible multipliers for corrections of the factorizations of
v and v# respectively as in Proposition 3.4. By virtue of the proof of Proposition
4.1, Id- C,o is invertible because the Riemann-Hilbert problem of A admits the
fundamental solution i+. Therefore Id- C and Id- C# are connected by a right
invertible multiplier.

Note in the above that A in general is not diagonal; therefore the Riemann-
Hilbert problem is not a scalar problem. In 9, we will see that for the inverse problem
for certain systems the Riemann-Hilbert problem of A always admits a fundamental
solution.

The above generalization certainly has some effects on the direct problem as well.
For example, the potentials of the n n AKNS system need to be J off diagonal and
clearly this is more restrictive than being off diagonal.

8. Reconstruction of the potentials. Let m(x, .) be a fundamental solution
of wx. We ask what kind of potentials q(x, z) can be constructed such that

(8.1) m’(x, z) ad J(z)m(x,z) q(x,z)m(x,z).
Clearly if such a q(x, z) exists, it is uniquely determined by In because In is nonsin-
gular. Let q(x, z) be an undetermined rational function in z with the same poles as
J(z) in the way that if z oc is a pole of J(z) of the multiplicity n, then it is a pole
of q(x, z) of multiplicity n 1; and if z zo is a finite pole of J(z) of multiplicity n,
then it is also a pole of q(x, z) of multiplicity n. Now we formally define an operator
L on functions of variable (x, z) E F as

(8.2) L(x,z)= ( d
xx ad J(z) q(x, z) (x, z).
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Let m be a fundamental solution of the Riemann--Hilbert problem of w; a formal
calculation gives

(8.3) (Id Cvo )Lm (Id C,z )Lm L(Id C)m q [L, Cw]m q.

To make the above calculation rigorous, let w FSD1, and if oo is a pole of J(z)
with multiplicity n, assume z2n-w+ L2(E), and if zo is a finite pole of J(z) with
multiplicity n, assume (z- zo)-(2n+l)v
FSD1, then since(d/dx)Cw, Cad Jw, (d/dx)m(x, .) L2(E). Also Cvo,Lm L.
Therefore the above calculation can be carried out rigorously. If

(8.4) [L, Cw,]m-q=O,
then Lm CvoLm L2. Since the Riemann-Hilbert problem admits a fundamental
solution, Id- Cvo, is injective (invertible). It follows that Lm O. It is easily checked
that this extends to (8.1). Therefore (8.4) is the formula for the reconstruction of q.
Expression (8.4) may be written explicitly as

(8.5) re(x, ) + m(x, ) d#x(;) q(x, z)-z -z
with d#(z) (2zri)-leTM J(z)w(z)dz.

Example 8.1. (n n AKNS) J(z) zJ, q(x,z) q(x).

(8.6) q(x) ad J/r m(x, )d#x().

Therefore in the direct problem we must assume that q is J off diagonal.
Example 8.2. (For Landau-Lifshitz equation [11]). Let J(z) z-J, q(z,z)

(8.7) -q

This can be written as

(8.8) q(z, z)+ J(z) -im(x, )d#x() + I J -lm(x, )d#z() + I

Therefore in this case in the direct problem we must assume that q + J is similar to
J.

In (8.8), fr -lm(x, )d#z() / I is nonsingular because it is m(x, 0). In general,
q is always solvable from (8.4), which determines the basic algebraic structures of the
potentials. We point out that this is consistent with the gauge transform in the direct
problem in order to acquire the desired decay at the poles of J(z) for the scattering
data.

PROPOSITION 8.1. For the n x n AKNS system, it is given in [3] that near
X --(X)

(8.9) IIC,Ill O(x-k-l).
Let m be a fundamental solution of w, then

(8.10) IIm(x, .) IIio O(x-k-l) 88 x --> -oo.

Proof. Since

(8.11) (Id Cw)-1 (Id- Tw)-i(Id- C) for x near -oc,
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(8.12) ]](Id-C)-l]o <_ c for x near -oo,

for some constant c independent of x. It follows

(8.13) IIm(x, ") IIio II(Id C  )-IC  IIIo <_ cllC  IIIo O(x-k-i)
The desired decay of the potential q at x -(x can be derived by using

mex ad J(z)w+ d" mex ad J(z)w-(8.14) q
/

At x +oc, we consider the problem normalized at x +o (see [3, p. 79]). For
general J(z), to obtain the desired decay for q, we need to study the asymptotic
behaviors of the oscillatory integral CwxI and its Laurent expansion at the poles of
J(z). We remark here that if vc O, then by contour integration, Cwx reduces to an
algebraic operator and the integrals in (8.6), (8.8), and (8.14) to summations.

We conclude this section by a proposition often seen in the inverse scattering
problem.

PROPOSITION 8.2. trq 0.
Proof. Lm 0 gives

q m, -I + (g-
Therefore

(8.16) tr q tr m’m-1

The estimate near Pj yields tr q 0. U]

9. Further results in the Riemann-Hilbert problem and their applica-
tions to the inverse scattering problem. In this section, we work on a pair of
decomposing algebras (defined below)in place of H/k(2+).

Let be a contour in the Riemann sphere passing o and C(2+) be the algebra
of all scalar functions on with their restrictions on the boundary of each component
of + being continuous (after a modification at the self-intersections). Letting B C
C(+) be a Banach algebra, we denote by B the maximal ideal of B consisting of
all functions in B vanishing at oc. The Banach algebra B C C(+) is said to be

(1) Inverse closed if the fact that E B is invertible in C(+) implies that is
invertible in B;

(2) Componentwise independent if for every vector E B and every component
v of +, the function Cv equal to on 0 and zero elsewhere is in B;

(3) Decomposing if C+ are bounded on Bo.
We write Bn Mn (R) B and denote by GBn the general linear group of Bn and

by SBn the special linear group of Bn.
If B is a decomposing algebra, we denote by n the space of componentwise

holomorphic matrix functions m on with their boundary values m+/- m+/-(x)) /
C+/-Bn by Gn, the general linear group of n. The following theorem for a pair
of decomposing algebras on a self-intersecting contour 2 is a generalization of the
classical Riemann-Hilbert factorization theorem in a single decomposing algebra.

THEOREM 9.1. Let E(+/-) C C(+/-) be a pair of inverse closed componentwise
independent decomposing algebras satisfying

(1) R+/- C E(+/-) c L2(),
(2) C+E(-), C_EO(+) C E()d-e-fE(+) N E(-),
(3) For every a+/- E(.+/-), the operator C+/-a+/-C= on E(+) and E(-)

is compact,
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then every v E GEn(- GEn(+ admits a Riemann-Hilbert factorization
(9.1) v m_Sm+

where m Gn(E) and is as in (9.2) below with the integers ki uniquely determined
by v up to a permutation. These integers are called the partial indices of v.

Furthermore, if in addition, det v 1, then m can be chosen such that det m 1
and therefore v SEn(-) SEn(+).

Proof. Our proof is based on a standard induction over the number of components
of C’\ E.

We first assume that 6 GEn(E-). Let i2’ be a component of i2-. By the
assumption that Oi2’ does not have self-intersections, if E hi2’, then we are done
according to the results in [7]. Otherwise we write E2 Of/’, E E \ E2 and
12{ C \ E{ for { 1, 2. We have the disjoint unions

where none of f]-, f, or f+ is empty. Fix z+ 6 f+, z_ 6 f- and z

_
E f.

We write vi v Ei for 1 1, 2. Then Vl GEn(E-) where En(E-) is the
restriction of En (E-) on E-. Clearly En(’) is also an inverse closed componentwise
independent decomposing algebra.

Inductively we assume that vl admits a Riemann-Hilbert factorization relative
to 1,

Vl m1-O1m1+
where

/91-diag[(:-Z)jl-z_ ’"" (z-z+)j’’]z-z_
and ml e Ggn(21) c Ggn(2).

Define on 22, V3 mlv2mT1/l GEn(F) where

z z_

Z Zt__

Inductively we assume that v3 admits a Riemann-Hilbert factorization relative to 2,

V3 m2-/?2m2+

where

02 diag - +
Z Z

and m2 Gn(2) c Gn(). Set

(9.2) O diag [ (Z- Z+ ) kl

z_

and t2 020-1.
Define the componentwise holomorphic function m on C \ E,

2m2-1m1 one+
m m111m1O-1 on 12-

mTlm2 on
c
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Then on 1,

and on 2,

ml+

m_Om+ mTlm2_OO2m2+Olml
m 1v3-1ml v2.

We have the parallel result for v E GEn (E+).
For general v we write v b-b+ such that b+ GEn(E-). We have already

obtained that b- admits a Riemann-Hilbert factorization

b- m_Om+.
Since m+-m+(cx) ranC+, m+ GEn(E+). Therefore Om+b+ GEn(E+). Thus
we have the Riemann-Hilbert factorization

/gm+b+ = m_/9’m_.
Finally we obtain the Riemann-Hilbert factorization for v,

v (m_m_)o’m+.
The proof for the uniqueness of the partial indices is the same as that in [7].
For the remaining part of the theorem, assume det v 1. Clearly we may choose

m+ such that det m+ (oo) 1. Then the fact that

1 det v det m_ det det m+
is a scalar Riemann-Hilbert factorization of 1 forces det m_ det

In the sequal we replace m_ in Theorem 9.1 by m-1. We define the factorized
data with respect to a pair of decomposing algebras featured in Theorem 9.1 in the
same manner as those previously defined with respect to H/k(+).

For a Fredholm operator A we write

(9.3) (A) dim ker(A);

(9.4) (A) dim coker(A).
and the Fredholm index of A as

(9.5) i(A)d-e-fc(A) (A).
Since v(oo) = I, m_(oe) m+(cx). Without loss, we assume m+/-(cx)) I (otherwise
we may change the basis of Mn). In the following, we show that the classical results
regarding the relation between the partial indices and the Fredholm index of the
corresponding operators are still valid for the Riemann-Hilbert factorization in a pair
of decomposing algebras.

THEOREM 9.2. Let kl,... kn be the partial indices of v. For any factorized
data w of v, we have

(9.6)
k.>0

(9.7) (Id- C,o) -n ky,
k.<O
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(9.8) i(Id Cw) nZ kj d arg det v.

Proof. It follows from Proposition 3.4 that we only need to work for a particular
factorized data. Here we choose w with b+ d----efom+ and b-defm_. Then w is a factorized

data of v in (9.1). We also define Wl from b=l:de=fm+, and w2 from b+ , b- I.
Then Id- C1 is invertible because Wl admits a fundamental solution m+. For w2,

(9.6), (9.7), and (9.8) hold by the same proof used in [7]. Now .the theorem follows
from the relation

(9.9) Id- Cw (Id- Cwl)(Id- C2). [:]

We denote by the Schwarz reflection for the matrix functions, ft(z) f(2)*, and
the reflection of a subset of C about the real axis . Now we consider the Riemann-
Hilbert problem with the contours invariant under the reflection about the real axis.
We assume that E contains the real axis R; if it does not, then E [3 R must be a finite
set we may add to the contour.

THEOREM 9.3. Let v be a data supported on a Schwarz reflection invariant
contour. Then v ha8 only zero partial indices if Re v

_
O, and v vt \ .

Proof. Clearly we only need to prove the L2 invertibility of Id-Cw for an arbitrary
factorized data w of v. Applying the Schwarz reflection on the Riemann-Hilbert
factorization in 9.1 gives

vt m+Otm-it.
It follows from the facts that E i2: and that

(m:t=) -1 e kerC+

that -kl,...,-kn are the partial indices of vt. Therefore

fl(Id Cw) a(Id Cw,),
where w’ is a factorized data for vt. Since vt also satisfies the conditions for v in this
theorem, it suffices to show that a(Id- Cw) O.

Let , be a component of C \ on the upper half-plane. Then clearly 12 is a
component of C on the lower half-plane and 0fl (0) with the orientation

defpreserved. Let m q ker(Id- Cw), then m mo give rise to a vanishing solution of
the Riemann-Hilbert problem of v. Let ml, m2 be the bounda values of m ,,
m , respectively. Then by the rational approximation (we are working in L2

space) and a contour integral arment we have

o.

We add them up for all on the upper halbplane to have

where is chosen to make 0fl a positively oriented contour for flu. Now we assert
that

f5 mmvm2 m_Y(9.10)

where V v or v on different locations. To prove the assertion let be a component
of S on the open upper half-plane. Then is part of the common bounda of
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a component + and a component on the upper half-plane. Clearly 2+t, -t are
components of -,+ respectively on the lower half-plane. Now set m+, m- to be
the boundary values of m on from +, -, respectively and m+,m the boundry
values of m on from t, +t, respectively. Clearly the integrals on appear
twice in the sum once as

and once as

(9.12) L ml-m+ =L ml-v’m_.

Since they are off the real axis v vt, the two integrals cancel. Therefore only the
integrals on the real axis survive in the sum. It is easily seen that these integrals are
all oriented from left to right and the sum of them gives the right-hand side of (9.10).
The assertion is proven. We have

(9.13) m_Vmt =0.

Adding this equation to its Schwarz reflection (or Hermitian conjugation) gives

(9.14) m_(v+vt)m =0.

Since on N, Re v _> 0, and v(oe) I, we have m_() 0 almost everywhere near
on N. It can be shown by a Cauehy integral argument that the meromorphie

extension of m_ near equals ero. Since v is nonsingular m+/- 0 on whole
contour P. We conclude ker(Id- C) 0. V1

or the inverse scattering problem, if v is Hermitian, then v() > 0 because v
is nonsingular and continuous with v(ee) I. It is shown in [4] that the Riemann-
Hilbert problem for the inverse scattering of the n x n AKNS system with J + J* 0,
and q + q* 0 is always solvable. Theorem 9.2 implies the following generalization.

If J + J* q + q* 0 for all real , by the Sehwarz reflection principle, J + Jt
q + qt 0. In this ease P obviously contains N. Also since the solution m of the
system satisfies m- mr, it is deduced from this that v vt and Re v > 0 on N.
Therefore for this kind of system the inverse problem is always solvable.

inally, for the problem without poles, it follows from the uniqueness of the
generalized triangular faetorization that v vt implies A At in 7. Therefore
the conditions for the decay of the potentials at x + can be explicitly obtained.
This also applies to the systems for the generalized wave equation and the generalized
sine-Gordon equation for the decay in the nonoblique directions.

Acknowledgment. Professor Adrian Nachman has given many useful sugges-
tions for this work.

REFERENCES

[1] M. J. ABLOWITZ, R. BEALS, AND K. TENENBLAT, On the solution o] the generalized sine-
Gordon equations, Stud. Appl. Math., 74 (1986), pp. 177-203.

[2] M. J. ABLOWlTZ, D. J. KAUP, A. C. NEWELL, AND H. SEGUR, Method for solving the
sine-Gordon equation, Stud. Appl. Math., 53 (1974) pp. 249-315.



986 XIN ZHOU

[3] R. BEALS AND R. R. COIFMAN, Scattering and inverse scattering for first order systems,
Comm. Pure Appl. Math., 37 (1984), pp. 39-90.

[4] Scattering and inverse scattering ]or first-order systems: II, Inverse Problems, 3 (1987),
pp. 577-593.

[5] B. BOJARSKI, On the generalized Hilbert boundary-value problem, Soobshch. Akad. Nauk.
Gruzin. SSR, 25 (1960), pp. 385-390. (In Russian.)

[6] P. J. CAUDREY, The inverse problem .for a general n n spectral equation, Phys. D, 6 (1982),
pp. 51-66.

[7] K. CLANCY AND I. GOHBERG, Factorizations of Matrix Functions and Singular Integral Op-
erators, Birkhuser Verlag, Basel, Switzerland, 1981.

[8] I. C. GOHBERG AND M. G. KREIN, Systems of integral equations on a half line with kernels
depending on the difference of arguments, Amer. Math. Soc. Transl., 2 (1960), pp. 217- 287.

[9] J-H. LEE, Analytic properties o] Zakharov-Shabat inverse scattering problem with a polynomial
spectral dependence of degree n in the potential, Ph.D. thesis, Yale University, New Haven.

[10] S. PR)SSDORF, Some Classes of Singular Equations, North-Holland, Amsterdam, New York,
Oxford, 1978.

[11] L. A. TAKHTAJAN, Integration of the continuous Heisenberg spin chain through the inverse

scattering method, Phys. Lett. A, 64 (1977), p. 235.
[12] V. E. ZAKHAROV AND A. B. SHABAT, Integration of nonlinear equations of mathematical

physics by the method of inverse scattering, II, Functional Anal. Appl., 13 (1980), pp. 166-
174.



SIAM J. MATH. ANAL.
Vol. 20, No. 4, pp. 987-1005, July 1989

()1989 Society for Industrial and Applied Mathematics
013

ASYMPTOTIC EXPANSION OF THE PEARCEY INTEGRAL NEAR
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Abstract. An asymptotic expansion of the function

P(x,y) =/R. exp{i(t4/4 + xt2/2 + yt)}dt

is constructed which remains uniformly valid as x -oc for (x, y) near the caustic 4x3 + 27y2 0
in the real xy-plane. The result remains valid for a range of complex x and y when P is extended to
C x C by analytic continuation.
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1. Introduction. The Pearcey function of two real variables x and y is defined

(1.1) P(x, y) exp -- + x- + yt dt.

It is one of a class of "generalized Airy functions"

(1.2)
-t-oo

rn--2Yo(Xl,’",Xm-2) exp XlO + + xm-. + dO
o m

(see [7, p. 456]), the usual Airy integral being a constant multiple of Yo(Xl), and
the Pearcey function being Yo(y,x/2). The role of the oscillatory integrals (1.2) in
geometrical optics is well known, ]Y012 being related to the intensity of light at caustics
characterized by catastrophes which the phase functions represent (see [6, p. 337]).

The function in (1.1) arose in Pearcey’s investigation of electromagnetic fields
near a "cusp" [11], and so bears his name. More recent work involving (1.1) includes
optics [13], scattering theory [5], quantum mechanics [9, p. 172], and the theory of
nonlinear waves [8].

Also, just as the Airy function plays an important role in the theory of uniform
asymptotic expansions of integrals with two coalescing saddle points [3], the functions
Y0 in (1.2) play a corresponding role in the uniform asymptotic theory of integrals with
m-1 coalescing saddle points [14]. Consequently, the functions Y0, for physical as well
as mathematical reasons, represent an important class of special functions paralleling
the role played by the classical Airy function. We shall restrict our attention to P(x, y)
(or, Yo(y,x/2)) in the remainder of this paper.

If we apply the method of stationary phase to (1.1), we find that the asymptotic
behaviour of P depends on one or three stationary points, provided one of the variables
stays fixed If we denote the phase function in (1.1) by (t; x, y) and let 5 4x3+27y2,
then Ct 0 gives three stationary points if 5 < 0, and only one if 5 > 0. However,
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as / 0, we have some (or all) stationary points coalescing, and in the transition
from negative to positive , it is not clear how P behaves. Therefore, it is the large
negative x-behaviour of (1.1) for (x, y) near the "caustic" 0 that concerns us (if
x is positive, then is always positive).

If x -o, then for to remain small, we must have [y[ oc. Since P(x, y) is
clearly an even function of y, we may restrict ourselves to the case y > 0; furthermore,
we shall find it to be notationally convenient to replace x by -x in (1.1) and examine
x --+ +o. With these conventions, 0 implies y 2x3/2//. This suggests that
we examine P(-x, y) with y #x3/2; when # 2/x/, we are right at the caustic.
With this relation between x and y, we find that as x and y tend to infinity along
y X3/2, # fixed,

P(-x, #x3/2) eiX2l(t;)+i’sign(3t-1) 2r

Here, 0 < # < 2/v/, f(t; #) t4/4-t2/2 / #t, and the tj are the real roots of ft 0
(cf. 2 for a description of the tj). At the caustic # 2//, we find that

2x3/2 ) 2(1.4) P -x,
x/ V-xe

1’(1/3) e/x2 r(2/3) e./20r/4-2x2/3)-[-
31/3xl/6

q-
i" 2 ’3-/3 -" X5/6

and for t > 2/v/,

2r eri/4+ixf(to;g(1.5) P(-x, #x3/2) x(at 1)

where to denotes the only real zero of ft.
Note that the approximations in (1.3)-(1.5) are of radically differing characters.

As/ (2/’)-, t2 and t3 1/v/- and hence the approximation (1.3) becomes sin-
gular; see 2. The important observation to make, at this point, is that as 0 (i.e.,
# 2/v/) only two stationary points are coalescing. To exploit this phenomenon,
we retain # as a uniformity parameter and rewrite (1.1) as a sum of two contour in-
tegrals, one of which has exactly two relevant, coalescing, saddle points. This allows
us to apply a cubic transformation introduced by Chester, Friedman, and Ursell [3],
and to construct a uniform asymptotic expansion of (1.1) as x ---+ -o with varying
in an interval containing 0 (i.e., # in an interval containing 2/x/). The expansion
we present is in fact valid for certain complex values of the arguments when P(x, y)
is extended to C x (3 by analytic continuation.

At the time of writing, we became aware of a recent publication by Stamnes and
Spjelkavik [12] who also noted that only two stationary points coalesce, but their
subsequent derivations of asymptotic expansions of the Pearcey function are purely
formal. For a brief discussion of their arguments, see 6.

2. Alternate representation. An application of Jordan’s inequality shows that,
for real x and y, the path of integration in (1.1) may be rotated onto the contour F in
the complex t-plane, where F is the straight line through the origin making an angle of
r/8 with the positive real axis. With this integral representation we can analytically
continue P(x, y) to an entire function in (3 x C.

Let
2

(2.1) # - o



ASYMPTOTIC EXPANSION OF THE PEARCEY INTEGRAL 989

FIG. 1. The contours F, F1, and

and set y X3/2. With x real and positive, the change of variable t --. xl/2t gives

P(-x,X3/2) X1/2 JfF eix2(t4/4-t2/2+Ut)dt"

Since this integral converges for all complex # and for x with arg x < r/4, subsequent
work is valid for these values of x and #.

By Cauchy’s theorem, we may write

(2.3) P(-x,#x3/2) xl/2 jfr eiX2(t4/a-/2+U)dt + xl/2 jfr
where F is the contour beginning at ce5i/8 and ending at cei/8, and F2 is the
contour beginning at e9i/8 and ending at e5i/8 (see Fig. 1).

For 1, 2, set

(2.4) Pi(A; #) Jfr ei’Xf(t;U)dt

where, as in 1, we have put

t4 t2
(2.5)

is analytic for all # and all A with Re > 0.
Since ft(t; #) 0 has the solutions

2

-sin ( +
2

sin
2 r

sin ( -)
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for A -4 + 27#2 < 0, with given by

3=arcsin(#--), Il <_r/6

(see [101), we see that as A -. 0- (i.e., # (2//)-), tl --* -2/x/, t2 1/f,
t3 -* l/yrS. Thus the two positive roots of ft 0 coalesce as # --. 2/v/, but remain
well separated from the negative root.

If A > 0, we can invoke Cardan’s formulae (or use the trigonometric solution
above with complex) to observe the same phenomenon, only this time, as A 0+,
the complex conjugate pair of roots of ft 0 coalesce to 1/’ with the real root
remaining isolated.

Also, by examining sin and sin(r/3- ) for El0, r/6[, we find that t3(#) >
1// > t(u) for # <

With this background, we shall obtain the large A behaviour of the Pi(A; #) as, ---, . This in turn will yield the desired expansion of (2.3) as x (x) uniformly
for # E [#0, #1] where 0 < #0 < 2/x/ < #1.

3. Uniform expansion of P1. Since P1 has two relevant coalescing saddle
points, this suggests invoking a cubic transformation as is done in [3] or [2, 9.2].
For convenience, we shall choose a, given in (2.1), as our uniformity parameter since
the saddles coincide when a vanishes.

As the saddles coalesce at t 1/x/, we develop f as follows:

a 1 z3 z4
f t # - + - az + - -t- -a 1

_= + 1-

where we have set z t- 1/yz’. Thus

eig(z;a)dz

where F is the translate of F1 by 1/vf. Note that the zeroes of gz(z; a) are given by

zl(a) -sin + /
2 1

z2(a) -sin
2 [r _\) 1
o sin =

where

3 arcsin (1 ax/) r

2 I1 <
6

As in 2, by examining sin and sin(r/3- ), we have zl(a) < -1 < z2(c) < 0 <
z3(c) for a > 0 sufficiently small. When c < 0, z2 and z3 are complex conjugates. In
either case, c --+ 0 implies z2 (a), z3 (c) 0.
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Now we introduce the change of variables

u3

(3.) (;") -5- +

where (a) and r/- /(c) are to be determined. In order that (3.1) defines an
analytic function u(z) near z2 and z3, we require that z2 and z3 correspond to _1/2
and 1/2 respectively. Accordingly, we find that

(3.2)

and

3/2 3
[(;1 (;

1
(3.3) r/= [g(z2; a) + g(z3; a)].

Equation (3.1) may be solved explicitly to give three possible candidates for our
change of variables: for # 0,

t (Z; O) --21/2 sin(r/3 + )
U2(Z;C) 2/2sin
U3(Z; Cg) 21/2 sin(r/3 )

with

sin3
3(r/- g(z; a))

23/2

for 0, we have u (3[g(z)- ])1/3 and, again, there are three branches. Please
note that we frequently omit mentioning the explicit dependence of g on a.

From (3.2) and (3.3), we have - [a()- a(2)]2sin3_ 2_3.2/
-1

when z z2, and when z z3 we get

sin3 -[() (z)]2

23/2 =+i.

Thus, we have

Ul(Z2; a) -/2
u2(z2; a) _/2
u3(z2; c) 21/2

ux(z3; a) -21/2

u2(z3; a) /2
u3(z3; cg) 1/2.

Therefore, u2(z; a) is the desired uniformly analytic solution to (3.1), We now set
u(z; ) u(; ).

Before continuing further, let us briefly examine the nature of the mapping (3.1).
From Chester, et al. [3], we know that u(z; a) is uniformly analytic and one-to-one
near z 0. Much more, however, can be said. In the following we will show that the
mapping (3.1) in the present case is in fact one-to-one and analytic along the contour

rl.
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In the subsequent analysis, assume a > 0. The mapping from the z- to u-planes
can be most easily studied by introducing intermediate variables Z, given by

z
sin3 -3Z/23/2

u 2/2 sin;
see, for example, Copson [4]. We begin by decomposing the z-plahe into four regions,
each of which maps onto the Z-plane. A useful device in this process is the determina-
tion of all curves that g sends to the real Z-axis. We adopt the notational convention
of denoting that part of a region g/that has positive imaginary part by 9/+.

The mapping Z g(z; a) -rl clearly takes the real line in the z-plane to the real
line in the Z-plane in the following manner:

the mapping Z being one-to-one on each interval. The remaining curves are the
nontrivial solutions of

(3.5) Im(9(z; a) r/) 0 Im 9(z; a)
Im(9(z; a) 9(zk; a)), k 1, 2, 3

since each critical point zk being real implies that g(zk; ) is real. Note that since the
left half of (3.5) is independent of k, the solution curves arising from the right half of
(3.5) are the same for each k.

Develop g about the critical point z zk. Then (3.5) becomes

(g"(zk;a)t2 + g’"(zk;a)t3 W t4) --0Im
2 6

where we have set t z z a + iT, and suppressed dependence on k. Thus

2 2/ + 6zk0
2/Zk + Zk 2(7" + (3a2r T3) -" (O’3T O’T3)

2 6

or, since we have accounted for v 0 in (3.4),

2V T 6zk a2 T a3 (2V T 6zk ) T
20 (2VZk + 3z)a + 2 6 + a

yielding

(3.6) T -{- (2V/’Zk - 3Z)O" -- 2V+6z/2 (T2 -- 0.3

6 +o

wherever the quantity inside the outer surd is nonnegative.
Since a " 0 satisfies (3.6) and a + iT Z Zk, each zk lies on at least one

of the curves determined by (3.6). Equation (3.6) gives rise to three curves; two of
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R

z2

FIG. 2. Curves that map to the real Z-axis (solid curves) and the regions Rj, j 1, 2, 3, 4.

these curves have the 45o lines through the origin as asymptotes, and the other (the
one containing z2) has the vertical line a -(2x/ + 6zk)/6 as its asymptote. These
curves are displayed in Fig. 2.

The curves that do not lie along the real z-axis partition the z-plane into four
regions, R1, R2, R3, and R4, each of which maps in a one-to-one fashion onto the
Z-plane (on the boundaries, the map g may be two-to-one) (see Fig. 2).

Consider R+ and the map z --, g(z; )- . From (3.4) we know that [z3,
maps onto [_3/2, +oc[, and the curve bounding the upper extent of R+ is mapped

2/*3/2] Thus we see that R+ maps to the upper half of the Z-plane. Asto ]-oc, 3 "
well, the steepest descent curve of ig(z; ) from z z3 to ocei/s lies within R+ and
maps to a vertical line in the Z-plane running through Z _3/2. In Figs. 3-5,
shaded regions map to shaded regions, dotted lines represent steepest descent curves,
and in each figure, letters that correspond represent points that correspond under
each indicated map (see Fig. 3).

Under the map sin3 -3Z/23/2, we note the following: Z _3/2 is
2 2f3/2] and the raysmapped to r/6; with 6 [r/6, /2], Z is real and in [_3/2, 3

r/6+ir, r/2+iT, T >_ 0 map to the segments ]-oc, _3/2] and [3/2, +[ in the Z-
plane, respectively. Moreover, a straightforward calculation reveals that the steepest
descent curve lying in the Z-plane maps to the curve 7 1/2.log [(1 -cos 3/)/(sin 3/)],

/+ i7, 7 -> 0, f/g r/3, in the C-plane (see Fig. 3).
The map u 21/2 sine takes the interval [, ] in the C-plane to [1/2,

in the u-plane, and maps + iT, T >_ 0 onto [21/2, +oc[. The image of the C-plane
ray + iT, r

_
O, is the curve

u 1/2[c0sh - + iVsinh T],

which we see as being the first quadrant branch of the hyperbola (Re u)2 1/2 (Im u)2

(to see this, put Re u 1/2 cosh T, Im u X/’1/2 sinh - and employ the identity
cosh2 T- sinh2 - 1). The steepest descent curve in the C-plane maps to the steepest
descent curve of i(u3/3 u / 1) beginning at u 1/2 and ending at oceri/6. This
is most easily seen by examining Z u3/3 Cu + directly; see Fig. 3.
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.,:::.:N.:: :::::::=====================================

===================================== -2"f3/2/3
plane

16 r12
plane

plane

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

fl12
plane

FIG. 3. Effect of the mappings Z g(z; c) r], Z _3/2. sin 3, u 21/2 sin on R+.
In a completely similar fashion, we find the images of R2+ and R3+ under the

sequence of transformations z Z u. The effect of these maps are presented
in Figs. 4-5.

Collecting these maps together gives a conformal map from R+ U R2+ U R3+ to the
upper half of the u-plane which is one-to-one, although the intermediate transforma-
tions fail to be one-to-one when applied to all of R+ U R2+ UR3+.

In the event that c < 0, we would proceed as before, this time using (3.5) with
k 1 since (3.6) holds only for the real saddle zl. Note that Im r] 0 for c < 0.

If we take F to be the steepest descent curve beginning at oce5i/s and ending
at z z2, followed by the straight line segment [z2,z3], and thereafter the steepest
descent curve from z z3 to cei/s, then u(z; ) maps F onto the curve formed by
steepest descent curves from _1/2 to ce5/6, and +/2 to oce/6, along with the
line segment [_/2, /2], suitably oriented. Call the image of F in the u-plane C.
We may now write

eiA(c/v-l/12)pl (A; #) IC ei(u3/3-u+V)gO(u; )du

where we have put g0(u; c) dz/du. Define, as in [2], the function sequences {gn},
{ha}, {Pn}, and {qn} by

(3.7)

Then, by successive substitution and partial integration, we obtain

n=O

as A --, , uniformly in . Here,

F(A;) Iv ei(u3/3-U)du
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D

C=zB= 0
plane

B -r/6 0 C r/6- plane

plane

A D

0 C=f I/2

plane

FIG. 4. Effect of the sequence of maps z Z 2 u applied to R+2

A

A

plane

C=z B =g(zl) y C 2’3/2/3
Z plane

D

C= -/6

plane

===============================

c=- fll2
plane

FIG. 5. Effect of the sequence of maps z Z u applied to
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G(A;) Iv uei(ua/3-U)du’

both integrals converging absolutely and uniformly for Re A > 0, E C. By a simple
change of variables, we see that in Re A > 0,

Hence,

2r
Ai( )t2/3

2r Ai,(_)2/3)G(; ) i2/3

eiA(a/-l/12lP1 A; A1/3

E n()Ai(-2/a) + "/a qn(c)Ai’(-2/a)
--0

as A , uniformly in a near zero.
approximation

In 6, we shall have occasion to use the

2 ) eiA(ll12_alvfS+lP1 A;--a

for A oc as above.

27r .Ai(_A2/3). 1+0()]
27r Ai,(_A2/3) [1+ O ()] }/ qo(a) 2/3

4. The coefficients po(a) and q0(a). Although expressions for po(a) and qo(a)
can be calculated routinely, because of the labour involved in obtaining limiting forms
as a 0, we reproduce some of the requisite analysis. The reader will appreciate the
difficulty in calculating higher coefficients from these two examples.

We begin by remarking that the following analysis remains valid for all (small)
complex a, provided we choose the principal branch for ai/2. For the purpose of
exposition, we shall take a > 0.

Differentiate (3.1) twice with respect to u; this gives

gzz(duu)
2

+ gz
\du2

2U.

Evaluation at z z3, and the use of the fact that Z3 corresponds with 1/2, gives

(2V/-Z3 4- 3z) uu [t’--l/2 21/2

whence

dz i 21/2
d--- 1-1/ +

2,/5z3 + 3z3
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Since z3, for a > 0, is a local minimum of g(z; a), gzz(Z3; a) is positive, and so the
expression under the square root is positive. Also, as z increases with u,

Similarly,

dz i --21/2
+ a

Since go(u; a) dz/du, we have, from the first two equations of (3.7) with n 0,

(4.1) po(c)
2x/z3 + 3z

/
2/z2 / 3z22

(4.2) qo(a) 21/2 2Vz3 / 3z 2-z2 / 3z
Use of equation (3.2) allows us to express (4.1) and (4.2) completely in terms of the
function g.

po(c) and qo(c) can also be obtained from relations involving only z, the zero of
gt that remains isolated from z2 and z3. To see this, we observe

Z
3 - ’Z2

--O

Z
3 --(Z1 - Z2 - Z3)Z2 "" (Z1Z2 "- ZlZ3 + Z2Z3)Z- ZlZ2Z3,

and hence

Z1 -" Z2 "" Z3 --V/’,
ZlZ2 -" ZlZ3 -" Z2Z3 O,

ZiZ2Z3 0.

Use of the latter three equations permits the expression of 3, P0q0, and Po/qo, in
terms of a and z. For example, we find

poqo
[’7 -aJ

However, these expressions are not appreciably simpler than (4.1) and (4.2), in view
of the symmetry we exploit below. - WriteIn the limit a 0+ we find that ---,

Then

1
[cos(-0)+ vsin(-0)- 1]
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and

If we let

1
[cos(0)+ fsin(8)- 1]

1
[cos(0)4- x/sin(8)- 1],

we have z2 X(-8), z3 X(O). Furthermore, from sin3 arcsin(1 v/’a/2), we
have

so that -- 7r 1"33/431/2 (14- V/’ 8132 )g 5 --- 32.20
0(1

31/2[ x/- 8132 ](4.4) 0 31.]4 1 + ---a -4
32.20 " O(3)

The Maclaurin series for sine involves only odd powers, and that for cosine only even
powers. Hence, the approximation for z3(a) gives

aI/2 a 5 31/433/2 31/2__a + 0(/2).z3(c)- 31/4 6 " 72 27

The corresponding approximation for z2(a) follows by replacing a1/2 by --O1/2 in that
for z3(a).

Indeed, any function of z3 gives rise to a function of z2 by the process of replacing
a1/2 by -a1/2. Using this, we have

1/4 31/2 ]g(z3) --2" 3-5/4C3/2 1 --OI/2 4- ----Cg 4- O(cg3/2)

31/4 31/2 31/4 ]g(z2) 2" 3-5/403/2 1 + -- + -’- 4- O(o3/2)

These two equations and (3.2) imply

(1/2(a) 3-1/12a1/2 1 + 24vf + 0(c 2)]
where we have made use of the binomial formula.

Continuing, we get

gzz(Z3) 2.31/4a1/2 1 + 3-3/4a1/2- 7.3-1/2
24

and

gzz(z2) -2.31/4a1/2 [1 3-3/431/2 7.3-I/2

24
------a + 0(33/2)]
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whence

and

--2I/2
1/6 I 3-3/4 1/2

2v/z2+3z
=3- 1+

2
a + O(a)

2I/2
1/6 3-3/4 1/2

2vz3 + 3z
3- 1 ----a + O(a)

These two approximations (together with that obtained for 1/2) in formulae (4.1)
and (4.2) yield

(4.5)

and

po(o) 3-1/611 + 0(o)],

as a --- O.

5. Expansion of P2. Because F2 begins and ends in valleys at c, we see that
the contour can be deformed into the steepest descent path leading away from the
saddle point tl. The determination of the steepest descent path follows.

We begin by expanding f about the point t t l:

f(t; #) f(tl; #) + (3t l )(t-t1)2 )3 i(t_t)42 +it(t_t +-
Let z t tl x + iy. Steepest descent paths are among the level curves 0
Im[if(t; it) f(t; it)]. Consequently,

1 (x4 6x2y2 + y4) 0
1 (3t 1)(x2 y2) + tl(x3 3xy2) +
2

gives steepest paths. Solving for y as a function of x gives

1 {6x2 + 12t x+2(3t 1)

4- V6X2 + 12tlX -t- 2(3t- 1))2- 4(x4 + 4tlx3 + 2(3t- 1)x2) }1/2
wherever the real square roots are defined. We see that the steepest descent curve
through tl begins at cxe-Tri/s and ends at ce5i/s. Fig. 6 displays hills and valleys
in the case 5 0 (or it 2/-). Shaded regions represent valleys, the unshaded
regions being hills. Solid curves (excluding the real axis) represent steepest descent
or ascent paths according as they lie in shaded or unshaded regions respectively.

Let F2+ be the steepest descent curve running from t to ce5i/s, and let 1-’2-
be the steepest descent contour running from t to oe-7ri/s. Then we have

P2(A;it)=fr eifdt jfr eifdt.
2+ 2-

3-5/6
(4.6) qo(a)

2
[1 + O(a)],
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FIG. 6. Hills and valleys defined by steepest curves through tl.

Let w if(t1; #)- if(t; #) so that on F2+, w is positive and increasing as we move
away from tl.

Let t+ be the solution of w if(tl;#)- if(t; #) on F2+, t_ being the correspond-
ing solution on F2-. By the Lagrange inversion theorem, since

(3t 1)(t+ ti) 2 -iti(t+ t)3 (t+ t

on F2+/- respectively, there are numbers a for which

an wn/2t+/- =tl +

whence

dt+ dt_ a+ a
dw dw 2(n-1)!w-I

Thus

as A ; see arguments in [4, 30 and 33].
The first few terms are easily found to be

a+._ei/4( 2 )1/23t- 1

2ta2+ -i(3t22_1). (3t-l)
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a3+ e3/4
3t-1 2(3t-1) +2(3t21-1)’

al e5ri/4
3t 1

( 2 )3/, [ -3 15t )_]a3 e-ri/4
3t2- 1 2(3t2- 1) + 2(3t2- 1

whence

(5.1) P,(A; #)= eM(tl;u) {/3t2- 1 1+iA1/2 (-3 6t2)r1/2 1
4. (3t 1)7/2 A3/2

where the O-symbol is uniform in # for # in a compact interval in R+ containing
+ is available to us via the binomial theorem,2/v/. A general expression for the an

but it is too unwieldy to be of intrinsic value. We note that an+ a for even n.

6. Uniform expansion of P at the caustic. We have obtained expansions of
P and P2. Using (2.3), (3.8), and (5.1), and restoring the large parameter x and the
function f, we get the uniform approximation as x

(6.1)

Here, t (#) t ((2/-)-a) -(2/x/-)sin(+) where 3 arcsin(1-(v//2)a).
The nature of the approximation when is bounded away from 0 is readily available
when the asymptotic forms of the Airy function and its derivative are used [1]; recall
that

(6.2) Ai(z)

(6.3)

Ai(-z)

(6.4) Ai’(z)

Ai’(-z)

2v/_z/a 1+O ]argz]<r,

11 [sin (-3z
V/-zl/4 r+2 3/2)

_co o
2

largz[ < V
--zl/4e--2z3/2/3 ( +o <

z/4 2
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+ sin + -z3/2
27r

argzl < --,
+0( 1

as z in the indicated sectors.
If a is positive and bounded away from 0, then so is ft. Hence

x-1/6Ai(-x4/3) Vffl/4xl/2
2xff3/2 1{sin (1/4+)(1+O (-)

)(cos + -x 3/9.
48x3/

__ffl/4 2X2ff3/2x-5/6nit(-x4/3) V/xl/2 {COS (- + )(1 +0 (--))
71" 2X2C3/2 --7 1+sin(+ )(48x23/2+0(--))}

by (6.3) and (6.5). Thus, (6.1) reduces to a sum of three oscillatory terms, each of
order x-/2 as x . This is what we would expect from stationary phase inside
the caustic (compare (1.3)).

On the other hand, if a is negative and bounded away from 0, then 3/2 lies
in a segment of the imaginary axis bounded away from the origin. Accordingly,
arg 3/ +7r/2 so that the asymptotic forms (6.2) and (6.4) show that (6.1) reduces
to an oscillatory term of order x-/2, plus two exponentially decaying terms. This is
consistent with stationary phase outside the caustic (compare (1.5)).

Finally, we examine (6.1) when a 0. Again from [1], we see that Ai(O)
F(1/3)/(2.3/67r) and Ai’(O) -3/6F(2/3)/(27r). Since 1+i ./er/4, t(2/v/)
2/v, and /= 0, (6.1) reduces to

P ( 2x3/2)-x,

_
e-2ix2/3+"i/42x + eix2119F(l13)3113xl16

ir(2/3) ( 1 )2.32/3x5/6 +0 x2+(/6)

as x - +c. Thus we recover (1.4). Here, use has been made of (4.5) and (4.6).
A full expansion of P(-x, #x3/2) follows from the expansions of P1 and P2, al-

though the coefficients become more complicated as more terms are included. The
extension to complex values of x and # (for the analytic continuation of P) can be
accomplished through the expansions for P and P2 for A, # complex, although as
applications center on real values, we have not been overly concerned with developing
the full range of complex values for which our expansion is valid.

We now turn to the work in [12]. Here, the authors examine the asymptotic
behaviour of the function

(6.6) /5(X, Y) exp(i(t + Xt + Yt))dt

for large values of the parameters X, Y. P and/5 are related by

P(x, Y) x,
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In developing the expansions of/5(X, Y) away from the caustic 27Y2 + 8X3 0,
Stamnes and Spjelkavik first apply the method of stationary phase to integrals of the
form

(6.7) _+oo g(t)eikh(t) dt, k --.

with g(t) 1, and h(t) ta + Xt2 + Yr. They then set k 1 to yield the desired
large X or large Y behaviour of/5; see [12, p. 1338, 3.1].

For X and Y near the caustic, the authors formally invoke the method of Chester
et al. [3], and indeed, include a brief outline of the uniform asymptotic theory for
integrals of the form (6.7) in an appendix. Let Ju denote the contribution to the
integral (6.7) due to the coalescing stationary points (thus, Ju plays the same role as
our P1 (cf. (2.4))). The authors claim that

2

(6.8) Ju 2reik[h(t2)+h(3)] Z (pmFm / qmGm)
m--O

as IXI, Y --, oo, uniformly valid near the caustic; see [12, eq. (3.31)]. Here, h(t) is the
phase function of (6.7) with Y replaced by -Y, and t2 and t3 are the critical points of
h(t) that coalesce as (X, Y) approaches the caustic, (X, Y) remaining bounded away
from the origin in the XY-plane. The functions Fm and Gm are given by

Fo k-1/3Ai(-k2/3)
F O
F2 2k-5/3Ai’(-k2/3)

Go -ik-2/3Ai’(-k2/3)
G1 ik-4/3Ai(-k2/3)
G2 2ik-4/3Ai(-k2/3)

where

=3/2 h(t3)- h(t2).
3

The pm and qm are determined similarly as in (3.7) of this paper, and are presented
in the appendix of [12, eqs. (AlS)-(A23)].

However, care must be taken in using expansion (6.8) to obtain the large negative-
X behaviour of/5 near the caustic. (There is a typographical error in the phase
function h(t2) + h(t3), which should likely be half the stated value.) Throughout the
appendix and 2 of [12], k appears as a large positive parameter. Yet, in several
places, k is set equal to one prior to examining the large X behaviour of (6.7); see, for
instance, equations (3.5), (5.3) and the discussion in 3.2 and note the absence of k
in expansion (3.30). This naturally leads one to suspect that the same is being done
in (6.8), although no explicit mention of this is made in [12]. It should be pointed out
that (6.8) is that part of the expansion of

P*(X, Y; k) exp(ik(t4 + Xt2 + Yt))dt

due to the coa_lescing saddles of the phase function ta + Xt2 + Yt, and not part of an
expansion of P. However, expansion (6.8) can be used to deduce the large negative-X
behaviour of/5 near the caustic via the relation

15(X, Y) kU4p* (2, ; k),
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where k is a large parameter, X kl/2f( and Y k3/4. Note that 27Y2 + 8X3

k3/2(272 + 83); thus, if (X, Y) is near the caustic, so is (, ’).
The integral P* is also related to the Pearcey function P(x, y) given in (1.1) by

P* (X, Y; k) 2-1/2k-1/4p(k/2X, 2-/2k3/4y).
By setting x -k/2X and # 2-/2(-X)-3/2y in our expansion for Pl(x2;#)
(cf. (3.8)), we obtain the first three terms in (6.8). Thus, modulo misprints, (6.8)
appears correct.

Finally, we turn to the "transitional_approximation" developed in [12]. This
was used in the numerical evaluation of P(X, Y) for (X, Y) in a band covering the
caustic extending 0.05 units in the X-direction on either side of the caustic, with
Y > 0 (see [12, p. 1349, second paragraph]). In this calculation, it was assumed that
X2 + y2 > 16 and IXI, Y < 8. The "transitional approximation" developed is an
asymptotic approximation of JT in the immediate vicinity of the caustic [sic], where
JT represents the contribution to (6.6) due to coalescing stationary points of h(t).
The authors assert that

(6.9) JT 2rtd. exp(ih0) [Ai(z)
where

c2 ic3 .(12) ]+ icAi(4)(z) -A(8)(z) --Az (z) +...

+

d (3lh3l)-/3
z ehd

see [12, p. 1343, eq. (3.30)].

hi --8[--- --(y_)3/2]
h4=1
e sgn(h3)
c h4d4

There are two points which we wish to make regarding the preceding approxima-
tion. First, the derivation is purely formal with no mention being made of the region
of validity. Second, the authors did not actually use the expansion in the form given
in (6.9), but instead used one in which each of the Airy functions Ai(4j), j 0, 1, 2,
3, is replaced by the first term in its Maclaurin expansion; cf. the first three lines on
p. 1344 of [12]. That is, the authors replace (6.9) by

(6.10)
3 }E cJQj(z) + O(c4)

j=o

where each Qj is an expression of the form a or flz, a and fl being constants.
In order for this to be valid, the implied O-terms in (6.10) involving z, resulting

from approximating the Ai(4j) by the first terms of their Maclaurin series, must be
O(c4) for large IX[. In particular, we must have z O(c4). Since z -hc/4, this
is equivalent to

hi O(c15/4)
or, upon restoring X and Y,

y s(_x/6)a/=
whence

27Y2 + 8X3 O((-X)-1).
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This displays a condition on how quickly the point (X, Y) must approach the caustic.
In closing, we note that our work in developing a uniform expansion of P(x, y)

near the caustic is easily extended to that of deriving uniform expansions of OP/Ox
and OP/Oy near the caustic for a range of complex x and y.

Acknowledgments. The author is indebted to Professor R. Wong for his guid-
ance throughout the development of this work, and to Professor F. Ursell for detecting
an error in an earlier version of this paper and for providing comments that greatly
improved the discussion in 6.
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INFINITE INTEGRALS INVOLVING THREE SPHERICAL BESSEL
FUNCTIONS*

A. GERVOIS’t AND H. NAVELETf

Abstract. The integrals o Jlt(at)j6(bt)Jl3(Ct) dt are calculated, where Ji is the spherical Bessel function
for any integer indices n, l, 12, 13 and real positive parameters a, b, c using two different methods. In the
first, n + It + 12 + 13 must be an even integer but the techniques may be generalized to ordinary Bessel functions
with noninteger indices. The second method does not depend on the parity of n + Ix + 12 + 13 but remains
valid only for integer indices.

Key words, spherical Bessel functions, infinite integrals, Appell functions

AMS(MOS) subject classifications. 33A40, 44A15, 33A35

1. Introduction. Nuclear physicists 1] are often faced with integrals of the form

(1.1) tjll at)Jl2( bt)jt3( ct) dt

where 1, 12, 13 are positive (or zero) integers and the integer n satisfies convergence
conditions

--(11+12+13)<=n<=2.

Parameters a, b, c are real positive and the jl(x) are the spherical Bessel functions

(1.2) jl(x x/Tr/2XJl+l/2(x ).

A calculation of (1.1) has already been performed, in the frame of coupled channel
theory [2], but with the following restrictions:

(a) n 2 M, M is an even integer such that 0_-< M -< ll + 12 + 13 214,
lt rnax(l, 12, 13).

(1.3) (b) + 12+ 13 is even.
(c) 11-1113 11/12.
(d) The parameters a, b, c obey the triangular inequality, namely

la-bl<c<a+b.
Restrictions (b) and (c) correspond to conservation of parity and angular momentum,
respectively. They allow the use of spherical harmonics and Clebsch-Gordon
coefficients. As to n 2, this condition simply says that 2 dt is the volume element in
the three-dimensional space. The result is written as a sum of expressions

(111213)m -m 0 PIt (cos 013)P12 (cos 023

where the first factor is a Clebsch-Gordon and the P:" are Legendre polynomials.
Angles 013, 023 may be defined only because of the peculiar geometry of the system
(condition (d)). In spite of its elegance, the proof of[2] remains specific to half-integer
Bessel functions and needs crucially all conditions listed above.

* Received by the editors January 21, 1987; accepted for publication (in revised form) October 4, 1988.

" Service de Physique Th6orique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France.
Groupe de Physique Cristalline, Unit6 804 Associ6e au CNRS, Universit6 de Rennes I, Campus de

Beaulieu, 35042 Rennes Cedex, France.
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INTEGRALS OF THREE BESSEL FUNCTIONS 1007

Actually, there exists a formal expression [3] for the integral

(1.4) I(A,/x, u, O) -= tA-1J,(at)J(bt)Hl)(ct) at

provided the convergence conditions

(1.5) Re(A)<, Re(X/z/-lPl)>0 (Re(A+/x+u+p)>0 for the integral
where H(,,l)(ct) is replaced by Jp (ct)), hold for the indices A,/z, u, p.

We have

(1.6a) I(A,/z, t,, p)= -- e
r(r)r(r’)

with

a2 b2)xF ,t, % r’;-,

A +/x+ t,+p
(1.6b) a=

2
/3=

2
y=/x+l, y’=r,+l

and F4 is the Appell [4] function, defined as a double series in the convergence domain
Icl>lal/lbl,

However, this result is not useful because the function F4 cannot be calculated
easily and the analytic continuation is not possible when a, b, c may be considered as
the sides of a triangle.

Simplifications occur when F4 factorizes into functions of one variable that allows
an analytic continuation in a, b, c. These cases have been listed long ago [5a], [5b],
and in previous works [6a], [6b], [7a], [7b], we have used this factorization to calculate
numerous integrals of type (1.4) when A, /x, v, p are related by one or two linear
relations. By using recurrence relations between Bessel functions it is possible to enlarge
the number of integrals of type (1.4) that can be computed analytically. These new
integrals correspond to A,/x, v, p values differing from the previous ones by an integer.
This integer is always positive for the parameter h. As we will see in 2, this general
method is a powerful tool to get as a byproduct integrals of type (1.1) but with the
restriction 1 + 12 + 13 + n even. In 3, we use a direct method, specific of the spherical
Bessel functions 1], but which removes the restriction 11 + 12 + 13 + n even.

2. First method. We consider here integrals I(h,/x, ,, p), (1.4) and in a first step
do not impose any restriction on the indices except the convergence conditions (1.5).
In 2.1, we show how recurrence relations between Bessel functions lead to recurrence
relations between contiguous integrals I(h,/z, u, p). We then derive a whole class of
integrals that can be calculated from already known integrals in an explicit form ( 2.2).
In the last section, 2.3, we apply these results to integrals (1.1).

2.1. Recurrence relations. The well-known recurrence relation between three con-
tiguous (nonmodified) Bessel functions

(2.1) t[Z+,(t) + Z_,(t)] 2rZ,(t)
where Z J, Y or H leads to a straightforward relation between contiguous
integrals. Setting cx, r =p- 1, we have for any A,/z, u, p,

(2.2) I(h+2,1x,,,p)+I(h+2, lz, u,p-2) =-2(p 1)I(h + 1,/x, u, p 1).

Similarly, the differential relations

(2.3) + Z(tz)= tZ;,(tz)
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together with integration by parts yield other (less obvious) relations. For example,
we will need

(2.4)

I(A+l,l.,v+l,p)=bI(A+l- ,,u,,v,p-1)--aI(A+l,,u,+l, v+l,p- 1)

2+v-/z-A-p
I(X, la,, u+ l, p-1).

We now consider the case

(2.5)
v-,u, q, X +/+p- v=2(k+l),

ql pk" dt tl-+q+2kj,(at)J,+q(bt)H(ol)(ct)

where q, k are positive or zero integers. The justification of this restriction will appear
clearly later. For these integrals, (2.2) reads

t_q k+l k 2 k. =- o-2+- (P- 1), o-,

whence, by recursion

p=O

and (2.4) becomes

(_)..r(p -p) o

r(p k)
q o-k-p

b
cq+l 0
t p _,.. o q o

p-l p.+l’ p-1

because the last term in the right-hand side cancels out. By recursion again, we get

cq 0 E GNU(-) ’l
0

Iz p p--q"
m=O

This allows us to write cq k, p as a finite linear combination of known integrals o, o,[5]

()k-p ()q--m()mC (-F
F(p-p)

C(--) Otx, O(2.6a) q p ,
p=o F(p k) m=O

with

(2.6b)

and

(2.7)

(m=O, 1,...,q), p’=p-k-p-q (p=0, 1,. .,k)

aO, 0, - J,(at)J,,(bt)Hl,)(ct) dt.

Note that p’=(k-p)+(p-2k-q) is positive for k>p. Indeed, the convergence
condition at implies p q 2k > -1/2.

2.2. New integrals. The general expression (1.6) for I(A,/x, v, p) is of particular
interest when F4 factorizes into functions of one variable (in general, 2F1 functions).
These factorizations [5a], [5b] roughly fall into three cases:

(i) A 1, any/z, v, p.
(ii) A=v+2,/z=+p (andA=/z+2, v=+/-p).
(iii) a 2 + p, v.
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Some of the corresponding integrals may be found in the usual table handbooks
[8], [9]. We calculate others in recent papers [6a], [6b], [7a], [7b]. In case (i) F4 is
the product of two 2F1 functions in intermediate variables and recurrence relations
(2.4)-(2.6) then simply say that when h is a (strictly) positive integer the integral
I(h,/z, ,, p)--or the corresponding F4 function--is now a finite sum of such products
of 2F1 functions in the same variable. However, up to now, there is no simple close
formula for such integrals in the more general case; we have seen some peculiar cases
in previous publications [10].

Cases (ii) and (iii) are partially the same. In the following, we will drop the
configuration of indices h 2 + u,/x -/9 although the same technique probably works
in that case too. For the remaining possibilities, without any restriction, we may assume
A 2-/9, /x , and we get then precisely the integral ,,o o of definition (2.7). Here
we recall the corresponding factorization for F4"

F4 /x+l,/x+l-p,/x+l,/x+l;
(1-X)(1-Y)’ (1-X)(1-Y)

[(1-X)(1- Y)]"+-P:F(/x + l-p, l-p,/.t + 1; XY),

which yields for a o
p the final expression [6a]"

o / (ab)p’-I

(2.8a) o’ ---- l- C’ ($hJc)’-l/2 e’’-/ -’+1/’"t)’*"’-/

_l_j_ (ab)’-1
(2.8c)

"8" ’l’l" C
p’

c> a+b,

In the triangle configuration, oc is the true angle:

(2.9c) c2 a2 + b2- 2ab cos oc, la bl < c < a + b

and similar relations hold for the angles or hyperbolic angles relative to a and b. The, (respectively, P, Q) are the Legendre functions outside the cut ((2.8a) and
(2.8b)) (respectively, on the cut ((2.8c)) (see, for example, [11]). We must point out
that is not defined when tr+ - is a negative integer; however, a definition by
continuation is possible when r=-r is an integer too, using relation r=
(-)r(F(tr-r+ 1)/F(tr+r+ 1)). This will be useful later. Note that ei. is real
when z is real and greater than one, so that (2.8a) is pure imaginary and tl-’J,,J,,Jo,
is zero when c < la bl and this holds by analytic continuation when/x’-/9’ is a negative
integer. If c> a + b and /z’-p’ is a nonnegative integer, tl-’J,,J,,Jo, is also zero
because of the sin (/x’-p’)r factor. When/z’-p’ is a negative integer, the limit exists
but is not zero. This will be seen in more detail in the next section.

la-bl<c<a+b.
The hyperbolic angles , U relative to c when a, b, c do not form a triangle are

defined by

(2.9a) c2=a2+b2-2abchO if c<la-b],
(2.9b) c2 a2 + b2 + 2ab chU if c > a + b.

(sin o)o’-1/2( o-o’+l/2t ;r-o’+l/2 )--/’--1/2 \COS (Oc)- ’’/z’-1/2 ,COS Oc)
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k where the indices differ by integer number is rewrittenNow, any integral q p

as a finite sum of such Legendre functions using summation (2.6). We give here some
examples (Re is the real part).

(i) Sine transforms (or cosine transforms)

tq/2kJ,(at)J,/q(b) sinct dt= /cl2 Re (q lk/2).

(ii) For p ,-/z and k 0, we recover results calculated by another method in
[10] for A -2 and any real/z, v.

(iii) Bessel Jo (or Jl"" ") transforms

tl+q+2"j(at)J+q(bt)Jo(ct) dt= Re (q ).

(iv) Integrals with fractional indices such as that involving the Airy function J1/3,
for instance,

’t2"+lJ1/3(at)J1/3(bt)Jo(ct) dt Re (1/3 )

or

t2/3+qJ1/3(ct)J(at)J,+q(bt) Re (q 1/3).dt

2.3. Application to spherical Bessel functions. Let us come back to integrals (1.1).
We assume without any loss of generality that 13 -> 12 -> 11 and we set 12 11 + q. The

k obviously gives/ 1 +1/2 v 12 +1/2correspondence with integrals I(,L , v, p) or ,
p 13+, A=2-p+q+2k=n-, and

o t),(at)j(bt)j(ct) dt

t)J+/(bt)J+/((2.10) -3/2j,+l/(a ct) at

where Re denotes the real pa, provided

(2.11a) n + 1 + 1+ 13 is even,

(2.11b) n 2 +13-12+ l O.

The first condition is actually fulfilled in nuclear physics problems and is related
to the conservation of parity. Condition (2.11b) is automatically satisfied for n 2 or
n 1 as 1 1 1 and I + 1+ 13 has a given parity. For n 0, cases 11 0, 1 I
cannot be treated directly by this method. A derivation in the spirit of this.paper is
given in Appendix A. Note then, that the integral is a pure Fourier transform, and the
result when a, b, c do not form a triangle may be found in handbooks of tables (see,
for instance, [8]).

Now, when conditions (2.11) are fulfilled, using (2.6)-(2.8) with 2k=
n-2+13-1+l, q=l-l, we get the result as a sum of integrals (2.8) with ’, p’
half integers (’ 1 + m + 1 +, p’= 1 +- k-p q 1+). Note that 1 0,
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although it is not clear in this form. For the sake of completeness, we rewrite (2.10)
when using (2.6)"

fo" tnjl,(at)Jl2(bt)jt3(bt) dt

(2.12a) C (_);
F(/3+1/2-p)

=o F(/3+1/2- k)

Cq(-)" Re o o:/{+1/2 /+1/2
m=0

(2.12b) 13 12 >- I1, q 12-- 11, 2k n 2 + 13 12 + 11,

(2.12c) l 11 + m, l; 13 k-p q,

and

o =_ tl/2-Ji+l/(at)Ji+i/2(bt)Ji+l/2(ct)dtRe :i+1/2,

=0 if c<la-bl
1 1 (abel;+1/2,- b\--] (sin c p- COS qgc

(2.13) la-bl<c<a+b
=0 forc>a+bandl>-l

f 1 [ab l;+ 1/2 sh Uc q
(- -d-\-! F(I+I+I)F(I’3-1) li(chUc)

for c>a+b and l<l.
As 1, 1 are positive integers, (sin Oc) v3plil(cos tpc is a polynomial in cos Pc of

degree l + l whereas (shU)qli(ChU) is a polynomial in chU of degree l + l-1
when l > l (see Appendix B).

At this stage, some comments are in order.
(i) It is worth noting that there is a shorter way to get the integrals of type (2.10)

when a, b, and c do not obey the triangular inequalities.
Indeed if c > a + b

Re I n 11 +, 12+, 13 +

l ()"-’/2 () "+1/2 () t2+l/(2r) ( l’ + lz +13 + n + l)2 2

x F4( 1 +12 +13 + n ,1+12+n-132 3 3 a2 b2\
11+, 12+ 2’ c2’

and similar formulae for a > c+ b (c*-> a and 13 11) or b > a + c (c b and 13.’-> 12).
Then for n + 11 + 12 + 13 even, (l + 12 + n -/3)/2 is an integer and the integral vanishes
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if 11 + 12 + n- 13--> 2. In the other configuration (11 + 12 + n- 13 <- 0) the F4 function is a
polynomial of degree (/3- (11 + 12 + n))/2 =p in the variable a2/c2 and bE/c2 of the form

F4 a,-p, , T’,-,-- _, (a)k(--p)k .,
k=O =o (T)m(’)")k.-,,m!(k- m)!

where (fl)q F(fl + q)/F(fl) is the Pochammer symbol.
For instance, the case ll / 12 / n leads to a very simple formula since the F4

function reduces to one (for reasons of convergence 13 --< ll + 12 / 2):

f t3-(tl+12)jl(at)jt2(bt)Ji3(ct) dt

7/.
3/2 al, bl2

23+l+12-13 cl3+
r(/+1/2)

x c>a+b.
r(/, +-)r(/+)’

Note that this result is valid in the general case when (X +/z + v-p)/2 is an integer.
Thus we have the well-known formula:

1
r()

to-v-"-’J,(at)J(bt)Jp(ct) dt=- [c\"
c> a+b.

r(+ 1)r( + 1)

Unfortunately, this method does not apply when a, b, c obey the triangular inequalities
because, as emphasized before, the analytic continuation of the F4 function is unknown
in the general case.

(ii) The proof above holds when n >= 0 and is still valid when n < 0, provided
n--2+13--12+11>=0.

It is easy to show now that it also holds when n- 2 / 13-12 / 11 < 0, i.e., for any
negative integer n provided the convergence condition at 0 (n + ll + 12 / 13) >= 0 holds.

Let us show it briefly. We set m -In -n. As m _-< 11 + 12 / 13, we may split m into
three terms m ml / m2/ m3 such that mi is an integer and 0 -< mi _-< l. Now, using m
times the recurrence relation (2.1), we replace jl,/t m’ by a linear combination of m+ 1
spherical Bessel functions jr; (l l + mi, l + m 2,. , l m + 2, li m) and the
whole integrand is now a sum of products of spherical Bessel functions with no power
term. For example, when we use

jl(at) a jl(bt) b
-3 [j(at)+jo(at)], ---3 [j(bt)+jo(bt)],

j2(ct) C2 [j4(ct) + 2j2(ct),+jo(Ct)]
t2 L 35 21 15 _l

the integral

)jl( at)jl( bt)j2( ct)
t4

dt

is a sum of known integrals jti(at)j(bt)j;(ct) dt with 1, 1=0, 2; I=0, 2, 4.
To summarize, we have enlarged the conditions (1.3) that were necessary in the

proof of [2] to the case where a, b, and c, respectively (1, 12, and 13) do not obey the
triangular inequalities and where n is no longer restricted to be equal to two. The
result is given in terms of a linear combination of Legendre functions of one angle or
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pseudo-angle Pc, Uc, or instead of products of Legendre polynomials in tpa and
Pb in the triangular case (see Table 1). The method is general and applies also when
the index of the Bessel functions is noninteger.

TABLE
Expression of the integral with three spherical Bessel functions in terms of the Legendre functions when

n + 11 + 12 + 13 is even.

I= dttnjl,(at)Jl2(bt)Jl3(Ct), n<=2, n+ll+12+13>--O.

For n<0, we come back to integrals with n=0 using recurrence (2.1). For n=/l=0 and 12=13=I see

Appendix equations (A1)-(A2). In all other cases, if 13 -> 12 -> 11

()3/2

11+1/2I Re 13/1/2

where q 12-11, k (n-2+ 13 12 + 1)/2 are positive or zero integers,

and

la bl11+/2 /+1/2 =0 if C<
=0 ifc>a+b and l>=l

._(_)l (a_a_bc )l+’/2 ($hUc) l

r(l + l + )F(l l)-ab
(sin tpc)lpl;(cos Pc) if la-b[<c<a+b.

N.B. If la bl < c < a + b, c2 a2 + b2- 2ab cos qc if c > a + b, c2 a2 + b2 + 2ab chUc

l!(chUc) ifc>a+b andl<l

However, the method fails to work when n + 11 + 12 + 13 is odd. This case corresponds
to a case of factorization A v+ 2, /z =-p and the F4 function reduces to an F1
function [4] with a positive integer index that yields a logarithmic singularity while
for even parity this index is a negative integer and the corresponding F1 is thus a

polynomial. For these reasons, we give another method that is specific to the spherical
Bessel functions.

3. Second method (spherical Bessel functions only). The method holds for any
positive (or zero) integers ll, l, 13 (--(11 q- 12+ 13) <-/1 _--< 2) and any real positive para-
meters a, b, c and it is specific to half-integer Bessel functions. Contrary to the preceding
section, the final expression is not written as a sum of Legendre functions changing
when going from a triangle to a nontriangle configuration: it appears as a finite sum
of simple rational functions of a, b, c directly with a singularity that depends on the
parity of the quantity n + + 12 + 13.

Integrals

Io(3.1) Al,,12,13,n tS’,(at)j’2(bt)jl3(Ct) dt

may be calculated directly, using the expansion of the spherical Bessel functions.
Following 1 we write

e’ exp(iTr/2(l-m+l)) (l+m)! 1
(3.2) J’(P

2p m=O m (l-m)
+c.c.
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where c.c. denotes the complex conjugate. The integrand is rewritten as follows"

(3.3)

EEEEI-I (l’+m’)!
exp ( ir__

{m,} mi!(li--mi)! (li-mi+l)
eit(+a+b+c)

-3- 2-

(2a)ml+l(2b)"2+l(Ec)m3+1

0 _<- mi --< li, 1, 2, 3.

The integral

(3.4) e it(+/-a+/-b+c) n-3-m,-m2-m3 dt lim+ eit(+/-a+b+c)( + e) n-3-m’-m2-m3 dt
e--O

is divergent, but the whole sum (3.3) is convergent. Then, we first calculate

o eit(+a+b+e)( + e)n-a-m-mE-m3, which exists for e > 0 and retain only its finite part
when e- 0+, as it gives the only contribution to the final result. The basic integral

e ix

(3.5) Ip + e )-------7 dt

A +a + b + c, real, is a polynomial in 1/e plus a singular part

(i,)p--1
Ip

p l )-----
I =I (P 2! !-I( iA )P

(p-l)! e

and when e 0+, I1 has a logarithmic behavior

(3.6)
eXt

.Io
dt =-ln IAl-ln (ev" e) +-- sgn (A)+ O(e)

t+e

where y is the Euler constant and sgn (x)= x/Ixl is the sign function.
From (3.5)-(3.6), we get

(iA)P-1 [ i-n" ](3.7) finite part Ip (S i-ii ln[AI + In e v

___
sgn (A)

but In (e v) will not appear in the final result as it cancels together with the In e terms.
Using (3.7) and (3.3)-(3.4), we get all the integrals (3.1).

For example, we calculate integrals that escape the method of 2.3:

jo(at)jo(bt)jo(ct) dt=
2 sup (a, b, c)

outside the triangle

_-r A(x/-, x/, x/),
8abc

where A(v/, v/, x/) x2 + y2 + 2,2_ 2xy 2yz 2zx.

’jl (at)jl ()jo(ct) 0 c > a +bt dt if b

la-b]<c<a+b

96a2b2c [c-(a + b)]2{c2 + 2c(a + b)- 3(a b)2),

la-bl<c<a+b
7r inf (a, b)

c<la-bl3l [sup (a, b)]2’

to be checked with the result in [1].



INTEGRALS OF THREE BESSEL FUNCTIONS 1015

Both integrals are for n + 11 + 12 + 13 even but 13 + 11 --12 / n- 2 negative. Note that
a nonzero contribution appears outside the triangle. For odd n + / 12 + 13 we calculate

4abc tjo( at)jo( bt )jo( ct dt

=cln
c2-(a-b)2

c2-(a+b)2 +aln
aZ-(b-c)
a2-(b+c)

+bln
b2-(c-a)2

b2-(c+a)2

which is symmetrical in a, b, c.
More generally, using expansion (3.3), we get for integrals (3.1) the final result:

Al1213 (--)qTr[Fqlzl3n(a b, c) sgn (c+ a + b)
+(-- )lzFl,1213n(a -b, c) sgn (c+ a b)

+(-)l’Flll,,(--a, b, c)sgn (c-a + b)
+( rllZ2z3.(-a, -b, c) sgn (c- a- b)]

(3.8)

when 11 + 12 + 13 + n 2q is even (sgn (x) is again the sign function), and

Al,12t3n (-)q’+12[Ft,12t,,(a, b, c) In Ic+ a + b

+(-)tFll,(a, -b, c)lnlc+a-b[
(3.9)

+ (-)F123(-a, b, c) In Ic a + bl
+(-)q+t2Ft,l13,,(-a -b, +c) In Ic- (a + b)l]

when 11 / 12 / 13 / n- 2q’-1 is odd. The function F includes all the combinatory
coefficients of expansion (3.3)"

(__).,,+m+,,, I (/,+ m,)!
F,ll,,(a, b, c)= E (2a)m,+ ,,,2+1

,.,) 1(2b) (2c) "+1 ,=1 (1,-m,)! m,!

c + a + b) ml+m2+m3W2-n

(ml + m2+ m3+2- n)!

(3.10)

TABLE 2
Expression of the integrals with three spherical Besselfunctions in terms of rationalfunctions ofa, b, c and

of the singularity.

fo t"jt, at )Jl2 bt )Jl3 Ct dt

(-)qTr[ Fl, t213.(a, b, c) sgn c + a + b) + (--)l:Flttd3.(a, -b, c) sgn (c + a b)

+(-)qFllt13.(-a,b,c)sgn(c-a+b)+(-)q+lt: (-a,-b,c)sgn(c-a-b)]lll213n

if n + l + 12 + 13 2q

(-)q’+2[Fql213.(a, b, c) In Ic+ a + b

+ (-)t-Fllt3.(a, -b, c) In Ic + a b + (-)lFql13(a, b, c) In Ic a + b

+ (_)Z,+l : (-a,-b,c) lnlc-a-bl]lll213n

if n + l + 12 + 13 2q’-

with
X

sgn (x) Ix’
(_)m,+m2+m3 (li+mi)! (+a+b)m,+m2+m3+2-n

Fl,1213n(a b, c)= E m+l(2 i__IItin,) (2a) b)"2+(2c) m3+ (li-mi)!mit (m+m2+m3+2-n)!
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Results (3.8), (3.9) are not expressed in terms of special functions as in the previous
section. Nevertheless, they are not too difficult to handle for practical purposes, both
because functions Ft, t213, are simple rational functions and because the different
behavior when a, b, c form or do not form a triangle appears through a unique singular
multiplicative factor, i.e., the logarithmic term when n + 11 + 12 + 13 is odd, the sign
function when it is even.

Note once again that it is by no means necessary to assume that n + ll + 12 + 13 is
even, nor that n->0 as the proof holds for any integer n such that 2-n->0 and
n + 11 + 12 + 13 >= 0. The results of this section are summarized in Table 2.

Appendix A. Solution when n =0, 11 =0, 12 = 13 = 1. We rewrite, using integration
by parts,

I= t-3/2j/2(at)J(bt)J(ct dt (v=/+1/2)

as

2uI a t-1/2J3/2(at)J(bt)J(ct dt

+ t-/:J1/(at)[bJ_l(bt)J(ct)+ cJ(bt)J_(ct)] dt

-a Re0 /2(b, c, a)+ b Re .),-x/20(a, b, c)

+ c Re ,/--1/20(a, c, b).

Thus

(21+ 1)I =-a Re,+l/,_ /:(b, c, a)+b Re 72 +1/2(a, b, c)+Re c1172 +1/2(a, c, b)

where the dependence on parameters a, b, c is made explicit. Now, from (2.6) and
(2.13), we get easily the (known) result when a, b, c do not form a triangle [8]. We have

jo(at)jl(bt)ji(ct) dt=

(A1)
=0 if a>(b+c)

r _1 if c > a + b(2/+1)-1 " c

(2! + 1)- r 1- if b> a+c.

In the triangle case [a b[ < c < a + b, the result is a more complicated sum, namely

(2/+1)I (-aRe t+1/2 /2(b, c, a)

-" )me?_ b Re om+l/2/2(a, b, c)+boc
m=0
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(A2)

Now, from (2.6)

Re o 1 a. _1 pnl(cos qgc) sin,.+1/2 /2(a, b. c)= c

1 c. _1 p[l(cos (a) sinRe ,,+1/2 /2(b, c. a)
a

jo(at)j(bt)j(ct) dt=(21+ 1) -1
7r l--1sin oa p_l(cos o) + E -),.C’-I

Note the functional relation

3/2 +1/2(a, b, c)-= 0fl+1/2 /2(b, c, a)

where the sum of l- 1 Legendre polynomials in variable cos oc is expressed as a unique
Legendre polynomial in cos

Appendix B. The proof goes as follows:

’(Z) (Z2-1)"/2

dZ

with

l(Z) ( I(Z) ln
Z + IZ-1 + W/-I(Z)

where l(Z) is the usual Legendre polynomial and W/_I(Z) is a polynomial of degree
l-1 in Z. Thus

d d
for m >

dZ,.
W_,(Z)

dZ
, ,(Z) O,

which implies that there is no logarithmic term in 7’(Z). Furthermore,

dp

dZp (Z+l)} Vp_i(Z)
ln (Z-l)=(Z2-1)p

where Vp_I(Z is a polynomial of degree p-1. The Leibniz formula yields

1 Z2 ),.
dP,(Z) V,._p_l(Z)

(Z2 1),./2 ?(Z) 1 x
Z2 ),. CP..

p=o dZp 1 -P

=t
2 p=o dZp x V,._p_,(Z)CP"(Z2- 1)P

1= Y (Z2-1)p/2I[(Z) x Vm__p_,(Z)CP...
p=O

Since (Z--1)p/2(Z) is a polynomial of degree l+p, (Z2-1)m/2’(Z) is a
polynomial of degree + m- 1.
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INEQUALITIES USED BY DE BRANGES IN HIS PROOF

OF THE BIEBERBACH, ROBERTSON, AND MILIN CONJECTURES*

GEORGE GASPER

Abstract. A q-extension of the terminating form of Clausen’s 3F2 series representation for the
square of a 2FI (a, b; a + b + 1/2; z) series is derived. It is used to prove the nonnegativity of certain
basic hypergeometric series and to derive q-extensions of the inequalities and differential equations
de Branges used in his proof of the Bieberbach, Robertson, and Milin conjectures.

Key words. Clausen’s formula, basic hypergeometric series, nonnegative polynomials, inequal-
ities, q-difference equations, Bieberbach, Robertson, and Milin conjectures
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1. Introduction. In 1828 Clausen [15] used second- and third-order differential
equations to prove the formula

(1.1) 2F1 a+b-{-l/2 ;z 3F2 2a/2b, a+b+l/2 ;z Izl <1"

The above 2F1 and 3F are special cases of rFs hypergeometric series defined by

bl,"" bs ;z n!(bl :i’nn--O

where (a)n is the shifted factorial defined by
--1

() I] ( + ).
k--O

Almost 150 years later, Clausen’s formula was used in Askey and Gasper [4] to prove
that

(1.2) 3F2 [-n,n + c + 2, (, + 1)/2.1 x] ) 0, -1 < x < 1.+l,(.+a)/
when a > -2 and n 0, 1, 2,..., and then this inequality was used to prove the
positivity of certain important kernels involving sums of Jacobi polynomials (also see
Askey [3, Lecture 8] and the extensions in Gasper [18], [19]). In 1984 the special cases
c 2, 4, 6,... of (1.2) were used by de Branges [11], [12] to complete the last part of
his proof of the Milin [30, p. 55] conjecture that if f is in the class S of functions

f(z) z + cz + caza +...
that are analytic and univalent in the unit disk Izl < 1 and if

I(z)o : z,
Z

k----1

*Received by the editors May 2, 1988; accepted for publication June 21, 1988. This work was
supported in part by the National Science Foundation under grant DMS-8601901.

?Department of Mathematics, Northwestern University, Evanston, Illinois 60208.
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then

+ k
n- 1,2,....

k=l k--I

It was already known that Milin’s conjecture implied Robertson’s [33] conjecture that
if f is an odd function in S, then

(1.4) Z Ic2k-112 < n, n- 2,3,.’.,
k--1

and that Robertson’s conjecture implied Bieberbach’s [9] conjecture that if f is in S,
then

(1.5) Icnl < n, n 2, 3,....

Since rFs series are limit cases of rs basic hypergeometric series [25], [38]

[ al,... ,at 1 no (al,... ar;q)n nq(’)]l+s_rZn(1.6) rs bl,"’,bs ;q’z (,], ",bs;q)n[(-1)
where () n(n- 1)/2,

(al,a2,... ,ar;q)n (al;q)n(a2;q)n’"(ar;q)n

and (a; q)n is the q-shifted factorial defined by

--1

(a; q)n H (1 aqk),
k=0

it is natural to search for q-extensions (also called q-analogues and, in the terminology
of [10], quantum generalizations) of Clausen’s formula (1.1), the inequalities (1.2), and
of the other parts of de Branges’ proof of the Milin conjecture.

In this paper we will derive a q-extension of Clausen’s formula (1.1) for ter-
minating series and various q-extensions of the inequalities (1.2)and of some other
inequalities. In addition, since the existence of decreasing solutions of de Branges’
differential equations

t t
(1.7) an(t) +

played a crucial role in his proof of the Milin conjecture, we derive q-extensions of
(1.7) and show that they have solutions which have negative first q-derivatives. Some
prospects for further research are pointed out.

2. q-Extensions of Clausen’s formula (1.1). In 1940 Jackson [27] derived a
general theorem about solutions of qO equations, where qO is the operator exp ((log q)
x), which gives [28, p. 171] the product formula

q2a q2b q2a q2b(2.1) 2(])1 q2a+2b+l
;q2, Z 21 q2a+2b+l

;q2, qz

[q2a,q2b, qa+b,_qa+b ]43 q2a+2b, qa+b+l/2, _qa+b+l/2 ;q,z IZl < 1, Iql < 1.
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Since

(2.2) lim
(q;

q (1 -’q)n (a)n, lim(-qa;ql q)n 2n,

Clausen’s formula (1.1) is a limit case of Jackson’s product formula (2.1). However,
unlike in (1.1), the left side of (2.1) is not a square and so (2.1) cannot be used to
write sums of basic hypergeometric series as sums of squares of basic hypergeometric
series as was done in [4], [18] for hypergeometric series to prove the nonnegativity of
certain sums of hypergeometric series. Also, by considering negative integer values of
a, we find that the series on the right side of (2.1) can assume negative values. It is
natural to consider replacing the left side of (1.1) by

(2.3) {21[ qa,qb z]}
5

qa+b+l/2 q’

but, unfortunately, this square of a u series does not equal a basic hypergeometric
series of the type in (1.6) as can be easily seen by computing the coefficient of z2

in its power series expansion. Thus, in order to find a basic hypergeometric series
which is the square of a basic hypergeometric series we are forced to look for another
q-extension of (1.1).

One way to proceed is to recall that in [4] Clausen’s formula was used to write
(1.2) as a sum of squares of ultraspherical polynomials

(2.4) Cn(x)=(2)n’.F [-n,n + 2.X 1-
+1/2 ;---

(A)neinO2F [ -n,A e_2ioJn! 1-n-A; x=cosO,

and to recall that in his work [34]-[36] during the 1890’s on the now famous Rogers-
Ramanujan identities, Rogers [36] considered the q-extension

[ q-n,/3 -o](/; q)n
ein02 ql_nl ;q, ql-ae x cos0,(2.5) Cn (x;

of (2.4). Askey and Ismail [6] showed that these polynomials were orthogonal on
(-1, 1) with respect to an absolutely continuous weight function and called them
the continuous q-ultraspherical polynomials to distinguish them from the (discrete)
q-ultraspherical polynomials

(q’; q)n [ q-n, qn+2"x(2.6) Can(x;q)
(q;q)n 21 q+l/2 ;q, qx

which are orthogonal [2, (3.8)] with respect to a discrete measure with point
masses at x qk, k 0, 1, 2,.... They also showed that

(2.7) Ck (x) limC (x; qa q)
q]’l

and

(2.S) C (cos 0; 11 q) ,/__(q; q)n’3 ql/2, _tq/,
_

q’ q
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In 1895 Rogers [36, p. 29] employed an induction argument to prove the lineariza-
tion formula

min(m,n) q)m+n-2k(; q)m-k(fl; q)n-k(2.9) C,n(x; q)Cn(x; q) E
k=O

(q; q)k (q; q)m-a(q; q)n-k

(/; q)k(/; q)m+n-k(1 --/3qm+n-2k) Cm+n-k(x; /3 q)"
(/q; q)m+n-k(2; q)m+n-k(1 )

A simple computational proof of (2.9) was given by the author in [20]. For additional
proofs, see Bressoud [14] and aahman [31]. Note that if we use (2.5) or (2.8) on
the right side of (2.9), we get a double sum that does not reduce to a single sum
when n m, even after changing the order of summation and trying to apply known
summation formulas. This is also true when (2.8) is replaced by the formulas obtained
by applying Sears’ transformation formula [37, (8.3)]

(2.10) 43 [ a, b, c, q-n ] (de/ab, df/ab; q)n ( a__bd )
n

[ d/a, d/b, c, q-n ]d,e,f ;q’q :f;q)n 4(/)3 d, de/ab, df/ab ;q’q

where def = abcq1-n and n 0, 1, 2,..., to the 43 series in (2.8).
The right side of (2.8) suggests that we should still look at expansions involving

ei and e-i among the parameters. Since the polynomials on the right side of (2.9)
are of even degree in x when n m, we could try to use the expansion [7, p. 41]

(2.11) (fl:; q)2n(-q, _ql/2; q)n q-n/2Cn(cos ;/ q)
(q; q)n(-,-/ql/; q)n

q-n, flqn, ql/2e2io ql/2e-2io
43 q/, _ql/2, _q ;q,q]

in which the 43 series terminates after n+ 1 terms, even though C2n (x; fl]q) is a poly-
nomial of degree 2n in x. But, by using (2.11) in the right side of (2.9) and changing
the order of summation we get a sum of terminating very well poised s7 series that
are not balanced and hence not summable by Jackson’s formula [38, (3.3.1.1)].

However, if we apply (2.10) to (2.11) to get

(2.12)
n n 20 20q)2n q- flq /3e ,fie-C2n(cosO;/3 q) ’n(q;q)2n 43 /3q/2,_/3ql/2,_/3 ;q,q

and use (2.12) in the right side of (2.9) we obtain

(2.13)

E (fl’ f; q)n-c(f; q)(f2; ql:n-k(1 q2n-2k)

k=0
(q’ q; q)n-k(q; q)k(q; q)n-k(1 )

n k 2 2n-k (qk-n, flq ,fie ,fie- ;q)j-n (q,-Z;.i/ / qJ
j=o

2,0 20(f12; q)2n(fl, fl; q)n (q-n, flqn, fie fie- ;q)j

j=O

_q_,-/q-, --/q-,,q-, q-
"6 -l/q-n, _-l/q-n, -ql-n, -lql-n-j, -1q1-



q-EXTENSIONS OF CLAUSEN’S FORMULA 1023

in which, fortunately, the 65 series is summable by the summation formula [38,
(3.3.1.4)]

[ a, qal/9",-qal/:,b,c,q-n aqn+i](2.14) 65 al/2 ,_al/: ,aq/b,aq/c,aqn+ ;q’
bc

(ca, ca/be; q)n
(aq/b, aq/c; q)n

n O, 1, 2,..

where four misprints have been corrected. Using (2.14) to sum the 65 series in (2.13)
gives

[ q-n, 2qn, , e2O,e-O ](2.15) {C,(cosO; q)} ( ;q)n -n 4(q, q; q)n 5 2, q/:, _ql/:,

_
q, q

and hence, by (2.8), we have the following q-extension of the terminating case of
Clausen’s formula (1.1)
(2.16)

a3
q-n, ,62qn, l/:eiO l/2e-iO 2 2qn 3e2iO

ql/Z, _ql/2, _/ ;q, q 5a 2, q/:, _ql/2,

_
q, q

where n 0, 1, 2,.... This formula was derived independently by Mizan Rahman. He
and the author independently observed that it can be derived by using (2.8) inside
the Rahman and Verma [32, (1.20)] integral representation for the product of two
continuous q-ultraspherical polynomials and then integrating termwise to get (2.15)
and hence (2.16).

By setting a l/ei, b /e-i and z qn, formula (2.16) can be written
in the form
(2.17)

43 q, q 54 abq/U q, q

which holds when the series on both sides terminate. For, by (2.16), (2.17) holds when
abz or ab/z is a negative integer power of q and, if a or b is a negative integer power
of q, then both sides of (2.17) are rational functions of z which are equal for z abqn,
n 0, 1, 2,..., and hence must be equal for all (complex) values of z. Notice that
by replacing a, b, z in (2.17) by qa, qb, eiO with x -cosO and letting q T 1, we get
Clausen’s formula (1.1) with z (1- x)/2 for the terminating case when a or b is a
negative integer.

To see that (2.17) does not hold in the nonterminating case, it suffices to observe
that if, e.g., (2.17) held for b 0, then it would follow fromthe q-binomial theorem
[38, (3.2.2.11)] that ((aq;q),x,): (a:q;q)o,:,(q;q),x,, which is clearly false for, e.g.,
a q-/:. A nonterminating q-extension of (1.1) containing the square of an 87.
series and the sum of two 54 series will be given in [26].

Note that, in addition to the formulas that follow when (2.10) is applied to the
43 in (2.17), we can apply the quadratic transformation formula [7, (3.2)]

[ a:,b:q,c,d 1 [ a2,b:q,c,d: ](2.18) 43 abq, -abq, -cd; q’ q 43 a:b:q, -cd, -cdq
q:’ q:

which holds when both series terminate, to obtain that (2.17) is equivalent to the
formula

a2, b, abz, ab/z q:(2.19) 43 a2b2q, -ab, -abq
q2 54 a2b, abq/, -abq/, -ab q’ q
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when both series terminate. Also, if we replace a, b, z, q in (2.17) by their squares
and apply (2.18), we obtain that
(.o)

{ [ a2,b2,abz, ab/z ]}2 [43 abqZ/2 _abqZ/2, _a2b2 q, q 54 ad’adbabd’a2b2q,a2b2’ a2b2z2’_a2b2q ,a2b2/z2_a2b2 q2 q2

when both series terminate.
Another proof of (2.17) can be given by observing that from the product formulas

(2.8) or (2.10) in Gasper and Rahman [24] it follows that if a, b, abz, or ab/z is a
negative integer power of q, then

(.)

-ab, abq/, -abq/
q’

(az, /z; q)+(a, ,-a,-; q)
(-a,;i:::-ql/;q)sO

(a, b,-a,-b; q)s 1 + qr-s
(q, -1, abq/,-abq/; q)s 1 + qs

qr+s

(abz, ab/z, a,-a, b, -b; q)k
qk(q,-i:::7:,-a;q)

ko
k (q-k.--q-k’a, --a, b, -b, a-b-lql/u-k -a-lb-ql/2-k; q)s 1 + q2s-kE (q,-q,a-q-,:qZ,q:,:q,aq,:n;q) 1+ q-s=O s

(abz, ab/z, a, b, -a, -b; q)
qk

ko

q-, -q-, a, b, a-b-q- ]_q-, a-q-, b-q-,abq q, q

[ a, b, ab, abz, ab/z ]= 54 a2b, abq/, abq/, -ab
q’ q

since it can be shown that

(2.22)
5(4 [q-2k, _q2-k, a2, b2, a-2b-2q-2k q-k, a-2q2-2k, b-2q2-2k, a2b2q q2,

(-1 a2 b2 ab, -ab; q)k
2k 0,1, ,...

(a2b2, a,-a, b,-b; q)k

by using the case d eq/2 (aq)l/2 of Jackson’s summation formula [38, (3.3.1.1)].
A slightly more direct proof of (2.17) can be given by starting with the expansion [24,
(2.2)] used to derive [24, (2.8)].

3. q-Extensions of (1.2). At the last step in his proof of the Milin conjecture,
de Branges [12] used the fact that for any positive integer r the functions
(3.1)

r(+r+) foo ]a.(t) = r(2n + 2)r(r + 1 n) 3F2
n r, n + r + 2, n + 1/2

2n + 1,n+ 3/2 ;s- s-n-lds
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when n 1,..., r and an(t) 0 when n > r, satisfy the differential equations (1.7)
and

(3.2) .r(. + + 2)t---, [n-r,n+r+2,n+l/2]a’(t)) -F(2n + 2)F(r + 1 n))F 2n + 1, n + 3/2 ;t-1 -< 0

for t >_ 1 when n 1,... r. In [13], to estimate the coefficients of powers of unbounded
Riemann mapping functions, he used the fact that the more general functions

(3.3)
r( + 1)r(n + r + 2 + 2A + 1)4-nt2

r( + + 1)r(n + 2)r(n + + A + 1)r(r + 1 n)

aF n-r,n+r+2u+2,+l,n+u+l/2
2n + 2u + 1, n + u + , + 1

-1 -’-’-d

when n 1,... r and an (t) 0 when n > r, satisfy the differential equations

(3.4)
n ta(t) n + 2v + 1 ta’n+ (t)

, + ----; ,, (t)+---- ,,+ (t)
n+2 n+ 1 n+ 1

and

(3.)
cl
[t-a,(t)]dt

r(n + 1)r(n + r + 2 + 2 + 1)4-n
r(n + + 1)r(n + 2)r(n + + + 1)r(r + 1 n)

3F: [n r,n + r + 2v + 2$ + l,n + v + l/2 ]2n+2v+ 1, n+v+,+ 1
;t-1 <0

for t _> 1 when v > -1/2, _> 0, and n 1,...,r.
Since (3.5) reduces to (3.2) when v + 1/2 0, in addition to deriving q-

extensions of (1.2) we will derive q-extensions of the inequalities

[ -n,n + a,b l-x] >0, _l < x < 1(3.6) 3F2 2b, (a + 1)/2; 2

where a >_ 2b > -1 and n 0, 1,..., which imply the inequalities in (3.5) and reduce
to (1.2) when a c + 2 and b (c + 1)/2.

Let 0 < q < 1, n 0, 1, 2,..., and let a, b, c, , /, 5, 9 be real parameters. Then

q2b, q(a+l)/2,_q.,_q ;q,q 3F2 2b, (a + 1)/2; 2
x COS0,

and so, in order to derive a q-extension of (3.6), it suffices to find values of a, , -,
for which the 65 series in (3.7) are nonnegative when a >_ 2b > -1.

Observe that from (2.16)
q-n, qn+2b qb, qbeiO qbe-iO ](3.8) 54 q2b, qb+l/,_qb+l/2,_qb ;q,q

4a qb+l/2,_qb+l/, ;q,q _> 0,

which shows that the 54 series in (3.7) are nonnegative when a 2b, a 3 5 b,
and /= b + 1/2. In view of the "sums of squares" method [18, 8], we will consider
sums of the nonnegative 54 series in (3.8).
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The author showed in [18, 8] that besides the sum of squares of ultraspherical
polynomials used in [4, (1.16)] to prove (1.2) we could also use the sum of squares in
[18, (8.17)] and observed that these two expansions are special cases of the expansion
[lS, (S.lS)]

(3.9)

F [-,+"+ ,(+ 1)/ ]( + 1, (c 4- 3)/3 ;(1 x)(1 y)

!( + +) () (1 y)
i( ) () (i +. + 1)y=o Y

( + ).(j + + )_. CC+1)/2 x C3"A-(cA’2)/2 }2)-._. ()

which can be derived from the Fields and Wimp [17] expansion formula

(3.10)

where we used the contracted notation of representing al, a2,... ar by aR, (al)y(a2)y
(ar)y by (aR)j, and j+al,j+a,... ,j+ar by jTaR. Recently the author derived

a bibasic extension [22, (4.5)] of (3.10) which contained Verma’s [40] q-analogues and
gave the general expansion [22, (4.7)]

(3.11)

r+t(s+u bs du q’ xw

:-(CT(,qeK,a,’q+i/a;q), ()’
y=o ’da’ fM’ /qY;q)J

[(--1)q(llu+m-t-k

t++4u+m+a [2qJ/’ qj+i,_qj+l,-1, eqJ, eKqJ

"++++ 2q+/e, q-/e, bs, e
q’ wq

q, xqj(u+m-t-k)

where we used a contracted notation analogous to that used in (3.10). Formulas (3.10)
and (3.11) hold when the series terminate and when the parameters and variables are
such that the series converge absolutely.
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In this section we will use the following a --. o limit case of the m 2, fl
f2 -0 case of (3.11)

r+ts+u bs du q’ xw

eK; q)i x[(-1)’q()]+a--(q(,"q;’q))
j=o

(3.12) [ cTqJ eKqj -k)]t+kCu+l
"lq2i+, dvqi

;q, xqi(U+3-t

r-i-2s-i-k [ q-i, ffql, aR ]bs,eg
;q, wq

which is equivalent to [39, (3.1)]. Set

/- q2b a qb a2 qbeiO a3 qbe-iO b q2b b2 _qb

el q-n, C2 qn+a, d q(a+l)/2 -d2, el qb+l/2 --e2, x q, w 1,
in the r 3, s t u k 2 case of (3.12) to obtain

[ q-n, qn+a, qb, qbe’O, qbe-’O ]54 q2b, q(a+l)/2,_q(a+l)/2,_qb ;q’q

Z (q-n, qn+a, qb+I/2, _qb+/2; q)l

i=0
(, -(’+-Y)/I qq(7i)/-: qi+a-----b" q)---1 (--1

(3.13) .a3[qi-n’ql+n+a’qi+b+l/2’-ql+b+l/2 ]q2l+2b+l,ql+(a+l)/2, _ql+(a+l)/2 q’q

q-i, ql+b, qb, qbeiO qbe-iO ]54 q2b, qb+l/2, _qb+l/2, _qb
q’ q

By Andrews’ [1, Thm. 1] q-analogue of Watson’s 3F summation formula

[ a,b,c’/’,--ell2 ] an/(aq, bq, cq/a, cq/b;q2)oo(3.14) a3 c, (abq)I/, -(abq)/ q’ q
(q, abq, cq, cq/ab; q2)

where b q-n and n is a nonnegative integer, the 43 series in (3.13) equals zero
when n- j is odd and equals

(q, qa-2b; q2)k q2k(n-2k+b+l/2)
(q-a++,q-a++;q)

when n- j 2k and k 0, 1,.... Hence, from (3.13) and (3.8),
q-n qn+a, qb qbeiO qbe-iO

54 q2b, q(a+l)/2, _q(a+l)/2, _qb q’ q

[(] (_l)n(q-n, an+a, qb+l/2, _qb+l/2; q)n-2k
CAW1)/2 (aT1)/2 n 2k-l-2b

=o (q’ q -q q q)n-
(3.15) (q, qa-b;q2)k q2k(n-2k+b+1/2)+(n-2k)(n-2k+ 1)/2

(q2n-4k+a+l, qn-4k+b+; q)k

q2k-n, qn-k+2b, qb/2eiO/ qb/e-iO/2
43 qb+l/2, _qb+l/2, _qb

q’ q
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Since (-1)n(q-n; q)n-k >_ O, it is clear from (3.15) that

q-n, qn+a, qb, qbeiO qbe-iO ](3.16) 5a q:b,q(a+X)/2,_q(a+X)/:,_qb ;q,q >-- 0

when a > 2b > -1 and 0 < q < 1, which gives a q-extension of (3.6) and henee of the
inequalities (1.2) used by de Branges in his proof of the Bieberbaeh, Robertson, and
Milin conjectures.

Another q-extension of (3.6) can be derived by observing that from (3.12) we have

q-n, qn+a, qb, _qb, qa/2eiO ql/2 ae-iO ](3.17) 65 q2b,q(a+X)/2,_q(a+X)/2,_qa/2,_qa/2 ;q’q
J

n (q-n, qn+a, qa/2, qa/2ea qa/2e-O; q) 1)

[ qj-n, qn+j+a, qj+a/2, qj+a/2eiO qj+a/2e-iO ]
54 q2j+a, qj+(a+l)/2, _qj+(a+l)/2, _qj+a/2 q’ q

43
q-i, qj+a-1, qb, _qb

q2b, qa/2, _qa/2 q’ q

(q-n, qn+a, qa/2, qa/2eio qa/2e-io; q)2k

k=O (q’ q(a])/: :q(a])/2, _q]’:q2k+: q%2k
(q, qa-2b;q2)k

q2k+k+2kbqa q2b+ q2 k
2

4a q+(+)/,_q+(+)/,_q+/
;q,q

by (a.14) and (a.a). Hence,

[ q-n, qn+a, qb, --qb, qa/ZeiO, qa/2e-iO ](3.18) q,q(a+X)/Z,_q(a+X)/,_qa/,_qa/ ;q’q 0

when a 2b > -1 and 0 < q < 1, which is a q-extension of (3.6) that is different from
(3.16). The expansions (8.12) and (8.17) in [18] are special cases of the q T 1 limit
cases of (3.15) and (3.17), respectively, when (2.15) and [18, (8.10)] are used.

A q-extension of (3.9) can be derived by using (3.12) and (2.15) o obtain he
expansion
(3.1)

[ q-n, qn+a+2, q(a+)/2, q(a+i)/eZiO, q(a+l)/2e-2io q(a+)/eir q(a+2)/2e-2ir
76 qa+, q(a+3)/2, _q(a+3)/2, _q(a+2)/2, _q(a+2)/2,

n

(q-n,qn+a+z,(a+)/’-q(a+)/Z,.(a+3)/q(a+)/eir’-;(a+) q(a+)/Ze--2ir;q) q) (-- 1)JqJ+()
j=0

{ (q; q)j(q; q)n-j qX/ (j+a+3/)

(eos O; q(+)/ q)Cn_(eosr; q+(+)/ q)

;q,q]
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which is clearly nonnegative for real t and r when > -2. The case c -2 can be
handled as a limit case of (qa+2; q)n times the 76 series in (3.19); see [4, p. 720] for
the hypergeometric case.

Additional nonnegative sums and, in particular, the nonnegativity of q-extensions
of the sums of Jacobi polynomials in [18, (8.19), (8.20), (8.22)] will be considered in

4. q-Extensions of de Branges’ differential equations. From (3.3) and the
identity (a)n r(n + a)/r(a) it follows that

(4.1)
n!(2v + 2 + 1)n+r4-nt-nan(t)

4F3 [n r,n + r + 2v + 2A + l,n + v + l/2,n + 2v ]2n + 2 + 1, n + + + 1,n + 2 + 1
;t-

for n 1,..., r with c F(2v + 2 + 1)/[F(v + 1)F(2v + 1)F(v + A + 1)]. In view of
the limit (3.7), we set 2/(1 x) and consider the functions

(4.2) rn(z) e-en 1"
Then de Branges’ differential equation (.4) is equivalent

(4.3) n 1 x n + 2u + 1 1 x
r+ (x)

n + 2 zn (x) + n+2 z(x) n+ 1 zn+ (x) n+ 1

which can be rewritten in the form
d n+2p

(4.4) [(1 x)-nrn(x)]
n + 1

(1 x)-n-- dd [(1 x)n++rn+ (x)].

Let 0 < q < 1, x cos0 and let a, a, A, , 0 be real numbers. A q-extension of
(1 x)a can be obtained by extending the definition of the q-shifted factorial to

(a;

and obseing that, by the q-binomial theorem [38, (3.2.2.11)],

(4.6) lim 2-(qae qae-; q)a (1 x).
ql

Hence, if we define

with

(q;q)n(qU’+)’+l;q)n+r4-n
(4.8) An,r- (q;q)r_n(qu+l,q,+l,qU++i;q)n,
and An,r 0 when n > r, then

(4.9) lira un (x) Tn (x).
q---

n: 1,... ,r,
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To obtain a q-extension of differentiation that plays the same role for (asis,
ae-iS;q)n as d/dx does for xn, Askey and Wilson [7, p. 33] defined the operators

and Dq by

(4.10) qf(eis) f(ql/2eis)- f(q-1/2eis),

(4.11) Dqh(x)- 5qh(x)
5qx

where x- (eis -{-e-is)/2--cos , and observed that

(4.12) 5q(aeis, as-iS; q)n aq-1/2(1 qn)(eis e-iS)(aql/2eis, aqi/:e-iS; q)n-1

and

(4.13)
q n--1 a2q2k)I-Ik=0 (1 2axqk + n-2-2a(1 qn) H (1 2axqk+/ + aUq:k+l).

1-q
k=O

They noted that when q 1 formula (4.13) becomes

(4.14)
d

)n- 2an(1 2ax/a2)n-1d- (1 2ax + a

and more generally,

(4.15) lim Dqh(x)= lim
5qh(x) dr(x)

q--. q--. qx dx

To derive a q-extension of (4.4) and the inequalities (3.5), first observe that (4.12)
extends to

(4.16) 5q(aeiS, ae-iS; q), aq-1/:(1 qa)(eis e-iS)(aql/2eiS, aql/2e-iS; q),_l

which gives

(4.17) Dq(aeiS, as_iS; q)a -2a(1 qO)
(aq1/2eis, aql/2e-is; q)a-1.

1-q

Hence, corresponding to the inequality (3.5), we have that

(4.18) Dq[(ql-r’eis, ql-r’e-is; q)2,un(x)]
r--n (qn-r, qn+r+2v+2A+l, qn+v+l/2, qn+2u; q)kqk

k--O

Dq[(q1-r’eis, ql-’e-is; q)n+k+2,]
2(1 qn+:,) ql-UAn,r(q3/2-Uei, q3/2-Ue-i; q)n+2u-1

1-q

qn-r qn+r+2u+2+l qn+u+l/2 qn+u+l/2eio qn+U+1/2e-io
"54 q2n+2u+l qn+u++l _qn+u++l _qn+u+l/2 ;q,q <_ 0

by (3.16), when u > 1/2, A >_ 0 and n 1,... r. This explains why we chose the 65
in (4.7).
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To derive a q-extension of (4.4) notice that, corresponding to the left side of (4.4),
we have

(4.19)

Dq[(qn+u+lei,qn+u+le-i; q)-nun(x)] An,r

( [qn-r qn+r+u+2X+ qn+2, ])Dq 6b5 q2n+2v+l, qn+v+A+l qn+2v+l _qn+v+.+ _qn+v+l/2 ;q’ q

(1 qn-r)(1 qn+r+2u+2a+)(1 qn+t’+/)(1 qn+2u)(-2)qn+u+
(1 q)(1 q:n+2u+x)(1 qn+u+)’+x)(1 qn+2u+x)(1 + qn+u+’X+l)(1 + qn+,+l/2)

.65[qn+l-r, qn+r+2v+2+2, qn+v+3/2,qn+2u+X,qn+u+3/2eiO,qn++3/2e-iO ]q2n+2v+2 qn+v+)+2 qn+2v+2, _qn+v++2 _qn+v+3/2 q’ q

Similarly,

(qn+,+3/eiO, qn+,+3/e-iO q)-n-u- Dq (q-n-ueiO, q-n-ue-iO q)n+2u+lUn+ (X)]
2(1 qn++)

q-n-uAn+l,r
1-q

qn+l-r qn+r+2v+2+2 qn+v+3/2 qn+2v+l qn+v+3/2eiO qn+v+3/2e-iO ]65 q2n+2v+2 qn+v+A+2 qn+2v+2 _qn+v+A+2 _qn+v+3/2 q’ q

which, combined with (4.19), gives the following q-extension of (4.4)

(4.21) Dq[(qn+u+Xe, qn+u+le-i; q)-nZtn(X)]
1 qn+2u

(qn+u+3/2eio u+3/2 -io:
1 qn+l

Bn,r qn+ e ;q)-2n-2v-1

Dq[(q-n-uei,q-n-ue-i; q)n+2u+xun+x(x)]

with

16q3n-r+2+2
(4.22) Bn,r (1 + qn+"++x)(1 + qn+"+x)(1 + qn+,+x/)"

Clearly, Bn,r 1 and (4.21) tends to (4.4) as q 1; but, unlike (4.4), the
difference equation (4.21) depends on r. However, if we consider following positive
multiple of un

42nq3n2/2+n(2v-}- 1/2--r)
(4.23) Un(x) (_qu+,+l, _qu+l, _qU+X/2, _qu+l/2; q)n Un(X),

we find that it satisfies the difference equation

(4.24) Dq[(qn+u+1i0, qn+u+le-iO; q)-nUn (x)]
1 qn+2,

(qn+u+3/2ei, qn+U+3/:e--iO; q)--2n--2u--1
1 qn+l
Dq[(q-n-’e, q-n-’e-i; q)n+2u+xUn+l (x)],

which is independent of r.
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Similarly, setting

(4.25)

Vn(x) Cn,r(q++le, q++le-i; q)n

qn-r qn+r+2+2,+l qn+,+l/2 1/2qn+2, qn+,+)+lei qn+++le-iqn++
"76 q2n+2+l qn+++l _qn+++l qn+2+l _qn+++l/2 _qn+++l/2
with

(q; q)n(q2"+2+l q)n+rq3n/2+n(2+/2-r)
Cn,r (q; q)r_n(q+X q2,+, q++, _q,+, _q++, _q+X+X/2, _q++x/2; q)n

;q,q]

when n 1,... r and Cn,r 0 when n > r, we obtain that Vn (z) --* vn (z) as q 1,
Vn(x) satisfies the following q-extension of (4.4)
(4.27) Dq[(qn+++lei,qn+’++Xe-i;q)-nVn(x)]

1 qn+2,
1 qn+l

(qn+++3/2ei’ qn++x+3/2e-i; q)-2n-2-x

Dq[(q-n-’+Xei, q-n-"+e-ia; q)n+u+Vn+x (x)]
and, by (3.1S),

Dq[(ql+X-’eiO q+X-e-i; q):,Vn(x)] 2(1 qn+,,)
1 -q

ql+’X-’Cn’r

(q+3/2-ei, q’X+3/2-e-i; q)n+2,-1

qn+r+,+)+l,qn+u+i/2, _qn+u+l/,qn+u+)+i/eiO,qn+,+)+l/e-iO ]65 q2n+2,+X, qn++.X+, _qn++.X+, _qn+,++/2, _qn+,+)+/2 q’ q <- 0
when , > -1/2, A > 0 and n 1,...,r.

The q-extensions of de Branges’ inequalities and differential equations contained
in this paper suggest that it might be possible to extend some of the other parts of his
proof of the Bieberbach, Robertson, and Milin conjectures. Besides (1.2) and (1.7),
de Branges also used the fact that if F(t, z) is a LSwner family of Riemann mapping
functions, then

0 0
(4.29) t- F(t, z) (t, z)Z-z F(t, z),
where la(t, z) is a power series with constant coefficient equal to 1,which represents a
function with positive real part in the unit disk for every index t, and the coefficients
of (t, z) are measurable functions of t. q-Extensions of the LSwner [29] theory and of
the coefficient estimates for Riemann mapping functions in [12] and [13, Thms. 1-4]
are still open. In view of the definition of Dq in (4.11), a prospect for a q-extension
of (4.29) is the equation

O
G(z, z)(4.30) (1 x)DqG(x, z) (x, z)Z-z

or this equation with the partial derivative replaced by a difference operator. For an
extremal function that is a q-extension of the Koebe function, the 1Fo series represen-
tation for the Koebe function

(4.31) k(z) (1 z) 2
z Fo ;z
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suggests that a natural choice is the "q-Koebe" function

(4.32) kq(Z) Z 10 ;q,z
(1 z)(1 qz)"

Note that, just as the Koebe function is starlike, kq(Z) is a starlike function when
-1 < q < 1, which can be shown by using [16, Thm. 2.10] and the positivity of the
Poisson kernel for Fourier series.
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THE EXISTENCE AND BEHAVIOR OF VISCOUS STRUCTURE
FOR PLANE DETONATION WAVES*

DAVID H. WAGNERt

Abstract. A necessary condition and a sufficient condition are proved for the existence of
steady plane wave solutions to the Navier-Stokes equations for a reacting gas. These solutions
represent plane detonation waves, and converge to ZND detonation waves as the viscosity, heat
conductivity, and species diffusion rates tend to zero. It is assumed that the Prandtl number is 1/4,
but arbitrary Lewis numbers are permitted. No assumption is made concerning the activation energy.

It is shown that the stagnation enthalpy and the entropy flux are always monotone for such
solutions, and that the mass density and pressure are nearly always not monotone, as predicted by
the ZND theory.

In certain parameter ranges, typically that of large diffusion, many of these waves have the
appearance of a weak detonation followed by an inert shock wave. This confirms a phenomenon
observed in numerical calculations and in a model system by Colella, Majda, and Roytburd.

Key words, shock waves, detonation waves, combustion
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1. Introduction. Detonation waves are compressive, exothermically reacting
shock waves. One of the curiosities of combustion theory is that there also exist
expansive "shock waves" known as deagration waves, which will not be discussed
in this paper. We will give a mathematically rigorous, but simple, discussion of the
viscous structure of plane detonation waves.

We begin with a brief discussion of the inviscid theory, known as the Chapman-
Jouguet (CJ) theory. By means of a Galilean transformation we may reduce the
problem to one of studying steady plane waves. If we assume that the thickness of
the reaction zone is zero, if we neglect all diffusion effects such as viscosity, heat
conduction, and diffusion of species, and any external forces such as gravity, and if
we look for steady plane waves, then we obtain the following system of differential
equations:

(1.1)

(pu) o,
(b) [pu2 + p(p, T)] x O,

(c) ((p(u2/2 + e(p, T, r)) + p(p, T))u)
(d) (puY), -pu(Y_)6(x xo).

Here x is a space coordinate in the direction normal to the wave, x0 is the location of
the wave, and p, T, u, p, e, and Y are the mass density, temperature, x component of
velocity, pressure, specific internal energy, and mass fraction of the reactant, respec-
tively. Y_ is the unburned value of Y. As is standard practice, we have represented the
extremely complicated chemical reaction by a simplified, one-step chemistry: reactant

product. From (1.1a) we see that the mass flux, pu, has a constant value; we denote
this value by m. The fluxes of momentum (1.1b) and energy (1.1c) are also constant;
from this fact we obtain the Rankine-Hugoniot conditions for a shock wave, which

*Received by the editors January 29, 1988; accepted for publication January 17, 1989.
tDepartment of Mathematics, University of Houston, Houston, Texas 77204-3476. This research

was supported by National Science Foundation grant DMS-8601917 and Air Force Office of Scientific
Research grant AFOSR 86-0218.

1035



1036 DAVID H. WAGNER

in the inviscid theory is represented by a jump discontinuity in the unknowns. The
difference between inert gas dynamics, and the exothermic reactive theory discussed
here, lies in the fact that Y varies from a positive value on the unburned side of the
wave, which we take to lie on the left side, to a zero value on the burned, or right
side. Because the internal energy e depends on Y, the change in Y causes the classical
Hugoniot curve (the solution locus of (1.1c)) of gas dynamics to move. As a conse-
quence, we find that, for a given value of m, a given shock state on the left may now
be connected by a shock wave to two possible states on the right, except for certain
critical values of m for which there is a unique burned state- the Chapman-Jouguet
point- see Fig. 1. In addition, the curve of possible burned states, parameterized
by m, has two components. One component, corresponding to compressive waves, is
called the detonation branch, and the other component, corresponding to expansive
waves, is called the deflagration branch. By way of contrast, in an inert gas, for a
given value of m, a state is usually connected to only one state on the right, and the
curve of possible terminal shock states is usually connected.

Strong

V=l/p

FIG. 1. The Chapman-Jouguet diagram.

The combustive shock waves of the CJ theory are classified as follows. A wave con-
necting the unburned state to the closer detonation point is called a weak detonation
wave, and a connection to the farther detonation point is called a strong detonation.
A detonation wave terminating at the Chapman-Jouguet point is called a Chapman-
Jouguet detonation. Deflagration waves are similarly classified. For the exothermic,
irreversible reactions considered here, strong deflagrations violate the second law of
thermodynamics and are unphysical, and weak detonations are rare. If we permit an
endothermic region then strong deflagrations and weak detonations are possible and
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perhaps even probable [FD].
The CJ theory for detonation waves is useful for deriving the Rankine-Hugoniot

conditions, and for classifying the types of wave. However, this theory is physically
flawed, because in reality the reaction zone is much thicker than the shock layer. This is
due to the fact that the chemical reaction depends on molecular collisions and requires
a distance much longer than the mean free path to achieve significant completion. The
shock layer, however, has been experimentally observed to be several mean free paths
thick. Consequently the appropriate inviscid model is the one developed independently
by Zel’dovich, von Neumann, and Dhring [Z], [ZK], IN1], IN2], [D], and which is known
as the ZND model. In this model equation (1.1d) is replaced by a similar equation,
but with a finite reaction rate:

(1.1d’) (puY)= -r(p, Y, T)

For our purposes it is reasonable to assume that the reaction rate function r is
continuous, nonnegative, and monotone in each variable. Our mathematical treatment
will require that we assume that r vanishes whenever the temperature T is less than a
given ignition temperature Ti. For a known reaction rate r (1.1a-c, d) can be solved
explicitly; the only detonation wave solutions are strong or CJ detonations. These
waves, which are known as ZND waves, begin with a jump discontinuity which is an
inert shock wave. This shock wave heats the gas above the ignition temperature; the
reaction proceeds, with the velocity and temperature following a curve of equilibrium
states for (1.1b, c), parameterized by Y. One of the interesting features of these waves
is the peak in the pressure and density which is known as the yon Neumann spike. By
way of contrast, in inert shock waves the pressure and density are usually monotone

The equations of inert, inviscid, non-heat-conducting gas dynamics are an ex-
ample of a nonlinear hyperbolic system of conservation laws. In the theory for such
systems it is standard practice to set admissibility criteria to distinguish physical from
unphysical shock waves. One of the criteria in which much faith is put is to accept a
shock wave as physical if it is structurally stable. A shock wave is structurally stable
if it is the limit of solutions to models which include more physical effects, such as
viscosity and heat conduction, as these models tend to the original inviscid model
in which these effects are neglected. For steady plane detonation waves the effects
of viscosity, heat conduction, and species diffusion may be considered to obtain the
(steady) reacting compressible Navier-Stokes equations:

0,

(b) (pu2 + p(p,T)) x (#ux),,
(c) [(p (u2/2 + e(p, T, Y)) + p(p, T)) u]
(d) (puY), (pDY,)x r(p, T, Y).

(ATx)= + (#uu=)= + (qpDYx).,

Here # is the coefficient of viscosity, , is the heat conductivity, D is the diffusion rate
for the reactant, and q is the difference in the heats of formation of the reactant and
the product [Wi].

In this paper we prove a necessary condition and a sufficient condition for the
existence of heteroclinic solutions of (1.2) which extend from an unburned state at
x -oc to the strong detonation point at x . These conditions also apply to
the Chapman-Jouguet detonation. See (4.8) and (5.3). For simplicity we restrict our
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attention to the case where the Prandtl number is 1/4 (# lcp). In the limit as A, #,
and D tend to zero (with other parameters fixed) these solutions tend to the ZND
wave. Thus the ZND wave is structurally stable to this particular perturbation of the
model.

For all of these solutions the stagnation enthalpy H cpT + u2/2 is monotone, as
is the entropy flu. mS- )TxIT. For most of the strong detonation waves the density
and the pressure attain their maxima in the interior of the wave; this corresponds
to the von Neumann spike which occurs in the ZND wave. However, for a certain
parameter range, namely whenever

L (1_ l ’+ 4Dk(T*)
.2 >l(1-M*-2)

where L /pDcp is the Lewis number, M* and T* are the Mach number and
temperature at the strong detonation point, and k(T*) is the reaction rate as defined
in (2.9), there exists a continuum of solutions which look like a weak detonation
followed by a gas dynamic shock wave. For these waves the pressure and temperature
are monotone. This pathological behavior has been noted before in [Wo2], [FD], ILL],
[HoSt], and in numerical computations of solutions of the time-dependent Navier-
Stokes equations for a reacting gas [CMR]. In these numerical computations it was
observed that the weak detonation-shock wave solutions are dynamically stable as
solutions of the time-dependent equations in one space dimension.

Since Zel’dovich, von Neumann, and Dhring [Z], IN1], IN2], [D] described the
typical plane detonation heuristically as an inert shock wave followed by a deflagration,
there have been a number of papers on the structure problem for plane detonations.
A common assumption has been that the Prandtl number is 1/4 and that the Lewis
number is 1. Under these assumptions Hirschfelder and Curtiss gave a good analysis
of the behavior of structure profiles [HC], and Wood proved the existence of structure
for "small" reaction rates [Wol]. The approach taken here has much in common with
Wood’s, except that we have been more precise in our analysis, our results are stronger
and more general, and we give explicit and fairly sharp statements of just how small
the rate parameter must be.

A typical expression for the reaction rate is given by the Arrhenius law:

(1.3) r(p, T, Y) kp. Ye-/T,

where is the activation energy E/R. In mathematical combustion theory it is stan-
dard practice to simplify models such as (1.2) by taking an appropriate distinguished
limit as k and tend to infinity. This has the effect of reducing the thickness of the
reaction zone to zero. Bush and Fendell [BF] gave a description of CJ detonations
using asymptotic expansions in the limit of infinite activation energy. Stewart and
Holmes proved the existence of viscous structure for (1.2), assuming a large, finite
activation energy [HoSt]. Lu and Ludford gave a simplified analysis of weak, strong,
and CJ detonations in the infinite activation energy limit ILL].

It is desirable to understand the existence of structure for plane detonation waves
with no assumptions concerning activation energy, independent of any desire for math-
ematical generality. Because (under the ZND hypothesis) the reaction zone is much
thicker than the shock layer, this problem should be studied for activation energies
that are small compared to the reciprocals of the heat conductivity, viscosity, and
species diffusion rate.



PLANE DETONATION WAVES 1039

Gardner proved the existence of travelling plane detonation wave solutions to
the Lagrangian reacting compressible Navier-Stokes equations [Ga]. He made no
assumption on the Lewis and Prandtl numbers. However, he omitted the species
diffusion term from the energy balance equation, and this term is not usually neglected.
It may be that the effect of this term on the solution is very small. However, we will
demonstrate in this paper that inclusion of this term permits a much more natural
treatment of the problem and better bounds on the solution.

The remainder of the paper is organized as follows. In 2 we explain our assump-
tions in more detail, and we show that under these assumptions, and the assumption
that the Lewis number is 1, that (1.2) is reduced to a system of three differential
equations. This material has been extracted and. specialized from [Wi]. It is included
for clarity and completeness of exposition. In 3 we present the simple topological
argument that proves the existence of viscous structure for steady plane detonation
waves. In 4 we prove the estimate that makes the topological argument work, and
we conclude this section with a sufficient condition for the existence of structure. In
5 we prove, using simple energy estimates on the stagnation enthalpy, a necessary
condition for the existence of structure; if this condition is not satisfied then viscous
structure does not exist. In 6 we give the generalization to arbitrary Lewis numbers.
In 7 we discuss the behavior of the solutions for various parameter values. In 8 we
present a rigorous discussion of the ZND limit. We conclude, in 9, with a proof that
the entropy flux is monotone.

2. Reduction to three equations. We make the basic thermodynamic as-
sumption that both the reactant and product satisfy the same ideal gas law, and
differ only in their heats of formation. Thus the pressure is independent of Y:

(2.1) p RpT.

We further assume that the internal energy depends linearly on Y, so that we have:

(2.2) e cvT + qY,

where cv is the specific heat at constant volume. These assumptions are probably not
essential to the results that follow, and they could probably be replaced with more
qualitative conditions similar to Weyl’s conditions for the equation of state for an inert
gas. However, these assumptions are essential to the simplifications that follow.

Observe that (1.2) can be integrated once to yield pu m constant. If for any
unknown U we let U+/- be the limit of U as x tends to 4-00, we have:

(2.3)

(a) #ux=m(u-u+)+p-p+/-
(b) ATx + #uu + qpDY:

[ 1
(r + + + r+l

(c) (pDY=). mY: + r(p, Y, T)

Let H %T + u2/2 be the stagnation enthalpy. Here % cv + R and is the
specific heat at constant pressure. Then (2.3b) may be rewritten as:

+
=

m (H H+/- + q(e +/-)),



1040 DAVID H. WAGNER

where e Y- pDY/m is a reaction progress variable. When the Prandtl number is
3_ then # A/cp and we have:4

It is convenient to let y satisfy

(2.6) --dY mcv
dx

so that the left-hand side of (2.5) becomes Hy. The .system (2.3) reduces to a system
of four first-order equations:

(a) muy m (u u+/-) / mR (Tu T+/-

(b) Hu g H+/- / q (e

(c) eu -m2c, r(p, Y, T)

(d) Yy (Y e).pDcp
Note that

pDcp(2.8) (H- H+)u + qYy H- H+ + qY.

Thus if the Lewis number, L ,/pDcp, is 1, we see that the quantity H- H+ +
q(Y- Y+) satisfies the differential equation f f and can be bounded only if it is
identically zero. As we are interested only in bounded solutions, we may, in this case,
restrict our attention to the plane H- H+ + q(Y- Y+) 0, and (2.7) reduces to
a system of three equations: (2.7a-c) with Y replaced by (H+ H)/q. We will not
actually need to assume that the Lewis number is 1, however, this case is easier to
understand.

Some of the results concerning this system are easier to interpret if we replace u
by the specific volume V lip u/m. In this case (2.7a) becomes:

(2.7a’) Vu=V-V+/-/ V V+/-
With the exception of our discussion of entropy, we will restrict our attention to

the system (2.7a, b-d) (2.7) for the remainder of this paper.
Following standard practice, we will resolve the cold boundary difficulty by means

of an ignition temperature assumption. The cold boundary difficulty consists of the
fact that the Arrhenius reaction rate (1.3) does not vanish, but is merely very small,
at the unburned state. Thus no solution of (2.7) can tend to the unburned state
as x c. Clearly this problem stems more from our unphysical, infinite domain
than from any flaw in the reaction rate. However, as is customary, we will resolve
this problem by modifying r so that it is zero for T < Ti, where Ti is the ignition
temperature, and is chosen to be greater than the unburned temperature T_.

Accordingly we will consider reaction rates of the form:

(2.9) r(p, Y, T) kpY(T),
where is a nonnegative Lipschitz monotone function of T, which vanishes for T < T.

In the next three sections we will usually assume that the Lewis number is 1,
for ease of understanding. In 6 we will explain how to generalize to arbitrary Lewis
numbers.
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3. A picture is worth We now describe a region in (V, H, e) space. The
topological properties of the flow for (2.7) in this region will imply the existence of
the desired structure profiles and will yield other properties as well.

For any bounded solution of (2.7) on which some quantity is strictly monotone,
(V, H, e) must tend to a rest state of (2.7) as y tends to 4-. From (2.7c) we see that
r(p, Y, T) must vanish at any rest state. For our modified kinetics this can only happen
if Y 0 or T < Ti. Rest states satisfying Y 0 are possible burned states; those
satisfying T < Ti are possible unburned, or fresh gas states. By (2.7d), e is decreasing,
so that the unburned state is at y - and the burned state is at y +. Thus
Y+ 0 and e+ (Y- pDYz/m)+ O. Note that our choice of the coordinate y, and
of V, makes the system (2.7) independent of the sign of m pu.

At the unburned state, Y has a given value, Y_, which, since Y is a mass fraction,
is naturally bounded by 1. Since e_ Y_, we have, by (2.7b), H+- H_ qY_
which is the total heat per unit mass released by the reaction. Then (2..7a) yields

v/ v_
R R (H_ +qY_

+ v+
Let 7 be the ratio of specific heats, cv/cv %/(%- R). Then (3.1) becomes:

2(7- 1)H_ ) 2(7- 1) (H_ + qY_)= O.(3.2) V- V_ + m2(7 + 1)V_ V+ + m2(7 + 1)

If we solve this for V+ we obtain

(3.3)
V_ (( 1 ) < 1 )

2 2(72-1)qY_)V+=7+ I 7+-__ +/- 1 2_2 u2

where

M2 uA 2

is the square of the Mach number, and c is the sound speed. Note that if

1 )2 2(72 1)qY_(3.4) 1- < u2

then (3.1) has no solution. The two values of M2 where equality holds in (3.4) cor-
respond to exactly one burned state each. These burned states are the Chapman-
Jouguet points; see Fig. 1.

For values of M2 greater than the Chapman-Jouguet detonation value, there are
two possible burned states. The flow at the unburned state is supersonic, as is the
case for the upstream side of a nonreacting shock wave. At the strong detonation
state the flow is subsonic, which corresponds to the downstream side of a nonreacting
shock wave. However, at the weak detonation state the flow is supersonic, and this
violates the nonreacting shock wave entropy condition.
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The effect of the Mach number on the flow pattern for (2.7) at a burned state is
as follows. The linearization of (2.7) at a burned state has the following eigenvalues:

R RH+ 2(u_ "yp+/p+)
(a) al 1

2cp m2Vcp 2/u2+
(b) a2 1

(c) aa,= 7 14- 4Dk(T+)_

1
M2 (M_ 1)

7 +

Thus, the strong detonation state has a two-dimensional stable manifold, and the
weak detonation state has a one-dimensional stable manifold. From this simple fact it
is already clear that although a weak detonation may be possible, a strong detonation
is much more likely. The eigenvectors corresponding to al, a2, a3, or4 are as follows.

al" Xt--(1, 0, 0, 0),
a2" X2 ((’y-1), m2’)’V+(1-a), O, 0),

f q(7 1) L(cr3 1) /a3" X3= \7m2-++i-3:a), q’ a3-1,
L-a3 ’q(7 1) L(a4 1)

0"4" X4 k,Tm2++i-4 a)’ q’ a4 1, L 0"4 ]

From (2.7b) we note that Hy > 0 if H-H++qe > 0. On the surface H-H++qe
0 we have that

qA
(3.6) (H H+ + qe)y m2cpr < O.

Therefore the region where Hv > 0 is negatively invariant, that is, the flow for (2.7)
can only exit this region; it cannot enter. On the surface Vy 0 (or uy 0) we have

(3.7) Vuy m2/V+H

Thus, inside the region Hy >_ 0, the region Vy <_ 0 is negatively invariant. Also the
region H <_ H+ is negatively invariant within H >_ 0.

All of the solutions that we find will lie in the region Hy _> 0, H <_ H+. However,
detonation waves that are close to ZND waves will exit the region Vy <_ O, attain
a minimum value of V (or u) and maximum values of p and p, and then tend to
the strong detonation state. To prove the existence of these waves, we need another
boundary of the form V -constant. A natural choice is

(3.s) v v0
(-r- 1)H_

(/ + 1)m2V_

V0 is the value of V at the end state of a nonreacting shock wave with initial state
(V_, H_); this is the minimum value of V for a ZND detonation. The part of this
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O:

h/ 0

/
Unburned states

V= 1/p

FIG. 2

surface lying within Hu > 0, e < e_, also lies within Vu > 0. Therefore the region
V _> V0 is positively invariant within the region Hy >_ O, e < e_.

Let (V,, T,) be the value of (V, T) at the weak detonation state, and let (V*, T*)
be the value at the strong detonation state. Consider the region W defined by Hu _>
0, e < e_, H < H+, Vo < Y < V, (see Fig. 2). The flow for (2.7) enters W
through a connected part of the boundary, namely, the union of the surfaces V
V,, e e_, V V0. The flow leaves W through two components, Hy O, and
H H+, which are separated by the positively invariant set P defined by Hu 0
H- H+, V0 < Y _< V,. The following theorem of Wazewski [Wzl], [Wz2], which we
quote from [C], implies that the set of all points in W which eventually flow out of W
must also have two components.

DEFINITION 1. Let F be a topological space and let R denote the real numbers.
Let a continuous function from F R F be denoted by (1’, t) ---, 1’. t. This function
is called a flow on F if the following conditions are satisfied for all 1’ E F and s, t E R

(a) -. 0 -(b) 1’. (s + t) (1’. s). t.

If F C F and U C R, let F U be the set of points 1’. t such that 1’ e F and t e U.
DEFINITION 2. If W C F, let W be the set of points 1’ e W such that, for some

positive t, 1’. t W. Let W- be the set of points 1’ W such that for any positive
t, (1’. (0, t)) W. The set W- is contained in W and is called the exit set of W. The
set W is called a Wazewski set if the following conditions are satisfied:

(a)
(b)

If 1’ e W and (1’. [0, t]) c cl(W) then (1’. [0, t]) C W,
W- is closed relative to W.

THEOREM. (Wazewski). If W is a Wazewski set then W- is a strong deforma-
tion retract of W and W is open relative to W-.
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The set W that we have described above is a Wazewski set, as is the union of
W with the set Q described in the next section. Since W is homotopic to W, which
has two components, W must also have two components.

What separates these two components is S, the stable manifold for the strong
detonation state, because any point which is not in one of these components must
stay in W as y tends to infinity. Because H is always increasing within W, this
solution must tend to a rest state, namely the strong detonation state. One boundary
of this stable manifold is P; another is F, the stable manifold for the weak detonation
state.

If there is a connected set in W consisting of points that tend to an unburned
state U, as y tends to -x), and this set intersects both components of the exit set
of W, then at least one of these points must be in 5’. The orbit of such a point is a
viscous structure profile for a strong detonation wave.

In the next section we give sufficient conditions for the existence of such a set of
points.

4. Some simple estimates. Orbits leaving an unburned state U which lies in
T < Ti will stay in the plane e e_ until the surface T T is reached. Consider
the curve G given by Hu _> 0, T Ti, e e_, and Vu _< 0. All of the points of G
flow towards U as y tends to -oc. The endpoints of G flow out of Hu >_ 0, Vu _< 0,
immediately. Our strategy is to add a tunnel from W to G so that the exit set of
the extended set is still disconnected. The existence of such a tunnel will imply the
existence of a viscous structure profile from U to the strong detonation state. The
tunnel is:

Q ((V,H,e) V >_ V,, Hu >_ O, Vu <_ O, e_ >_ e >_ g(T), andT_>T}

The function g will be chosen so that the flow enters Q through the boundary e g(T),
and so that g(T) >_ e for T _< T _< T,, where

ei min { There exist H and V such that

H(H, V, e) V(H, V, e) (T) ( (H m2V2/2) )c,
=0

so that

See Fig. 3. Note that e_ -ei > 0 whenever Ti > T_. Also note that the flow enters
Q through e e_ and T T, while it exits through Hv 0 and Vu O. The two
components of the exit set are separated by the point Hu Vu 0, T Ti. In order
to choose the function g, we note that within Q, we have that

(4.2)
,de %
dT T

-ApK (cp(T,-T) + m2 (V*2-V2) )2
(T)

qm2 (c,(T-T,)-m2(v- + qe-R (T-T, V**) )
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The right-hand side of (4.2) is monotone in V within Q. To see that the denominator
is monotone in V for V, _< V _< V_, replace (V,,T,) by (V_,T_) and differentiate
with respect to V, holding T constant. This denominator is also monotone in H as
a function of (H, V). In the numerator, we decrease V to V,. In the denominator,
we decrease V, holding T constant, until we reach a value V1 which satisfies either
H H+ -qe or V1 V,. In the first case we obtain:

(4.3) AKcp(T, T)(T)<- -m’qV, (m2(V VV,) R(T- T,V/V,))

Then T (H+ -qe.- and we have that:

(4.4) Akcp2(T, T)(T)- Rm2q2V,(e.- f(V))"

(V*, H+, O) (V,, H+, O)

FIG. 3. The plane Hu H- H+ + qe O.

In the second case, we decrease the denominator further by decreasing H while
holding V V,, until we reach H H+- qe. This again yields (4.3), with V
V, and a smaller value of T in the denominator; however, this value of T equals
(H+ -qe- m2V,2/2)/cp. We still obtain (4.4), with V1 V,.

Suppose g(T) >_ e for T/ _< T _< T,. Then e _> e within Q. Furthermore,
f(V) <_ e within Q (see Fig. 3). Let

Akc (T, T)(T) g(T) e_.(4.5) g’(T)
Rm2q2V* g(T) ei

Then the flow enters Q through e g(T) as long as g(T) >_ ei. If we solve (4.4), we
find that along e g(T) we have:

(4.6) (e ei)2 (e_ ei) 2 ( 1)m2q2V, Ak(T, T)(T)dT.
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Since we need to have e > e for T _< T _< T,, we require

(4.7) e_ > e + (/_ 1)mq:V*
Ak(T. T)(T)dT

Thus, (4.7) is a sufficient condition for the existence of’a strong detonation structure
profile. Since both A and k can depend on T [Wi], it is important to keep them inside
the integral.

For a CJ detonation wave, (V.,T.) (V*,T*). Condition (4.7) still implies the
existence of a structure profile.

As A tends to zero, with the other parameters held constant, condition (4.7) must
be satisfied. In particular, since e_ > e whenever T_ < T, we see that the strong
and CJ detonations always have viscous structure when A is sufficiently small. This
is the limit of the "small rate parameter" considered by Wood [Wol].

The region (V < 0) f (H > 0) (V > V.) (e < g(T)) is negatively invariant,
and contains the weak detonation point, and an interval of unburned states, including
one corresponding to e e, T T, in its boundary. Since the exit set of this region
is homotopic to a circle, and the region itself is contractible, another application of
Wazewski’s theorem shows that the one-dimensional stable manifold for the weak
detonation point must be trapped in this region. Consequently one unburned state
with e ew, T Tw, V Vw, which does not satisfy (4.7) must be connected to the
weak detonation. Since this weak detonation is a boundary for the stable manifold of
the strong detonation point, all unburned states with e_ > ew must be connected to
the strong detonation point. As A tends to zero, (e, T, V) must tend to (e, T, ).

5. A necessary condition. We obtain a necessary condition for the existence
of viscous Structure using energy estimates similar to those used in work on premixed
laminar flames [BNS], [Ma], [Wg]. Observe that

pk
(5.1) H H m2cp (H+ H)(T).

If we multiply (5.1) by 1, H, and then Hy, and integrate each equation from -cx) to
+, we obtain, using the fact that all derivatives tend to zero as y tends to =t=o:

; Apk
(a) H+ H_ qe_

oo m2c,
(H+ H)(T) dy,

/; /; H2 H2_
(b) (H)2 dy

m2cp (H+ H)H(T) dy- +

(c)
oo
(H) dy

oo m2cp
(H+ H)(T)Hu dy

;+ Ak
(d) >_

m2cpV_ (H+
g) ((g m2V2_/2)/c) dg.

Here we have used the fact that V_ is the maximum value of V on any detonation
structure profile. Combining (5.2)(a-c) we find that"

(H+ H_)2m:c,V_ (qY_m)2c,V_

> ((H

2Akcp (qY_ cp(T T_)) (T) dT.
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We may obtain a clearer interpretation of (5.3) with a little rearrangement and change
of variables:

/o(5.3’) m2V_ >_ 2Akcp(1 r) T_ + dr.
c

Thus., (5.3) constitutes a necessary condition for the existence of a detonation struc-
ture profile. Note that if we replace V_ by V+, then we also obtain a necessary
condition for the existence of a deflagration structure profile. Also, (5.3) is satisfied
whenever m2V_

_
Ak(T_ + qY_/%)/%.

6. Arbitrary Lewis numbers. When the Lewis number, L A/pD%, is
not identically 1, then we must work with all four equations of (2.7). Consequently
the region R must be extended to a region in R4. We require, therefore, additional
boundaries for R, that is, upper and lower bounds for Y. It is interesting that we
can obtain natural bounds for Y in terms of H, similar to the bounds that have been
obtained for premixed laminar flames.

LEMMA. Let

(6.1) A, inf(L, 1)

A* sup(L, 1)

(6.2) A,(H+ H) <_ qY <_ inf(qe, A* (H+ H))

defines a negatively invariant region for (2.7).
Proof. We proceed exactly as in [Wg], using (2.8):

d ( qY)=(H_H+)+ q

d-- H-H+/-, -,Yu
qpDcp< (H- +

=H-H+ /qY
q_< H -/-/+ +

This last quantity is zero on the boundary of the region defined by

H-H+/ qY>O.
A,

Consequently this region is negatively invariant for (2.7). Similarly, the region defined
by

q
H-H+ +--Y <_O

is negatively invariant, within the region Y

_ . This last condition is required to
ensure that Yu <_ O. The region Y <_ is negatively invariant because on Y ,

d
(e Y) eu Yudy

=_<0.
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The topological argument is a little more sophisticated than the one given in 3.
The region W is defined as before, with the additional inequality (6.2). The exit set
for W is now connected; using the lemma we see that it is a union of four parts:
Eo, ’1 O 2 O "23 (-J ’4, where

1 {(Y H, e, Y) IH=H+, Y=0, 0<e_<e_, Vo<V<V.}

E2 =-{(v, H, e, Y)qY=min(qe, A*(H+-H)), 0<e_<e_,}Vo<V<V,, o<_n+-n<_qe
:E3 {(V, H, e, Y)IH+-H=qe, A,e<Y<e, 0<e<e_, Vo<V<V,}

4 { (V, H, , Y)
qY A,(H+ H), 0 < <_ _, )Vo < v < V,, o<_ n/-n <_qe

Note, however, that }3o,t is homotopic to a circle. The circle may be visualized as a
path from I1 to E2 to I3 to I4 and back to El. This path cannot be contracted to a
point within Eo,t because Eo,t does not contain the positively invariant line segment

P= {(V, H, e, Y)’qY=H+-H=qe=O, Vo <_V<V.}.

Again, Wazewski’s principle implies that the set Wo,t of all points in W which even-
tually flow out of W must also be homotopic to a circle. The curve G of 4, given by
Hv > 0, T T, e e_,. Vv _< 0, is now extended, via (6.2), to a set G* which is
homeomorphic to a disk. The tunnel Q is also extended via (6.2). The estimates of
4 now show that the exit set of W U Q is also homotopic to a circle. The boundary
of G* is homeomorphic to a circle and intersects the exit set of W U Q with nonzero
degree. Since a disk is not homotopic to a circle, at least one of the points of G* must
not exit W. This point must in fact tend to the strong detonation burned state. The
sufficient condition (4.7) is now

27% ITS" )(6.3) e_ > e + (7- 1)m2q2V, AkA*(T. T)(T)dT

7. Behavior. We have shown that strong or CJ detonation structure profiles
exist if (4.7) is satisfied. From this we can see that the existence of these profiles
depends on the values of A, , and k, relative to m, q, and 7, between the unburned
state and the weak detonation point. We will now show that the behavior of the
solution depends strongly on the values of these parameters near the strong detonation
point.

At the strong detonation point the linearization of (2.7) has two negative eigen-
values:

1(1 M*-2)

(b) a3 -z 1- 1 +

The relative sizes of al and a3 determine the node structure of the flow for (2.7) at
the strong detonation point. If Dk(T*)/u.2 is very small, or if L is very small (which
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would be physically unusual), so that 0 > a3 > al then the flow has a node tangent
to the eigenvector

q(’ 1) L(a3 1) ]Xa raV,(aa a
q, -1, L-aa "Thus, all but one of the structure profiles approaches the strong detonation state

tangent to Xa. The one orbit that approaches tangent to X is the purely nonreacting
shock profile which connects the weak detonation state to the strong detonation state.
The (V, H, e) components of X3 have the signs (/, +, -). Thus, at the end of the
wave, V and H are increasing and e, which must be monotone, is decreasing. Since
V* < V_, V cannot be monotone throughout the entire solution. Once the solution
leaves the region Vu < 0, it cannot reenter, because H is monotone increasing. Hence
V attains its minimum value at a single point of the solution. This minimum value
must be greater than Vo, the minimum value for a ZND detonation.

The pressure must also attain an extremum in this case:

dp R dT RT dV
dy V dy V2 dy

R (H m2 cpT-------- (1/cv -Since the flow is tangent to X3 at the strong detonation state, we have, as the solution
approaches that point,

dp RH ( "-I+M*-2)d--=cpV. 1-
")’(a3-a)

el/’*(a a) - 1 1’ + u, 1

<0.

Since p is increasing when Vu < 0, p must attain a maximum in the interior of the
wave.

The temperature behaves differently. Near the strong detonation state, we have

1 (H,dy cv

p-1 (’,/m:V* (a3 a
l

m2V*) V
-e(7-1) 1- 1+

u*

Thus, if M*-2 is less than % we see that T decreases near the burned state. Conse-
quently T must attain a maximum value in the interior of the wave. This is consistent
with the behavior of the ZND wave corresponding to this case; see [Wi, pp. 194-197].

If M*-2 is greater than /, then T decreases near the burned state if q3 al is
sufficiently small, but positive. In the inviscid limit for this case, as D, A, and # tend
to zero, 0"3 tends to zero and T must increase near the burned state..It is a natural
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conjecture that T is monotone throughout the wave in this case. We say, therefore,
that the flow is strongly subsonic near the burned state if -M.2 < 1. If this condition
is satisfied, then the maximum value of the temperature on the surface V 0 (the
Rayleigh line) occurs at a value of H higher than H+, for on the surface V 0,

d_.T T (1 --M2).dV V

whereas

dH= Vm2

(1-M2)dV 7- 1

d(M2) M2

(1 + ?U2) > 0.
dV V

(See [Wi]). As a consequence, the corresponding ZND wave, which follows the intersec-
tion of the surface V 0 and the plane H 0, must have a monotone temperature
whenever the burned state is strongly subsonic.

This phenomenon may be explained by noting that M. depends on the total heat
released per unit mass, qY_, and increases as qY_ increases with other parameters,
particularly m, held constant. Thus the strong detonation burned state is strongly
subsonic if the heat release is too weak, relative to the strength of the wave, to create
a temperature spike. In experiments (see [Wi, 6.2.1] and references cited therein),
strong detonation waves are observed principally when a piston, or other external force,
is used to overdrive the wave; in this respect strong detonation waves resemble inert
shock waves. Detonation waves that are not overdriven will decay to a Chapman-
Jouguet detonation. Chapman-Jouguet detonations may be thought of as reacting
shock waves that are driven by the reaction with no external force. Thus these waves
are "pure" reacting shock waves, and qY_ is a parameter between inert shock waves
with monotone temperature profiles and Chapman-Jouguet waves with temperature
spikes.

As M* tends to 1, al tends to zero, which leads us to the next case. If
Dk(T*)/u.2 is very large, or if L is very large, or if M. is very close to 1, so that
0 > o’1 > 63, then the flow forms a node tangent to the eigenvector

0, 0, 0).

In this case the solution may behave in an unusual manner. Detonations with Y_
close to e, (T_ close to T) will follow the trajectory of the weak detonation, and
then turn near the weak detonation burned state, and approach the strong detonation
point along the trajectory of the inert shock profile. Thus these structure profiles
look like a weak detonation followed by an inert shock wave. See Fig. 4, where a
heuristic picture of the flow in the stable manifold is presented. 1 Similar observations
have been made in [Wo2], [FD], [LL], and most recently for numerical calculations and
for a simpler model in [CMR], where it was noted that these pathological waves are
actually numerically stable as solutions of the time-dependent reacting compressible

Note that we have not proved that the stable manifold has no folds, so that V and e are global
coordinates for the stable manifold, or that there is a monotone relationship between Y_ and the
solution curves, such as depicted in Fig. 4. For a proof of such monotonicity for premixed laminar
flames with L > 1, see [Ma].
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Navier-Stokes equations. These authors also observed (numerically) an interesting
phenomenon, namely that if the turning point of these solutions is sufficiently close to
the weak detonation state, that is, if the spatial separation between the weak detona-
tion and the inert shock wave is sufficiently large, then a bifurcation occurs wherein
these two waves decouple and the inert shock moves slower than the weak detonation
as predicted in [Wo2]. In this sense, a weak detonation can be observed. Weak deto-
nations are also observed experimentally [FD], as a consequence of very complicated
chemistry, change in equation of state, and endothermic or reversible reactions. A
more significant point, made in [CMR], is that since k(T*)/u.2 can be significantly
large, it is important, in making machine calculations, to use an approximation scheme
which does not add too much artificial diffusion, because this can radically change the
character of the solution.

(V*, H+, O) (V,, H+, O)

FIG. 4. The flow in the stable manifold when 0 > al > a3.

For larger values of Y_, there will be one wave which approaches the strong
detonation state tangent to X3, and others which approach tangent to X1 but with
V increasing. For the singular wave tangent to X3 all quantities will be monotone,
but for the others the pressure and density will attain maximum values. Since H
cpT / (m/p)2/2 is constant along X, the existence of a density peak in these waves
implies the existence of a temperature peak.

For the CJ detonation, the burned state Mach number is 1, so that the above
remarks apply to the behavior of this wave. All but one of the CJ detonation structure
profiles must approach tangent to the eigenvector 4-(1, 0, 0, 0). However, solutions
cannot approach along +(1, 0, 0, 0) (the right side) because Vy > 0 there. Consequently
there is one monotone CJ structure profile (presumably the one with minimum heat
release) and the rest have peaks in pressure, density, and temperature.

8. The ZND limit. We have noted that as A tends to zero (or A and D, with L
constant), then the sufficient condition (4.7), or (6.3), must be satisfied. The structure
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profiles satisfy natural a priori bounds, namely
Vo<V<_V_,
H_<H<_H+,

O <_h.e <_Y <_e <_Y-.
Thus, for any sequence An 0, there is a corresponding sequence (Vn, Ha, en, Yn) of
structure profiles with fixed end states, and which are uniformly bounded. Since H, e,
and Y are monotone, and V has at most one minimum, these profiles are also uniformly
bounded in total variation. By Helly’s theorem, some subsequence of this sequence
must converge to a limit in Loc. Taking a further subsequence we obtain convergence
almost everywhere. The limit function is therefore a weak solution to (1.1a-c, d’). If
T_ < Ti then the limit is a ZND strong or CJ detonation. If T_ Ti then the limit is
a continuous weak detonation which follows the curve (H 0) 3 (V 0) 3 (e Y)
from (, Hi, ei, Y)to (Y., H., 0, 0).

9. The second law of thermodynamics. In several shock structure problems,
and particularly in MHD [CS1], [CS2], [Ge], the entropy flux has played an important
role. In MHD the structure equations take the form

du
d-- BVP(u)

where B is a positive diagonal matrix and P is the entropy flux. The gradient-like
structure that this gives to the problem is essential to our understanding of the solution
to this very complicated system. In other areas it is useful to postulate that the entropy
flux must be monotone [HaSel],[HaSe2]; the inequality expressing this monotonicity is
called the Clausius-Duhem inequality. We show here, assuming only that the reaction
is exothermic and irreversible (r(p, Y, T) > 0), that the entropy flux is monotone along
a viscous structure profile for a plane steady detonation or deflagration wave. We have
not used this fact in the above discussion, although it would have proved useful if we
had not already known that H must be monotone.

The entropy flux is
P mS- ATz/T.

Using Gibb’s law: TdS de / pdV qdY [Wi], we find that

dP re(de dV dY) T2 (Tz)
d--; + + T--r---T--"

Using (1.2), we have

dP AT2 1
d--- T2 T ([[p(u2/2+e(p’T’Y)) +p(p,T)]u]-(#uu)-(qpDYz))

( ae av
+ " "x + P-x q’-x

AT2 #u2z qr
T---Y + --T- + - >- O.

Note that dP/dx only vanishes at rest points of (1.2). However, (1.2) is not gradient-
like with respect to P, because

qde
dP ATdT du;

T T T
since q/T does not vanish, neither does the gradient of P. This may be an anomaly
which is due to the simple representations of the chemistry and the reaction rate which
are used here.
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BERNSTEIN FUNCTIONS AND THE DIRICHLET PROBLEM*
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Abstract. For a nonconvex, symmetric quadrilateral, the nonparametric minimal surface arising from
an associated Dirichlet problem can be described in terms of the Weierstrass representation and the
stereographic projection of its Gauss map. The Bernstein function--which arises by truncation of the
re-entrant corner by a concave arc and by requiring the normal vector to be horizontal there--has the same
Gauss map image. This leads to a Riemann-Hilbert problem that can be solved and leads to the existence
of this surface.

Key words, nonparametric minimal surface, Riemann-Hilbert problem, Bernstein function
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Introduction. If l-I is a nonconvex, planar domain and b is a continuous function,
defined on 0fl, for which the Dirichlet problem for the minimal surface equation does
not have a continuous solution, it is natural to ask about the behavior of generalized,
"variational" solutions near boundary points where the solution is discontinuous and
to determine the geometric nature of the graph. In the particular case of a symmetric,
nonconvex quadrilateral with boundary values that are zero on the outer edges and
which increase linearly to a positive value on the edges adjacent to the re-entrant
corner, these questions have been asked by Finn IF1] and Nitsche IN] and have been
studied recently by Elcrat and Lancaster [EL]. If the latter results are combined with
the subsequent work of Lancaster ILl], we can assert that this problem is well
understood. In fact, an experimental soap film realization of the solution is shown in
[EL]. The domain in this case is regular for the minimal surface equation at all but
one of its boundary points, and the next step in complexity is a domain whose boundary
consists of two arcs, one convex and one concave. In particular we can consider a
truncation of the re-entrant quadrilateral by a concave arc. The critical first step in
understanding this new problem is the construction of a Bernstein function, a solution
of the minimal surface equation whose normal derivative is infinite there. This surface
serves as an upper bound for the trace of generalized solutions on the concave arc
and can be used as a comparison function for other domains.

In this. work we reconsider the solution of the re-entrant quadrilateral problem
and, in the process, obtain an existence theorem for a Bernstein function in the truncated
quadrilateral. The approach that we use is based on the intuitive observation that for
these two surfaces the Gauss maps have the same image. By a stereographic projection
we can consider this image as a domain in the complex plane and if we introduce the
Weierstrass representation of minimal surfaces in terms of analytic functions f and g,
using this domain for the complex parameter, the second function g reduces to the
identity. Furthermore,f satisfies explicit linear boundary conditions given by properties
of the normal vector of the surface sought. This means that our problem reduces to a
Riemann-Hilbert problem for the analytic function f. The remarkable fact is that the
solution of the re-entrant quadrilateral problem and the Bernstein function satisfy
conditions that differ only by an inhomogeneous term in one ofthe boundary conditions.
It turns out that, using results for Riemann-Hilbert problems with discontinuous
coefficients [M], we can deduce the existence of a solution of the inhomogeneous
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Riemann-Hilbert problem from existence for the homogeneous problem. We must
prove, in order to complete the chain of deductions, that the solution of the re-entrant
quadrilateral problem is a surface whose Gauss map has the required properties and
that the analytic function f solving the inhomogeneous problem leads to a surface of
the required type. These tasks demand some effort, which accounts for most of the
text of the paper.

The significance of this work derives not only from proving the existence of a
useful comparison function, but from its construction using a geometric transformation
that changes a nonlinear problem into a linear one, which can be solved by giving the
solution of a boundary value problem for an analytic function. This idea currently
relates to a variety of problems in applied mathematics--for example, numerical
conformal mapping [HI, IT] and free boundary problems in fluid mechanics [M],
lET]. Although the idea of reconstructing a surface from its Gauss map has been
known for a long time, we are not aware of many examples in which an explicit
construction can be given of a surface whose boundary geometry is prescribed. Further-
more, the construction of a new minimal surface from a known one using our procedure
is new.

1. The re-entrant quadrilateral problem. In this section, we will specify the
geometry, set the notation, and state some required theorems from previous work. Let
a,/3, y (0, r/2) with c + y < 7r/2. Set Ao (0, -sin (y)/sin (c)), A (-sin (a + y),
cos ( + y)), A= A3 (0, 0), and A4 (sin (c + y), cos (a + y)) (see Fig. 1). Let f be
the region bounded by the nonconvex symmetric quadrilateral A3A4AoAA. Let

C(0f) equal zero on AAoA4, increase linearly from 0 at A to tan
and increase linearly from 0 at A4 to tan (/3) at A3.

Set

F1 {(x, y, 0) (x, y) e AoA},
F {(x, y, (x, y)) (x, y) e A1A},
r4={(x, y, (x, y))l(x, y)eA3A4},
F5= {(x, y, 0)1 (x, y)e A4Ao},

A1

FIG.
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where, for example, AoA is the closed line segment between Ao and A1. Define F to
be F1 U F2 U F4 U

Set

T {(u, v)l v =tan (a)u},
r= {(u, v)l(U+Uo)+(V-Vo)= r},
T3={(u, v)luZ+vZ= l},
T {(u, v)t(U-Uo)+(V-Vo)= rt,
Ts {(u, v)l v =-tan (c)u},

where (Uo, Vo)=cot (/3)(sin (a + 3’), cos (a + 3’)), and r=csc (/3).
Let

H {(x, y, z) ly tan (a)x},
H2-- {(x, y, z) -cos (/3) sin (a + y)x +cos (/3) cos (a + y)y + sin (fl)z =0},
H3 {(x, y, z) z O},

and

H4 {(x, y, z)lcos (/3) sin (a + y)x +cos (/3) cos (a + y)y + sin (/3)z 0},
Hs {(x, y, z)ly= -tan (a)x}.

Note that Tk is the stereographic projection of the great circle Hk (’l S2, for
k--1,..., 5, and that H is orthogonal to Fk, for k--1, 2, 4, 5. The stereographic
projection of any unit vector orthogonal to Fk or to the z-axis will be in T or T3
(k= 1, 2, 4, 5).

Let Wo be the origin and let Wk be the point of intersection of Tk f’l Tk/l that lies
in the upper half-plane for k 1,..., 4. Let O’k be the shorter (closed) arc of Tk
between Wk-1 and Wk, k 1, , 5, where w5 Wo. Set o- rl U" U or5 and define D
(=D(a,/3, 3’)) to be the open region in the plane bounded by o-. Note that D is
contained in the open unit disc B and r3 =ODf’IOB (see Fig. 2).

D

FIG. 2
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Set B+={(u, v)eBlv>O}. We will consider D, B+, and B as subsets of C when
this is convenient. When doing so, we will let w u + iv represent a point of D and
w u + iv represent a point of B/ or B. D will be shown to be the image of the Gauss
maps for the surfaces discussed in this paper.

Let F e BV(f) minimize

J( v) I I /l + lDvl + In
over v e BV(f). Then F e CZ(ll)fq C(I\{A_}) and F= b on 0’\{A2}. Define So to
be the graph of F over f and S to be the closure of So. The graph of F is the re-entrant
quadrilateral surface discussed in [EL] (see the Introduction). From [L1] and [L2]
we obtain Proposition 1.

PROPOSITION 1. There exists Y e C2(B+" )3)0 C(B+: 3) such that Yis conformal
and has harmonic components, and Ymaps B+ homeomorphically onto So, O’B+ (=0B+

OB) strictly monotonically onto F, and O"B+ (=0B+0 B) into the z-axis. Furthermore,
Y(-1, 0) Y(1, 0)=(A, b(A2)), Y(-u, v)=diag(-1,1,1)Y(u, v) for (u, v)eB+, Y
has a branchpoint at (0,0), Y maps {(u,v)eoB+lu>=O,v>=O} onto F4t_JFs, and Y
extends by reflection across O"B+ as a parametric minimal surface.

It will be useful for us to transplant this parametrization of S to another domain.
Let us define

d 1(0_0u iv) d 1(0_dw -2 doo -2

Then Y,o(0)= 0. Let hi be the conformal map from D onto B+ sending Wo to i, w2 to
-1, and w3 to 1 and let h2 be the conformal map of B onto B+ sending to i, -1 to
-1, and 1 to 1. Define h" D- B by h h hi. Note that hi extends analytically across
OD\{wo,..., w4} and has nonvanishing derivative on B\{wo,..., w4} (e.g., [GL]).
Similarly, h2 extends analytically across B\{-1, 1} and has nonvanishing derivative
on B\{-1, 1}. The asymptotic behavior of hi and h2 at corners is known (i.e., [H,
p. 359]). Set

X(w)= Y(hl(w)) for weD,

X(w)= Y(h(w)) for weB.

Let X(w)=(x(w), y(w), z(w)). The symbols X, x(w), y(w), and z(w) will represent
the parametric minimal surface defined above and its components throughout this
article.

For k 0, 1, 4, define Wk e 0B so that (wk) (Ak, b (Ak)) and define wz 1
and w3 1. Note w0 by symmetry. Let sk be the (closed) arc on OB between
and wk that does not contain any of the other w’s, for k 1, , 5, where w5 Wo. As
a consequence of Lemma 1, we note that h(wk)=wk, k =0,’’ ", 4.

Let g" D C and " B - C be the stereographic projection,s (from the north pole)
of the Gauss map of So when So is~parametrized by X and X, respectively (see Fig.
3). If we write the components of X as Y, 37, Y, then

g(w) Zw(W)/(Xw(W)- iyw(W)) for w e D,

(w) Y,(w)/(Yo(w)- if,(oo)) for w e B.

Further, g and are meromorphic in D and B, respectively. For the parametrizations
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FIG. 3

we have chosen, the Gauss map of each point of So lies in the lower hemisphere, and
so g and ff are analytic maps from D and B, respectively, into B. Using continuation
by reflection and [B], we see that g and may be extended to be the stereographic
projections of the Gauss map of S and that g e C(E3), e C(B), and g(w) (h(w))
for weD.

LEMMA 1. g(to)= h-l(to) for toe ; and g(w)= w for we O.
Proof As noted earlier, the unit normals to Fk lie in the plane Hk, k 1, 2, 4, 5,

and so maps Sk into Tk, k 1,’’., 5. Using [B], we see that maps tok into tok,

k =0,..., 4. If we consider various planes and apply the maximum principle (cf.
[EL]), we see that maps Sk onto o-k, k 1, 2, 4, 5. (These planes are the xy-plane,
the plane through F1 and F2, and the plane through 17’ and F4.) From ILl], we see
that g(s3)= 0"3 and ff is injective on s3. Thus g maps OB onto OD.

Note that the winding number of (OB) about each point of D is 1. By the
argument principle, takes on each value in D exactly once and does not take any
values outside D; thus is a conformal map of B onto D. By the Osgood-Carath6odory
Theorem [H, p. 346], g is a homeomorphism of B onto D. Now ff(tok)--Wk, k=
0,’" ,4, and h(Wk)=tok for k=0, 2, 3, so g=h-1. Furthermore, g(w)=(h(w))=w
for weD. [-1

We are interested in the Weierstrass f and g representations of S. Define

f(w) Xw(W) iyw(W) for w e D,

f(to) ;(to)- i37(to) for to e B.

Then f and f are analytic on D and B, respectively, and the Weierstrass f and g
representations~ of X and of X, resp.ectively, are (f, g) and (f, ). Note f(w)=
f(h(w))h’(w) for w e D. Since X and X can be extended by harmonic continuation,
we see that fe A(D\{wo,..., w4}).

In the next two lemmas, we obtain information about f, f that is required for a
precise formulation of a Riemann-Hilbert problem for f in the next section.

LEMMA 2. f has a simple zero at -i and f has a simple zero at i.

Proof. We may extend Y (from Proposition 1) by reflection across c"B/. Since
Y,(0)=0, hl(i)=O=h2(-i), Xw(w)= Y,(hl(w))h(w) for we D\{wo,..., w4}, and
X,,(to) Y,,(h2(to))h(to) for to e B\{too, , to,}, we see that Xw(i)=0 and X,o(-i) =0
and so f(i) 0 and f(-i) O.

Let us write Y(to)= (x*(to), y*(to), z*(to)). From [L2], we know that

(z* + ix*)(,o) (hr(o)):,
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where H(0) 0 and

DH(O)=diag(e, e), e e 9\{0}.

If we write H(to)= H,(u, v)+ iH2(u, v), then z*(to)=(H,(u, v))2-(H2(u, v))2 and

Re (z*()) 1/4(z* zo*o)()

=1/2{HIHlm, + (Hlu)2- HH,, -(Hz,)-
H,HI (H,) +HH+(H2)}(w).

As to e B+ approaches 0, Re *z,o,o(to)) approaches 1/2{(H,,(O))Z-(H,(O)) (HI,,(0))+
(H(0))} e (since in [G, p. 279], it is shown that the second partials of H,, H_ are
o([to[-’)) and so z,,,(0) # 0.

Now z(w)=z*(hl(W)) and so z(w) * * "(w)Zww(h,(w))(h(w)) + zw(h,(w))hl
Then z,(i)O, and similarly ,(-i)0. Since f(w).g(w)=Zw(W), fw(w)g(w)+
f(w)g(w) z,(w) and so f,(i) z,(i) O. Similarly, fo,(-i)

Let Akcr be the angle formed by the intersection of Fk and Fk/l, k =0,’’’, 4,
where Fo F and F3- {(0, 0, z)[z<= b(Ag_)}. Let 6kTr be the angle at w formed by the
tangent lines to crk and Crk+l that D "fills."

LEMMA 3. f has an integrable singularity at tok for each k e {0,..., 4}. In fact,
j(to) O([to--tok[ xk-1) and (to--tok)l-hkf(to) "-) lk e C\{0} as to e ]\{tok} approaches (.Ok,

for each k 0,..., 4.

Proof. Let T" 933 be the rigid motion sending ’(tok) to the origin that maps
the line segments forming the angle hkr of Fk and Fk/l at X(tok) into the upper half
of the plane z 0 as follows: (a) the images of the line segments form equal angles
with the y-axis and (b) T X maps Sk/, into the first quadrant of the xy-plane. Let
us write T(:)= Lk(+ rk) for eg3, where rk e g is fixed and Lk is a rotation of g3.
For k=0, to= (-Ao, 0), and, in matrix form, Lo= diag (-1, 1,-1).

Let hk be the conformal map of B+ onto B(0, 1) with hk(O)= tok and h,(0)> 0.
Let us now fix ke{0,... ,4} and set Z- Tof hk. Then Z(to) ((to),)3(to), (to))
maps B+ onto T(S) and sends 0+0i to (0, 0, 0). Set h hk. By Theorem 3 of [D],

o,(to) to-’Ha(to) + to-aH3(to),

rio(to) =-itoX-’H2(to) + ito-XHa(to),

z%(to) H,(to)

for to e/+\{0} in the neighborhood of zero,

to (H,(to)) + 4H(to)H3(to) 0,

H(0) 0, and H3(0)= 0. Ifwe define F(to) ()o h),o(to)- i(37 h)o(to), then F(o)
cto

x-’ + 0(I) for some constant c 0. When k 0, we remark that F(to) tox-,H(to).
Since h maps an analytic portion of B+ into an analytic portion of B, we see that
f(to)=0([to-to[a-’) and f(to)=l(to-tog)x-’+O([to-tog[) for a constant Ig
0.

Now h is the conformal map of D onto B that maps wg to to, k 0,. ., 4. We
see that for we/\{wg} near wg, 6 6g, e I/6,

h(w)- to c(w- w) + o(Iw- wl),
Ckh’(w)= (w- wg)-’ + o(Iw- wg[-’)
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for some Ck C\{0} (e.g., [H, p. 359]). Furthermore,

(h-1)(o) Wk ek(OO--OOk) + o(1 -

(h-1)’(w) ek6(W- Wk)-l+ O(IW- Wkl-1)

for o e/\{Wk} near Wk, where ek e C\{0}. Since f(w) =](h(w))h’(w), Lemma 3 gives,
for v 1 + Ak/6,

f(w) Ck(W-- Wk) + O(lW-- WI’:)

as Wff)\{Wk} approaches Wk and f(h-(OO))--Ck(OO--OOk)"+O(leO--Okl") as o
B\{Wk} approaches Wk for some Ck C\{0}.

Note that Xozr=2a and 6ozr=r-2a; Alzr=cos- (cos(y) cos(/3)) and 61zr>
r/2; A2cr=rr/2-fl and 27r>Tr/2; A3"rr=Tr/2--fl and 3>’rt’/2; and A4r=
cos- (cos (3’) cos (/3)) and a4r > rr/2. Thus f(h-(w)) has an integrable singularity at
wa, w2, w3, and w4. Also, at Wo, f(h-() has an integrable singularity if a < rr/4 and
has a "fractional zero" if a > rr/4.

2. The Hilbert problem. We wish to derive a homogeneous boundary value prob-
lem for which f(w) is a solution. Let f(u+ iv)=f(u, v)+ if2(u, v), where fl and f2 are
real-valued. Since g(w) w,

Xw(W)=f(w)(1-wZ)/2,

y(w) =/f(w)(1 + w2)/2,

Zw(W)=wf(w)

for w e D. Since d/dw =1/2((0/0u)-i(/Sv)), taking real and imaginary parts gives us

x,(u, v)=(1-u2+v2)f+2uvf2,

xo(u, v)=2uvf-(1-uZ+vZ)fz,

yu(u, v)=-2uvf +(1 +uZ-vZ)f2,

yv(U, v) =-(1 +uZ-v2)f +2uvf2,

Zu(U, V) 2(uf, vf,_),

zv(u, v) 2(-vf- ufz).

Let us set ml =cot (a), m2= cot (a+ y), m4=-cot (a + /), ms =-cot (a), n =0,
n2 -tan (/3) csc (a + y), n4 tan (/3) csc (a + y), and ns=O. The condition (x, y, z)e
Fk is equivalent to y mkX + bk, Z nkX + Ck, k 1, 2, 4, 5, where (bk, Ck) are constants
depending on a,/3, y, k. We know that X maps trk into Fk, k 1, 2, 4, 5, and maps
tr3 into the z- axis. If we parametrize trk by Wk(t) (Uk(t), Vk (t)), then X(Wk(t)) Fk

and so y(wk(t))=mkX(Wk(t))+bk, Z(Wk(t))=nkX(Wk(t))+Ck for k= 1, 2, 4, 5 and
x(w3(t))=y(w3(t))=O. Differentiating with respect to yields the two equivalent
equations y,,u + yvV’ mk(XuU 4- XvV), ZuU + ZvV nk(XuU 4- Xvl)) when k 1, 2, 4,
5 and x,u + x,v + y,v 0 when k 3. If we now write xu, , zo in terms of f, f2,
u, v and rearrange each equation slightly, we obtain

ak(U, V)fl(U, V)+ bk(U, v)fz(u, v)=0
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when (u, v) Ok, for k= 1,..., 5, where

al(u, v)=-cos (2a),
a2(u, v)=2uv(v-vo)-(1 +u2-v2)(U-Uo)

-cot (a + 3’)(1 u2 + v2)(v Vo) + 2 cot (a + y)uv(u Uo),
a3(u V) 2)(u2-/)2),
a4(u, v)=2uv(v-vo)-(1 /uE-vE)(u-uo)

+cot (a + y)( 1 u2 + v2)( v Vo) 2 cot (a + y)uv(u Uo),
as(u, v) cos (2a),
bl(U, v) sin (2a),
b2(u, v) 1 + u2 v2)( v Vo) + 2uv(u Uo)

-2 cot (a + ),)uv(v- Vo)-cot (a + 3,)(1 u2 + v2)(u Uo),
b3(u, t)=-4u)2,
b4(u, v) (1 + u2 vE)(v Vo) / 2uv(u Uo)

+2 cot (a + /)uv(v Vo) + cot (a + /)(1 u2 + vE)(u Uo),
bs(u, v)=sin (2a).

We point out that if Z"- R is C on / except at a finite number of points of D,
ZC(), and Z(w)=(p(w)(1-w2)/2, ip(w)(l+wE)/2, wp(w)), where p(w)=
pl(U, v)+ ipE(u, v), then the condition akpl / bkP2 =0 on trk is equivalent to Z(rk) being
a line segment parallel to I’k if k 3 and parallel to the z-axis if k 3. The forthcoming
modification of a2, a4, bE, b4 will not change this observation.

In the theory of Hilbert problems with discontinuous coefficients, the coefficient
G a ib must be bounded away from 0 [M, pp. 42-53]. In our case a2(WE) bE(W2) 0
and a4(wa)=b4(w3)-O and so some modification is required. If (u, v)o’2, then
u=-uo+rcos(O) and V= vo+ r sin (O) for some 0(-r/2, r/2). Set t=tan(O/2)
and note that cos(O)=(1-tE)/(l+t2), sin(O)=2t/(l+t2), t[to, tl], where to
tan (0o/2), tl =tan (01/2), and 00, 01 are in (-r/2, 7r/2). Let c(t)= aE(WE(t)), d(t)=
b2(WE(t)), and e(t) be the greatest common divisor of c(t) and d(t). Let us define new
functions a2(u,v) and bE(U,V) for (u,v)tr2 by setting aE(w2(t))=c(t)/e(t) and
b2(WE(t))= d(t)/e(t). We may repeat this process and replace a4 and b4.

Define a(u, v) and b(u, v) on cgD\{wo,’.’, w4} by setting a ak and b bk on
Crk\{Wk_I}. Note that each ak and bk is continuous on trk and so a and b have one-sided
limits at Wo,’", w4. Also a and b are certainly piecewise Lipschitz continuous on
OD. Now a and b are discontinuous at w,..., w4 and at Wo unless a_-> r/4. Set
G(w)=a(w)-ib(w).

Let R be defined on cD (or almost everywhere on cD). Consider the Hilbert
problem H(., R) of finding a function analytic in D that satisfies Re (G)= R on
cD\{wo, , w4} and that has the "singularity pattern off" at Wo, , w4. The "index"
of this problem (with indicated behavior at Wk, k =0,’’’, 4) is 1 and the general
solution can be found using [M, pp. 42-53]. If o denotes a solution of H(., 0), then
d/(w) d/o(W)(C+ H(w)), where H is the analytic function in D whose imaginary part
on OD is R/(iGd/o). This is true since Re(G)=c Re(Go)+Re(GoH)=
0/ Im (H) R on cD (recall that Re (Go) -0 on gD). The analytic function H can
be found by using the Schwarz formula; formally,

1 R*(t)(t+to) dt
H*(to)= JIt[=l G*(t)*o(t)t(t-to)
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for o s OB, where H*(o) H(h-l(m)) and similarly for R*, G*, ,*. For later use, set
ak Ak- k for k 0, , 4 and note ak < 0 if k 1, , 4.

3. Bernstein functions. We will now formulate a boundary value problem that will
lead to the surfaces to be constructed. Let A3* (x3*, Y3*) be a point on 01"l strictly
between A3 and A4. Set A*= (x*, y*)= (-x3*, y3*)0fl. Let K be a C2 curve in 2
between A* and A3* such that K is symmetric with respect to the y-axis, K and
are tangent at A* and A3*, and K is strictly concave with respect to ((x, y + t) l(x, y)
K, =< 0}. Let us parametrize K by (x, k(x)), x* <= x <= x*3. We know that k"(x) > 0
unless x E {x (x*, x*)[ k"(x)=0}, which we assume is finite, and possibly at x*
and x3*. We require 0 E. We will impose additional restrictions on k near E U {x*, x3*}.

We wish to parametrize K in a special way. Since K is strictly concave and is
tangent to 0[l at A* and A3*, we see that for each ei r3 there is a unique point
(A(O), B(O)) on K such that the tangent line to K at (A(O), B(O)) is orthogonal to
(cos (0),sin (0)), and conversely. The parametrization (A(O), B(O)), a+y_-< 0=<
r-(a+y), is continuous, is C on N={O(a+y,r-(a+y))lA(o)=E}, and
satisfies

(A’(O), B’(O)). (cos (0), sin (0))=0
and so B’(O)=-cot (O)A’(O), for 0 N. The symmetry of K implies A’(r-0)= A’(O)
and B’(r-0)=-B’(0). We can easily check that k’(A(O))=-cot (0), which could be
taken as a definition of A(O), and A’(0)= csc2 (O)/k"(A(O)).

Let us assume that there exists fl (0, 1) and C1 > 0 such that k"(x) -> C[x 1,
whenever x is sufficiently close to , for each E. If k"(x*) k"(x*3) 0, let us assume
that there exist y (0, --O3/3) and C2 > 0 such that k"(x) >= C[x x*31 ’ whenever x -< x3*
is sufficiently near x3. Let us examine A(O) and A’(O). If k"(A(O*))=0, then A’(O)-->oo
as 0 --> 0* and so IA(0) A(0*)[ _-> 2[0 0"1 for 0 (0*, 03*) near 0". Now if w ei and
w* ei* then

[A(0) A(0*)[ _-> 2[arg (w) arg w*)[ 2[Ln (w) Ln (w*)[ _-> [w w*[
and A’(0)- csc2 (O)/k"(A(O))<-_2 csc (O*)CllA(O)-A(O*)[-3 <- C’[w-w*l- if w is
near w*, and similarly for w2 and w3.

Finally let us assume that k C’((x, x3)) for some 0< 8-<min {/3, y}. Then
[A’(A2)-A’(A1)I<=c(A,Au)[A2-AI] for all hl,/2(0, 03) with A,A2N, and for
hi, h in a compact subset of N, C(A1, h) is uniformly bounded.

Define R(w)=0 if wr3 and R(w)=A’(O) if e=wo’3 and k"(A(O))O. Let
R*(o)=R(h-l(o)), G*(o)=G(h-l(oo)), 0o=f, and 0o*=j Recall that f(o)=
(oo + i)e(o) with e(-i) 0 and, for k= 2, 3,

f(to) c(to to)" + O(lo
Note that R*(to) is HSlder continuous at to2 and to3 with exponent -a3-(T/3)>0
(use [H, p. 359] and R*(,o)--O(I,o-,o*1-) if to*eE*={toes3larg(h-’(to))ftN}).
Finally R* is HSlder continuous on OB\E U{-i} and uniformly HSlder continuous
on each compact subset of OB\E U {-i}.

Define

l[foR*(t)(t+)dtp.v.H*()
2ri(o + i) G*(t)e(t)t(t-o)

for all o e/\E*. Since

o+i 1

(t+i)(t-o) t-o

P.V. foe R*(t)(t + to) dt

t+i’
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we see that

1
P.V. f R*(t)(t + to) dt

H*(to) 27r---- G*(t)f(t)t(t-to)(t+ i)

for to B\E*U {-i}, where we take principal values at -i and at to if to cOB. Using
Theorem 14.1c of[HI, we see that H* is analytic in B and continuous on B\E* U {-i}.
Furthermore,

Im (H*(to))= R*(to)/(iG*(to)f(to))

for each toOB\E*LJ{-i} [H, pp. 100-103] and H(o)- O(1o o*1-) for to/ near
to* E*, as a simple argument shows.

Since H(w)=H*(h(w)) is continuous on /\{ei tr3lA(O)E}LJ{i}, we can
define

Co co(K, D) -inf {Re (H(w))lw 0"\0-3}.

Since R 0 on tr\tr3, Im (H(w)) 0 if w tr\tr3 and so

Co inf H sup (-H).
0-\0"3 0-\0-

Note that if c -> Co, c + H(w) > 0 for w at all but a finite number of points of tr\tr3.
DEFINITION. For a curve K as above and any ’>x/(x2*)2+(y2*)2, define f(K,

as the domain bounded by K and the line segments between A2* and ’A1, eA1 and
eAo, ’Ao and ’A4, and eA4. and A3* (see Fig. 4).

Set >e(X, y) e4>(x/g, y/e) for (x, y) 0f(k, e).
PROBLEM B(K, e). For a curve K as above and e>x/(x*)2+(y2*)2, find F+

C(II(K, ))(q cO(f(K, e)) that satisfies the minimal surface equation in f(K, e) with
F+=qbe on O(K,[)\K such that as (x,y)O(K,e) approaches (xo, Yo)
{(x, y) K x E}, the exterior normal derivative of F / at (x, y) approaches

K

/A

FIG. 4
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We will find a number eo go(K) such that B(K, e) has a (necessarily unique)
solution if e__> eo. If </Co, we obtain a candidate that does not solve B(K, ).

For c real, define (w, c)=f(w)(c+ H(w)) and note that (., c) solves H(-, R)
(on h-l(E*), R is not defined). Clearly, f is continuous at i. Define

x(w, c)= Re @(t, c)(1- 2) at

for w D. Set o o(K) = csc (a + y)(x(w,, Co)-X(W, Co)) and define c()
c(K, e)= e-Co(K)+ Co(K). Define

y(w, c)= Re (t, c)(1 + ) dt -(c-co(K)+ o(K)) sin ()/sin (),

x(, c (x(, c, y(x, cl, (,

for eO. Note that X(., c)e C(O) and X(w, c)=X(, co)+(c-co)X(w). In par-
ticular, x(w4, c(e))-x(w, c(g))= x(w, co)-x(w, co)+(c(g)-co)(x(w)-x(w))=
2go sin ( + )+2(c(g) co) sin ( + ) 2g sin ( + ).

Note that

X(, cl (c+ (llx(l

for we h-l(*) and c+H(w) is real and positive if we and c> co (c=co
implies c + H(w) > 0 on except at a finite number of points). Thus the sign pattern
of x(., c),..., (., c) is the same as that of x,..., on if c co.

Suppose e e 3(h-(*) U {w, 3}). Since

a(f(, cl+ b(A(, c)= ’(o,

d
a(w)f(w, c)+ b(w)f(w, c)= (x(cos (0), sin (0), c)),

where f=f + if and c e R, we see that d/dO (x(cos (0), sin (0), c)) A’(0).
Since x(.,.,c) is continuous, we obtain x(cos(O),sin(O),c)=A(O)+Ao, for

+N0N-(+). One unit normal to X(O,c) at =e with OeN is
(cos (0),sin (0),0). Since d/dO (X(cos(O),sin (0), c)) lies in the tangent plane of
X(D, c) at w, we see that d/dO (y(cos (0), sin (0), c)) -cot (O)A’(O) B’(O). Thus
y(cos (0), sin (0), c) B(O)+ Bo and the projection onto the xy-plane of X(, c) is
the translation of K by (Ao, Bo).

Suppose we. Then R(w)=0 and a(w)f(,c)+b()f(,c)=O. As we
indicated in 2, X(, c) lies on a line parallel to F, k 1, 2, 4, 5. If o(K), then
c(g) co and so X(., c(g)) maps OD strictly monotonically onto the Jordan cue
X(OD, c(g)). Now H(u, v)= Im (H*(h(u + iv))) is odd on OD so f(u, v, c(d)) is an
even Nnction of u and f(u, v, c(g)) is an odd function of u for (u, v)eD. Thus
x(u, v, c(g)) is odd in u, y(u, v, c(g)) and z(u, v, c(g)) are even in u (and X(OD, c(g)
is a simple Jordan cue that is symmetric with respect to the y-plane and has a simple
projection on the xy-plane). Also X(0, c(d)) g(Ao, 0) and x(w4, c(g))-x(, c(g))=
2g sin ( + ) implies X(, c(g)) , X(s, c(g)) s, and the projection of
X(OD, c(g)) on the xy-plane is Oa(K, d). Using [R, p. 36], we see that X(D, c(g)) has
no interior branchpoints and, since g(w)= w, X(D, c()) must be the graph of a
function F+. From our discussion, we see that F+ is a solution of B(K, d).
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We give the following example to illustrate the applicability range of these
theorems. We compare the results obtained using our methods with those obtained
using catenoids, which are standard comparison surfaces.

Example. Suppose a r/8, y= r/8, and/5 r/4. Note that Ao= (0,-1), A1
(-1/V, 1/x/), and A4=(-1/f, 1/v/). Let e (0, fl/2r]; say, e=0.1. Define k
C2’1([-1/2, 1/2]) by k"(x) c(1-4x2), k’(0) 0, and k(-1/2) k() 1/2, where 1/c
.5 (1-4t2) dt. Note that k’(-1/2)=-1 and k’(1/2) 1; also, k(x) satisfies the conditions
mentioned at the beginning of 3. Let K ={(x, k(x))"-1/2<-_x<-1/2} and set ’o :o(K).
Let U=I(K, o).

We are interested in two questions. First, what information can we obtain about
the existence of a solution of problem B(K, :o) using our construction and catenoids?
Second, if s C2(U) f’l C(\K) is a solution of the minimal surface equation in U
and :_-< beo on 0 U\K, what information can we obtain concerning the behavior of :
near (:e1/2, 1/2), in particular, concerning the lim sup of sO(x, y) as (x, y) approaches
(+ 1/2, 1/2), using our construction and using catenoids ? With respect to our construction,
we saw that a solution F e C(O) of B(K, :o) exists. Also, from 4 we see that
(x, y) <- F(x, y) for (x, y) \K and so lim sUp(x,y)(+l/2,1/2) (X, y) <- F(+/-1/2, 1/2)
:o-1/x/. With respect to using catenoids, as the following paragraph indicates, the
existence ofa bounded solution q/ C2(U) f’) C(\K) ofthe minimal surface equation
in U with /= beo on OU\K and 0//Or/=+oo almost everywhere on K cannot be
obtained using catenoids; at best, perhaps the existence of q/ BV(f) with tr (q/)
LI(o U) might be possible. Furthermore, no information concerning lim sup sO(x, y) as
(x, y)e U approaches (+1/2, 1/2) can be obtained using this method.

Suppose Xo(-1/2,1/2). Let A(a,b) be the annulus with center (Xo-
ak’(xo)W(Xo),k(xo)+aw(xo)), inner radius a and outer radius b, where w(x)=
(1+(k’(x))2)-l/2; note that the inner boundary OaA of A(a, b) is tangent to K at
(Xo, k(xo)) and the center of A(a, b) lies "above" K. Suppose the outer boundary c3bA
of A(a, b) does not interest U and OaA lies below K (see Fig. 5). Note then that
a > R(xo) and b- a > 1//, where R(x) is the radius of curvature of K at (x, k(x))
(i.e., 1/R(x) k"(x)w3(x)). Let the graph of u C2(A(a, b)) f’l C((A(a, b))) be a piece
of a catenoid such that u =0 on ObA and Ou/On =-oo on OaA. Then (x, y)<-u(x, y)

FIG. 5
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for (x,y) UCiA(a,b) (e.g., IF1]), provided that u->_beo on OUCIA(a,b). Define
A(r; a, b)=a cosh-1 (b/a)-a cosh-1 (r/a) for r>=a and let r(x,y) be the distance
between (x, y) and the center of A(a, b). Then u(x, y) A(r(x, y); a, b) and u(x, y) >
A(r(x, y); R(xo), R(xo)+ 1/x/). Now u(x, y) is (possibly) an upper bound for :(x, y)
at (xo, K(xo)) and the least U(xo, k(xo)) could be is (greater than) L(xo), where
L(x) R(x) cosh-1 (1 + 1/,/R(x)). Thus, the smallest upper bound catenoids could
provide for : on K is L(x). Since R(x) oo as x - +1/2, L(x) oo as x +/-1/2. In particular,
if we take F, we see that the use of catenoids does not imply that F is bounded
(much less continuous).

4. Applications. Using the comparison lemma due to Finn IF1] (see also IF2]),
we see that the results of the previous section imply the following theorem.

THEOREM. Let K and fI(K, ) be as in 3 with >-o(K). Then there exists
F+ C(I)(K, g))f’l C2(I’I(K, )), a solution of the minimal surface equation in fI(K,
with F+= be on dO(K, )\K, such that

f<-_F / on f(L, g)

for every solutionfofthe minimal surface equation in (K, g) withf<= ceon O(K, g)\K.
One of the distinctive features of this result is that the curvature of K need not

be bounded away from zero; the curvature of K can vanish on E and at the endpoints
of K. As we saw in the example in 3, standard comparison surfaces such as the
catenoid are not useful in this case. In fact, the existence theorem we have proven
does not follow from known results obtained by the variational theory such as those
of [G]. It would be interesting to see if we could apply that theory, using refinements
such as those recently reported in [F2], to obtain these results.

Suppose U is a domain in the plane whose boundary consists of a concave,
symmetric arc K and a locally convex arc L such that the tangent lines to the endpoints
of K make an angle larger than r/2 and K satisfies the conditions of 3. Here we
may assume that U has been rotated and translated into a suitable position. Then for
g>- go(K) sufficiently large, U

_
fI(K, g) and OU [qOtl(K; g) K (see Fig. 6).

K

FIG. 6
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COROLLARY. Let U and fl(K, ) be as above. Let L(L) and letf C2(U) be
a solution of the minimal surface equation in U such thatf= almost everywhere on L.
Then

f-<F++sup on U,

where F+= F+(K,) C(l(K, )).
The proof of this corollary follows from the general maximum principle and the

previous theorem.
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APPLICATIONS OF SHILNIKOV’S THEORY TO SEMILINEAR
ELLIPTIC EQUATIONS*

C. J. BUDDY"

Abstract. This paper shows how techniques from the theory of dynamical systems may be employed
to study semilinear elliptic equations having nonlinearities that grow faster than the critical Sobolev exponent.
In particular, techniques from Shilnikov’s theory are used to study the symmetric solutions of the equation

AU q- A(U P -t- Uq) 0, UIOB 0

where B is the unit ball in R and q < 3 < 5 < p. In particular, there is shown to be a critical value of A at
which the above equation has an infinite number of positive solutions.

Key words, semilinear elliptic equations, dynamical systems, Shilnikov’s theory, bifurcation, critical
Sobolev exponents
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1. Introduction. In this paper we will use methods from the theory of dynamical
systems to study the positive solutions of the following differential equation:

2
Urr "[-- U "[- U p + U

q O,
(1.1) r

u(0) N, Ur(0) 0,

where p > 5 and q < 3.
An application of standard theory given, for example, in Smoller and Wasserman

[21] or Ni and Serrin [16] shows that u(r) is an analytic function of N and has a first
positive zero, defined by/z(N) < oo, that is also an analytic function of N. We may
thus deduce that a solution of problem (1.1) is also a radially symmetric solution of
the following partial differential equation problem:

AU- uP]- U
q --0,

(1.2) u>0 in B,

ul0B-0,
where

B {x R3: Ixl -</ (N)}
and A is the usual Laplacian operator in R3. (Although for clarity we restrict our
discussion to 3, the techniques described in this paper apply equally to " with n > 2.)

When p is less than the critical Sobolev exponent for 3, namely, pc 5, the
solutions of problem (1.2) may be studied by employing methods from the calculus
of variations. Details of this study are given by Brezis and Nirenberg in [2]. When
p > 5, however, much less is known about the solutions of problems (1.1), (1.2). The
object of this paper is to show how ideas from the theory of dynamical systems may
be used to obtain information about the structure of solutions of problem (1.1) for
this range of p. We will establish the following theorem.

THEOREM 1.1. Let u(r) be a solution of problem (1.1); then there exists a value
<o and a sequence N, with n such that u(O) =- N, - oo as n oo and I(N) p.

* Received by the editors August 24, 1987; accepted for publication (in revised form) November 18, 1988.
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This theorem implies, in particular, that problem (1.2) has an infinite number of
positive solutions when B-- Boo has radius/zoo.

A proof of Theorem 1.1 was given originally by Budd and Norbury [3], but it is
technical and requires careful use of methods from functional analysis. In this paper
we use methods from the theory of dynamical systems to give an alternative proof of
this result and to provide a deeper insight into the structure of the solution set. In
particular, we use methods from Shilnikov’s theory, the theory of normal forms, and
a theorem due to Belitskii to obtain our result. Similar ideas have been used to study
problems related to (1.1) with p < Pc and some examples are given by Jones and Kiipper
[11] and by Jones, Kiipper, and Plakties [12].

The function u q in problem (1.1) may be replaced by a more general function
g(u) satisfying the three conditions (E1)-(E3) described in 3. We may further extend
the techniques described in this paper to study other "supercritical" systems also having
nonlinearities that grow too rapidly for the usual techniques from the calculus of
variations to be applicable. An example of such a system is the degenerate Laplacian
equation

(1.3) V. [IVul - Vu]+u +u
with

(1.4) p > [(m 1)n + m]/(n m),
described in Ni and Serrin [16]. (Here n is the dimension of the space, and we note
that problem (1.3) reduces to (1.1) if rn =2 and n =3.)

2. Dynamical systems related to elliptic equations. The idea of using dynamical
system methods to study problems similar to (1.1) was introduced by Fowler [7] with
further examples given by Joseph and Lundgren in 13]. Recently, Jones and Kiipper
[11] have used such methods extensively to study the case p < 5; in [4] we examine
the case p 5. In the latter two cases, particular attention is given to special topological
features of the phase plane associated with (1.1) that alter as p passes through the
critical value Pc 5.

We introduce the following variables (described originally by Fowler [7]).
Let Ln r and let

(2.1) s(t)= r, a(t)= ru(r), b(t)= rl+ur(r),
where a 2/(p- 1) so that a < 1/2 when p > 5 and

p-q
(2.2) ,

p-1

(The introduction of the third variable s(t) is crucial to the theory developed in this
paper, as it allows us to transform the second-order ordinary differential equation (1.1)
into a three-dimensional autonomous dynamical system. The original idea of using
this extra variable is due to Jones and Kiipper [11].)

Under this change of variables, problem (1.1) transforms into the following
dynamical system:

da
=d=a+b,
dt

(2.3) d__b=/ (a 1)b- a p s2h(a, s),
dt

ds g Ts,
dt
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where h(a, s)=--a q. Our choice of y here ensures that all coefficients in (2.3) are C
functions of a, b, and s if a 0. We may, in fact, consider problems with a slightly
more general nonlinearity than u q, namely, g(u). To retain the regularity of the
coefficients of problem (2.3) we will insist that g(u) satisfies the following condition:

s2’/P-qg(as-2/p-q) s2h(a, s),

where the function $2h(a, s) is C 1’1 in a and s if a 0. It is this more general problem
that we consider for the remainder of this paper. An example of such a function is
g(u) =juq+ ku’ with q’< q. The existence of a regular solution to problem (1.1) is
guaranteed by the usual existence theory described, for example, by Smoller and
Wasserman in [21]. Such a solution satisfies the conditions u(r)-> N, Ur(r)->O as r--> 0
and u(/.) 0. From the form ofthe transformation (2.1) it is evident that the correspond-
ing solution of problem (2.3) is a one-dimensional trajectory that leaves the origin
a, b, s) (O, O, O) when t=-o and intersects the plane a=0 when t=log/(N).
Because the differential equation (1.1) is derived from an elliptic partial differential
equation we may immediately deduce some properties of the corresponding solutions
of problem (2.3).

LEMMA 2.1. (i) IfN > 0, then the solution trajectory ofproblem (2.1) corresponding
to the solution of (1.1) initially lies in the quadrant a > 0 > b.

(ii) If b O, then al < O.
(iii) If ab > O, then a( >- O.
(iv) If a O, then (b > O.
Proof. Observations (i) and (ii) are immediate deductions from the maximum

principle (see Protter and Weinberger [19]), while (iii) and (iv) follow from the
definitions of a and b.

We now make a more detailed study of the system described by (2.3). If p > 3 the
origin is an unstable saddle point with eigenvalues y, a >0 and (a-1)<0 with
corresponding eigenvectors (a, b, s) (0, 0, 1); (1, 0, 0) and (1, -1, 0). A trajectory
corresponding to a solution of (1.1) leaves the origin tangent to the eigenvector (1, 0, 0).
(It is especially interesting that the nature of the singularity at the origin changes
precisely at the point p 3, where the uniqueness proofs of Coffman [6] and McLeod
and Serrin [15] do not apply to problems similar to (1.1). However, a recent result
due to Kaper and Kwong [23] has extended the techniques above to the complete
range 1 <p<(n+2)/(n-2) in

The remaining singular points of the system (2.3) are located at the two points

(2.4) P+/- =- (a, b, s) +(k, -ak, 0), kp-1 a(1 a).

A local analysis of (2.1) at the points P shows that its linearisation about this point
has eigenvalues

(2.5) (a -1/2+/- ito, y) where to2= 2p(p-3)(p- 1)-2-1/4.

When 3 <p < 5 then a > 1/2 and the singular points are unstable spirals. However, they
become stable spirals if we reverse the sign of t. This transformation in allows us to
use the methods described in this paper to study the solutions of problem (1.1) for
p<5 and r >> 1. When p 5 then a =1/2, and the restriction of system (2.3) to the plane
s 0 leads to a Hamiltonian dynamical system. This structure is exploited by Budd in
[4], where system (2.3) for the particular exponent range (p-5)<< 1 is studied as an
example of a perturbed Hamiltonian system.
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When p > 5, a satisfies the inequality 0< a < 1/2 and the singular point has two
complex conjugate eigenvalues with real part a-1/2 < 0 and an eigenvalue y > 0. This
point is therefore of the saddle focus type. (For the more general degenerate Laplacian
equation (1.3), if we take rn =2 then the points P+/- are spiral attractors if 2<n < 10,
with a similar restriction on the value of n for other values of m.) We may now
deduce the following results from the Stable Manifold Theorem (Guckenheimer and
Holmes [9]).

LEMMA 2.2. The point P+ has a two-dimensional stable manifold W and a one-
dimensional unstable manifold M(t). The function M(t) is a C function of and is
tangent to the line (k,-ak, e yt) as t-o. The set Ws is a subset of the plane s=0.

Proof. This result follows immediately from the regularity of the coefficients in
(2.3) and their behaviour as the term (a-k, b+ak, s)->O.

This special structure of the points P+/- allows us to consider the use of solution
methods similar to those developed by Shilnikov [20] when studying the solution
structure ofproblem (1.1). We observe, however, that as g -> 0 for all > 0, the trajectory
M(t) does not return to the point P+ as -> c, and therefore we may not apply Shilnikov
methods directly to problem (2.3). We will show later, however, that the topology of
M(t) plays an important role in the structure of the solutions of problem (2.3).

To proceed further, we now study the attracting set at the point P/, which lies in
the plane s- 0. A straightforward calculation shows that this plane in an invariant of
the system (2.3) and that the restriction of this system to the plane gives the following
autonomous dynamical system:

(2.6) d=aa+b, )=(ce-1)b-a p.

To study this system we make the following calculation, described, for example, by
Joseph and Lundgren [13]. Let the function W(N, r) be the solution of the following
ordinary differential equation problem:

2

(2.7) W,+-r Wr+ wP=o,

W(N, O) N, W(O) O.

An application of the transformation (2.1) to the function W(N, r) transforms (2.7)
into the system (2.6). Let (An(t), Bn(t)) be the solution trajectory of problem (2.6)
that corresponds to W(N, r). It is significant that the effect of N in the transformation
above does not alter the locus described by (An(t), Bn(t)) but merely alters its
parameterisation with t. We show this by establishing the following lemma.

LEMMA 2.3. Let (An(t), Bn(t)) be defined as above; then

(An(t), Bn(t)) (Al(t + log N/a), Bl(t + log N/a )).

Proof. It is well known that if W(N, r) is the solution of problem (2.7), then

(2.8) W(N, r)= NW(1, rN/).
Hence,

An(t) Ne’W(1, e’+gn/)
e’+lgn/>W(1, e’+sn/’) Al(t +log N/a).

A similar calculation follows for Bn(t). [3

It is further shown by Chandrasekhar [5] that a solution trajectory of the system
(2.6) corresponding to W(N, r) leaves the origin when =-oo and tends toward P/
as . Thus, if we define a curve O/ to be the locus described by (An(t), Bn(t), 0),
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then O+ lies in the stable manifold for the point P+ defined by system (2.3) while also
being an unstable manifold for the origin.

Figure 1 shows the point P/ and gives a picture of the locus of M(t) and of O/.

3. Applications of Shilnikov’s theory. The original applications of the ideas of
Shilnikov [20] lie in the examination of periodic orbits associated with a homoclinic
orbit that leaves a stationary point P along its unstable manifold and that returns along
a spiral trajectory in the attracting set of P. Examples of these applications are given
by Glendinning and Sparrow [8] and by Tresser [22]. Although this structure does not
occur for the system (2.3) we may exploit specific features of the original elliptic system
(1.1) to allow us to employ similar techniques to study problem (2.3). We now state
the main result of this section.

THEOREM 3.1. Let u(r) be the solution ofthe ordinary differential equation problem
2

(3.1) Urr+-- Ur+ UP + g(u)

u(0)=N, u(0)=0.
Furthermore, we suppose that the following conditions hold.

(El) Thefunction g(u) satisfies thefollowing regularity condition" There is a positive
value q < p such that

$2p/(P-q)g(as-2 s2h(a, s),
where the function s2h(a,s) is C ’1 as s->O (a#O) and is C2 if s#O.

(E2) Let V(N, r) be a solution of the scaled equation

V,,+
2
V,+ VP+N-Pg(NV)=O,

r(3.2)
V(0) 1, Vr(0) 0

and let W(1, r) be a solution ofproblem (2.6). Then for each fixed r > 0

I(V(N, r), V(N, r))-(W(1, r), W(1, r))l< C(r)N-as N-> o, where C(r) does not depend on N.

M(t)

FIG.
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(E3) Let M be the unstable manifold of P+ constructed in 2; then M intersects
the plane a 0 when s (l)v <

Then, ifl(N) is defined to be the first positive zero of u(r), as N->,

(3.3) l(N)=l/EK(N)cos(to LnN/a/F)(I/o(1))+O(K(N)2),

where K N)= N-(p-5)/4 and E, F are constants.
In 4 we show that each of (E1)-(E3) is satisfied if g(u)= uq and q <3.
Proof. To prove this result we will define a map from N to a set Eo in the phase

space (a, b, s) defined by the transformation (2.1) and we will then employ Shilnikov’s
theory to map Eo to a ncighbourhood of the intersection of M(t) with the plane a 0.
We define Eo as follows.

Let O+ be the curve constructed in 2 and let (e, f) be a point lying on O+ in a
neighbourhood of the point P+. We suppose that (e,f)=(A,(t,), Bl(tl)) and we set
tN=tl--log N/a. Let the curve (aN(t), bN(t),sN(t)) be the solution trajectory of
system (2.2) corresponding to the solution of problem (3.1). We define the set Eo by

,O={(aN(tN)bN(tN), SN(tN)): N>0}.

LEMMA 3.2. The set ,o is a one-dimensional submanifold of R3. As N->, then

(3.4)
[(aN(tN)-e, bN(tN)--f)[ < 2C(exp (tl))Nq-p,
SN( tN) exp (/t,)N(-p)/2.

Thus ,o approaches the point e, f, O) and is ultimately tangent to the line a, b)= e, f).
Proof. The topological structure of o as a subset of R3 follows from the analytic

dependence of u(r) on N. To establish (3.4) we make use of the condition (E2). A
simple calculation shows that V(N, r)= N-’u(rN-1/), and hence we may deduce
from (E2) that if r is fixed, then

r[N-’u(rN-1/) W(1, r)[<rC(r)Nq-p as N-->.

We now put r=exp(t,), which implies that rN-’=cxp(tN). Thus
rN-lu(rN-1/)=etNu(etN)=aN(tN) and rw(1, r)=e. This gives the bound for
aN(tN) and a similar calculation describes the behaviour of bN(tN).

Finally, sN(tN) cxp ()’tN) exp (’Ytl)N
We will now construct a map from the set Eo to a set E, lying in the plane a 0

and including a ncighbourhood of the point Q, where

Q M( t) [ {a O},

and where the existence of the point Q is guaranteed by our assumption (E3).
Let Z be a point lying in Eo and suppose that T(t) is the solution trajectory of

problem (2.3) that intersects Z. We define (Z) such that : Eo--> , by

I)(Z) T(t) Xl.

Our main geometrical result describing the map is given as follows.
LEMMA 3.3. The image of ,o under the map ,, is a logarithmic spiral lying in ,

centered on Q.
Proof. To prove this result we proceed as in the proof of Shilnikov’s theorem [20]

using a presentation based on that given by Guckcnheimcr and Holmes [9]. We
decompose into two operators , and (I’o such that , maps Eo to a set 5: lying
in a neighbourhood of P+ and (I)o maps
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If we set c( t) a( t) k and d(t)= b(t)+ak then close to P+, system (2.3) has
the following form"

(3.5)

d=ac+d,

d a(1-tr)c+(a -1)d + R(s, c, d),

A simple calculation using the smoothness of the function h(a, s) defined by the
assumption (El) shows that the function R(s, c, d) is C 1’ in a neighbourhood of the
point (c, d, s)= (0, 0, 0). Furthermore R(0)= DR(O)=0 (although R has nonvanishing
terms of second order in c, d, and s).

To simplify our calculations on system (3.5) we introduce a local change of
coordinates to eliminate the nonlinear term R(s, c, d). The existence of a homeomorph-
ism with this property is guaranteed by the Hartman-Grobman theorem [9]. However,
to obtain the results needed in this paper, we require our map to be a C ditteomorphism
whose existence is guaranteed by the following result due to Belitskii 1].

THEOREM 3.4 (Belitskii). Let x satisfy the differential equation

Lx+ R(x),

where L is a linear operator, R(x) C’, and R(O)= DR(O)=0. Furthermore, suppose
that the eigenvalues Ai of L satisfy the nonresonance condition

(3.6) Ai # Aj + Ak

/f Re (Aj) <0<Re (Ak). Then there exists a C diffeomorphism T: x y such that

T(O)=O, Dr(o)= I, y= Ly.

Proof. See 1 and the discussion of normal forms in Chapter 3 of [9]. I-]

LEMMA 3.5. Let L be the linear operator in system (3.5); then condition (3.6) is

satisfied.
Proof. The eigenvalues of L are given by (2.5) and have the values

(5-p)/2(p-1) + ito and (p-q)/(p-1). Condition (3.6) follows from the observation
that to # 0. The regularity of the coefficients required for an application of the theorem
is immediate from condition (El). I

LEMMA 3.6. Let T be the map constructed in Theorem 3.4 such that T: (c, d, s)
(C, D, S). In a neighbourhood of P/ the system (3.5) takes the following form:

=aC+D,
(3.7) /)= a(1-a)C +(a 1)D,

=s.
Furthermore, T maps the plane f’l {s 0} into the plane {S 0}.

Proofi Result (3.7) follows immediately from the definition of T. Now if is
sufficiently small, any point in t)f’l {s 0} lies on a stable manifold of the origin.
Consequently its image under T must also lie on a stable manifold of the origin in
the transformed coordinates and hence lies in {S 0}.

It is evident from inspection of system (3.7) that the image/(/(t) of the unstable
manifold M(t) of the point P+ is locally the curve (C, D, S)= (0, 0, e’). Now let
be a set lying in the image of r3, centred on the point (0, 0, e) and lying in the plane
S e. Furthermore, let us take the point (e, f, 0) sufficiently close to P/ so that if No
is sufficiently large, a subset of Eo defined by taking N > No lies in r). We define Eo
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to be the image of Eo under T and construct a map (I)I from o to : as follows. Let
e;o and let be the solution trajectory of (3.7) that contains . We define by

,(Z)= (C, D) 71.
LEMMA 3.7. Let , (x, y, $) with S < e; then

(3.8) (,) e(’-l/2)(x cos toS-y sin coS, x sin toS+y cos coS),

where g log ((es) -l/v) and to is defined by (2.5).
Proof. This result follows immediately on explicit solution of the linear system

(3.7). Iq

We now examine the nature of the set Eo.
LEMMA 3.8. Let the point (E, F, O) be the image ofthe point e k, f+ ak, O) under

the map T. Furthermore, let us =- (av( t), bv( t), sv( t)) be the solution trajectory of (2.3)
corresponding to the solution ofproblem (3.1). Then the point Zv where the image of this
trajectory under T intersects ,o is given by

(3.9) 5 (E, F, exp (Tt,)N(q-p) + O(mN(q-p) + O(Nq-P),

where IIm may be taken arbitrarily small by taking (E, F) sufficiently close to (0, 0).
Proof. To prove this result we use the fact that the map T is C near the origin

and DT(O)= I. Then

uN nEo-- Zv (e- k, f+ ak, 0)+

where

e (O(Nq-V), O(Nq-V), exp (Tt,) Nq-v)/2).

(Here the estimate for ’ follows from (3.4).)
From the continuity of DT we may deduce that DT(e- k, f+ ak, O) I + m, where

Ilml[ may be taken arbitrarily small by taking (e- k,, f+ ak) sufficiently close to (0, 0).
It thus follows from the mean value theorem that Z TZ has the form (3.9). [3

We may now explicitly calculate the image of ,r under the action ofx in terms
of the parameter N.

LEMMA 3.9. Let u be constructed as in Lemma 3.8; then the point , where the
image of uv under T intersects ,, is given by

(3.10) v--v+(0, 0, e), where ,v=(A1K(N)[cos (32+09 log (DN1/a)),
sin (A2+ to log (DN1/’)] ((1 /O(m)), O) as N->c,

where K N)= N-(p-5)/4 with A1, A2, and D constant.

Proof. We combine the results (3.8) and (3.9). From (3.9) we see that the value
of g in (3.8) is given by

g=log(DN1/(l+O(m)), N->o,

where D is a suitable constant. Thus

(3.11) e(a-1/2) A1N-<P-5)/4(1 + O(m)).

Similarly, x cos tog [E + O(N(q-P)/2)] cos tog, with a similar result for y. Putting these
values together and collecting the error terms of order m, we deduce (3.10).

Thus as N increases, the point traces out a logarithmic spiral sr lying in ,
and centred on (0, 0, e).

LEMMA 3.10. Let y be the pre-image of the point under the map T so that
T(yN)=N. Then

(3.12) Yv T-l(0, 0, e) +xv, where x v(1 + O(m)).
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Proof. We may deduce from Theorem 3.4 that the map T is a ditteomorphism.
The result (3.12) then follows by linearising the inverse of T about the point (0, 0, e).
We note that if e is small the linearisation of T-1 is close to the identity so that we
may take T-1 III O(m). rq

We will now construct a map o from the pre-image E of the set E to the set
E1 by computing the flow of solutions of problem (2.3) that have initial data lying in
E. Let Q be the intersection of M(t) with the plane a =0 (the existence of which is
guaranteed by assumption (E3)) and let Q be the intersection of M(t) with E. Thus
Q T-l(0, 0, e). The flow from Q along M(t) to Q is nonsingular and thus from
the regularity condition (El) the flow map o is a diffeomorphism from the neighbour-
hood of Q in E to a neighbourhood of Q in the plane a -0. Hence the image of the
logarithmic spiral ’ under the action of o is a spiral lying in the plane a 0. This
proves Lemma 3.3. [3

To complete the proof of Theorem 3.1 we consider the form of the spiral sr. As
the map o is a C- diffeomorphism we may locally linearise it about the point Q.
Thus the image of the point Q +xN, when IIx ll is sufficiently small, is given by

(3.13) o(Q +xN) Q+Dox+ o(llx 

(3.14) Q+DoN(1 + O(m)+ O(K(N))),

where the point Q+ Dox+O(llxll) lies in the plane a=0. The s coordinate of
this point thus gives us the value of tz(N) defined in Theorem 3.1. Furthermore, the
coordinates of the point Q are given by

’+1M’(/xoo)Q (0,/xo

To obtain (3.3) we combine the two expressions (3.10) and (3.14). The values of
the constants E and F in (3.3) follow from the coefficients of the linear operator Do
described by (3.14).

This concludes the proof of Theorem 3.1.
We indicate in Fig. 2 the main steps in the proof of this theorem, and in Fig. 3

we further show a graph of/z(N) obtained from the expression (3.3). Figure 3 shows
a very strong similarity to Fig. 3.4 in [9]. This observation reinforces the link indicated

(e.f)
p/

b

FIG. 2
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Fo. 3

in this paper between the structure of the homoclinic orbits studied by Shilnikov and
the elliptic equations considered here.

4. Applications to elliptic equations. To apply Theorem 3.1 to elliptic equations
of the form (1.1) we must establish that conditions (E1)-(E3) hold for system (3.1) if
g(u) =- u q. Initially we will establish condition (E2), as (El) is automatically satisfied
for the nonlinearity u q.

LEMMA 4.1. Let V(N, r) be a solution of problem (3.2) and let g(u) satisfy the
condition that g(u)/ uq is bounded above as u -> oo. Then there is afunction K (r) bounded
independently ofN such that

I(V(N, r)- W(1, r), Vr(N, r)- Wr(N, r))l< Nq-PK(r).

Proof. We may observe from the maximum principle that the function V(N, r) is
bounded above by 1 on the interval on which it is positive. We may thus deduce from
our assumption on the growth of the function g(u) that the function N-Pg(NV) is
bounded by Nq-Pk(V), where k(V) is bounded independently of N as N-> o.

We define L to be the following Volterra integral operator:

Lf(s)= t(1-(t/s))f(t) at=- m(t, s)f(t) at.

Problem (3.1) may then be put into the following form"

V(s) 1 + L[ Vp + Nq-Pk( V)].

Now let W(r) be the solution of problem (2.7) with N 1. It follows that

W(r) 1 + L[ WP].

If we now set x(r)- W(r)- V(r), then x(r) satisfies the following equation:

(4.1) x(r) L[( V+ x) p Vp Nq-l’k( V)].

By the Mean Value Theorem we may deduce that

(V+x)p- Vp =p[V+Ox]P-lx,
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where 0 < 0 < 1. Thus from the maximum principle we can see that l( V+ Ox)l < 1 and
hence

(4.2) Ix(s)l L[plxl / N5-*’lk(
As the kernel m(r, s) is bounded we may deduce from Gronwall’s Lemma [10]

that there is a function K (r) bounded independently of N such that

(4.3) Ix(r)l -< N(s-PK(r).
A similar bound for Ix(r)l then follows on differentiating the identity (4.2) and

substituting the bound given in (4.3). This establishes condition (E2). (A very similar
calculation can also be made to study the degenerate Laplacian problem (1.3).) 0

To complete the proof of Theorem 1.1 we must establish condition (E3), which
entails a global characterisation of the manifold M(t). A simple calculation shows that
such a solution of the problem (2.3) corresponds to a singular solution M(r) of the
differential equation problem (1.1). This solution satisfies the conditions

r"M(r) k and r"+lM(r)-ak as rO, where k is defined by the
(4.4) identity (2.4).

We may now appeal to the following theorem, established by Ni and Serrin 17].
THEOREM 4.2. Let M(r) be the solution ofproblem (1.1) that satisfies the singular

initial conditions described in (4.4). Furthermore, suppose thatfor some q < 3 thefunction
g(u) has the form

where

u p+g(u)=Auq+h(u) A>O,

h(u)> 0 /f u > 0.

If these conditions hold, then there is a value/zo < c such that M(/xo)=0 and
thus (E3) is satisfied.

The condition q < 3 stated above is important to the proof of Theorem 4.2 as it
rules out the possibility of a "ground-state" solution of problem (1.1), namely, a
solution that tends to zero as r o but is everywhere positive. It is not clear, however,
what happens in the case 3 =< q < 5. A recent result due to Lin and Ni[14] shows that
there does exist a ground-state solution of problem (1.1) if p> 5 and q=(p+ 1)/2,
although this does not necessarily imply that condition (E3) is not true in this case.
Numerical calculations seem to imply that (E3) remains true for all q such that 3 < q < 5.
For q-> 5 an application of Pohozaev’s identity [18] implies that condition (E3) cannot
be satisfied.

Again a similar calculation can be made for the singular solutions ofthe degenerate
Laplacian equation.

Having established identity (3.3) for the solutions of problem (1.1), we may now
establish Theorem 1.1 by choosing values of N such that the function G(N) vanishes
where

G(N) =- cos (to Ln N/a+F)(1 +o(1))+O(K(N)).

Because K(N) tends to zero as N tends to infinity, the existence of such a sequence
is guaranteed. This proves Theorem 1.1.

Acknowledgments. I am grateful to Professor C. Jones, Dr. J. Carr, Dr. P. Glendin-
ning, and the referees for some remarks that helped to clarify an earlier version of this
paper.
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ON A HYPERBOLIC QUENCHING PROBLEM IN
SEVERAL DIMENSIONS*

RICHARD A. SMITHf

Abstract. Let bC(-,M) be nonnegative and increasing and satisfy lim,,_.M-g,(u)=oo. The
problem u,=A,,u+e,b(u) in Dx(0, r), u=O on aDx (0, r), u(x,O)=o(X), and ut(x,O)=vo(X) in D, is
shown to have a unique local continuous solution for e > 0 sufficiently small in dimensions n 1, 2, 3 under
appropriate assumptions on b, Uo, Vo, and aD. The solution u can be continued as long as u < M. A potential
well theory is shown to be unobtainable for this problem in the Sobolev space H(D) for n =>2; however,
an a priori inequality for solutions guarantees global existence via energy considerations. Numerical evidence
is given indicating that such an a priori inequality is sometimes satisfied by solutions when n => 2.

Key words, hyperbolic partial differential equations, quenching

AMS(MOS) subject classification. 35

1. Introduction. Let D be an open, bounded subset of R with boundary 0D. Let
dp: (-, M)->(O, ), M>O, be continuously differentiable, monotone increasing,
convex, and satisfy limu_M-b(u)=; and let e >0. In this paper the following
initial-boundary value problem is considered:

utt AnU + eqb(u) in D x (0, r),

(An) u 0 on OD (0, T),

u(x, O)= Uo(X), ut(x, O)= Vo(X) in D,

where An denotes the n-dimensional Laplacian.
Let (A1) denote problem (An) with D- (0, 1). When b(u)= 1/(M-u), a solution

of (A1) has a physical interpretation as describing the motion of a wire composed of
a magnetic material and carrying an electric current in the presence of another
current-carrying wire [8]. Chang and Levine [2] have shown that for suitably regular
initial data, problem (A1) has a unique local piecewise C2 solution u that can be
continued as long as u < M. They have also established the existence of numbers
el > So > 0 such that

(a) If e->-el, then for some finite T> 0,

tim (sup u(x,t))=M;
tT- \O<x<l

hence one of u., u becomes infinite on [0, 1] [0, T).
(b) If O< e =< eo, and the initial data Uo, Vo are appropriately restricted, there is

a 8 (e) > 0 such that

]u(x, t)l--< M- on [0, 1] x [0, oo).

Note that by applying to (A1) the change of scale x’ Lx, t’ Lt, L:, we obtain
(A1) with e .replaced by 1 and x’ varying between 0 and L. Results (a) and (b) assert,
therefore, that global solutions do not exist for long wires, but do exist for short wires.

* Received by the editors May 8, 1986; accepted for publication (in revised form) October 31, 1988.
f Exxon Production Research Company, P.O. Box 2189, N-225, Houston, Texas 77252-2189. This

research was supported by Air Force Office of Scientific Research grant AFOSR 84-0252.
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If u behaves as in (a), it is said to quench in finite time. Speaking loosely, we say
that a solution of some evolutionary problem quenches in finite (or infinite) time T if
some norm of the solution remains bounded, while some norm of one of its derivatives
becomes unbounded, on the interval [0, T) [7].

For space dimensions n >_-2 and e sufficiently large, solutions of problem (An)
also quench in finite time [2]. However, the proof of (b) in [2] relies strongly on the
inequality

(1.1) 4U2(X, t)<--_ ]Ux(X, t)] 2 dx,

which guarantees the imbedding of H(0, 1) into C([0, 1]). In general, no such imbed-
ding H(D) C(D), or even H(D)- Loo(D), is possible in higher dimensions, and
the question of existence of global solutions of (An) for n >_-2 remains open.

If instead of (An) we consider the abstract problem

d2u
(B) dt2

I-Au=edp(u), O< <oo,

u(O) Uo s V, u’(O)=vot,_(D),

where V L2(D) imbeds in L(D) and A is an operator of elliptic type mapping V
into its dual, then a global existence theorem for e sufficiently small may be proved
(see Levine and Smiley [9]). Their results apply, for example, to solutions of (B) when
D is the interior of a rectangle in R2, u(x, t)= A2u(x, t)=0 on OD x [0, c), A is the
biharmonic operator A, and V H2(D) f) H(D).

Acker and Walter 1 have proved a higher-dimensional global existence theorem
for small e for solutions of

u, AnU + eck (u) in D (0, T),

(C) u 0 on OD x (0, T),

u(x, O)= Uo(X) in D.

Their proof relies on consequences of the maximum principle for parabolic problems,
which are available .only in much weaker forms for hyperbolic problems. Hyperbolic
problems in which the driving term eck(u) appears in a boundary condition instead
of in the differential equation have also been studied [8], but the question of global
existence, of solutions in space dimensions higher than 1 also remains unanswered.
For a comprehensive survey of the literature on quenching, see Levine [7].

In this paper, problem (An) is shown to have aunique local continuous solution
u in low dimensions for small e under appropriate assumptions on , Uo, Vo, and OD
that can be continued as long as u < M. It is also shown that for any e > 0, there exists
no potential well about any equilibrium solution of (An), so that a proof of global
existence along the lines of Sattinger [11] is not possible. Nevertheless, an a priori
inequality for solutions of (An) similar to (1.1) is shown, via energy considerations,
to guarantee global existence. Numerical evidence is given suggesting that such an a
priori inequality is sometimes satisfied by solutions of (An).

2. Theoretical considerations. Local continuous solutions of (An) for n 2, 3 are
obtained by applying the abstract theory of Reed [10] to an appropriately modified
problem.
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In this section 4’ will be assumed to be bounded and uniformly Lipschitz con-
tinuous on intervals of the form (-oo, M 8], 8 > 0. For 0 < 8 < M define

6(u) { 6(u), u<--M-B,
b(M- a/2), u>-_M-a/2.

Then by suitably defining ba on the interval (M-8, M-8/2), we may arrange that
ba e C(R) and b’ is bounded and uniformly Lipschitz continuous on R. Let (An, 8)
represent problem (An) with b replaced by ba.

It is assumed that problem (An) has a stationary solution fe C2(/), which is
analytic in D and satisfies

A,f+ erk(f) 0 in D,

f=0 onOD.

Such is indeed the case when, e.g., D is a ball in " and b(u)= (M- au), c,/3 < 0
(see Joseph and Lundgren [5]).

Applying the transformation ti u-f to problem (An, ), we obtain the problem

ti, A,ti + eq, (x, ti) in D x (0, T),

(2.1) ti 0 on OD x (0, r),

f(x, O)= Uo(X)-f(x), a,(x, O)= Vo(X) in D,

where t/,a (x, u ba u +f(x) 4a (f(x)). By setting

7=tTt, ri rio
)o /

F(n)=
e,a(x, )

A=
A, 0

we may write (2.1) as the equivalent system

(2.2)
ri’(t) -Arl(t)+ F(ri(t)), 0< < T,

n(0)=,o.

Let H denote the Hilbert space of real-valued functions H(D)@L2(D), with
inner product

(2.3) ((Uv),(Wz))=IoVu. Vwdx+Iovzdx.
Provided 0D is of class C2, A is a closed skew-adjoint operator on H with domain
dom (A)-= [H(D)(’l H(D)]@ Hi(D), and generates on H the continuous one-para-
meter group W(t)= e-ta. Therefore (2.2) can be reformulated as the integral equation
problem

(2.4) ri(t) e-tArio+ e-(t-SAF(ri(S)) as,

which may then be solved by the contraction mapping principle.
The following theorem summarizes results proved in [10].
THEOREM 2.5. Let OD be ofclass C2, andfor a fixed m >= 1 let rio be in dom (Am).

Let I1" denote the norm on H induced by (2.3). Suppose that for all l<-_j <-_ m,

(2.6) IlaSF(,)ll--< C(llnll,""", IIm-ln II)llm,ll,
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(2.7) IIA(F()-F())IIC(IIII, I1"11,""", IIAll, IIA’II)IIA(- ’)11
for all 1, ’ in dora (A)), where the constants C are nondecreasing, everywhere finite
functions of all their variables. Then there is a T> 0 such that (2.2) has a unique
continuously differentiable solution l (t) for 0 <- < T, with dp (t) in dora (Am) for all
O<-_t<T.

Ifin addition t7 (t) is bounded on anyfinite interval ofexistence of (t), then 1 (t)
exists globally in time.

Let [[. I[, denote the norm in L,(D), and let K1, K2," denote positive constants.
If t7 dom (A) has first component u, then

IIAF()ll-- f, IvC,(x, u)l - dx
--< K,[ll 4,(u /f)lV ul I1 + II1(u /f) b(f)l Ivfl 3
--< K[llVu I1+ Ilu I1]--< KIlVu II--< KIIAn ,

where use was made of the boundedness and uniform Lipschitz continuity of b on
R, the boundedness of ]Vf[ on D, and the Poincar inequalities

(2.8) Ilull_-< KllVull_-<

valid for u I-I:(D)f3 H(D). This establishes (2.6) with j 1.
If /, u e dom (A) have respective first components u, w, then by applying HSlder’s

inequality, the Sobolev inequality

(2.9) II, c,, IIVu II, 1 _-< p -<_
n-2

valid for u e Hi(D), and (2.8), we obtain

IIA(F(n)- F(u))]] _<- KI[ u- W]]-f-IIV(u- w)ll/ IIVu I111 u- wll]
-<-KIIA. (u- w)]l+ KllullllV(u- w)ll
K4(1 + IIAn II)IIA( )ll.

This establishes (2.7) with j 1 for 1 n 4.
From the integral equation (2.4), from the fact that I(x, u)l Clul for some

constant C > 0 for all x e and u , and from (2.8), we obtain

IIn(t)ll Ile-’%ol + e-<’-)AF(n(s)) ds

llnoll+ IIF(n(s))ll ds

K, Ilnoll + IIn(s)ll ds

hence, by Gronwall’s inequality,

n(t)ll KII nolle
for all in the existence intewal for (t).

The above arguments and Theorem 2.5 together yield the following corollary.
COROLLARY 2.10. Let D " with 1 n 4 have a C bounda, and suppose .that

no dom (A) [H:(D) H(D)]H(D). enforall 0< <Mandfor all sueiently
small e > O, problem (2.2) has a unique continuously differentiable solution (t) that is
global in time and remains in dom (A) for all O.
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Four remarks are in order. Note that the proof of Corollary 2.10 does not require
4 to be convex. Theorem 2.5 cannot be used to obtain greater regularity of solutions
of (2.2) due to the lack of a Poincar6 inequality of the form

IlWull=<- cllW/ull=, u HS+I(D) fq H(D)
for j->_2. The first component a of the solution r/= (a,) in Corollary 2.10 with n=2
or 3 is continuous on D x [0, oo) in view of the imbedding inequality

max la(x, t)l <- CIIA,a(

valid for t(., t)HE(D)f’IH(D), 1_-<n_-<3, and the continuity in time of t in the
norm on HE(D) fq H(D). Since H2(D) imbeds in C(/)) only for n 1, 2, 3 [3, p. 30],
any extension of Corollary 2.10 to cases n_-> 5 would not be useful for the purposes
of this paper.

Now suppose that the solution r/ in Corollary 2.10 with n 2 or 3 begins with

maxxt [Uo(X)] < M- & If maxx [ti(x, t)+f(x)] < M- 8 for all -> 0, then u t +f
is a global solution of problem (An). Otherwise there is a first time To>0 at which

maxxt [t(x, To)/f(x)] M-8; by choosing 0< 81 < 8 and applying Corollary 2.10
to problem (2.2) with 8 replaced by 81, we may extend fi +f uniquely to an interval
[0, T1) with TI>To such that maxx[(x,t)+f(x)]<M-81 for 0-<_t<T1, and
u t +f solves (An) on D x [0, T1). This argument establishes the following corollary.

COROLLARY 2.11. Let D
_
R with n 2 or 3 have a C2 boundary, and suppose

that (vo) dom (A) with maxx Uo(X) < M. Then for all sufficiently small e > 0, the
system form ofproblem (An)

=-A + O<t< T,
u, u, (u)

Ut =0

has a unique solution (,) dom (A) on some time interval [0, T) that is continuously
differentiable in time in the norm on H. The solution can be continued as long as

maxx u(x, t) < M.
Define (u) J 4(s) ds. A solution u of (An) with the regularity properties given

in Corollary 2.11 satisfies the energy equality

(2.12) E(t)=-- [u, dx+J(u)= E(0),

where

IL LJ(u)= IVul dx- (u) dx

represents the potential energy of u at time t.
By defining j(A)= J(f+ Au) for A->0, we may examine the behavior of J along

rays emanating from the stationary solution f of problem (An) in the function space
H(D). Note that

j’(O) fo Vf Vu dx e fo 4(f)u dx

Vf. Vudx+ (Af)udx=O.
D
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Let fmax=max,f(x); then by (2.8),

j"(o) fD lVUl2 dx- e fo 4,’(f)u= dx

>= fD lVUl2 dx-- e’(fmx) fD U2 dx

_>- (1 IVul dx.

Suppose f satisfies fmx 0 as e 0/. (Equilibrium solutions with this property
do exist; see [5].) Then for all sufficiently small e we have 1-eK2’(fmx)>0, and
hence j"(0)> 0; i.e., J is convex along rays emanating from f. This is a necessary
condition for f being a local minimum of J in H(D).

Nevertheless, as the following results show, there exists no potential well about
any stationary solution of (An) for any e > 0 and any n >-2.

LEMMA 2.13. Let e > 0 befixed, and letfbe an equilibrium solution of (An), n _-> 2.
Choose Xo D such thatf(xo) =fmx. Then for any 13>0 we mayfind a ball Bu D with
center Xo, and functions {wx fmx < )t _--< M} C(D), such that wx A -f on B and
D VWA 12 dx < for all fmax < A M.

Proof. Let B(xo, a), B(xo, b) denote concentric open balls in R" with center Xo
and respective radii 0 < a < b. By Friedman [3, p. 9] there exists a " C(R") such that

" 1 in B(xo, a), 0<= sr =< 1 in B(xo, b)-B(xo, a), and sr =0 outside B(xo, b). The
function " will be called a C cutoff from B(xo, a) to B(xo, b). Note that for 0< p < 1,
p(X)= (x/p) is a C cutoff from B(xo, ap) to B(xo, bp) satisfying Iv(x)l <_-Ko/p
for all x , where Ko> 0 depends on a, b, but is independent of p.

The proof for n >= 3 proceeds as follows. Choose 0 < a < b, and for each fmx <- A --<_
M and each p > 0 define

wx, ’(X -f).

Then for all p sufficiently small w, C(D), and wx, )t-f on B(xo, ap). Now f
is nonnegative on D by the maximum principle, so for fmx =< A =< M

[ IV w ,.I dx 2 f [Ivollx + I ol lV q=] dx
xo,bp

<=2V,,(K20M2+p2 max IVj2)p "-2,

where Vn denotes the volume of the unit ball in R". By taking p po> 0 sufficiently
small, we may arrange that

fD IV WA,poI2 dx < 6 forallfm,x-<_A_-<M.

We may then take BM to be B(xo, apo), and wx to be wx,o for fmx--< A =< M.
When n =2, choose fixed b> a>0 so small that B(xo, b) D. Let r=lx-xol

denote the distance from Xo to x in R2. For fmx < A -< M, choose B -= A --fmx > A > 0,
and choose 0 < 2p < a. For a < 0 let

B A Ap Bb
C-- D--

p’-b’’ p’-b
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so that Cp’+ D= B and Cb’+ D= A. Let " denote a C cutoff from B(xo, 1) to

B(xo, 2), and define srp(r) (r/p). Let ra,b be a C cutoff from B(xo, a) to B(xo, b).
For fmax < h _--< M define

wx,p(x) {a,b(r)[sr(r)(X -f(x)- Cr D)+ Cr + D].

Thus setting

we may obtain that
4

IVw ,.I
j=l

for an absolute constant K > 0.
Since Ivfl is bounded on B(xo, b), we may choose a po > 0 independent of A, a,

and A such that I4 < 6/(4K1) for all 0 < p -< po.
Using the facts that CrY+ D is positive and decreasing for 0< r -< b, and that

IV Kol-<-go/o for some absolute constant Ko> 0, we may show that

12-< 6rK[C2(1 --2a)2p2a,/ max If(x)-fmax]2],
xB(xo,2p)

lC2 b2a p2ai3 =----- ), I4 <---- Kz[Az + CZ(a b)2],

for some positive absolute constant K2. It is a simple matter to show that the expressions
C2(1-2)2p2, (acE/2)(bE-p2), C2(a-b)2 can be made arbitrarily small
independent of A, fmax < A <-M, by taking la]> 0, p > 0 sufficiently small. Hence by
choosing A Ao, p pl < po, a ao all sufficiently close to zero, we may arrange that

I < 6/4K for 1 -<j _-< 4 for all fmax A M. Set BM B(xo, p), and wx wx,p, with
A Ao a ao. Then Jo IV wa 12 dx < 6 for all fmax

In particular, for any e > 0, n-> 2, there are functions ’M WM /f with essential
supremum equal to M in any neighborhood off in H(D).

LEMMA 2.14. Let y(t) denote the solution of the ordinary initial boundary value
problem

fi eth(y) t>0,
(2.15)

y(0) yo, .f(0) 0,

where yo < M. Then there is a finite Tq > 0 such that lim,_T y(t)= M, i.e., y quenches
in finite time. As Yo M-, Tq 0/.

Proof The uniform Lipschitz continuity of b on intervals ofthe form (-c, M- 6],
6 > 0, guarantees that (2.15) has a unique local C2 solution y(t) that can be continued
as long as y(t)< M. On the existence interval [0, Tq) for y, j;>0 and hence p(t) is
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strictly increasing in t. Since )(0) 0, )(t) > 0 and hence y(t) > Yo for 0 < < Tq. Since
b is strictly increasing,

so that

for 0-<_ < T. Hence

(t) > ec(yo),

y(t)- yo> eb(yo)t2,

/(M -Yo)/ eqb(yo) > Tq.

Clearly, Tq 0+ as Yo M-. [q

THEOREM 2.16. Let e, 15, To be any fixed positive numbers, and let k be any
nonnegative integer. Let f ck() be an equilibrium solution of (An) with n >= 2. Then
there exists Uo ck() with Uo=0 on OD, max Uo< M, and o IV(uo-f)l= dx < , such
that the solution u ofproblem (An) with Vo 0 quenches in finite time T <= To.

Proof. Let wA C(/)) be the functions satisfying wA A -f on BM, jo IVwl= dx <
for all fmax < A --< M, whose existence is guaranteed by Lemma 2.13. Let p > 0 denote

the radius of BM. By Lemma 2.14, we may choose Yo < M so close to M that the
solution y y(t, Yo) of (2.15) quenches in time Tq-<min { To, p}.

Define Uo=Wyo+f; then Uo.Ck(D), Uo--’O on OD, uo=Yo on B, and
o IV(uo-f)l2 dx < & If u denotes the solution of problem (An) with this Uo and with
Vo 0, we have

u(x, t) y(t, Yo)

for all (x, t) in the retrograde characteristic cone with vertex (Xo, p) and base B x {0}.
Hence u must quench in time T <= Tq. [-]

The idea of comparing solutions inside retrograde characteristic cones in the
half-space => 0 was used by Keller [6] to show pointwise blowup in finite time of
solutions of u, c2A,u+f(u) for certain f C2(R).

Suppose u is a continuous solution of (An) with sufficient regularity to satisfy
energy equality (2.12) (or the inequality E(t)<= E(0)) for all in its existence interval.
Define

+ -2 / 2y= y(t)- (Umax) lVul dx.+ +
/’/max /’/max(t) max (u(x, t), 0),

Then

(2.17) y < 2(U+mx)-2[E(0)+--E/.g (D)(i)(U+max)] g(Umax+ ),

where/z(D) denotes the n-dimensional Lebesgue measure of D.
When E(0)>-0, g(s) achieves a positive absolute minimum gm=g(SO) on the

interval (0, M]. Note that g(M/2), and hence gm itself, can be made arbitrarily small
by taking both e > 0 and E (0) -> 0 sufficiently small.

If u satisfies an a priori inequality of the form

(2.18) y(t)>--gm, t>--_O

+and begins in the region R depicted in Fig. 1 (i.e., with Uo.ma < S0) then +
/’/max remains

bounded away from M for all time, and u will be a global solution of (An).
When n 1 we have y(t) => 4 for all -> 0 by (1.1), and these observations underlie

the proof of the result (b) of [2, 1].
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FIG. 1. An invariant region for solutions of (An) satisfying (2.18).

3. Numerical results. A simple explicit finite-difference scheme was used to
approximate solutions u u(r, t) of

(Rn)
n-1

(3.1) Utt--glrr-Ur’+’E(U), 0<r<l, O<t<T,
r

(3.2) Ur(0 t) u(1, t) 0, 0 < < T,
(3.3) u(r,O)=uo(r), ut(r,O)=vo(r), 0<r<l,

which are radial solutions of (An) when r Ix] and D is the unit ball centered at the
origin in

The difference scheme used is adapted from John [4, pp. 172-174]. Divide the
interval [0, 1] into N subintervals of equal length h 1/N, and let k denote the stepsize
in time, with

(3.4) A ---<1.
For l <=i<=N+l,j>-O, w=w(r, t) define

w,j= w((i-1)h, jk).

Let 6t denote the divided difference operator

tWij - Wi,j+ --- (Wi+l,j "4- Wi_l,j)

with space averaging in the lower step; and let $ denote the central divided difference
operator

rWij ---h Wi+l"J Wi-l"J]"

For 2<-i<_-N-1 and j>_-0, (3.1) was replaced by the difference equation

n-12 rWi + ,F..fD Wi ).(3.5) t2w’j rw’ + (i- 1)h
Values Wo., W-l., were interpreted by extending w as an even function of r through
r 0. For i= 1, (3.1) was replaced by

(3.6) llrWlj + eqb( Wlj).
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For i= N, backward ditterences in r were used, and space averaging was abandoned
wherever necessary to avoid going past r 1. A Taylor series approximation was used
to obtain the values wil.

The difference scheme is stable, consistent, and convergent when applied to the
pure initial boundary value problem obtained by linearizing (3.1) about a stationary
solution f. Grave difficulties are encountered, however, in attempts to prove consistency
and convergence for (3.4)-(3.6), due to the boundary conditions and the presence of
the nonlinearity b. In particular, we are unable to derive useful upper bounds for
higher difference quotients of w. This is analogous to the difficulties encountered with
the abstract approach to the ditterential problem in 2. Therefore for the numerical
tests the following checks and safeguards were implemented.

(a) The Courant-Friedrichs-Lewy condition (3.4), a necessary condition for sta-
bility, was ensured to be satisfied by taking A in all tests;

(b) Stationary solutions f of (Rn) were approximated by the shooting method
using the classical fourth-order Runge-Kutta method. The difference scheme (3.4)-(3.6)
was then applied with uo=f, v0=0 as a check of the computer code. Since the

TABLE
Values of e,, e, for b u u)- 1.

n n E,

0.341 0.383
2 1.017 1.309
3 1.520 2.139
7 2.563 6.000

FIG. 2. A solution of (3.5), (3.6) with e > e,.
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FIG. 3. A solution of (3.5), (3.6) with

approximate stationary solutions are not exact, these checks (as well as checks with
vo=0, uo=small perturbation of f) served as empirical evidence of the scheme’s
stability;

(c) The convergence of the scheme (3.5), (3.6) was checked empirically for several
examples by letting h, k 0 while keeping h ; and

(d) The difference scheme satisfies an energy inequality related to (2.12). Care
was taken so that the total energy of the difference approximation remained nearly
constant.

Double-precision arithmetic was used for all computations. The experiments were
performed on a National Advanced Systems AS/9160 computer with MVS/SP operat-
ing system.

To isolate the effects of the term eck(u), solutions of (3.5), (3.6) with uo Vo=0
were computed in dimensions n 2, 3, and 7. The behavior of such solutions agrees
qualitatively with behavior reported in [2] for solutions in the case n 1. In particular,
in each dimension n considered there appears to be an e, > 0 such that solutions
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quench in finite time when e > e. and do not quench (even in infinite time) when
e < e.. For e < e, the solution displays a sequence of relative maxima that occur along
the line r O, > O; the first such relative maximum appears to be an absolute maximum
which approaches 1 from below as e approaches e. from below.

Table 1 lists values of e. obtained when t(U) (1--U)-1; the value of e is taken
from [2].

Figures 2 and 3 contrast the behavior of a solution w of (3.5), (3.6) for values of
e, respectively, greater than and less than e,. Figures 2 and 3 were generated using
b(u) (1 u)-, n 2, and h 1/200. In Fig. 2, e 1.5 > e2, and the solution quenches
in time T 1.01, while in Fig. 3, e =0.9< e2, and the solution is displayed for 0<_- t<_-8.

The stability of the solution f of the stationary problem

n-1
(3.7) f(r)+ f’(r)+eck(f(r))=O, 0<r<l,

(3.8) f’(O) =f(1) =0,

satisfying fmax "-> 0+ as e--> 0+, was also investigated. Care must be taken in computing
f, since solutions of (3.7), (3.8), are not always unique. Indeed, in [5], Joseph and
Lundgren show that for b(u)=(l+au)t with a, /3<0, =1/(/3-1), g=

(z/a)(n-2-z), and f(/3) 2/3z+ 2(2/3)/2"

(a) There is an e. > 0 such that positive solutions of (3.7), (3.8) do not exist when
e>e.;

(b) For 3 _-< n < 2 +f(fl) and e. > g, there is a large but finite number of positive
solutions when e < g is close to g, and a countably infinite number of solutions when
e g; and

(c) For n >_- 2 +f(fl) and g e., there is exactly one positive solution when e < e..
See Table 1 for values of e. when b(u) (l-u)- and n 1, 2, 3, 7.

Bifurcation diagrams plotting e as a function of fmax were generated using the
procedure described in [5]. We then checked that the shooting method converged to
the stationary solution with smallest fmax. Figure 4 contains bifurcation diagrams for
n =2, 3, 9 when a =-1,/3 =-3.

FIG. 4. Bifurcation diagram for positive solutions of (3.7), (3.8) when b(u) u)-3.

n=9

n=2
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Perturbations p off used as initial data u0 were ofthe form p ,f for 1 < v < 1/fmax
or of the form

p(r) {; O<--r<--r’
r), r <- r <= 1,

where 0 < ro < rl < 1, fmax < V < 1, and p is defined on ro. r- rl to be strictly decreasing
and C2 on [0, 1]. Numerical experiments with initial data Uo =p, Vo 0 indicate that
whenever p is sufficiently close to f in sup-norm, the a priori inquality (2.18) is

;
0.00

UPPER BOUND Gx EgUIL. ,OLUTION

0.40 0.80
HMRX

FIG. 5. Quenching trajectory for ), when A =0.5, E(0) =2.0.

UPPER BOUND G
EQUIL. SOLUTION

xlOL, 3 [51 )8 IlixlO.,l 3 )51 lllx’lO.11 Ld
HMRX

FIG. 6. Nonquenching trajectory for ), when ,=0.5, E(0)=0.
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satisfied for all time by solutions of (3.5)-(3.8). Figures 5 and 6 contrast the trajectories
of y(t) in quenching and nonquenching cases. Figures 5 and 6 were generated with
n=3, b(u) (1- u)-1, Uo vf, vo(r)=l(1-r2), where tz was chosen so that E(0) >= 0,
e =0.5, h 1/100.

Acknowledgment. The author thanks Howard A. Levine for many helpful
discussions.
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ISOPERIMETRIC INEQUALITIES FOR THE STEFAN PROBLEM*

B. GUSTAFSSONt AND J. MOSSINO

Abstract. The weak solution (0, h) of the Stefan problem in some annular domain to x (0, T) is compared
with the weak solution ({9, H) of the "symmetrized" problem, in l x (0, T), where f is a symmetrical
annulus having the same measure as to. For the one-phase Stefan problem--0 -> 0, h (-a, 0) when 0 0-
it is shown in particular that the "volume of ice" (meas {h(t)=-a}) remains greatest in spherical symmetry
(with initial data decreasing along the radii).

R6sum6. Cet article compare la solution faible (0, h) du problme de Stefan dans un domaine to x (0, T)
(o6 to est une couronne) avec celle du problme "sym6tris6" (O, H) dans l’l x (0, T), of [lest une couronne
sym6trique de m6me mesure que to. Pour le problme de Stefan une phase--0->0, h e (-a, 0) 1 o6
0=0--on voit en particulier que le "volume de glace" (mes {h(t)=-a}) est maximum en sym6trie de
r6volution (avec donn6e initiale d6croissante le long du rayon).

Key words, one-phase Stefan problem, two-phase Stefan problem, solid phase-liquid phase, regularized
problem, symmetrized problem, decreasing rearrangement, equimeasurable functions, isoperimetric
inequalities

AMS(MOS) subject classifications. 35K55, 35B05

1. Introduction. We consider the Stefan problem in its simplest form and in an
annular space geometry: find a pair (0, h) of functions defined in q to x (0, T) such
that, in some weak sense,

Oh
-A0=0 inq,
Ot

(1.1) 0 g on tr=0to x (0, T),
h[t=o=ho,
ha(O) a.e. in q.

Here we have the following:
o =Oo\31, where Oo, ol are bounded domains in RN (N->2) with smooth

boundaries Yo 0Oo and Yl 06Ol, and satisfying o31 c Oo.
g is constant on each of ro Yo x (0, T) and O" ’)/1X (0, T), let us say

{01 n ’o,
g

on O"

a is a strictly monotone graph in RE (regarded as a map from R into subsets
of R). The typical form of a for the Stefan problem is

ao(O-h)-a for0<A,
(1.2) a(O)={[-a, 0] for 0= X,

l1(0--/) for 0> A,
where a, ao, a.l are positive constants, A [0, 1]. However, our main results are valid
for an arbitrary maximal monotone graph a such that a([0, 1]) is bounded, and such
that the inverse graph b a -1 is a Lipschitz continuous function on a([0, 1]).
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This work was partly supported by the Swedish Natural Science Research Council (NFR) under grants
R-RA 8793-100 and U-FR 8793-101.
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Departement de Math6matiques, Centre National de la Recherche Scientifique, Universit Paris-Sud,

91405 Orsay Cedex, France.

1095



1096 a. GUSTAFSSON AND J. MOSSINO

hoL(to) and satisfies an extra condition (see (1.6), (1.7) below), which
essentially means that 0o b(ho) belongs to Hi(to) and satisfies 0_-< 0o -< 1.

The physical interpretation of (1.1) when a is of the form (1.2) is that 0 is the
temperature and h the enthalpy of some matter that undergoes a phase change
(solid-liquid) at temperature A. The number a is proportional to the latent heat for
the phase change, and ao and a are proportional to the heat capacities of the solid
and liquid states, respectively (t, ao, al are also inversely proportional to the thermal
conductivity coefficients). With more general a (often single-valued), there are many
other interpretations of (1.1) (e.g., porous medium equation).

Our boundary and initial data, g and ho above, are such that the solution (0, h)
of (1.1), by the maximum principle, will satisfy 0 =< 0 <= 1 in all q. In the case of (1.2)
with A 0, the temperature in the solid phase (the latter generally defined as the region
where h<--a (h=-a in this case)) therefore must be constantly equal to zero.
Similarly, in the case A 1, the temperature in the liquid phase {h-> 0} (h 0 in this
case) is constantly equal to 1. Thus, for these extreme cases, in practice we have a
one-phase Stefan problem, while for 0< A < 1, the problem really is a two-phase
problem.

One standard way of making (1.1) precise is to say that (0, h) is a weak solution
of (1.1) if

OL(q), hL(q), ha(O) a.e. inq,

I Iq ( ) Ior lv O-- d3’ dt- lo, h(x)(x’ O) dx
(1.3)

h Otp+Ot OAr# dxdt= g ov
for every "test function" q l(t]) satisfying (O2/OxiOxj) rC(t]) and t#=0 on trt.J
(to x {T}) (see, e.g., [3] or [4]).

Existence and uniqueness of weak solutions can be proved in several different
ways. One method, developed by Oleinik [9] (in one space dimension) and Friedman
[3] (see also [4]) is to obtain the weak solution as a limit as e0 (e > 0) of the classical
solutions (0, h) of some regularized problems

oh
A0=0 inq,

Ot

(1.1) 0,=g on

h=a(0) in q.

Here a (from [0, 1] to a([0, 1])) are single-valued smooth functions with

(1.4) a’ _>- 5 > 0 (5 independent of e)

such that a a as e 0, in the sense that

(1.5) be a (from a([0, 1]) to [0, 1]) converges uniformly to b a -1.

Moreover, h are smooth functions such that

(1.6) ho- ho in Ll(to),
and that, in terms of 0 be(h,o),

0-< 0 =< 1 in to, 0o[a g,

1.7) f IV 0o[2 dx is bounded independently of e as e 0.
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In this paper, our aim is to give isoperimetric inequalities for the Stefan problem
(1.1). They are not standard, since the problem is multivalued, and the domain is
doubly connected. The principal one of them, (2.1) below (from which some other
inequalities follow as corollaries), is obtained by passing to the limit in the correspond-
ing inequality (2.1) for (1.1). The proof of (2.1) is a direct parabolic one that relies
on the techniques developed in [8] for linear parabolic problems. Some of our corol-
laries confirm the intuitive idea that, among all domains to tOo\ol, with too, (,01, of
given measures (volumes), and all equimeasurable initial data ho, the solid "melts
slowest" in the symmetrized domain, with symmetrized ho (Ho Ho ho). These results
were announced in a previous note [5].

One drawback of our method is that it seems to require constant boundary values
for 0 (on each component of the boundary), and initial data guaranteeing that 0_-< 0 _-< 1
holds throughout q (where 0 and 1 are the constant boundary values for 0).

Isoperimetric inequalities for a problem similar to (1.1) have been obtained earlier
by Vazquez [10], in the case to =, by an elliptic approach (and using semigroup
theory). This approach does not seem to work in our geometry.

2. Statements of results. Our isoperimetric inequalities are inequalities between
certain quantities for the problems (1.1) and (1.1), and the corresponding quantities
for certain "symmetrized problems" ((i) and (iTi) below). Before describing these
symmetrized problems, we must introduce some general notation:

trm denotes the volume of the unit ball in .
[E denotes the volume (N-dimensional Lebesgue measure) of a measurable

set E in s (also: Ixl (x21 /... + xv) 1/2 if x ).
f+ max {f, 0}, f_ max {-f, 0}.
With eo Oo\031 as in 1, Ili (j=0, 1) denotes the open balls in centered

at the origin and having the same volumes as 09i. Thus 12 c 12o. We also set f 12o\121,
Q=I2 x (0, T), F =Ol’Ii. In general, when a lowercase letter is used for a certain
quantity in the original problem, the corresponding capital letter will be used for the
same quantity in the symmetrized problem.

Iff is a measurable function defined in eo, f. denotes the decreasing rearrange-
ment of f:

f.(s) Inf {s e R" Ix: f(x) > [ <-_ s},
defined for s 03.=[0, I 1] while f denotes the rearrangement of f,
defined in f, that decreases along radii"

f(x) f,(rlxl’- m,),
where ml x . iff is defined in q, we consider its rearrangements with respect
to the space variable" f.(s, t)= (f(., t)).(s), f(x, t)=f,(lxl"-m, t).

Now, the symmetrized problem corresponding to (1.1) is

0H
-AO=0 inQ,
0t

(1.1)

where

19=G onE=01qx(0, T),

Hlt=o=ho,
Hea(O) a.e. inQ,

on Eo ro x (0, T) 0fo x (0, T),
on E F x (0, T) 0f x (0, T).
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The problem corresponding to (1.1) is

-A08=0 inQ,
ot

(R)8 G on X,

Hs=as(O) in Q.
Our main technical tool is the following result.
THEOREM 1. For classical solutions of (1.1) and (1.1)8, we have the comparison

(2.1), h,(, t) d-- dd* n,,(, t) d-- d d*

for every (s, t) in , a, x [0, T] [0, ] x [0, T] (=0,). Here O/Ov denotes the
outward normal derivative, and dy the N- 1)-dimensional Lebesgue measure of and

Similarly, for weak solutions of (1.1) and (1.1) (see (1.3)),

(2.1) h.(, t) d- dydr H.(, t) d- dy dr

for almost every (0, T) and every s ..
Remarks. (1) In (2.1), the terms involving O0/Ou and 0/0u must be interpreted

in a weak sense (see (4.10) below) because we are not guaranteed enough regularity
for O0/Ou and O/Ov to make classical sense.

(2) Some isoperimetric inequalities involving a rearrangement and a "capacity
term" (such as v, (O0/Ov)dy in (2.1)) have been previously obtained for elliptic
problems in doubly connected domains, with boundary conditions 0 and 1 (respectively)
on the two components of the boundary (see [7, p. 62] and [2, p. 168]).

The proof of Theorem 1 appears in 3 and 4. We now give some other
isoperimetric inequalities that have more physical significance and therefore can be
viewed as the main results of the paper. They are all simple consequences of Theorem
1, and are proved in 5.

If the solutions (0, h) and (O, H) are "good enough," this meaning in paicular
that the sets {x w" h(x, z) > h.(s, r)} and {x " H(x, r) > H.(s, r)} have regular
boundaries (in w and O)’y(s,r)={xw’h(x,z)=h.(s,z)} and F(s,t)=
{xO" H(x, z)=H.(s, z)} for almost every (0, t), then (2.1) can also be written:

(2.2) --drdr
(s,,)Ov

(the normal derivatives being directed outward from the sets mentioned above). The
members of (2.2) are nonnegative and have the physical interpretation of being the
total heat flows during the time interval (0, t) from the warmest pas of volume s of
w and fl, respectively, into the complementary colder pas. Note that these pas of
w and fl change continuously with time.

In the paicular cases s =0 and s w], (2.1) reduces to

(2.3) a a, a a, ( 0),

2.4 dv d, d d, ( 0)

for almost every (0, T). (Equation (2.1) reduces similarly.)
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Another consequence of (2.1) is that, for any measurable set E(t)c to, with
IE(t)l-s.

v d), dr h(x, t) dx
(t)-- -v d/ de- H(g t) dx.

In the case of a one-phase problem, let us say with A 0, the quantity

(2.6) t’= sup e [0, r]" d d’= 0, a.e. e (0, t)

can be interpreted as the first instant at which the liquid phase reaches o (when I > 0,
t’ 0). With the similar definition for the symmetrized problem, T’ also appears to be
the time at which all the solid has melted.

We then obtain, for weak solutions of (1.1) and (1.1), some notewohy com-
parisons.

THEOREM 2. With the above definitions

(.8 h,(, tl ae ,(, a

for almost every e (0, t’), and all e .. More generally,

(.9 (h,(, ae (,(, a

for almost every e (0, t’), and all s e ., where is any concave nondecreasingfunction.
is implies

(2.10) ess inf h(t) ess inf H(t) a.e. e (0, t’),

(2.11) II(h(t)-/3)-II,<.,)=< II(H(t)-/3)-II,<.) a.e. (0, t’)

for every R and every p 1, c], and

(2.12) I{x to" h(x, t) -ce}l _<-I{x l’l: H(x, t) a.e. (0, t’).

The latter inequality expresses that the volume of the solid remains greater in spherical
geometry (up to time t’).

3. Proof of (2.1). Let (0, h) be the (unique) classical solution of (1.1) (cf. [6]).
By the maximum principle, 0_-< 0 =< 1 in all q. Let (0, T) be fixed. Then, for any
r/ (0, 1), we have, by (1.1),

0= \--A0 (o-n)/a
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As (see, e.g., [7, p. 9])

+/-foh d l>, IOheo*>nOt-ff ax

we obtain

(3.1)

mdx,

0 oh__ dx + [V 0e dx + dy.

Let/z(r/) [{x to: Oe(x, t)> r/}]. Using standard rearrangement techniques (see [7]),
we get, for almost every 7 e (0, 1),

(3.2) N20"2/NN(ml+I(’rl))2-(2/NIN ]VOeldx n) .>n

Here the first inequality is the isoperimetric inequality relating the volume of the set

tol O {0e > 7) to its perimeter, the latter taken in the sense of De Giorgi (see, e.g., [7]
for details). The second inequality is obtained from the Cauchy-Schwarz inequality
applied to the difference quotients corresponding to the derivatives after passing to
the limit. Combining (3.1) with (3.2) gives

(3.3) N2‘7N(ml + [(n))2-(2/N)N --[’lb’(n) 10 .>n O

k(s, t)= he.(‘7, t) dtr.

for almost every / (0, 1).
Next define

(3.4)

Using results from the theory of relative rearrangement (see [8, Thm. 1.2, p. 60;
proof of (2.12), p. 67]), we obtain for almost every / (namely, those for which

Ohedx I Ohedx
o>n Ot e>ae(r/) Ot

(,7, t)dr

o Ot
(r, t) dr

(3.5)

(It should be noted that the rigorous proof of (3.5) is one of the most difficult results
in [8]. As it is quite long, we do not repeat it here. We just recall that (ohe/ot),h is
called the relative rearrangement of Ohe/Ot with respect to he, and may be conceived
of as the directional derivative of the map ff., taken at the point he, in the
direction Ohe/Ot.)

Thus (3.3) becomes

(3.6) N2,7N(ml +/z (r/))2-(2/) < -/z’(r/) dy--(l(rl), t)
"/1
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(for almost every n (0, 1)). Set (for (0, T) still fixed)

o0 ok
(3.7) F(s)= ,-ody--(s,t).
Then F is a continuous function on t, because ak/at(s, t)=J0 (ah,/at)(r, t)d=
(ah/at),h(, t) d and (ah/at),h.(, t) is integrable as a function of (see [8]).

We will now prove that F is also nonnegative on ,.
By (3.6), (Fo)()0 for almost eve (0, 1). Since is continuous from

the right, so is F . It follows that Fo0 on [0, 1), and then on [0, 1], since
(Fo )(1)= F(0)=, (oo/o)dye0. It follows next that Fo0 on (0, 1], where
(B)=]0 B], for (B-8)(B) as 0. Fuhermore,

00 I
t) dm(Fo )(0)= F(II) d- (,

Ot

is last integral also equals (Oh/Ot) dx AO dx o (O0/Ov) d (see [8]; also
compare (3.5)), so

00

US F. N0 on all [0, 1]. Now let e ., and set O.(s), s’= (), s"= ().
en ’NN ", and we will prove that F0 on [s’, s"]. We have OF/Os =-(Ohm.lOt).
Since 0 e H(O, T; L()) (see [4] or 4 below), 0.e H(0, T; L(.)) and Ohm.lOt
a(O.) O0./Ot is almost eye,where constant on (s’, s") (see [8, pp. 60, 63]). Therefore
F is ane on [s’, "], and since F(s’) and F(s") were shown to be nonnegative, we
conclude that F>0= on [’, s"]. In paicular F(s)>0= and since se. was arbitrary
this proves that F N 0 on ..

Now (3.3) can be written

--/(.+.(nll/-(.(n.’(n a.e. n e (0, 1).
Using that () is a nonincreasing function, integration from to ’, where 0 N <
’N 1, gives

n’-- n N-22/N) (ml + s)(2/N)-2F(s) ds.

As in [7, pp. 24, 31] and [8], this shows that

(3.8) N-2tr2/t)(ml+s)(2/v)-2F(s)+::->=O a.e. sto,.
Os

Now we take the time-dependence into account. Set

io(3.9) y(s, t)= h,(tr, t) dtr- - (x, ’) dy d"

for (s, t) a3, x [0, T]. Then

a_y
at(s,t)=-F(s),

Oy
-s(S, t)=h,(s, t).

Since O b,(h), where b a- is strictly increasing, we also have

O.=b(h.)=b

Therefore (3.8) shows that y satisfies

(3.10) N-2cr2/N)(m -I- $) (2/lv)-2oy
ot

a.e. in q, to, x (0, T),
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i.e., y is a subsolution of a parabolic equation. Moreover, we get the following boundary
and initial conditions for y"

0Y(0, t)= a(1) sY([to[, t)= a,(0),
(3.11) Os

Y(s,O)=Yo(S),
where yo(S) I ho,(’) dtr.

For the symmetrized problem (i’) we obtain as in [8], for

(3.9) Y(s, t)= n.(, t) a- ,x, ) dr d,,

(3.1) N-22/)(ml+s)(2/m)-2OYot OsO(b"(O)) =0 in q,(=Q,),

O Y(O’o t) a(1), (11, t)= a(0),
(3.)

r(s, 0) yo(S)
(obsee that (ho)= ho,). In fact, since O, H, are radially symmetric and decreasing,
the first line in (1.1) can be written"

dH, O ( N2/N)(ml + S)2_(2/N)OOe,
t S /=0 inq,.

Now, we get (3.10) by integrating between 0 and s, noting that

H**_ 2y and r 0 m-(/0*(0).
Now (2.1) of eorem 1 simply states that yN Y in q,. To prove this inequality,

we multiply the difference between (3.10) and (3.10) by (y-Y)+ and integrate with
respect to s for fixed t. Taking the boundary conditions for y and Y into account and
using that b is monotone increasing, we get

0e (m + sl(/-
0(y- g

a o O
(Y Y)+ ds

+ N2 b -b (y- Y)+ ds

1 d212 dt
(m + )(/-(y- Y) ds

+N2 i>Y [b(y) -b()][-5Y] ds

-2dr o



ISOPERIMETRIC INEQUALITIES FOR THE STEFAN PROBLEM 1103

Since y Y for 0, it follows that

oll
(ml + s)(2/N)-E(y_ y)2+ ds<__O for t->0,

and hence that y-< Y in t. as desired.

4. Proof of (2.1). The weak solution (0, h) of (1.1) is obtained as the limit of the
solution (0, he) of (1.1) as e ->0, and we will accordingly obtain (2.1) by letting e --)0

in (2.1). For convenience we review part of the construction of (0, h).
Let (O,h) be the solution of (1.1), and let qt =to x(0, t) for t(0, T). Then we

have

0= -z\--z A0, dxd,

00__ Oh__ dx dt + V-- O dx dy dr

O

a’(O.) -a-fl dxdr+’ dx=- dx.

By assumptions (1.4) and (1.7); when e -> 0, L IV 0o]2 dx is bounded, and a’ is bounded
from below. Hence

(4.1) Iffq aOe2

" dxdC,

(4.2) f IV O(x, t)[2 dx C,

for some constant C independent of e and t. By the maximum principle, the families
{0}>o and {h)>o are bounded in L(q), and, by the above estimates, it then follows
that {0}>o is bounded in L(0, T; HI()) and in H(q). By repeated extraction of
subsequences from {e} we thus can find a sequence e, such that

0. 0 weakly* in L(q) and L(0, T; H()),

weakly in H(q),
(4.3)

strongly in LE(q) (by compactness),

h. h weakly* in L(q)

for some pair (0, h) satisfying

(4.4) 0 L(q) Hi(q) L(0, T; H()), h L(q).

In the following, we shall replace e, by e for simplicity.
Now (0, h) is the required weak solution. In fact, it follows immediately that (1.3)

holds, since (0, h) satisfies the same equation with ho replaced by ho. To ehek that
h e a (0) almost everywhere, it is enough (since a is maximally monotone) to check that

(4.5) (h’- h, 0’- 0) 0
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(where (f, g)= qfg dx dt) for all 0’, h’ L(q) satisfying h’ a(O’) almost everywhere.
Writing

(4.6) (h’-h, O’-O)=(h-h, O’-O)+(h’-he, Oe-O)+(h’-he, O’-Oe),

we have (as e 40)

(4.7) (h h, 0’-0)->0

since he-> h weakly* in L(q) (by (4.3)), and

(4.8) I(h’-he,
since 0e--> 0 in L2(q), and IIh’-hll is bounded (by (4.3)).

Remark. This is the only place where we use the fact that b a -1 is Lipschitz
continuous. This property of a makes it possible to choose ae satisfying (1.4), from
which we get the estimate (4.1) for O0/Ot; then weak convergence in Hi(q) and strong
convergence in L2(q) of 0e to 0 follows. Observe that (4.2) holds independently of (1.4).

For the last term in (4.6), we have

(h’- he, 0’- Oe)= (h’- h, b(h’) be(he))

(h’- he, be(h’)- be(he))+(h’- he, b(h’)- be(h’)).
The first bracket in the last member is nonnegative as b is nondecreasing, and the
second one tends to zero with e, as b converges uniformly to b:

I(h’-h’ b(h’)-b(h’))l<-IIh’--he[lL(q) I, Ib(h’)-b(h’)l dxdt.

Then

(4.9) lim (h’- he, 0’- 0) _-> 0.
e-0

Now (4.5) follows by combining (4.7)-(4.9). Thus (0, h) is a weak solution.
We now pass to the limit in (2.1). First, we have to give a weak interpretation

of the two members of (2.1), since the regularity of 0 that we have is not enough for
ao/av and OO/Ov to make classical sense.

Let q be an arbitrary smooth function in o (say, o c2(o3)) with boundary values
=0 on Yo, 1 on y. Then for (0, h), a "good enough" solution of(Oh/Ot)-AO=O,

O dy dr
Ovav

(4.10) V VOdxd,+ AOdxd,

v, VOdxd,+ (h(x, t)-ho(x)),(x) dx.

Here the last member makes sense for almost every for any 0 L(0, T; Hi(o)),
h L(q), and defines an (almost everywhere) bounded measurable function of t.
Therefore, when (0, h) is the weak solution of (1.1) satisfying (4.4), we choose the last
member of (4.10) to be our definition of Jto v, (O0/Ov) dy d, for almost every e (0, T);
we choose similarly for o rt OO/Ov dy d,. We still have to check that this definition is
independent ofthe choice of . This amounts to showing that if 2(fi) has boundary
values zero on 0o, then

(4.11) VVOdxdr+ (h(x, t)-ho(x))(x) dx=O a.e. t(O, T).
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Now, (4.11) is an equation of the form of(’) dr+ F(t) 0 for almost every (0, T),
for two functions f and F in LI(0, T). The latter equation is equivalent to
f(t),(t) dt=F(t)O’(t)dt for every , c1[0, T] with $(T)=0. Thus (4.11)is
equivalent to

(4.12) VO(x, t)V(x)(t) dxdt= (h(x, t)-ho(x))(x)’(t) dxdt

for as above. Now, the truth of (4.12) follows by integration in the definition (1.3)
for a weak solution, taking (x)(t) as a test function (this integration by pas is
justified by 0 z L(0, T; H()) for (0, h) a weak solution of (1.1)).

For later use we remark that oo (O0/Ov)dy dr may be defined by the same
formula (4.10), taking a test function with the exchanged boundary values, e.g., 1-
with as in (4.10). Then, for such ’s,

O0
dydr=- VeVOdxd+ (h(x, t)-ho(x))(1-(x)) dx,4.1o’

and from (4.10), (4.10)’,

dy a+ dy d,= (h(x, t)- ho(x)) ax
Yl(4.13)

(h,(, t)-ho,()) d.
d0

Now, with :() (respectively, ()) in (4.10), (2.1) (to be proven) becomes

fov0Veaxar+ (h(x,t)-ho(x))(x)ax- h,(,t)
(4.14)

foVOV dx dr+ (H(x, t)-ho(x))(x) dx- H.(, t) d

for s . and almost every (0, T). For fixed s ,, both members above are
integrable functions of t. Therefore (4.14) is equivalent to a statement that, for every
s d., and every nonnegative function [0, T],

VO(x, )V(x)(t) axaeat+ ((x, t)-ho(x))(x)@(t) axat

h.(, )(t) ddt

(4.15) VO(x, z)V(x)O(t) dx dr at

fro+ dx dt

(we have to make this extra integration because the convergence h to h is not
established for fixed (see (4.3)), as we would need to get (4.14) from the corresponding
(4.14)).

By (2.1), we have (4.15), that is, (4.15) holds with O, O, h, H, ho, replaced
by 0,
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(4.15) and (4.15)e, we have

V0e(x, )Vgo(x)O(t) dxdzdt-> V0(x, )Vq(x),(t) dxdrdt

as e 0, because 0 0 weakly* in L(0, T; HI()) (see (4.3)). We have similar results
for the first terms on the right-hand sides of (4.15) and (4.15). As for the second terms
on the left-hand sides,

ff (h(x,t)-ho(X))(x)(t)dxdtff
q
(h(x,t)-ho(x))(x)(t)dxdt

because h h weakly* in L(q) (see (4.3)), and ho ho in L(q) (see (1.6)). Similarly,
for the right-hand sides, (ho ho in L(Q) follows from h ho because the rearrange-
ment operator is a contraction in LP-spaces (see [7, pp. 7, 8])). For the last terms on
the left-hand sides we have

(4.16) lira he.(cr, t)tp(t) dtrdt > h.(cr, t)d/(t) dcrdt

(the map h->or h.(o", t)@(t)dcrdt is weakly lower semicontinuous LI(q)->R). In
fact, for every measurable subset E(t) co, with IE(t)[= s, by the Hardy-Littlewood
inequality

h.(cr, t) dcr >- he(x, t) dx;
(t)

hence

he.(cr, t)g,(t) dtr dt >-
()

h(x, t)g(t) dx at,

f h(x, t) dx= h.(tr, t) dcr,
E(t)

which proves (4.16). Finally we consider the last terms in the fight-hand sides of (4.15)
and (4.15)e. It is clear (by uniqueness of solutions) that 0e, 0, H, and H are radially
symmetric, i.e., are functions of r Ixl and only. Moreover, 0 and H, are nonincreas-
ing as functions of Ix] for fixed (i.e., Oe(x, t)=> Oe(y, t) whenever Ixl--< [yl), as can be
seen by applying the parabolic maximum principle to OOe/Or and OHm/Or (this pair
of functions satisfies a parabolic equation). It also follows that O and H are nonincreas-
ing as functions of Ixl bcause the set of such functions (nonincreasing in Ixl) is  losed
and convex in, e.g., L2(Q) and therefore weakly closed in L2(Q) (use (4.3)). From the
above, we get

(4.17) He,(cr, t) dtr= He(x, t) dx,
t<O’NIXlN<ml+s

(4.8 ,(, = H(x,tax,
<lxl<+

and, if we let e --, 0,

lira he.(cr, t)(t) dcrdt>-_ h(x, t)(t) dxdt
eO (t)

(since h - h weakly in L(q) by (4.3)). Now, E(t) can be chosen such that IE(t)= s
and
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and since He-> H weakly* in L(Q) (see (4.3)) we finally obtain, as e->0,

Io Io Io IoH.(tr, t)g( t) dtr dt H.(tr, t)d/( t) dcr dt.

Now, all the above shows that (4.15) results from letting e0 in (4.15). This
completes the proof of Theorem 1.

5. Proofs of (2.2)-(2.5) and (2.7)-(2.12). We first observe that, in view of (4.13),
(2.1) also can be written:

Io’I Ii Io’I Ii(5.1) ov
dy dz+ h,(tr, t) do’>= o--v dy dr+ H,(o’, t) dcr.

By taking s=0 in (2.1), and s= Itol in (5.1), we obtain (2.3) and (2.4).
More generally, for "classical" solutions (0, h) and (19, H), if s > 0 is such that

y(s, r)= {x s o: h(x, r)= h,(s, z)} and F(s, z)= {x f/: H(x, z)= H,(s, z)} are regular
curves (in particular, if they have measure zero) for almost every s (0, t), using the
technique of relative rearrangement [8] gives us

io io io(h,(r, t)-ho,(r)) dr= h,

Or
(’ r) do" dr

Io I Oh
dxdr

h(x,’r)> h,( s,’r)

(x, z)> h,(s, )
AO dx dr

dy dr + dy dz
(s,’)

(a/or the outward normal of {h(x, r)> h.(s, r)}); we proceed similarly for (O, H).
Thus in (2.1),

O0
dy dz- h,(cr, t) dr

’1 OV ($,’T) OV
dy dr ho.(o’) do’,

and similarly for (O, H), which explains (2.2). (Note also that (ho). ho..)
Now, (2.5) holds because, by the Hardy-Littlewood inequality, E(t)hdx<--

oh. dcr, when [E(t)l=s and ml<NixlN<m+sHdx=oH. dr (see (4.18)).
Next, suppose that OvoO0/Ovdy dr=O (the integral being at least defined by

(4.10)’), for almost every t (0, t’) for some t’>0. This occurs in the one-phase
problem (with h =0) if the liquid phase does not reach Yo initially (because 0 is
identically zero in the solid phase when h -0). By (2.4), then also

dy dr 0 a.e. (0, t’),

that is, we get (2.7), and (5.1) simply reduces to (2.8) for (0, t’).
Now (2.9) follows easily as in the convexity result [1, p. 174], and (2.10) follows

from (2.8) by dividing by I l- and letting s tend to I l. Choosing (h)-- -[(h -fl)_]P
(p >-_ 1) in (2.9) with s-0, we obtain (2.11) for p < c; letting p tend to then gives
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(2.11) for p=c. Choosing p(h)=-(h-fl)_/(a+fl), fl>-a, in (2.9) with s=0, we
finally obtain (2.12) by letting /3->-a (observe that h, H>--a almost everywhere
when h 0).

Acknowledgment. The authors are grateful to J. I. Diaz for several valuable dis-
cussions on the subject of the paper.
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SHORT-TIME ASYMPTOTICS OF THE HEAT KERNEL
ON A CONCAVE BOUNDARY*

PEI HSU

Abstract. A probabilistic method is used to study short-time asymptotic behavior of heat
kernel in the exterior of an insulated smooth convex body. The expansion of the heat kernel p (t, a, b)
when both a and b are on the boundary is obtained by reducing the problem to the computation of
a Wiener functional on a Brownian bridge. The leading terms of log p (t, a, b) are proved to be

2t tl/3 N(s)2/3d8- " + " logt + CO + o(1)

where p is the distance between a and b, N(s) is the normal curvature of the geodesic joining a and
b, and Co is an explicitly identified constant.

Key words, heat kernel, Laplace-Beltrami operator, normal curvature, diffusion process on
manifold, Brownian bridge, Feynman-Kac formula, Girsanov formula

AMS(MOS) subject classifications, primary 58G32; secondary 35K05

1. Introduction. Let M be the exterior of a smooth, strictly convex body in
Euclidean space. Let a, b be two points on the boundary such that there is a unique
distance-minimizing curve - joining them which lies completely in M. Since OM is
concave viewed from M, it is clear then " must be the unique geodesic joining a and
b in OM when OM is viewed as a Riemannian manifold with induced metric. Let us
denote the length of- by p d(a, b).

Let p (t,x, y) be the heat kernel of the Laplace operator A/2 on the domain M
with the Neumann boundary condition on OM. In this paper we are interested in the
asymptotic behavior of p (t, a, b) as t --, 0. Recall the basic result of Varadhan [10]:

(1.1) lim t logp (t a, b)
1
p2.

t--0

Our problem is to seek an improvement of (1.1) which reflects the geometry of the
boundary near the geodesic % It has long been recognized in the diffraction theory
that the correction to (1.1) takes the following form

(1.2) logp (t, a, b)
2 t tl/3 " O

where C is a positive constant. In fact, using the idea of path integration, Buslaev
[2] was able to give a heuristic argument of (1.2) and identified constant C explicitly.
However, to make his argument into a mathematically acceptable proof seems not
to be a simple matter. Equation (1.2) has long been known in physics literature as
Busleav’s conjecture.

*Received by the editors November 9, 1987; accepted for publication (in revised form) October
24, 1988. The research of this author was partly supported by National Science Foundation grant
DMS-86-00233.

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
Present address, Department of Mathematics, Northwestern University, Evanston, Illinois 60208.
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We will study the expansion (1.2) by a probabilistic method initiated by Molcha-
nov [9]. Our result can be briefly described as follows. We parametrize the geodesic- by arclength. Let N(s) be the normal curvature of "), (as a curve in OM -. M) at
point (s). N(s) is simply the curvature of when viewed as a curve in the Euclidean
space. Since OM is the exterior of a strictly convex body, N(s) is strictly positive
along % The asymptotic behavior of p (t, a, b) is described by

p2 #lpl/3 joP (d 1logp(t,a,b)
2t tl/3 N(s)2/3ds- " + logt-t- C0-t- o(1).

Here #1 is the first eigenvalue of "(x)/2- 0 on R1 and Co is
nonzero constant.

Probabilistically, the heat kernel p (t,x, y) is the transition density function of
reflecting Brownian motion on M. By a series of asymptotic analyses, we reduce the
computation of p (t, a, b) to that of the following Wiener functional on the standard
Brownian bridge W:

(1.3) E [exp l-ol l(s)li81dsl]
where is a smooth, strictly positive function.

Our research is inspired by the work of Ikeda [5], where a special case of the
present problem is discussed. In [5], manifold M is assumed to have the form of a
warped product (thus the normal curvature N(s) is a constant). This assumption
allows us to construct Brownian motion on M by skew product and to simplify the
analysis involved. In our present work, we have further explored some ideas from [5].
For a related problem under a different context, see Melrose and Taylor [8].

The plan of this work is as follows. In 2, we make precise our geometric assump-
tions and state our main theorem. The proof of the main theorem is outlined in 3.
In order not to interrupt the main line of argument, verifications of some intermediate
results used in 3 are relegated to 4 and 5. The asymptotic analysis of. the Wiener
functional (1.3) is carried out in 6.

Note. The author was informed that Professor N. Ikeda has also obtained results
related to the present work.

2. Assumptions and the main theorem. Unfortunately the Euclidean co-
ordinate system is not suitable for our work. We therefore need a little elementary
differential geometry. Although we may sometimes discuss the problem under general
differentio-geometrical setting, the case where M is the exterior of a smooth, strictly
convex body is our primary concern. We will see that various geometrical assumptions
we make along the way are satisfied in this important case.

So let us assume that (M, g) is a Riemannian manifold with smooth boundary
0M. We assume that OM is strictly concave when viewed from M. Mathematically
this means that the second fundamental form (defined below) ofOM is strictly positive
definite. Now let a and b be two points on OM such that there is a unique geodesic
in OM joining them on which they are not conjugate. For example, a and b can be
any two nonantipodal points on a sphere. The geodesic is the arc of the great circle
passing through a and b of lesser length. We can set up a semigeodesic coordinate
system (x2, xd) on OM in a neighborhood of /with a as the origin and x2 in
the direction of the geodesic f (cf. Molchanov [9, p. 10]). We let x= (x1, 5c) be the
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point in M which lies on the geodesic passing through and perpendicular to OM
with x d(x, OM).

Instead of M, which has a boundary, we can consider (M- U M, g) the double of
M. Here M- is just a copy of M, and M and M- are identified along the boundary.
The heat kernel on M-UM and the Neumann heat kernel on M are related in a very
simple way (see 3 below).

The second fundamental form H of the boundary OM can be identified with the
matrix

Ox Oxj
V

OxJ Ox

(Vi Vo/ox is the covariant derivative). The normal curvature of 7 at 7(s) is by
definition

g(s) H(,)(/(s), /(s))

(see [7, p. 44]). For brevity, we sometimes write Hij(s) for Hij(’(s)) and g(s) for
g(/(s)). The following lemma clarifies the geometric meaning of the second funda-
mental form.

LEMMA 2.1. Let g (gij) be the metric matrix in the semigeodesic coordinates.
(a) We have

gli(X) li, g2i(0, ) (2i, 1,’’’, d.

(b) Near the boundary OM, the metric matrix has the expansion

g(x) g(0,)+ 2H()[xXl + 2<_i,j<_d.

Proof. Since the coordinate line const, is a geodesic perpendicular to N, we
have gl(0, ) for x E OM and 7(O/Ox) O. This implies

It follows that gli(X) 51. The same proof applies to g2i(0, ). Part (a) is proved.
By the definition of the second fundamental form and part (a), we have on OM

Hi(e) x’Vix ’x’Vx Vlgj.

Part (b) follows immediately.
We will prove our asymptotic formula for the heat kernel under the following two

geometrical assumptions.

Assumption (A). The normal curvature N(s) H22(s), 0 _< s

_
p, is strictly

positive along the geodesic

Assumption (B). For any neighborhood G of /in M, there exists e > 0 such
that any piecewise smooth curve in M joining a and b with length _< d(a, b) / e lies
completely inside G. Equivalently, d(a, b) < d(a, OG) / d(b, OG) for any neighborhood
Gof%

It is easy to verify that in the case where M is the exterior of a strictly convex
body in the Euclidean space, the above assumptions (A) and (B) are satisfied.
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Let (1, (1) be the first normalized eigenpairs of the eigenvalue problem

=.(x) -Ixl(x) + 0,
2

xER1.

We are in a position to state our main result.
THEOREM. Let M be a Riemannian manifold with boundary and p(t,x, y) the

heat kernel o.f the Laplace-Beltrami operator A/2 on M under the Neumann boundary
condition (insulated boundary). Suppose that a and b are two points on the boundary
such that there is a unique geodesic in the boundary OM joining them along which they
are not conjugate. Then under further assumptions (A) and (B), we have as t ---, O,

p (t,a, b)

/H(a, b)p2/3[N(a)N(b)]l/6t-(d/2+l/6) exp
2t

1pI/3 0P }$I/3 N(s)2/3ds

where

and

,),- 2(271")-(d-1)/211(0)12

H(a,b)
[g(a)g(b)] -1/4 02/3.

[det f: g(s)-lds] 1/2

Remark. H(a, b) has an intrinsic geometric meaning, cf. Molchanov [9, p. 14-15].
Before proving this theorem, we need to transform Assumption (B) into a form

more suitable for computation. Let G be any neighborhood of 7; by Assumption (B)
we have d(a, b) < d(a, OG) + d(b, OG). One important consequence of this assumption
is that the computation of the asymptotic behavior of p (t, a, b) can be localized inside
G. This means that the metric outside G has no effect on the asymptotics ofp (t, a, b).
In fact if Pgl and pg are two heat kernels for the metrics gl and g2 which coincide on
G, then we have

lim Pgl (t, a, b)
1

t--*O Pg2 (t, a, b)
(See Azencott [1, p. 157]). Note that in [1], the above relation is proved under the
assumption d(a, b) < max{d(a, OG), d(b, OG)}. The result holds, however, under the
more relaxed condition d(a, b) < d(a, OG)+d(b, OG). See Hsu [4] for details. Therefore,
for the purpose of computing the asymptotics ofp (t, a, b), we may arbitrarily alter the
metric outside G to facilitate the computation. Thus we can assume that M R
{X (xl,x2, ,Xn) X

_
0}, M-( M Rn, and that the metric is Euclidean

outside a small neighborhood G of /. Let g-1 (gij) be the inverse of the metric
matrix. From Lemma 2.1 a simple calculation shows

g22(X) 2H22(:)Jx11 _{_

We can then impose the following global assumptions on g22.

Assumption (B1). For all x E R’*, we have g22(X)

_
1.

Assumption (B2). There exists a constant 7 > 0 such that for all x Rn,
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The reason that we can make Assumptions (B1) and (B2) is simple: These two
assumptions hold on a small neighborhood G of the geodesic . We can then choose
the metric so that they also hold outside G. Let us emphasize once more that (B1) and
(B2) are derived from (A) and (B) and the above mentioned localization principle. We
may prove our main theorem under these assumptions without losing the generality
of our result.

Remark. A casual reader might think Assumption (B) is redundant because it
should always hold. (B) may fail if M is not complete in its Riemannian metric. Since
the Euclidean space is complete, (B) indeed holds in this case. On the other hand,
Assumption (A) is essential.

Finally let us look at a simple example where (B1) and (B2) are satisfied by the
obvious choice of coordinates.

Example. Let M C R2 be the exterior component of the ellipse: x a cos , y
sin 8. Introduce coordinates (8, t) on M:

x= a-{- cos y b + sin 8

where A(8)2 a2 sin2 / b2 cos2 . A simple calculation shows

ab )
2

dx2 + dy’ dt2 + A(O)2 I+A(.O)at
Let

We have

and

x1 t, x2 A(u)du.

ab )
-2

g22(x)= I+A(O)3x1

ab

Clearly, Assumptions (A), (B), (B1), and (B2) are satisfied.

3. Proof of the theorem. Let g- (gij) be the inverse of the metric matrix
g. The Laplace-Beltrami operator on (M- t.J M =/d, g) is given by

1 cO v/det g gij gij + 2bi_._A
/det-y Ox"--7 OxiOx Ox

where
bi

1 1 0
5 x/det g Ox’-- V/det gg)"

Let X (X (X,... ,Xd) t >_ 0} be the Riemannian Brownian motion on
(M-t.J M, g), i.e., the diffusion process generated by A/2 (cf. Ikeda-Watanabe [6,
Chaps. IV, V]). Denote by - M-t.J M M the natural projection. Then the
process ’(X) is the reflecting Brownian motion on (M, g). Let pX and pr(X) p be
the respective transition density. Then obviously

+
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where {y, y*} r-l(y). In particular, since b* b

(3.1) p (t, a, b) 2 pX (t, a; b).

Diffusion process X can be obtained as the solution of the stochastic differential equa-
tion on Rd:

dX8 a(Xs) dB + b(Xs) ds.

Here a is a smooth square root of g and B is a standard Brownian motion in R,d.
The behavior of the heat kernel p (t, a, b) depends on the law of the Brownian

bridge from a and conditioned to reach b at time t. As t 0, the Brownian bridge
tends to travel along the geodesic "7 with uniform speed pit. Let

Ys Xs sPt e2

(e2 is the unit vector (0, 1, 0,..., 0) in x2-direction.) We therefore expect Y to be a
process with small magnitude. The equation for Y is

sp
t t

We now alter the drift of this equation by the Girsanov transform. Consider a new
equation

(3.2) sp t) ds.8Pe2) dB, + c (Z, + ----e2;dZ8 a (Z, +
Let PY and pz denote the laws of the processes Y and Z on the sample path space
C([0, t] ---, R’). By the Girsanov formula (Ikeda-Watanabe [6, p. 180]), we have

dPY

dPz

where

(3.3)

Let D be a neighborhood of a (the origin of the coordinates). We have

P[Xt . D + pe2] =P[Y E D] E[Nt; Z D]

=/E [NtlZt y] P [Z
_

dy]
JD

It follows from this and (3.2) that

(3.4) p(t,a,b)
V/det g(p) E[NtlZt 0]pZ(0, 0; t, 0).

where pZ(s,z;v,x) is the transition density of the process Z (with respect to the
Lebesgue measure) defined by (3.2). Formula (3.4) is the key to the subsequent dis-
cussion.
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We now choose the drift c in (3.2):

Or, what is the same thing (see (3.3))

Ph(x; t) a(x) [bl(x) el -e2].
The advantage of this choice will be clear later. Note that

sp
cl (z +---e2)--0.

This means that the first component Z of (3.2) is simply a one-dimensional Brownian
motion.

The last two factors on the right-hand side of (3.4) will now be analyzed separately.
First of all, we have the following lemma.

LEMMA 3.1. As t - O, we have

1 I d12
H1 [1 + O(v)]

where

H Oa/ det 9()-d

To study

sp
Z$ Z, + -re2

t

for brevity. Using (3.6), we verify easily

We also have

It follows that

p2 p2
t2 [1 g22(Z$)] + Ib(Z$)l2

(3.7) p2
logNt=

2 t Ot + log Hz + Ft

with

(3.8) Ot [1 g22(Z:)]ds
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{fOp } [detg(p)] 1/4
H2 exp b2(se2) ds

det g(0)

and
(3.9)

n= Zz + z)z + ()
It is clear now that the proof of the main theorem in 2 will be completed if we show
the following three lemmas.

LEMMA 3.2. Let lfV be the standard Brownian bridge. We have

E [exp{-Ot}[ Zt 0]
lim 1.

[ex Z
LEMMA 3.3. We have

E [exp {-Or + Ft}l Zt 0]
lim 1.
t--.0 E [exp{-Ot }1Zt 0]

Let

[ { /oS(;l) ae E exp - l(s)llfVslds

LEMMA 3.4. Let/’[0, 1] --, R+ be twice continuously differentiable and strictly
positive on the closed interval [0, 1], then for any k > 0

{ /oS(A; l) ’11(0)12[/(0)1(1)]1/61/3 exp -/1/2/3 l(s)2/3ds [1 + O(A-k)].

The next three sections are devoted to the proof of Lemmas 3.1 to 3.4.

4. Proof of Lemma 3.1. Throughout the rest of this paper, letters cl, c2,...,
whose values may change from one appearance to another, represent constants de-
pending only on the geometry of the manifold.

By (3.2), the function pZ(s,z; v, y) is the fundamental solution of the parabolic
operator

(4.1)
o ..( ) o

L -s + -g3 z + --i-e2 OziOzj
sp t) 0

+ ci (z + --i-e; -zi.

Let us investigate the coefficients c more carefully. First of all, as we have pointed out
before, c1 _= 0. By Lemma 2.1

g(x)_ ( 1
0\

o )(7)-1 2()-IH(:)(:)-IIxX + O(Ix112)

(9 is the last (n- 1) x (n- 1) principal minor of g). Hence near the geodesic

(4.2) " 10(IzX(z + sez) )(z + se2) O(s) ezlz / T IIIzll)
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where
D(8) (se,2)-1H(se,2) (8e2)-1

We prove Lemma 3.1 by the method of parametrix (cf. Friedman [3]). We need to
pay special attention to the dependence of the coefficients on t.

Let Lx be the operator obtained from L by freezing the coefficients of L at z x.
Set for a positive definite matrix A

r(A, y)
(271") d/2 v/det A

1
exp l- ly, A-ly) I

Let

with

We have

0(s, ;,,) r(A.(s, ), )

dl.

1)d12(4.3) u0(0, 0; t, 0)

with the same H1 as in the statement of Lemma 3.1.
Now pZ u can be obtained by iteration from the equation

u(s,z;v,x) uo(s,z;v,x) + dl u(s,z;1,y)(L- LX)uo(l,y;v,x)dy.
d

We thus obtain an absolutely convergent series pZ m=o urn. Using the easy
estimate

(4.4) IIg(z) g(x)[I + llc(z; ) c(x; t)ll _< a311z

which follows from (3.5), we verify by induction the following estimate:

V/Vt-- 8] (V- 8)(m-d)/2 exp -c(v-s)
It follows immediately that

C4 [ ) 8
(4.5) pZ(s, Z; X, V)

__
(V 8) d/2 1 -- t

exp {- IIz xII2
(,- )}"

Now that we have

E Im(O’ O; 1, O)l < C5t-(d-1)/2,

it is easy to see from (4.3) that the assertion of Lemma 3.1 is implied by the inequality

(4.6) ]u (0, 0; t, 0)1 < c6t-(d-)/2,
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which we are about to show. By the iteration formula

ul (0, 0; t, 0) dl F(A(0, l), y)[L L0lr(Ao(/, t), y) dy.
d

From (4.2), we have

02 0 pT 0
L- L aiJ OyiOy------- + i. + OY

2p n

(sP) 0

i=2

with a a(y, 1, t), etc., satisfying

(4.s) II,II / IIII / ll’ll In -< llyll.

This fact together with (4.7) gives

(0,0;,0) t D2i dl ,[r((0,/),y)- r(o(O,1),y)]ly1

r(o( t), yldy / O(t-(d-)/2).x
Oy

(Inserting F(A0(0,/), y) creates a term equal to zero after integration.) Finally using
the inequality

Ir((o, ), u) r(o(O, ), y)l _< csl-dnllYlle-Ilulll’

we obtain (4.6) from (4.9) by simple estimation. The proof of Lemma 3.1 is therefore
complete.

5. Proof of Lemma 3.2 and Lemma 3.3. We adopt the following nota-
tional convention. If G(Z) is a functional of the process Z, the same functional
of Z conditioned by Zt 0 is denoted by (, i.e., G(2). Also if x E R’, then

(x,..., x).
Set

Z Z M max Z m
0<s<l 0<s<l

As mentioned immediately before Lemma 3.1, the process

{Ws de Zs,l; 0 <__ 8 __< I}

is a one-dimensional Brownian motion.
Let Pw be the law of t conditioned by the process W. This means that under

the probability Pw, the process Z is the solution of the stochastic differential equation

d2 ---5(vWse + V2 + spe2) d[, + v/5(vWse + v/2 + spe2) ds.

In this equation W {W; 0 _< s _< 1} is assumed to be deterministic. Let pzt be the
2ttransition density of Z and let Pw be that of the process under the probability

Pw.
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Inequality (4.6) and Lemma 3.1 can be paraphrased as follows:

C2 C3pz, (, z; , x) _<
( )/

e-II-ll/=("-) _<
I1 11

pZt (O, O;1, O) (2-) d/2
[1 + O(v/)] _> ca.

The proof of Lemma 3.1 can be applied to obtain the following estimates for function

Pw"
, C2 C3(.) Pw(S,;v,) ( )(d-x)/2e-II-ll/=(-) <- I1- 11

and

(5.1b) Pw(O,O;t,O) > c4 1-c5 IWlds

To see this, we only need to observe that (4.2) and estimates (4.4) and (4.8), which
are crucial to the proof there, should be replaced by

12pt [i- o(vlWs/tel -- S -I- 8e2) -1] e2 -- --O([Ws/tl I111)

and

+ +  )11 <- 11 11
C6

I111 + IIzll cllll, I111 viW#l I111,

with constants c6, cr independent of W and t.

LEMMA 5.1. There exist constants co, cl independent of t such that for sufficiently
large a >> 1,

a o1

(a) Pw 1* > a < e-=, if IW, lds < co.

and

(b) P ill)/t > a < e-cl

Proof. Let

By the Markov property, we have, for any neighborhood D of the origin in R(d-1),

Pw 1I > a, 2 E D Ew PW (a, Ta;1, y) dy; Ta < 1
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Divide (5.2) by P [2 E D] and use (5.1). Letting IDI 0, we see that for a >> 1,

(5.3) Pw [1D > a] <_ -1-ca ,Ws,ds Pw [ID > hi.
To estimate the last probability, we note that the equation of Z’ is

(5.4) d2 dQ, / v5(vWez / v2] / spe2) ds

where
dQ, 5(vWsez + v] + spe2) d8.

By Lemma 2.1 and (3.5) the drift in (5.4) is bounded by

Also note that Q,i 2,... are martingale with bounded characteristic: [Q] _<
dllall. It follows that for some a >_ 2cs and all t _< 1

( /o )]<dPw [ max Ilfl.ll > 1 [W.Ids
LO<s_<dllo.iiL ’<_dexp{-cga2(l-[Ws[ds) }

(/ is an independent one-dimensional Brownian motion). Part (a) follows immediately
from (5.3) by choosing, for example, co < min(c, 1) and c > c9(1- c0)2. The proof
of part (b) is similar and easier.

LEMMA 5.2. For any positive e, K and 0 < 5 < 1/6, there exists a positive
constant to to(e, K, ) such that .for all t <_ to,

[/01P Ild _< Kt/6, max IW I > et-l] < exp {-t-C/a+)}.
O<s<l

Proof. This lemma is proved in Lemma 5.4 of Ikeda [5, p. 188-189].
We now turn to the following proof.
Proof of Lemrna 3.2. Set

{/01At,K w"

Also set

Bt,={w" o<s<max II]ds > t-z/6 }
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We have from (3.8)

p2 f01t [1 g(v/2t + spe.)] ds.

Assumption (B2) implies

2H( + se)lz -71zl- < - g(z +) 2H( + )ll + 71l.
Since

IH22(5 + se2)- N(s)l
and N(s) is strictly positive by Assumption (A), we have

P

Symmetrically, we have

p2
(5.6) t > [1 c4ell t/3] N(sp)lslds a3at on Bc

Now Lemma 5.1(a) implies that if t (co/K)V

(5.7) E, [exp{c3Gt}] exp c5 ]slds + c5 lslds on At,g.

(Imegration by parts) By the Schwartz inequality, (5.7) gives

(5.8) E, [exp{-cGt}] exp -c Ilda a Ilda on At,K.

We also have

t > 2c6Kt-/3
p27 .2 Isl2ds on Ac

tK"

Hence for y [2c6/p2llfll]x/2, we have

(5.9) t > c6Kt-/3 on Ac OBc

Observe that

Thus, on the one hand, using (5.5), (5.8), and Lemma 5.2, we have

E [exp {-t}]

_> S exp -[1 + cae Tt/3 + cTt/2 + cTgt2/3] Y(sp)llds At,K Bct,

E [exp {...}] Z [exp {...} ;A,K] P [At,K Bt,,]

exp -[1 + caeTt/3 + cTt/2 + cTgt2/3] N(sp)lslds
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On the other hand, by Assumption (B1), we have >_ 0; hence using (5.6), (5.7),
(5.9), and Lemma 5.2, we have

By Lemma 3.4, which we will prove independently in 6, there exist constants C9 and
c10 such that as t 0, for any k >_ 0,

p2
(5.10) E [exp {- j0 g(sp)[Vs[ds}] c9$-l/6exp{-clo-l/3}

Choose K > ClO/min(c6, cs). Using (5.10) and the above bounds for E
we obtain

exp{--Clle0’} < lim {sup
E [exp{-}]

< exp{clle’)’}.
-t--,o inf }

E [exp{- f N(sp)[I?VsIds}]
(all 2 C4C10/3.) Letting e 0, we obtain Lemma 3.2.

Proof o:f Lemma 3.3. Let us first prove: There exist constants Cl and c2 such that
for any Iq[ > 1

(5.11) E [exp{q/}] < ale,c2q2.

Set

Cu V bl(v/2$ -[- 8pe2)digd8 + b2(v/2 -- 8p2)- b2(spe2) ds

+ I  (vq2 +

Then we have C1. Obviously

{m [exp{q/}] }2 <_ m [exp{2qCl/2} m [exp{2q(Cl- Ci/2)}]

Thus it is enough to prove the estimate for each of the factors on the right-hand side of
the above inequality. The proofs for the two factors are the same. Take, for example,
the first factor. Since IYV is a standard Brownian bridge, we can write

di?Vs dWs
1 s

ds
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for a Brownian motion W. Set

Au 2qVq bl(v2$ + spe2)dW8 2q2t ]bl(v2$ -t- spe2)]2ds

and

We have

Du 2 qCu Au.

{E [exp(2qCu2}] }2 <_ E [exp{2Au2}] E [exp{2Du2}].

The first factor on the right-hand side is equal to 1 by the choice of A,,. As for the
second factor, we have the bound

21D1/21 <_ c3q2t -I-c3qv/Mt.

It follows immediately from Lemma 5.1(b) that the second factor in (5.12) is bounded
by c4e2c2q2. This implies

q2E [exp{qC/}] <_ clec2 ’.

Inequality (5.11) is proved.
We now complete the proof of Lemma 3.3. By Lemma 3.2, we have

(5.13) E [exp {-c(}] >_ exp{-c-t-/3}

for fixed c. We use the cases c 1, 2. Let p > 1 and lip + 1/q 1. By (5.11), (5.13)
and the Schwartz inequality we obtain

and

Taking q t-l2 and letting t 0, we obtain immediately Lemma 3.3.

6. Proof of Lemma 3.4. Assume first that is a constant. Using the scaling
property of Brownian motion, we have

{ foo
()t)/

S(;t)=E exp
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(W is one-dimensional Brownian motion). By the Feynmann-Kac formula,

S(A; l) x/(,l)l/3q((Ag)2/3, O, O)

where q(s, x, y) is the fundamental solution of

0 1 02
L

Ot 20x2 Ix["

We have the eigenexpansion

q(s,x,y) exp{--#mS}m(X)m(y).
m--O

It follows easily that for any k _> 0,

s(A; t) vl,(O)I2(A/)/3 exp {-/z (A/)2/3 ) [1 + O(A-k)].

Thus Lemma 3.4 holds in this special case. For the general case, let

L(s) l(u)2/3du

1 d
[log l(L_X(s))]() T

(s) L(1) #(L(1)s)
Tx 2/3L(1)

if.,J [’(s) + (s)2ll,12ds

(L-1 is the inverse function of L). It is not difficult to see that Lemma 3.4 is implied
by the following two relations:

S(A;/) [l(O)l(1)]x/6L(1)3
E [exp {-f(T/2,)}]

(6.3) lim
E [exp {-f(A, )}]

1.
x--.oo E [exp {-f(A, 0)}]

To show (6.2), let d be the d-function at x 0, and set

ux(s,x) E [exp {- fl(s)lWlds} 8(W)]
We have S(A; l) V/u(0, 0). Function ux(s,x) satisfies

(gu 1 (92u
At(s)lxlu o,

Os 20x
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Introduce a new function w(s, x) by

(,) [()]/ (AmL(),
Then

S’(A; l) v/[Al(1)]l/awx(O, 0).

We verify directly that w.x(s, x) satisfies the equation

Ow 1 02w Ow
o--? + - + -/’(-/) -Il o, (T, .)

By the Girsanov formula and the Feynman-Kac formula, we can write

wA(O, O) E [exp{A(A)}6(WT)]

where

A(A) A-2/3 t ( s 1,_4/3 Tx 2

-f$) W,dWs - IWl=ds- foo
T

IWIds.

Using the scaling property of Brownian motion, we can write

1
(6.5) wx(0, 0) rz---E [exp{B(A)}]

with

B(A) ox

By It6’s formula,

1/01(s)lsdl28 (s)=ll=d T,/ I,ld.

B(A) [’(s) + (s)2lllI2ds T/2 [lds -1 1(1)f(T,) log/.

(s) ds

The desired formula (6.2) follows from (6.4) and (6.5).
It remains to prove (6.3). We claim

(6.6) 3p > 1: C(p) deal E [exp {-pJ}] < oo.

Let {X1, X2,...} be a sequence of independently and identically distributed random
variables with standard normal distribution N(0, 1). Then the Brownian bridge
can be expanded as

oo
sin krs

We have
1

oo

k,l=l
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with

2/ol [’() +()]
Let H be the Hilbert space

sin krs sin lrs
k
ds.

H {f e AC[0,1] /(o) :(1) o, :o1 }[Ifl]2i.I de.f if,(8)12ds <

Let (el,e2,...} be an orthonormal basis for H. Define A H H by Aek
=1 aklel. Let al, a2,... (a4 0) be the eigenvalues of A with normalized eigen-
vectors fl, f2,’". Define (ckl) by e 1ckft. The random variables

1cuX,i 1,2,... are again i.i.d, with standard normal N(0, 1). rthermore
J = i=1 ai[]2 It follows that as long 1 + pa 0 for all i, we have

P 1]2(6.7) C(p) E exp - a4 H(1 + p4)-1/2.
4=1 4=1

The infinite product (6.7) converges to a finite value if and only if the series 4I a4
converges and 1 + pa4 > 0 for all i. On the other hand, from the definition of C(p),
we know C(p) is finite for small p. Thus the the series 4=1 a4 indeed converges. It is
now clear that C(p) is finite for those p such that 1 +pa4 > 0 for all i. Thus C(p) < o
for some p > 1 if and only if all eigenvalues a4 > -1 (note that a4 0), or what is
the same thing,

(6.S) Vf . H" (Af f)H >--llfll.
A direct computation shows that

1

(Af, f) [’(s) -4- (s)21 lf(s)12ds.

Relation (6.8) follows then from the elementary fact: for all f E H

]01 [’(s) + (s)2l[f(s)12ds +
1

[f’(3)[2d3 [(s)f(s)- ft(8)]2d8 > O.

Equation (6.6) is proved.
We can now finish the proof of (6.3). Let

{ /01c, " IJl < /3

and

Then on C,

{ j01 }DA,K W" ]lTVslds > KA-1/3

I#,lda < n(A, ) > All + /--2/3] 01
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On the set D,K
(, )) >_ g -{-K/2/3.

It follows that on the one hand

(6.9)
E[exp {-G(A, )}] _<E [exp (-All- eA-2/3]/01 [[ds}]

+ C(1)exp(-gA2/3} + C(p)I/PP [C,, n D,K] I/q

Note that we have proved C(1) and C(p) are finite. On the other hand, we have

(6.10)
Z [exp (-(A, )}] _>E exp -All + A-2/3] [I?Vs]ds

Note that

with c() [[’+ Take K > #IL(1). By Lemma 5.2 and (6.1), (6.9), and
(6.10),

e-2Ule/3 < lim { sup } E [exp{-G(A, )}] < e2me/3
---.oo inf E-::0)}]-

Letting e 0 we obtain (6.3). The proof is complete.
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GLOBAL EXISTENCE FOR SEMILINEAR PARABOLIC SYSTEMS*

JEFF MORGANf

Abstract. Global existence results are obtained for semilinear parabolic systems of partial differential
equations of the form

ut=DAu+f(u) onl’lx(O, T),

with bounded initial data and various boundary conditions, where D is an m x m diagonal matrix with
positive entries on the diagonal, [l is a smooth bounded domain in Rn, and f: R R is locally Lipschitz.
These results are based onf satisfying a Lyapunov-type condition, and generalize a previous result of Hollis,
Martin, and Pierre [SIAM J. Math. Anal., 18 (1987), pp. 744-761]. This theory is applied to some specific
reaction-diffusion and nerve conduction problems.

Key words, reaction-diffusion systems, global existence, Lyapunov function

AMS(MOS) subject classifications. 35K45, 35B35

1. Introduction and motivation. In recent years, there has been a great deal of
research concerning global existence for solutions of semilinear parabolic systems of
partial differential equations. The problem has been approached via invariant sets,
differential inequalities, semigroup theory, and many other methods (see [1], [3], [16],
19]). More recently, Hollis, Martin, and Pierre 10] studied this problem by examining
systems of two unknowns, where one of the unknowns is bounded and the nonlinearity
obeys a simple Lyapunov-type condition. The results obtained in this work are a
generalization of this idea.

Much of the motivation for this work comes from studying systems of ordinary
differential equations. Suppose that m is a positive integer, f" R -> R" is continuously
differentiable, and yo R". Consider the following system"

y’-f(y), t>0,
(1.1)

Y-Yo, =0.

Local existence is well known for such systems. That is, there exists a real number
Tmax>0 such that (1.1) has a unique noncontinuable solution y(t) on [0, Tmax).
Furthermore, if Tmax <, then ly(t)l-> as t-> Tmax-. Hence, (1.1) has a solution for
all t>0 (a global solution) if y does not blow up in finite time. One method for
determining whether (1.1) has a solution for all > 0 is the following Lyapunov-type
criterion.

PROPOSITION 1.1. Suppose that H:R’-> [0, o) is a smooth function satisfying
(i) IH(z)l- oo as Izl- oo;
(ii) There exists a real number M such that

VH(z)" f(z) <- MH(z) for all z Rm.
Ther/ Tma OO.

It is interesting to note that if M-< 0 then the level sets of H determine invariant
regions for solutions of (1.1).

Actually, systems of the form (1.1) are a special case of the following. Suppose
l’l is a bounded domain in R" with a smooth boundary 0[l (say, 0fl is an (n-1)-

* Received by the editors September 28,1987; accepted for publication (in revised form) October 25,1988.
t Department of Mathematics, Texas A&M University, College Station, Texas 77843.
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dimensional C2+/’ manifold, such that 11 lies locally on one side of Oft), D is an m x m
diagonal matrix with positive entries di on the diagonal, A is the Laplacian operator,
V is the gradient operator, 0 is the derivative operator, 0/07 is the derivative with
respect to the outward unit normal on 01, and Vo L(f, Rm). Consider the system

vt(x, t)= DAy(x, t)+f(v(x, t)), x11, t>O,

(1.2) Or(x, t)/O O, x 011, > O,

v(x, 0) Vo(X), x z .
Note that if Vo= Yo, then v(x, t)= y(t), where y solves (1.1).

Local existence for (1.2) is similar to that for (1.1) (complete statements are given
in 2). That is, there exists a real number Tmax> 0 such that (1.2) has a unique,
classical, noncontinuable solution v(x, t)= (vi(x, t)) on f x [0, Tmax)- Furthermore, if
Tma < c), then Ivy(., t)[oo.n as Tmax- for some 1 -<- =< m.

Note that the criterion for determining global existence for (1.2) is essentially the
same as that for (1.1). That is, (1.2) has global existence if v does not blow up in finite
time in the sup-norm. However, determining global existence for (1.2), even when f
is quite simple, can be a difficult task. In general it is not known whether global
existence for (1.1) guarantees global existence for (1.2). We might hope that the
invariant regions for (1.1) (obtained, for example, when M-0 in Proposition 1.1)
would also be invariant regions for (1.2). Unfortunately, if the d are distinct, the only
invariant regions for (1.2) are products of intervals (see Smoller [20]). Consequently,
the spread of solutions of (1.2) outside more general invariant regions for (1.1) leads
us to believe that global existence for (1.1) does not imply global existence for (1.2).
Although this work does not resolve this problem, conditions similar to those given
in Proposition 1.1, and guaranteeing global existence for (1.2), are stated in 2. The
principal portion of these conditions can be stated as follows.

Suppose that I is an invariant region (possibly unbounded) for (1.2), v(x, t)=
(v(x, t)) solves (1.2) on cl (11) x[0, Tmax) and there exists a function H C2(I, [0, oo))
such that:

(1.3) 02H(z) is nonnegative definite for all z I;
(1.4) H(z)o as Izl- oo;
(1.5) There exists MR such that VH(z).f(z)<=MH(z) for all zl.

Note that (1.3) and (1.4) assert that H is a convex, coercive function from I to [0, oo),
and that (1.5) imposes a growth restriction on the vector field f across level sets of H.
The additional conditions given in 2 place a polynomial growth restriction on f, along
with an "intermediate sum" restriction that allows us to handle distinct diffusion
coefficients d. When the diffusion coefficients are not distinct, we have the following
simple result.

PROPOSITION 1.2. If di d for all 1 <- i, j <- m and there exists a function H
C2(I, [0, oo)) satisfying (1.3)-(1.5), then Tmax=O. Furthermore, if M <=0 then there
exists N> 0 such that [v(., t)[oo,a--< Nfor all >-O.

Proof. Set u(x, t)=H(v(x, t)) on l"x [0, Tmax). Then from (1.3)-(1.5), u->0 and

u,(x, t) <-- dAu(x, t) + Mu(x, t), (x, t) x (0, Tmax)

(1.6) Ou(x, t)/Orl 0, (x, t) 011 X (0, Tmax)

u(x, O) H(v(x, O)), x 11.
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Thus, if K =]H(v(x, 0))leo,a, then application of the strong maximum principle (see
Sperb [21, 2.3]) implies that O<=u(x, t)<-_Ke1‘ on llx[0, Tmax). Hence, from the
basic existence theorem given above and (1.4), we have Tmax=C. Furthermore, if
M -< 0, then there exists N> 0 such that Iv(’, t)l,--< N for all >- 0.

We remark that if, in addition to (1.3)-(1.5), H also satisfies H(z) =0 if and only
if z 0, then M < 0 implies Iv( t)[eo.a --> 0 as --> .

Conditions (1.3)-(1.5) are actually a generalization (see 5) of a "dissipativity
condition" considered by Groger [8] requiring a function related to the dissipation
rate of the chemical reactions to be nonnegative. From the work of Horn, Feinberg,
and Jackson [5], [11], [12] on mass-action kinetics in reaction networks, it follows
that this condition is satisfied for many systems of practical interest. Also, many
standard "energy inequalities" arising in mechanical problems correspond to the
choices H(v)= c1D--’’. -CmD2m for some positive constants Cl, C For chemical
systems we usually choose quite different H’s, as illustrated in 5.

The material in this paper is organized as follows. The notation and main results
are given in 2. In 3 we develop some useful a priori bounds, and in 4 we prove
the results stated in 2. Section 5 contains applications of this theory to some reaction-
diffusion and nerve conduction problems.

2. Notation and statements of main results. We assume that the reader is familiar
with the standard Lp and Sobolev spaces. If 0-< - < T and 1 =< p <, then W2’I"(fl
(% T)) will denote the Banach space consisting of the elements u of LP(II (’, T)),
having the distributional derivatives DDSu, where 2r + s _-< 2 and each ofthe derivatives
lies in L" (fl x (% T)). The norm is defined by

In] (2)

2r+s--<2

If a,/3 R", then a _-</3 if and only if ai--< fli for all 1 _-< _<-m. Also, the positive
orthant of R is defined by P’ {x Rm: xi > 0 for all 1 _-< _-< m}, and the nonnegative
orthant of R is defined by cl (pro).

Throughout, II will be given as in 1. Furthermore, if s and are real numbers
satisfying O<-s<t, then l’lx[s, t] will be denoted by Q[s,t]. Similarly, Ilx[s,t),
II x (s, t), and II x (s, t] will be denoted by Q[s, t), Q(s, t), and Q(s, t], respectively.

The primary concern of this work is the system

vt(x,t)=DAv(x,t)+f(v(x,t)), xell, t>0,

(2.1) By(x, t) y, x e Ol’l, > O,

v(x, o) Vo(X), x e 11,

where D and f are given as in 1, and B and 3’ satisfy the following assumptions:
(A1) a (ai), T (%) R" andB=(B)isadiagonaloperatorgivenbyBv=(Bv),

where Bvi avi + (Ov/Ort) for all 1 =< _<- m. Furthermore, a,/3, and 3’ satisfy:
(i) ak>=O and /3{0,1} for all l<-_k<-_m; (ii) if/3=0 then Ck=l for all
1 _-< k -< m; and (iii) if a 0 for some 1 <- =< m, then c 0,/3 1, and 3’ 0.

(A2) Vo (/)i0) Le(a, Rm)
Conditions (A1), (A2) guarantee local existence and uniqueness for (2.1). A proof

ofthe following theorem can be found in Hollis, Martin, and Pierre 10, Prop. 1, p. 745].
THEOREM 2.1. Suppose that (A1), (A2) hold. Then there exists Tmax>0 and N

(Ni)e C([0, Tmax), Rm) such that
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(i) (2.1) has a unique, classical, noncontinuable solution v(x, t) on cl ()x
[0, Tmax); and

(ii) Iv,(’, t)lo,a <- Ni(t) for all 1 _-< _-< m, 0 _-< < Trax.
Moreover, if Tmax < oo, then [vi( t)[ ,a o for some 1 <- <- m.

For the remainder of this paper I will be a (possibly unbounded) subset of R
for which (2.1) is invariant. Since our primary interest lies in the case when the
"diffusion coefficients" di are distinct, it follows from our comment in 1 that there
exist (possibly unbounded) intervals Ii of R such that I I1 " x Ira. In addition, this
invariance assumption seems to warrant the following.
(A3) If 1 _-< -< m and ai 0, then 3’i/ai li. Furthermore, Vo(X) I for all x.

In order to state a version of Proposition 1.1 for (2.1), we give a restricted version
of (1.3)-(1.5). Suppose v (vi) solves (2.1) and there exist functions H C2(I, R) and
hi C2(I, R) for each 1 _-< _-< m such that:
(H1) H(z) ,i hi(zi) for all z I.
(H2) hi(zi), hT(zi) >- 0 for all zi Ii, 1 -<_ -<_ m.
(H3) H(z) c if and only if [z[ in I.
(H4) There exists A (ai) R satisfying ai _>- 0, a, > 0 for all 1 _-< i, j _-< m, such

that for each 1 <_-j_-< m, either (i) there exist r, K1, K--> 0, independent of j,
such that Y/g=l ah’(zi)f(z)g < K(H(z))+ K2 for all z I; or (ii) there exists
sr _-> 1 such that for all " <- p < oo there exist 0 < ip < 1 and K3p, K4p
such that for all 0-<z< T< Tmax we have [hj(vj)[p,O[z,T]
Kp( T- ’)+ K4p( T- z)IH(v)[ p,P[ -, TJ-

(H5) There exist q, Ks, K60- such that for all 1 im= we have h’
Ks(H(z))q -b" K6 for all z I.

(H6) There exist K7, Ks_->0 such that VH(z).f(z)<-K7H(z)+K8 for all zI.
Remarks. (i) Conditions (H1)-(H3) and (H6) are a restatement of (1.3)-(1.5)

with a "splitting condition" imposed on H. We show in 3 that these conditions are
sufficient to obtain certain a priori bounds on H(v).

(ii) Hypothesis (H4) requires that either there exists a polynomial upper bound
for the jth "intermediate sum," or hi(vj) satisfies an Lp growth restriction. Note that
(H4)(ii) is satisfied if vj can be bounded a priori on Q(0, Tmax). The results we obtain
are dependent on r if (H4)(ii) does not always hold, but the restrictions on r allow
nontrivial nonlinearities in f. We show in 4 that if (H4)(ii) holds for all 1 _-<j-< m,
then Tma

(iii) Hypothesis (H5) is essentially a polynomial growth restriction on f. The
results we obtain are independent of the size of q.

In 5, we will see that several model systems satisfy (H1)-(H6). Our first result
is stated as Theorem 2.2.

THEOREM 2.2. Suppose (A1)-(A3) and (H1)-(HS) hold. If there exist a>0 and
g C([0, oo)) such that

(2.2) (H(v(.,s)))"ds -<g(t) forallO<t<Tm,,

and r < 1 + a, then Tmx
Although it is not obvious, Theorem 2.2 gives us a generalization of Proposition

1.2 to cases of general diffusion coefficients and more general boundary conditions.
Suppose that (A1)-(A3), (HI), (H2), and (H6) are satisfied. Then it will be shown in
3 that (2.2) holds with a 1, independent of m and n! Hence, if r < 2 in (H4)(i),

then this theorem provides a global existence result independent of space dimension
and size of diffusion coefficients. Thus, returning to consider systems (1.1) and (1.2),
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we see that global existence for (1.1), with an appropriate H, implies global existence
for (1.2) for a large class of nontrivial systems.

Theorem 2.2 also generalizes the global existence result of Hollis, Martin, and
Pierre, who considered systems of the form (2.1) with m 2 and the following assump-
tions:

(a) fl(0, z2), f2(zl, 0) _-> 0 for all Zl, z2 --> 0.
(b) Vio(X) --> 0, for all x f, 1, 2.
(c) fl(v(x, t))+f2(v(x, t))<-_M(Vl(X, t)), for some Me C([0, )) on Q(0, Tmax).
(d) There exists g C([0, )) such thatlVl(’, t)l.n<= g( t) for all 0<t< Tmax.

Assumptions (a) and (b) above imply that cl (p2) is invariant for (2.1) (see Lightbourne
and Martin [15]), whereas (c) and (d) are simple cases of (H6) and (H4)(ii), respec-
tively, with H(v)=vl+v2+constant. Hence, these assumptions imply that the
hypotheses of Theorem 2.2 hold.

We can also extend a version of a very general result of Amann’s [2] (which was
given for nonlinear parabolic systems) as it applies to systems of the form (2.1).
Amann’s result (as it applies to (2.1)) can be stated as follows. Suppose that:

(i) There exist K, r > 0 such that for all 1 =<j =< rn

[f(v(x, t))l_<- K v,(x, t)+ 1 on Q(0, Tmax);

(ii) There exist g C([0, )) and a > 0 such that for all 1 <- <-_ rn

<-_g(t) for all 0< < Tmax;
oo,(o,t)

(iii) rl+2a/n;
then Tmax oo. We state our extension as Theorem 2.3.

THEOREM 2.3. Suppose (A1)-(A3) and (H1)-(HS) hold. If there exist a>0 and
g C([0, oo)) such that

<-g(t) forallO<t<Tmax,
(2.3)

.<o,t

r< {l +2a/n, n>--2,
l+a/n, n=l,

then Tma 0.

Note that assumption (H4)(i) allows the possibility of higher-order terms cancel-
ling in "intermediate-sums." Hence, an L(f) a priori bound for the solution of (2.1)
might be used more effectively in Theorem 2.3 than in Amann’s result. Also, if
(A1)-(A3), (H1), (H2), and (H6) hold, then (as shown in 3) (2.3) holds with a 1.
Consequently, Theorem 2.3 can be applied to many nontrivial systems.

Global existence results for (2.1) can also be given in terms of L"(Q(O, T)) a
priori bounds.

THEOREM 2.4. Suppose (A1)-(A3) and (H1)-(H5) are satisfied. If there exist a > 0
and g C([0, )) such that

(2.4) (H(v(x,s)))dxds<-g(t) forallO<t<Tmax

and r < 1 + 2a/(n + 2), then Tmx
As above, we show in 3 that if (A1)-(A3), (H1), (H2), and (H6) hold, then (2.4)

is satisfied with a 2. Thus, when n 1, quadratic upper bounds on "intermediate
sums" are permitted.
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3. A priori estimates. In this section, we show that solutions of (2.1) satisfy certain
norm bounds if conditions (A1)-(A3), (H1)-(H3), and (H6) are satisfied. It should
be noted that for a particular system, better a priori bounds might be obtainable than
the ones given here, but these will at least indicate the merit of Theorems 2.2-2.4.

The following technical lemma will be useful in this section and 5. We omit the
straightforward proof.

LEMMA 3.1. Suppose that (A1), (A3), and (H1)-(H3) are satisfied. Then there exist
t 3, ), tr cri g ", and {O, 1 } such that ihi vi x, t) + O( hi vi x, t) /0 rl <- tri on
Oft x (0, Tmax).for all 1 <-i <- m. Furthermore, parts (i)-(iii) of (A1) are satisfied with 3,
tr, and in place of a, fl, and T, respectively.

Throughout the remainder of this section, hi(vi(x, t)), h(vi(x, t))f(v(x, t)), and
hi(vio(X)) will be denoted by Hi(X, t), Fi(x, t), and Uio(X), respectively.

The first result in this section yields bounds for H(v) in LI(0, T).
THEOREM 3.2. Suppose that (A1)-(A3), (H1), (H2), and (H6) are satisfied. Then

there exists g C([0, oo)) such that

IIH(v(’, "))l,,o,,)l.g(t) forallO<t< Tma

Proof. From (2.1), (H1), (H2), and (H6), we have

VH(v(x, t)) vt(x, t)<-VH(v(x, t)) DAy(x, t)+K7H(v(x, t))+K8

<=Z diAui(X, t)+ K7H(v(x, t))+ K8
i=1

on Q(0, Tmax).

Thus, if 0 < r < Tmax, then integration with respect to time yields

(3.1) H(v(x, t))<--_A 2 diui(x, s) ds+ g(v(x, ’))+ K7 H(v(x, s)) ds

+ K8(t z) on Q(% Tmax).

Set d max {dl,. din}, M K7d/min {dl," ", dm},
w(x, t)=t, ’i=1 (di/d)ui(x, s) ds on Q(’, Tmax). Then

L= [H(v( ", "r))l ,n

(3.2) wt(x, t)<=dAw(x, t)+L+Mw(x, t)+K8(t-’) on Q(’, Tmax).

Referring to Lemma 3.1, set b=min{l,"’,m}, c=, and
{O’1," ", O"m}. Then

Ow(x, t)
(3.3) bw(x, t)+c<=e(t--) on0fx(-, Tmax).

Furthermore,

(3.4) w(x, z) 0 on ft.

and

e max

Consequently, application of the strong maximum principle for parabolic
equations (see Sperb [21, 2.3]) to (3.2)-(3.4), along with part (ii) of Theorem 2.1,
implies that there exists g C([0, c)) such that ]w(., t)l,n-<- g(t) for all 0 < < Tma

The next result yields L(ft) a priori bounds for the solution of (2.1).
TI-IEOREM 3.3. Suppose that (A1)-(A3), (H1)-(H3), and (H6) are satisfied. Iftr= 0

or0 in Lemma 3.1, then there exists g C([0, )) such that IH(v(’, t))ll,n<=g(t)
for all 0 < < Tmax.
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Proof. Integrating (4.1) over l-I with r=O, applying integration by parts, and
setting L-Illn(vo)lo,, we obtain

(3.5)
IH(v(., t))[1,f/ di

i=’1
ou,(x, s)

dE ds+ L

+g In(v(’, s))ll,, ds+ g81lt

for all 0 < < Tmax, with dE denoting the usual surface measure on ,91. Thus, if tr 0
or : 0, then Oui(x, s)/Orl <- tri for all 1 -< _-< rn on ,91-1 x (0, Tmax). Hence, if we set
t2=X,__ (d,,r, lofl+ K8lfl), we obtain

(3.6) ]g(v(.,t))]l,<-L2t+Ll+g7 ]g(v(’,s))ll,nds for all 0< < Tmax.

Application of Gronwall’s inequality to (3.6) proves the result.
As is mentioned in 2, L2(Q(O, T)) norm bounds are also obtainable for solutions

of (2.1). We state this result as Theorem 3.4.
THEOREM 3.4. Suppose that (A1)-(A3), (H1)-(H3), and (H6) are satisfied. Iftr= O

or 0 in Lemma 3.1, then there exists g C([0, oo)) such that IH(v)12.t<o,t) <= g(t) for
all 0 < < Tmax.

Proof. Choose d > max {dl, , dm} and 0 < r < Tmax. For 1 -< _-< m + 1, let zi be
the solution of

zit(x, t)= diAzi(x, t)+ Fi(x, t) on Q(-, Tmax)

(3.7) 6izi(x, t)+ st
Ozi(x, t)
=r onfx(r, Tmax)

zi(x, ’) Li on II

with Fm+l(X, t) KTH(V(X, t))+ K8-VH(v(x, t)) f(v(x, t)), dm+l dm, tSm+l=tSm,
Crm+l trm, and Lm+l Lm, where Li lug(’, r)l,n for all 1 <-i_-< rn. Then, from the
strong maximum principle for parabolic equations, we have z(x, t)>= u(x, t) for all
l<=i<=m, and there exists gl C([0, Tmax)) such that O<=lz(.,t)lo,,<-_g(t) for all
r =< < Tma

Proceeding as in the proof of Theorem 3.2, set

w(x, t)= -d zi(x, s) ds on Q[r, Tmax)
i=1

b min {61, 6rn), C , e max {o’1,

Then

wt(x, t)= dAw(x, t)+ , zi(x ,’1")-I- --1 zi(x,
i=1 i=1

Ow(x,t)

+ K8( r) on Q(z, Tmax)

t)+ K7 H(v(x, s)) ds

bw(x, t) + c <= e( z) on 01-1 x (z, Tmax)

w(x, z) O on

Note that there exists g2 C([0, oo)) such that Iw(’, t)loo,--< g2(t) for all r < < Tmax,
where g2 satisfies the same properties as the function g given in Theorem 3.2. Similarly,
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for each 1 <- =< m, zi satisfies the same Ll(f) norm bounds as H(v) in Theorem 3.3.
Also, from above, for r < < Tmax and 1 -< -<_ rn + 1, we have

Zi wt-dAw-G-K7 H(v(x, r)) dr dxds

(3.8)

d zi- w dE ds,

+ z,(x, )+where G(x, t)
Now

dw hz dx ds w(z,- F,) dx ds

(x. t),(x, t) dx- (z,, +) dx d.

Vm+l
Making this substitution in (3.8) noting that w,(x, t) =j= (d/d)z(x, t), and combin-
ing terms, we obtain

dx ds

(x,) 2 (x,t) ax
i=l

i= zi G+K H(v(x,r))dr dxds

+ w(KTH(v)+Ka)

d z-wOZ
a i= O j d ds.

Thus,

2 S(z,)2 dxds w(x, t) E z,(x, t) dx- w(KTH(v)+Ks) dxds
i=1 i=1

(3.9) + z, G+ K7 H(v(a r)) dr dx ds
i=1

+ d z-w dds.
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If 8--: 0, then the fourth term on the right-hand side of (3.9) is identically zero. If
: 0, then the fourth term on the right-hand side of (3.9) can be bounded above by

’ an dizi(e + 6iw) dE ds. Thus, if we apply H6lder’s inequality and Theorems 3.2 and
3.3 to the right-hand side of (3.9), then the result follows.

4. Proofs of global existence results. Throughout this section, we assume that
(A1)-(A3) and (H1)-(H5) hold. Suppose v(x,t) solves (2.1) on cl([l)x[0, Tmax),
0=<z<T<Tmax, and 6, r, and s are given by Lemma 3.1. Furthermore, suppose
1 <p<, OsLP(Q(z, T)) satisfies 10[p,o(,,T) 1 and 0=>0, and for l<-_i<-m, is the
solution of

,,(x, t)=-d,A,(x, t)-O(x, t) on Q[z, T),

(4.1) bl,(x,t)+O,(x, t)/Orl=O on 012 x [z, T),

i(x, T) 0 on

where bl min {61,. ", 6m}.
Note that if w(x, t)--,(x, T-t) on el (12) [0, T-z], then

wit(x, t)= diAwi(x, t)+ Ox, T- t) on Q(0, T-z],

(4.2) bi w,(x, t) + Ow,(x, t)/Orl 0 on 0f x (0, T- z],

w(x, 0) =0 on.
Thus, the well-known results (cf. Ladyzenskaja, Solonnikov, and Uralceva [13, Thm.
9.1, p. 341]) and basic maximum principles imply that i W2’a’P(Q(z, T)) and => 0.
Furthermore, we have the following important lemma.

LEMMA 4.1. For all 1 < p < o and 1 <- i, j <- m, there exists Cp(r_,) > 0 (independent
of O) such that

(i) I,(z)[.,, [t’,1 (2) <
p,Q(z,T) Cp(T-z)

(ii) (x, t) -h(v(x, t)) d ds N
a O

Furthermore, if 1 <p< (n +2)/2 and q=p(n+2)/(n+2-2p) then there exists
such that

(iii) [[q.o(,.r)_<- K(r_,).
Proof Parts (i) and (iii) follow immediately from (4.1), (4.2), [13, Thm. 9.1, p.

341], and [10, Lemma 2, p. 750]. For part (ii), note that we have : {0, 1}. Let Cp(r_,)
be given to satisfy part (i). If sc 1, then

O
h,(v,) --O--d dE ds <- . (*y(tr,-6,h,(v,))+b.h,(v,)) dZ ds

O’ittj dE ds

from the definition of b, part (i), H61der’s inequality, and the Trace Class Imbedding
Theorem (of. Grisvard [7, Chap. 1, Thm. 1.5.1.2]).
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Similarly, if st=O, then 3i 1 for all 1 <-i -< m. Thus, j---O and a/an =<0 on
aft x (z, T), for all 1 =<j _<- m. Therefore,

. *j h,(v,) -- j
dE ds <-

a
o’, - dE ds < Mr(

as above. The result follows.
The following lemma is fundamental to all of the results in this section.
LEMMA 4.2. Suppose that for all 1 <-j <- m, (H4)(ii) holds. Then Tmax .
Proof. Suppose (by way of contradiction) that Tmax<. Consequently, by

hypothesis, for all 1 -< p < there exist Mp, Np > 0, and 0 < 3p < 1 such that

(4.3) IH(V)Ip,Q(z,T) < Mp + NpIH(v)I"p,Q(.r, T)
Thus, IH(v)lp,O(,r)<o for all 1-<_p<. It then follows that

(4.4) IKs(H(v))q+K61p,O(,r)< forall l_-<p<,

where Ks, K6, and ql are given in (HS). Now, let 1 <_-j_-< m, set w= h(v), and suppose
M-]H(vo)lo,n. Then from the convexity of hi, Lemma 3.1, and standard maximum
principles we have w-< z, where z solves

Z djmZ + Ks(H(v))q, + K6 on l x (0, Tmax)

Oz
(4.5) 8z+--=% on0fx(0, Tmax)

z=M on x {0}.

Furthermore, from [13, Thm. 9.1, p. 341] and the Sobolev Imbedding Theorem we
have the existence of/r>0 such that Iz(., t)l. < for all 0-< < Tmax. That is,
Ihi(vi(’, t))l,n<M for all 0t< Tma Hence, from (H3), there exists N>0 such
that Ivy(’, t)lo, < N for all 0 <- < Tmax and 1 <-j <- m. This contradicts (via Theorem
2.1) our assumption that Tmax <, and therefore Tmax o.

Throughout the remainder of this section, we will denote h(v(x,t)),
h(v,(x, t))f(v(x, t)), and h,(v,o(X)) by u,(x, t), G(x, t), and U,o(X), respectively.

Proof of Theorem 2.2. Suppose there exists 1 <_-j _-< m such that u does not satisfy
(H4)(ii), and if 1 <= i<= m such that i<j, then u satisfies (H4)(ii). Then (H4)(i) is
satisfied for j.

Let " 0 in (4.1). Then for -<j,

u,O dx ds u,(-t djAIt) dx ds

(4.6) <- u,XI, dx ds- xttfl,Au, dx ds

Now, from (H2) and (2.1),

(4.7)

+ Cpr from Lemma 4.1.
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(4.8)

Making this substitution in (4.6) yields

u,O dx ds <- i -1 uijt dx ds

+d
d, (fo fa’t’F’dxds+ fo’I’(x’ O)u’(x) dx) + c’"

Consequently, if we apply (H4)(i), then

Io Ioi=
ajiuiO dx ds <-_ aji 1

di
uiXlrjt dx ds

(4.9) + j[KI(H(v))" + K] dx ds

+ ai *)(a O)u,o(X) dx+
i=1

Now, if we apply H61der’s inequality, Lemma 4.1, and (H4)(ii) for i<j to the first
term on the right-hand side of (4.9), then

(4.0
d

N a 1- Gr(K3o(r)+K4o(r)lH(v)lo,o(o,r),
i=1

where 1/p + 1/ q 1.
Note that from Lemma 4.1, I(x," )l,(o,r exists for almost all x e . Thus, if we

apply the Sobolev Imbedding Theorem, then there exists Lr > 0 such that

(4.11) (x,. )1,(o, r < Lrl(x," )1 ,,(o,r for almost all x e a.
Hence,

Without loss of generality, assume r > 0. If r_-< a, then

(4.14) (H(v(’,s)))rds
o

< ]’]l/qT(a-r)/a(g T)) r/a.
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Now suppose a<r<l+a. If p is sufficiently close to 1 and k=
alp r(p 1)]/[p a(p 1)],then a/ k > 1, a(r- k)/(a k) p/(p 1), andp(a k)/
[a(p- 1)] < 1. Thus,

(I-I(v(., s))) as
(4.15)

q"O"
(/-/(v(., S)))r-(I-I(v( ", S))) as

-<- (g(T))k/alH(v)lP(’-k)/a(p-1)lfllq.O(o,T) pk-,)/,W

(4.19)

(4.18) I%(" s)l p dsq,l,

Consequently,

for faj(H(v)) dxds

If we now apply (4.10)-(4.15) and Lemma 4.1 to the right-hand side of (4.9), then

i=
uiO dx ds

J di<- a, 1- Cp(g3 (T)/g4q(T)ln(v)l q
i=1

q

(4.16)
+KLG[II’/T"-/"g(T)

+ Inl (’-)/"(g(T) k/al "’H[",V,[q,Q(O,lP(a-k )/T)a(P -1)]

i=1

Then, since 0< aq, p(a-k)/a(p-1)< 1, we see that there exist KT, K8q C([0, ))
and 0 < e < 1 for all q suciently large such that

(4.7) lu, lo,oo,K(T)+K8(T)lH(v)l$oo, foraU0< T< Tmax.
It follows that (H4)(ii) holds for j. Therefore we have a contradiction, and hence
(H4)(ii) is satisfied for all 1 m. Consequently, the result follows from Lemma 4.2.

Proofofeorem 2.3. As inthe proof ofTheorem 2.2, suppose there exists 1 j m
such that (H4)(ii) is not satisfied for j, and if 1im such that i<j, then (H4)(ii) is
satisfied for i. Then (H4)(i) is satisfied forj. Setting r 0 in (4.1), we see that (4.6)-(4.10)
are satisfied.

Case 1. Suppose n 3. Note that if p > 1, then [(., s),.n exists for almost all
0 < s < Also, if 1 < p < n/2, then the Sobolev Imbedding Theorem implies that there
exists Me>0 such that if q=pn/(n-2p), then I%(’,)1,M1%(’,)1=,, for
almost all 0 < s < Thus,

<M I%(" s)l ds < MC.2,p,
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Note that for p> 1, rpn/((p-1)n+2p)<rn/2. Hence, if O<r<-2a/n, then rn/2<-a,
and there exists %, > 0 such that

(4.20) (H(v))’dxds<-MGrlfl’ (g(s)) +p/"p-> as

So, suppose 2a/n <r< 1 +2a/n. Then for p> 1 and sufficiently close to 1, if k=
ap[n(p-1)(1-r)+2p]/[p(1-a)+a][(p-1)n+2p], then 0<k<a, (rpn/((p-1)n+
2p)-k)(a/(a-k))=(p/p-1), and (1 +2p/(n(p-1)))(a-k)/a<l. Hence,

(p-1)/p

(H(v)) w’/((p-1)’+2p) dx ds

(io (i. ) ,+1.-, )-,/(H(v))""l"-"+-"-(n(v)) dx ds

(4.21)
(H(v))p/(p-1) dx

(ff )(l+2p/(n(p-1)))k/ax (H(v)) dx ds

1(l+2p/(n(p-1)))(a-k)/a< Igl(l+2p/(n(p-1)))(k(P-1)/(aP))T(kn(p-1)+2p(k-a))/(anp)iH(v)lp/(p_l),Q(O,T),(O,T)

Then, as in the proof of Theorem 2.2, (4.10), (4.19), (4.20), and (4.21) combined with
(4.9) imply that (H4)(ii) holds for j. Thus, we have a contradiction, and (H4)(ii) holds
for all 1i m. Consequently, the result follows from Lemma 4.2.

Case 2. Suppose n 2. As in Case 1, if p > 1, then 1(., S)12,p, exists for almost
all 0< s < Z Then (from the Sobolev Imbedding Theorem) there exists Mp > 0 such
that %(., s),, Mpl%(’, s)l,p,, for almost all 0 < s < Consequently,

(4.z) I%(., s)I ,. a =< I%(.,

Then, as in Case 1, we have

foTIft a!tJ H t dx ds

(4.23) - Ij(., s)l.. (H()))rdXd$
0

--< I’j(’, s)l ,. ds (n(v)) dx as

<= MG (H(v)) dx as

(p--1)/p

Now, if r _-< a, then there exists r > 0 such that

(4.24) (H(t))" dx ds <_-Iftl ar (g(s)) (p-’)r/pa ds
(p--1)/p

If a<r<l+a and p>l is sufficiently close to 1, then setting k=
a[r(p-1)-p]/(a(p-1)-p) implies a/k> 1, (a-k)p/(a(p-1))<l, and a(r-k)/
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(a k) p/(p 1). Hence,
(p--1)/p

(4.25)

ds) (p--1)/p

< lgll Tp-)Ip,(O,T) l’l l))lp/(p-1),Q(O,T)

We can now combine (4.9), (4.10), and (4.23)-(4.25) to show that (H4)(ii) holds for
j. Thus, we have a contradiction, and therefore (H4)(ii) holds for all 1---i -< m. Thus,
from Lemma 4.2, the result follows.

ProofofTheorem 2.4. As in the proof ofTheorem 2.2, suppose there exists 1 -<j -< m
such that uj does not satisfy (H4)(ii), and if 1 <=i -< rn such that i<j, then ui satisfies
(H4)(ii). Then (H4)(i) is satisfied for j. Setting -=0 in (4.1), we see that (4.5)-(4.10)
are satifised. Also, note that from Lemma 4.1, if

n+2 p(n+2)
l<p< q=

2 n+2-2p’

then

(4.26) lattjlq,Q(O,T) <= KqT.

Thus,

(4.27)

Clearly, p(n + 2)/((p 1)(n + 2) + 2p) < (n + 2)/2. So, if r <- 2a/(n + 2), then rp(n + 2)/
((p- 1)(n +2) +2p) < a. Consequently,

(4.28)
(n(l))) rp(n+2)/((p-1)(n+2)+2p) dx ds

< Tl-rp(n+2)/(at(p-1)(n+2)+2p])lH (v)lr/aa,Q(O,T).

Now, suppose 2a/(n + 2) < r < 1 + 2a/(n + 2). If p is sufficiently close to 1 and we
set

k=
ap[(p- 1)(n + 2)+ 2p]- arp(p- 1)(n + 2)

[p- a(p- 1)][(p- 1)(n + 2)+ 2p]

then a/k> 1, (rp(n+2)/((p-1)(n+2)+2p)-k)a/(a-k)=p/(p-1), and ((p-1)/p
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+2/(n+2))(a-k)/a < (p- 1)/p. Hence, there exists 0< 6q < 1 such that

(H(13)) rp(n+2)/((p-1)(n+2)+2p) dx ds

(4.29) (H(v))P"+/P-"++P-(H(v)) dx ds

< (g(T))/"-’/+=/"+IH(v)I

Then, as in the proof of Theorem 2.2, combining (4.9), (4.10), and (4.27)-(4.29), we
see that (H4)(ii) holds for j. This is a contradiction, and therefore (H4)(ii) holds for
all 1 m. Therefore, from Lemma 4.2, the result follows.

5. Applications. In this section we show that if (2.1) is a system modeling reaction-
diffusion, then conditions (H1)-(H3) and (H6) generalize a "dissipativity condition"
used by Groger [8] that requires a function closely related to the dissipation rate of
the chemical reactions to be nonnegative. We also use Theorem 2.2 to analyze specific
systems modeling certain reaction-diffusion and nerve conduction problems.

Assume that (2.1) is a system modeling reaction-diffusion and v(x, t) solves (2.1).
The dissipativity condition considered by Groger can be stated as follows.

There exist a P" and g C(Pro, R) such that

(5.1) limlzl_g(z)/Izl=O, and for all z6Pm, -,=lf(z)In (zi/ai)+g(z)>-O,

where, as noted by Groger, -Yi=lf(v(x, t))In (vi(x, t)/ai) can be interpreted as a
suitably scaled dissipation rate of the chemical reactions.

Now, suppose that P’ is invariant for (2.1), a P’, and H:pm R is defined
by H(z) =1 hi(zi), where h(zi) z In (z/ ai) zi + ai. Then simple calculation shows
that hi, h"i > 0 on P", and H(z) - o if and only if Izl- c in P". Furthermore, from
(5.1) and the definition of H, there exist M, N> 0 such that g(z) <- M i=l zi / N and
H(z) + (exp (1)-1) i=1 a,-> i=1 zi for all z 6 P". Thus,-i=lf(z) In (zi/ai)+ g(z)>--
0= h’i(zi)f(z)<= g(z)=:i= h’(z,)f(z)<=MH(z)+ M(exp (1)- 1) ,=1 ai+ N for
all z P". That is, H satisfies (H1)-(H3) and (H6). Consequently, (H1)-(H3) and
(H6) are a generalization of Groger’s dissipativity condition. Hence, from the theory
of Horn, Feinberg, and Jackson [5], [11], [12], on mass-action kinetics, it follows that
many systems of practical interest satisfy these assumptions. Also, the a priori bounds
obtained in 3 apply to these systems.

There are also several model systems that satisfy (H1)-(H6). Before giving a few
of these, we state the following theorem, whose proof can be found in [15].

THEOREM 5.1. Iffor all 1 <-_ <- m, f satisfies f(z) >- 0 whenever z cl (p,n) and
z=0 and (A3) holds with I=cl (pro), then (2.1) is invariant on el (p,n).

5.1. Model systems. (I) The Brusselator is described in Prigogine and Nicolis
18] and models a simple reaction-diffusion system. The equations are given by

ut(x, t) dlAu(x, t) + Fv v2(x, t)u(x, t), x f, > O,

v,(x, t)=dav(x, t)+E-(F+l)v(x, t)+v2(x, t)u(x, t), x6l), t>0,
(5.2)

B(u(x, t), v(x, t)) y, x 6 Ol, > O,

(u(x, o), v(x, 0)) (Uo(X), Vo(X)), x . ,
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where dl, d2, E, F>0, and Uo, Voe L(f, [0, )). If we denote fl( u, v)= Kv-v2u and
f2(u, v)= L-(K + 1)vWvZu, then clearly Theorems 2.1 and 5.1 are satisfied. Hence,
(5.2) is invariant on cl (p2), and if H(u, v)= u+v, then (H1)-(H6) hold with A=(11 o),
r= 1, K1 F, K=0, Ks F+I, K6 E, ql =3, KT--0 and Ks E. Thus, from
Theorems 3.2 and 2.2, Tmax

We note that Hollis, Martin, and Pierre 10] show u and v to be uniformly bounded
independently of a,/3, and y, as long as (A1) and (A3) are satisfied. Still, this example
illustrates the ease with which our main results can be applied.

(II) Rothe [19, p. 157] considers the system

u,(x, t): dlAU(X, t)+ w(x, t)- u(x, t)v(x, t),

Vt(X, t) d2Av(x, t) + w(x, t) u(x, t)v(x, t), x e , > O,

(5.3) w,(x, t)=daw(x, t)+u(x, t)v(x, t)-w(x, t),

B(u(x, t), v(x, t))= y, xe01, t>O,

(u(x, 0), v(x, o), w(x, o))= (Uo(X), Vo(X), Wo(X)), x

as a model for the reaction

(5.4) U+ V- W,

where u, v, and w are the concentrations of U, V, and W, respectively, reacting according
to (5.4) with diffusion rates dl, d2, d3>0, and initial concentrations Uo, Vo, Woe
L(f, [0, oo)). For the case of Neumann boundary conditions, Rothe [19] shows that
Tmax oo if n-<5.

Suppose n is arbitrary, fl(u, v, w) f(u, v, w) w- uv, and f3(u, v, w) uv- w.
Then Theorems 2.1 and 5.1 are satisfied, and (5.3) is invariant on cl (p3). Also, if
H(u, v, w)=u+v+2w, then (H1)-(H6) hold with

t i/A= 1 1

1 1

r 1, K1 1, K2 0, Ks 1, K 0, ql 2, and K7 Ka 0. Thus, from Theorems 3.2
and 2.2 we have Tax

(III) Lasry 14] considers the following system as a model to study the properties
of nerve conduction"

Ut(X t)=dlAu(x, t)+K(1-O(x, t))u(x, t)-g((x, t))v(x, t), xef, t>0,

v,(x, t)=dav(x, t)+g(fl(x, t))u(x, t)+K(1-p(x, t))v(x, t), xel2, t>0,
(5.5)

B(u(x, t), v(x, t))= y, xeOO, t>O,

(u(x, o), v(x, o)) (Uo(X), Vo(X)), x

Here, dl, d>0, Uo, roe L(O, R), (p,/3) are polar coordinates for (u, v), K >0, and
g is a smooth 27r periodic function. Note that although/3 and hence g are undefined
when p 0, ug and vg can be defined to be zero when u v 0. Hence, if fl(u, v)=
K(1-p)u-g()v andf(u, v)= g()u+ K(1-p)v, thenfl andfe are locally Lipschitz.
Consequently, Theorem 2.1 holds, and if H(u, v)= u+ v- for all (u, v)e p2, then
(H1)-(H6) are satisfied with a=(l o), r=l, Kl=4(K+lgloo,to.a,j), K2--0 Ks
8(g /lgloo,to,.,), ql 3, K6--0, gT--K, and K8=0. Hence, from Theorems 3.2 and
2.2, we have Tmax
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BIFURCATION OF HOMOCLINIC ORBITS AND
BIFURCATION FROM THE ESSENTIAL SPECTRUM*

C. A. STUARTt

Abstract. Bifurcation for nonlinear eigenvalue problems involving a second-order ordinary differential
equation on the line is considered. Solutions are required to vanish at infinity in both directions and so

correspond to homoclinic orbits. When posed in function spaces, the problem concerns bifurcation from
the continuous spectrum. The present approach is based on a rescaling that reduces the problem to that of
continuing a nontrivial homoclinic orbit in a context where the perturbations are not periodic and are not

smooth with respect to uniform convergence. Nonetheless, the nondegeneracy required for continuation
amounts to finding simple zeros of a function analogous to Melnikov’s function.

Key words, bifurcation, essential spectrum, Melnikov function, homoclinic orbit
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1. Introduction. We consider the following eigenvalue problem"

(1.1) u"(x)+Au(x)+f(A,x, u(x), u’(x))=0 for xE,

(1.2) lira u(x) lira u(x) 0
+

where the function f satisfies the following conditions"

(A1) fCI(W) and for all (A,x), f(a,x,.,.)C2(). Furthermore, there
exists B C(2) such that for all (A, x, p, q) ,
If(A, x, p, q)] _-< B(A, p)(p2 + q2)1/2,

]oif(,, x, p, q)] n(,, p)(p+ q)/ for i= 2, 3, 4.

This means that u 0 is a solution of (1.1), (1.2) for every A and we are interested
in pairs (A, u) satisfying (1.1), (1.2) with u0. This kind of problem has often been
used as an example in the study of bifurcation from the essential spectrum [7]-[11],
[13]-[15], [17] since in appropriate function spaces the linearisation of (1.1), (1.2)
about u 0 has the interval [0, c) as spectrum. In this setting, conditions are given
determining whether or not there is bifurcation in LP() from A 0 in the following
sense"

(1.3) There exists a sequence {(An, un)} of solutions of (1.1), (1.2) such that un0,
A,, 0, and lu l - 0 where I1 denotes the usual norm on LP(E).

Although (1.3) constitutes the basic definition of bifurcation at A 0, it is possible and
even desirable to envisage bifurcation in stronger senses such as follows"

(1.4) There exists a connected set in E [LP(E)\{O}] such that (A, u) is a solution
of (1.1), (1.2) for all (A, u) and the solution (0, 0) belongs to the closure
of in x LP([).

or even:

(1.5) There exist 6>0 and dpGC((-,O),LP([)) such that, for -6<A <0,
(A, 4(A)) is a solution of (1.1), (1.2) with 4(A)0 and lim_,o_

Received bythe editors September 28,1987" accepted for publication (in revised form) October 25,1988.
’D6partement de Math6matique, Ecole Polytechnique F6d6rale Lausanne, CH-1015 Lausanne,

Switzerland.
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Clearly, (1.5) implies (1.4), which in turn implies (1.3); but in general these notions
of bifurcation are distinct.

Bifurcation in the sense of (1.3) can be established by variational methods [10]-
[13], [16]. Very roughly, iff has the special form

(1.6) f(A, x, p, q)= r(x)lplp
where r e C() and cr > 0, the variational approach has been applied to cases where
either Q liml,l_oo r(x) 0 or

Q= lim r(x)>O and 1/2{r(x)+r(-x)}Q VxeN

(see [12], [13], [15], [16] for other conditions and generalisations), and the solutions
(A,, u,) obtained in this way have a simple variational characterisation as follows, u,
minimizes an appropriate potential function over a manifold of codimension 1.
However, the variational approach does not yield information about bifurcation in the
sense of (1.4) or (1.5) and, of course, not all equations have a variational structure.

Bifurcation in the sense of (1.4) has been discussed by Toland 17] for the special
case (1.6). His method replaces (1.1), (1.2) by the same equation on the interval (-L, L)
with boundary conditions u(-L)= u(L)=0. To extract useful information about the
limit Loo, Toland’s method must require that r(x)= r(-x) for all xN and r
nonincreasing on [0, oo). Other results on this kind of bifurcation are contained in [1]
and [18].

Bifurcation in the sense of (1.5) was first discussed by Kiipper and Reimer [7] in
the case (1.6) where r is constant on . In this case (1.1) is autonomous and can be
analysed by quadrature. For nonconstant r, the problem is treated in [14], where in
the context of (1.6) it is required that

r(x) r(-x) VxeRandQ-- lim r(x) > O.

More recently, Magnus [8], [9] has developed a powerful apparatus for establishing
bifurcation in the sense of (1.5) and has applied it to some specific examples of the
type (1.6).

In this note, we continue the study of bifurcation in the sense of (1.5) for the
problem (1.1), (1.2). The present approach is a little different from that used by Magnus
[9], but the two methods have much in common. It may be said that Magnus [9]
reduces (1.1), (1.2) to the problem of perturbing a nondegenerate critical point of an
appropriate potential function, whereas here we reduce (1.1), (1.2) to a situation in
which bifurcation can be established by an application of the Crandall-Rabinowitz
theorem [5] on bifurcation from a simple eigenvalue. Both treatments require several
changes of variable, but in the present approach they seem more intuitive and con-
sequently are easier to find in some systematic way. Furthermore, our discussion brings
out the relationship between our conditions and work on bifurcations of homoclinic
orbits using Melnikov’s method [2], [3], [6]. Note that (1.1), (1.2) corresponds to
seeking homoclinic orbits of (1.1). Finally we note that our approach does not require
any variational structure and the behaviour of i" ip as Z - 0 is determined.

After some preliminary work in 2, the main result is Theorem 3.2 of 3. However,
the hypotheses of that theorem are not formulated directly in terms of the function f
in (1.1). Checking these hypotheses involves choosing new variables in ways that
depend on the behaviour off The remainder of the paper is devoted to showing how
this can be done in various circumstances. First, the special form (1.6) is dealt with
in 4, then various more complicated cases are treated in 5 as higher-order perturba-
tions of (1.6).
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2. Rescaling. As in 14], the first step is to introduce the new variables

k=lA] 1/2 and v(x)=k-’u()(2.1)

where cr > 0 is a constant to be chosen later. Then, if (k, v) satisfies

(2.2) v"(x)-v(x)+k-(2+’)f-k2,--,ktv(x), +1 )t(x)=0 Vx

(2.3) lim v(x)= lim v(x)=O,

(2.4) k>0,

it is easily verified that (A, u) satisfies (1.1), (1.2), where

(2.5) A=-k2 and u(x)=k’v(kx).

Furthermore,

(2.6) lUlp IA (’-’/p)/a IVtp.
Since we are trying to solve (1.1), (1.2) near A 0, we suppose that cr > 0 can be chosen
in such a way that (2.2) has a well-defined but nontrivial limit as k 0+.

(A2) There exists a > 0 and g Ca(Na) such that

( x
k+ )lim k-(2+)f -k,--, kp, q g(p, q)

kO+

for all x s 0 and all p, q . Furthermore, there exists B C() such that for
all (p, q) [2,

Ig(P, q)l--< B(p)(P + q),/2,

[O,g(p, q)l <= B(p)(P2 + q2)1/2 for i= 1, 2.

When (A2) is satisfied, we set

(2.7) h(k, x, p, q)= k-(2+f -k=,--, k’p, q -g(p, q)

and note that in general h(k, o, p, q) does not tend to zero as k- 0+. Due to this
nonuniformity of the limit in (A2), the standard results and methods concerning the
bifurcation of homoclinic orbits cannot be applied to (2.2), (2.3) as k-0. The limit
must be taken in some space such as LP(N) or H-I(N) that allows for nonuniform
convergence. Once this space has been chosen, the domain of the operators concerned
is fixed by the requirement that u"-u should define an isomorphism between the
spaces concerned. For simplicity, in what follows we only discuss the case

(2.8) X H() and Y= H-(lt),

but other frameworks such as

(2.9) X W2’(N) and Y= Ll(N)

are possible and would yield results under different conditions on the nonlinear
term f. Also, a dynamical-systems approach does not control 1. [,.

From now on we fix the setting as (2.8) and we must ensure a certain minimal
regularity of the operator induced by f between these spaces. To obtain this regularity
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it is usually necessary to rescale the parameter k. For this, we denote by F a function
having the following properties:

(2.10) Fe C1((0, e),(0, oo)) with lim F(k)=0andF’(k)>0 for0<k<e.
k0+

In this case the inverse function F-1 will be denoted by y, and we introduce a new
variable s related to k by

(2.11) s F(k), k= y(s).

Recalling that X HI() and Y H-() X*, we note that an isomorphism L: X -->

Y is defined by

(2.12) <Lv, oh)= f_W v’ ch’ + vqb dx

where <.,.) denotes the duality between X and X*.
Furthermore, by the growth conditions in (A1) and (A2), operators G: X Y and

H: (0, F(e))xX Y can be defined by

(2.13) (G(v), dp)=I_g,(v(x),v’(x))ch(x)dx,
(2.14) (H(s, v), b)= I__ h(y(s), x, v(x), v’(x))ch(x) dx

for v, 4eX, since g(:(), v’(.)) and h(y(s),., v(), v’( ))e L2() for all veX.
Setting J (-F(e), F(e)) we extend H to J x X by setting H(0, v) =0 for all ve X

andH(s,v)=H(-s,v) for F(e)<s<0andveX.
Finally, we define F: J X --> Y by

(2.15) F(s, v)= Lv+ a(v)+ H(s, v).

Clearly, if F(s, v)=0 then (y(s), v) satisfies (2.2), (2.3) in the weak sense provided
that s # 0. However, the conditions (A1) and (A2) ensure that v is actually a classical
solution decaying exponentially to zero as Ix[--> oo.

LEMMA 2.1. Let the conditions (A1) and (A2) be satisfied and let

(2.16)

Then

(2.17)

F(s, v)=O for (s, v)eJX withy#0.

v e C3() CI H3(),
(2.18) lim Ix]- log {v(x)2 + v’(x)}/= -1.

If s>0, then (y(s), v) satisfies (2.2), (2.3), (2.4) classically, whereas if s=0, then
v satisfies
(2.19) v"(x)-v(x)+g(v(x), v’(x))=0 Vxe.

Remarks. By (2.17), v’ and v"e X when (1.16) is satisfied. The result (2.18) implies
that for all e e (0, 1)

lim e-1’1 v’(x) O.(2.20) Ixl-lim e<l-l’lv(x) Ixl-

From (2.20) and results on asymptotic equivalence we can deduce that (2.20) holds
even for e 0, but since we do not need this result we omit it.
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Proof From (2.16) it follows that

I_ov’4)’ dx=;_oo{-v+G(v)+H(s, v)}4)dx /49X

and by (A1) and (A2), -v+G(v)+H(s, v)LZ() for all (s, v)JX. Hence v
H() and v"-v+ G(v)+ H(s, v)=0 almost everywhere on . But v H() implies
that v C () with

lim v(x)= lim v’(x)=0.(2.21)
Ixl--oo Ixl-,

Thus by (AI) and (A2), -v+ G(v)+ H(s, v) C() and so v C2(). This proves that
v satisfies either (2.2) when s 0 or (2.19) when s 0 in the classical sense. From the
smoothness of f and g given by (A1) and (A2) it then follows that v C3(). By
differentiating (2.2) (respectively, (2.19)) with respect to x and using (2.21) we can
conclude that v H3([). Finally, (2.21) and the estimates for f and g given by (A1)
and (A2) mean that (2.18) can be deduced from Theorem 5 of [4, Chap. IV] applied
to (2.2) (respectively, (2.19) ).

In view of this result, bifurcation in the sense of (1.5) can be established for (1.1),
(1.2) by showing the following:

(2.22) There exist 6>0 and 0 C((0, 6), X\{0}) such that F(s, q(s)) =0 for
0<s<6.

In fact the pair (I, b (A)) defined by

(2.23)

satisfies (1.1), (1.2) for 0<s < 6, s F(x/-2--A) and b C((-, 0), X\{0}). Hence there
is bifurcation for (1.1), (1.2) in the sense of (1.5) provided that

(2.24) }imo_

One way of resolving (2.22) and (2.24) simultaneously is to show that

(2.25) There exist 3>0 and q C([0, 6), X\{0}) such that F(s, q(s)) =0 for
O<=s<6.

If (2.25) is satisfied it follows that there is bifurcation in the sense of (1.5) whenever
p >- max {2, 1/a} because

lim Iq(F(IAll/Z))lp IO(0)lp > 0 since X H(N)

is continuously embedded in Ln() for 2_-< p _-<

In the next section we give conditions implying that (2.25) is satisfied. The method
used requires a certain degree of smoothness of the function F: J X Y that is
ensured by the following assumption:

(A3) F cl(j X Y) and the second-order derivatives D2F, DsDF, and DDsF
exist and are continuous on J x X.

By strengthening (A1) and (A2), we can ensure (as in 4 and 5) that F(s,. C2(X, Y)
for each s J. Thus the content of (A3) really concerns the smoothness of F with
respect to s, and the point is to be able to choose F and y given by (2.10), (2.11) so
that (A3) is valid.
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3. Continuation of a homoclinic orbit. In the previous section the problem of
bifurcation in the sense of (1.5) for (1.1), (1.2) has been reduced to (2.25). One way
of establishing (2.25) is to suppose that the limit equation F(O, v)--0 has a nontrivial
solution Vo in X and then to ensure that v0 can be continued to yield a branch of
solutions of F(s, v)-0 for s near 0. Thus we begin with the following assumption:

(A4) There exists Vo X\{0} such that F(O, Vo)= O.

Next we must establish properties of Vo and F that will allow us to continue Vo. First
we note that the equation F(O, Vo)- 0 is equivalent to the autonomous equation (2.19)
with Vo satisfying (2.17) and (2.18). Setting z--v, we have that z X and satisfies

(3.1) z"(x)-z(x)+a(x)z(x)+b(x)z’(x)=O VxR

where

(3.2) a(x)=Olg(vo(x), v(x)) and b(x)=O2g(vo(X), v(x)).

From (2.20) and (A2) it follows that a and b decay exponentially to zero as [x[- .
Hence the integrating factor for (3.1) defined by

(3.3) i(x) exp b(y) dy

has the following properties:

(3.4) i6 C2([), i’= bi and 0<L1-_<i(x)<-L2<c VxeN.

From this it follows easily that

(3.5)

and (3.1) is equivalent to its symmetric form

(3.6) iz’)’- i[ 1 a]z 0 on .
To discuss the properties of the linearisation of F at Vo, it is convenient to define

a linear operator C(vo): X Y by

(3.7) C(vo)u=au+bu’

where a and b are given by (3.2). Then by (A1)-(A3),

(3.8) DvF(O, Vo)U Lu + C(vo)u Vu X.

When no confusion is likely to arise we write C for C(vo).
Recalling (2.8), we have the following version of the Fredholm alternative.
LZMMA 3.1. Let the conditions (A1)-(A4) be satisfied. Then

C: X Y is compact;
(ii) ker (L+ C) =span {v};
(iii) ((L+C)w, iu)=((L+C)u, iw), for all u, wX;
(iv) For sc Y, the equation (L+ C)u has a solution in X ifand only if (, ivo) O.
Proof (i)This is an easy consequence of the fact that liml,l_.a(x)=

limlxl_, b(x) 0 together with the compactness of the Sobolev embeddings on compact
intervals.

(ii) If uker(L+C), we have that uX and ((L+C)u, b) =0, for all 4X. In
particular, u is a weak solution of the linear equation (3.1) having coefficients a and
b in C1(). Thus, u C3() and satisfies (3.1) classically. From (3.1) we can now
conclude that u H(R) and so, in particular,

(3.9) lim u(x)= lim u’(x)=0.
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But v also satisfies (3.1) and the conditions (3.9). Hence, if uspan{v} it would
follow that all solutions of (3.1) satisfy (3.9). Since a and b decay exponentially to
zero as Ixl-,oo, this would contradict Theorem 2 of [4, Chap. IV]. Hence we may
conclude that u span {v}.

(iii) For u, w X,

((L+ C)w, iu)= -(w’, (iu)’)+(-w+ aw+ bw’, iu)

-(w’, biu + iu’) + (-w + aw + bw’, iu)

-(w’, iu’) + (- w + aw, iu)

=((L+C)u, iw).

(iv) Since L: X--> Y is an isomorphism and C: X--) Y is compact, the Fredholm
alternative implies that (L+C)u= has a solution if and only if (:, v)=0 for all
vker(L+C)*. But vker(L+C)* means that ve Y* and ((L+C)*v, w)=0, for all
w e X. Since Y*= X, this is equivalent to the conditions

veX and ((L+C)w,v)=O VwX.

By (3.5), this can be expressed equivalently as

v=iz wherezeX and ((L+C)w, iz)=O VwX,

and using part (iii) this becomes

v=iz where zX and ((L+C)z, iw)=O /wX.

When we appeal once again to (3.5) this is equivalent to

v=iz and zker(L+C)

and so by part (ii), it follows that

ker (L+ C)* iker(L+C)= span {v)}.

This proves (iv).
We now turn to the problem of continuing the solution Vo given by (A4). The

simplest approach would be to show that DvF(O, Vo)’X--> Y is an isomorphism and
hence to apply the Implicit Function Theorem. However, this cannot be done since
DvF(O, Vo) is not invertible on X and Vo is not an isolated zero of F(0,. in X. In
fact, defining a translation operator T by

(3.10) Tv(x) v(x + ’) for x, -we see that

(3.11) F(0, Tvo)=0 VI.

Furthermore, z--> Tvo is continuously ditterentiable since

dv X and -( T,vo) Tv’o.

Hence, O=(d/dt)F(O, T,Vo)=DvF(O, T,vo)T,v for all zR and in particular, as we
already know,

v ker DvF(O, Vo) ker (L+ C).
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One way of resolving this difficulty is to suppose that f has symmetries (even with
respect to x and u’(x)) allowing us to remove the above degeneracy by restricting the
discussion to the subspaces of X and Y consisting of even elements. This is what is
done in [14] but in the present discussion we are trying to obtain results for cases
where f does not have these symmetries. The idea now is to consider the curve

(3.12) ((0, Tvo): a) a X

as a curve of trivial solutions for the equation F(s, v)=0 and to seek values of the
phase parameter r at which a branch of solutions bifurcates from into the region
(0, ) x x.

We shall show that the appropriate values of " are characterised as the simple
zeros of the function M: R R defined by

(3.13) M(’) (DsH(O, Tvo), T(iv)).

We note that since vg X, it follows from (A3) that M CI() with

(3.14) M’(’)=(DuDsH(O, Tvo)Tv’o, T(iv))+(DsH(O, Tvo), T(iv)’).

The function M defined by (3.13) depends on the choice ofthe solution Vo of F(0, v) 0,
so we denote it temporarily by Mvo(’). For , Ttvo is also a solution of F(0, v) =0,
so we could use it to define another function M,vo(’). However, these two functions
are related by

(3.15) Mo(- C(t)MT-,,,o(7"- t)

where C(t)= exp (toO2g(vo(y), V’o(y))dy}.
When the conditions (A1)-(A4) are satisfied, the function M defined by (3.13)

will be referred to as a Melnikov function for (1.1), (1.2). This is reasonable terminology
because if our procedure is applied to a situation covered by Melnikov theory [2], [3],
[6], then the function M generated by our method coincides with the standard Melnikov
function. However, because of the nonuniformity of the limit in (A2), Melnikov theory
in its usual form [2], [3], [6], cannot be applied to (2.2), (2.3), (2.4). We prove our
result by an application ofthe classical theorem on bifurcation from a simple eigenvalue
in the form due to Crandall and Rabinowitz. Many situations covered by standard
Melnikov theory could also be treated in this way.

THEOREM 3.2. Let the conditions (A1)-(A4) be satisfied and suppose that there
exists ’o such that

M(zo)=0 and M’(zo)#0

where M: is the Melnikov function defined by (3.13) using a solution Vo X of
F(0, v)=0 given by (A4). Let W={vX: (v, ToV) =0}. Then:

(a) The equation

[L+ C(Tovo)]Z= -DH(O, Tovo)
has a unique solution Zo W where C is defined by (3.7) with Vo replaced by ToVo. Let
Z { v W: (v, Zo) 0}. Then:

(b) There exist 6 > 0 and functions

rl C((-6, 6), ) and tx C((-6, 6), Z)
such that r/(0)=-o, Ix(0)=0, and F(s, 6(s))=O for all s(-6,6), where 6(s)=
T,.)Vo+ SZo+ Six(s).

(c) Setting 61 y(6)2 and
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we have that dp C((-61, 0), X\{0}) and Ib(A)[p -Jal<-’/,>/’l(r(lal’/’))[,fo 1 <=p <=
o, where a > 0 is the constant in (A2), where F and y are the functions given by (2.10)
and (2.11) used to define H in (2.14). There is bifurcation in LP(R) for (1.1), (1.2) in
the sense of (1.5) provided that p >= min {2, 1/a }.

Proof Replacing Vo by Tovo and recalling (3.15), we suppose henceforth that
to=0 and so W={wX" (v, w)=0}. Define an operator N: RJW Y by

N(z, s, w)= F(s, w+ Tvo)

where F is given by (2.15). Thus qg becomes the line {0} {0} of trivial solutions
for N since by (3.11), N(, 0, 0) 0 for all z e .

By (A3), N e C ( J W, Y) and furthermore,

D,N(z, s, w)= DuF(s, w+ T,vo)T,v’o,

and for (/z, z)Nx W,

D(.wN(z, s, w)(tz, z)= ixDF(s, w+ Tvo)+ D,,F(s, w+ Tvo)z

txDH(s, w+ T,vo)+ D,F(s, w+ T,vo)z,

D.{D.)N(z, s, w)(tx, z)}= txD,DsH(s, w+ LVo)LV’o+ DF(s, w+ LVo)[LV’o, z].

Thus by (A3), N has the regularity required by the Crandall-Rabinowitz theorem [5]
and so to establish bifurcation at ro 0 we must check the following:

(i) ker D(.w)N(O, 0, 0)= span {(1, Zo)} where Zo e W;
(ii) codim D(,w)N(O, 0, 0)= 1;
(iii) D{D(.,w)N(O, O, 0)(1, Zo)} Im D(s,w)N(O, O, 0).

By insisting that the eigenvector has the form (1, Zo) we ensure that the branch of
solutions of N(-, s, w)=0 bifurcating at (0, 0, 0) can be parameterized by s.

For (i) we note that (/x, z) ker Ds,w)N(O, O, 0)<=>(/x, z) R W and

(3.16) txDsH(O, Vo)+(L+ C)z:O

where C’X Y is defined by (3.7) with C C(vo). Thus, by Lemma 3.1, there is an
eigenvector of the form (1, z0) X if and only if

(3.17) (DsH(O, Vo), ivy) 0,

and in this case the requirement Zo W determines Zo uniquely by

(3.18) (L+ C)zo -DsH(O, Vo)

since ker (L+ C)=span {v}. The condition (3.17) is satisfied since M(0)=0. Thus (i)
is verified and so is part (a) of the theorem.

For (ii), we note that e Im D(.w)N(O, O, 0): Y and there exists (/x, z) e N x W
such that

= txDH(O, Vo)+(L+ C)z.

By Lemma 3.1 and (3.17) this is equivalent to (, ivy) 0, and so

Im D.wN(O, O, O)= { Y: (, ivy)= 0}.

This establishes (ii).
For (iii) we note that it is now enough to show that

(D.{D(,w)N(O, O, 0)(1, Zo)}, ivy) 0
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where Zo W is determined by (3.18). Since

D(s.w)N(z, O, 0)(1, Zo)= DsH(O, Tvo) + DuF(O, Tvo)Zo

DH(O, T,vo) + Lzo+ DuG( T,vo)Zo

DH(O, T,vo)+ Lzo+(T,a)zo+(T,b)z’o

we find that

D{D(.,)N(r, O, 0)(1, Zo)} DuDH(O, Tvo) T,v’o+ Ta)’zo+ T,b)’Z’o

where the prime stands for differentiation with respect to x. Thus condition (iii) amounts
to showing that

(D,,DsH(O, Vo)Vo+ a’zo+ b’z’o, iv) # O.

But

and

Hence

a’zo + b’z, ivy> -<Czo, (ivy)’) az+ bz’, iv’o)

=-((L+ C)zo, (ivo)’)+<Lzo, (iv)’)-(az+ bzg, ivy)

(Lzo, (ivy)’)=-(z[, iv’o)")-(Zo, (ivy)’)

=-(z, (biv)’+(iv’)’)-(Zo, (ivy)’)

-(z, (biv)’+ i[1 a]v)-(Zo, (ivy)’)

-(Zo, (biv’o)’- iav)

<z’, bivo)+(z, iavo).

by (3.6)

(a’zo+ b’z’o, iv)=-((L+ C)zo, (iv’o)’)=(DH(O, Vo), (ivo) ’) by (3.18).

Thus condition (iii) is reduced to

(D,DH(O, Vo)V’o, iv)+(DsH(O, Vo), (ivy)’) 0

and by (3.14) this is just the condition M’(0) 0. This proves that condition (iii) is
satisfied.

When we note that

lx W= span {(1, Zo)}[{0} xZ]

it follows by Theorem 1.7 of [5] that there exist 6 > 0 and functions

c((-a, a), ), o c((-a, a), {o} x z)

such that

,(o) o, 0(o) (o, o)

and

N(q(s), s(1, Zo)+ sO(s))=0 for s (-a, 6).

Setting 0(s)= (0,/z(s)), we have that C((-6, 6), Z), (0)= 0, and

0= N(7(s), s, SZo+ six(s))

F(s, TnsVo+ SZo+ slz(s)) for s (-6, 6).

This proves (b) in the case ’o 0.
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Finally (c) follows directly from (b) as noted in (2.23), (2.24) of 2.
Remarks. (1) While this paper was being refereed, a revised version of [9]

appeared in Proc. Roy. $oc. Edinburgh Sect. A, 110 (1988), pp. 1-25. In an addendum,
Magnus derived a result (Theorem 6.4) showing how an equation such as that in part
(a) above arises in his context.

(2) An essential step in the above proof involves seeking a solution v near Tovo
in the form

v=w + T,vo where wWandzisnearzo.
In fact all v near T, vo in X admit such a representation and it is unique. To see this
set f(z, r)=(T,vo, T,ov’o)-r, and use the Implicit Function Theorem.

4. The main example. In this section we apply the general method to the case
where f has the following special form"

(4.1) f(A, x, p, q) r(x)lplp for (A, x, p, q) R4, or

(4.1’) r(x)ipl+ for (A, x, p, q) R4

where

(H1) r C1() with limlxl_., r(x) Q > 0 and r’ L(), where cr > 1 in case (4.1)
and tr>= 1 in case (4.1’).

From (H1) it follows that f satisfies the conditions (A1) and (A2) provided that in
(A2) we set

2
(4.2) a ---, g(p, q)= Qlplp, or --Qlpl and h(k, x, p, q)= R(x/k)lplp

or g(x/k)lpl’+1, where g(x) r(x) Q.

In what follows we will usually write out the formulae that are valid for the case
(4.1). The corresponding results for the case (4.1’) are obtained by a trivial modification.
In particular, the essential formulae for the Melnikov function discussed in Theorem
4.3 are identical for (4.1) and (4.1’) since the solution Vo given by (4.26) is positive.

To obtain the regularity of the Nemytskii operators defined by (2.13)-(2.15)
required in (A3), we must make an appropriate choice of the function F (and hence
3’). This depends on the rate at which r converges to Q and the next hypothesis
distinguishes a number of situations in which a successful choice of F is known.

(H2) With R(x)= r(x)-Q we suppose that one of the following conditions is
satisfied"
(i) There exist fl (0, 1), ,_->0, and L(+o) such that

(4.3) lim g’(x)lxl+[ln Ixl]- = L(+);

(ii) There exist L(+) and @ LI(R) such that

(4.4) lim x@(x) O,

xL(+)
(4.5) R(x)

1 + x2 + O(x) Vx

(iii) There exist/3 (1, 3/2), ,_->0, and L(:t:o) such that (4.3) holds and
-o g(x) dx=O.
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Remarks. (1) Since both (L+oo) can be zero, the exponents /3 and , are not
uniquely determined by (4.3). In fact, if the condition is satisfied for exponents/5 and, it is also satisfied for/3 and , provided that

/3</3 and ,->0

or

fl=fl and .
We shall show that the function F" (0, 1) defined by

(4.6) r(k) to-[-ln t] dt

when r satisfies (H2)(i) or (H2)(iii) with exponents and , or by

(4.7) F(k) k

when r satisfies (H2)(ii), establishes a change of variables for which (A3) is satisfied.
Consequently, a Melnikov function M can be defined for any such pair of exponents
and . However, there is at most one pair (, ) for which the corresponding M is

not identically zero.
(2) When (H2)(i) or (H2)(iii) holds, it follows from l’H6pital’s rule that

L()
(4.8) lim U(x)[xlatln Ixl]-=

whereas (H2)(ii) implies that

(4.9) lim g(x)lxl L(+).

Consequently, if (H2)(i) or (H2)(ii) holds with L() 0, it follows that R L().
On the other hand, if R L(R) and limlxlXR(x)=O then (H2)(ii) holds with
L(+) 0. The case (H2)(iii) enables us to deal with situations where R LI() and

R(x) dx 0. In this case it is useful to set

(4.10) P(x) R( t) dt

and to note that by l’H6pital’s rule

11 L()
(4.) lim P(x)lxl-’Eln Ixl3 lira U(x)’x’Bn lx13- .(-) (-)

From this it follows that

(4.12) lim (xU(x)- P(x))lxl-’[n Ixl3 L(),

When r satisfies (H1) and (H2), the function F defined by (4.6) or (4.7) satisfies (2.10)
and its inverse T is defined on (0, F(1)). Fuhermore, for 0<s<F(1),

(.3) ’(s)(s)-’[-ln (s)3 .
In paieular, when v 0 we have that

(.) (s) (s)’
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In the present context, the operators G and H defined by (2.13)-(2.15) are given by

(4.15) (v)(x)

(4.16)
R

H(s, v)(x)=
0

-H(-s,v)(x)

for 0<s < F(1),

for s 0,
for -F(1) < s <0,

(4.17) F(s, v)= Lv+ G(v)+ H(s, v).

In (4.15), (4.16) we have supposed that f has the form (4.1). When (4.1’) holds we
replace I1 by Ivl tr+l in these definitions.

LEMMA 4.1. Letfsatisfy the conditions (H1) and (H2) and let F be defined according
to (4.6), (4.7). The operator Fdefined by (4.17) satisfies the condition (A3) withX Hi(N)
and Y= H-I(I). Furthermore, for v X, DsF(O, v) DsH(O, v) Y is the distribution

defined by the following formulae for w X:

(DF(O, v), w)= (DH(O, v), w)

in case (H2)(i),

L(+c) In Ixl{l l  wI’(x) dx- x-l[lvlvw](x) dx

in case H2 (ii),

L(+) IoL(-c)(1-/)
Ixll-[lvl%w3’(x) dx +

(1 -/)
Ixll-[lvl%wl’(x) dx

in case (H3) (iii).

These formulae hold in the case wherefhas the form (4.1). The corresponding results for
the case (4.1’) are obtained by replacing by

Proof We treat the case where f has the form (4.1). Since o-> 1, it follows by
standard arguments that

G and H(s,.)eC’(X, Y) for all seJ=(-r(1),r(1)).

For the regularity of H with respect to s we deal in some detail with the case (H2)(i).
For the other cases we simply mention the essential modifications that are necessary.
To simplify the integral expressions it is convenient to set

(4.18) L(x)=qzL(+/-) for x<>O.

Suppose that R satisfies (H2)(i) and set

A max {IL(+/-oo)l}, B 2A/(1- fl ).
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Then for v, w c X,

f-oo L(x)Ix]-[]vlvw](x) dx

--< Iolowl IL(x)l Ixl- dx /AII I1 Iwl dx
xl_-->l

(4.19)
--< nll+lwl+aloll12lwl2
(a + n)llvllVllwllx.

Hence the form (El(V), w)= t(x)lxl-[llw](x)dx defines an element El(V)
X* Y and E )11 (a + B)II +. Similar estimates show that E CI(x, Y) and

<OE()z, w>= t(x)lxl-(+l)lvlzwdx for v,z, wX.
d-

Furthermore, for s > 0 and v, w c X,

(4.20)

where

I[wll{m,(s, v)/ A2(s, v)}

< Ilwllx{ml(s, v)+A2(s, v)}

Clearly,

R -L(x)
S

R -L(x)
$

A,(s, v)<= Ivlgo+’ 2y(s) + A f
S .IIxl_<_2v(s)

and so lims_,o+ Al(s, v) 0, since/3 c (0, 1) and

,(s)
lim
sO+ S

lim y’(s)= lim y(s)l-[-ln y(s)]-=O
s-O+ sO+

by (4.13).

For Ixl 2 y(s),

X

__<
y(s) [C In

S

X

y(s)

X "[ln X

y(s)
X

where

C sup R(z)lzl[ln Izl] <
Izl_->2

$
C[-ln y(s)][1 +In Ixl]
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provided that -In 3(s)_-> 1 since v_->0. But by (4.13), lims_,o+ (3,(s)/3/s)[-ln),(s)] "=/3
and lims_o+-ln y(s) =. Hence there exists So>0 such that

for Ixl _-> 2 y(s) and 0 < s < So.
Furthermore, for x # 0, by l’HSpital’s rule,

(4.22)

limR(x) Ixl

=-lim_,o+ R’(y)) xlxltY;
--I-qo (
=:vL(+oo) for x0 by (4.3)

since by (4.13)

lim [lns-0+

/3+1

In
X X

,’(s)T(s)/3-’= lim lnlxl-ln ,(s)
1.

-o+ -In T(s)

DDvH(O, v)= DoDH(O, v)= DE,(v) VvX.

In this way we see that F satisfies (A1) when (H2)(i) holds.

From this and the continuity of El" X- Y, it follows that H CI(J x X, Y).
The discussion of the derivatives DsDvH and DvDH is similar to that for DH,

and we find that

proving that H is ditterentiable with respect to s at s =0 and that DH(0, v)= E(v).
For s > 0,

v,, ) xri(s)
() [l,l,w](x)dx

and by arguments similar to those above we find that

lim llD,H(s, v)-E(v)lly=O.
sO+

where the integrand is bounded by

{ C(fl + 1)[1 + In Ixl] / A} Ixl- Io(x)l/

provided that 0 < s < So. Hence the Dominated Convergence Theorem applies and we
conclude from (4.22) that lim_,o+ A2(s, v)=0. Returning to (4.20), we have that

Now, denoting the characteristic function of {x: Ix[ -> 2y(s)} by Xs, we have that

a2(s, t)) IoXs(x) R (y-) lx--- L(x)
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Turning to the case where r satisfies (H2)(ii), we note that it is enough to establish
the result for the following special cases"

(4.23) R(x) x/(1 + x2),
(4.24) R(x)=O(x).

We discuss (4.23) first. Defining a bilinear form by

(4.25) (E2(v), w)=- In IXI(IvI’rvwI’(X) dx/ x-’(Ivlvw}(x) dx
--1 xll

we show that for each v X, it defines a bounded linear functional on X. In fact,

where

and

lnl xl(llw)’(x) dx
-1

(+ 1)lllwlooDl’l=+llr’DIw’l=
_<- D(tr + 2)11 ull V’II wllx

D (In Ixl) x

I x-’{l)l)wI(x) dx llolllwl=llllT’llwllx.
x[l

Thus E2(v) X* Y for all v X and by similar arguments E2 C I(X, Y). For s > 0
and v, w X,

1
+-ln (s2+ 1){Ivlvw(1)-lvlvw(-1)}
2

X
2

+ x2X-’{Ivl%w}.. (x) dx.
Ixl_->1 S --Using this expression, it is now easy to show that

lim E(v) 0
s0+ S y

and so DsH(0, v)= E_(v) for all v X.
The other properties are established in a similar fashion for (4.23) and so we now

pass to the discussion of (4.24).
In this case we set

<Ev), w>- f_ ox) xlvo)lvo)wo).
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Since

f_o x) dx IIll

we see that E3(V) Y for all vX and by standard arguments E3 C(X, Y).
Now for s 0 and , w X,

and so

where

E3(t)), w P N(x) [Ivlvw]’(x) dx

Ii_ if x<0,
N(x)

( t) dt if x>0.

Since lims_o+ P(x/s) N(x) 0 for all x 0 it is now easy to show, using dominated
convergence, that

lim
H s’ t) E3 t -0.

s0+ S y

This proves that DH(O, v) E3(v) when (4.24) holds and the remaining propeies of
H are established in a similar fashion.

Finally, we consider the case where r satisfies (H2)(iii). As usual we begin by
studying the bilinear form defined by

(E4(v) w)
L(-) (o(1 - Ixl’-Eluluw]’(x) dx

(4.25)
L(+) Ixl’-[Ivlvw]’(x) dx.+ (1-fl

Now setting I Ixl-[l[w]’(x) dxl: 1, w have that

+(+ 1)[vllwlFlv’l+lv121Flw’[
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where

F xl 2(1-/3) dx

I <= (tr + 2)(F+ 1)11 o +’11 wll,.

The second integral in (4.25) is estimated in the same way, so we can conclude that
E4 CI(X, Y). For s > 0 and v, w X, we have that

,w g -Eluluw](x) dx
S S

wh P(x): R() d. Sinc R() d 0 w can us rHpitars ul and obtain

limP( x ) "(s)= lim { R() x’’(s)
o+ (s) s o+ T(s)

+ P T’(s)

by (4.1) and (4.3).
Arguing much as in (H2)(i), the Dominated Convergence Theorem can now be

used to show that

lim II H(s’ -E(v)ll =0 VvX,
s0+ S y

and the proof is completed in the usual way.
LEMMA 4.2. Let f satisfy conditions (H1) and (H2) and consider the function

F" J x X --> Y defined by (4.17) via the transformation (4.6), (4.7). Then

{vX\{O}: F(O, v)=O}={:i:Tvo: ’} in case (4.1)

{ Tvo: " } in case (4.1’)

where

(4.26) Vo(X)
2 Q’ J

ch-2/" for x .
In particular, (A4) is satisfied by Vo, which is even and positive.
Proof. If v e X and F(0, v) 0, it follows from Lemma 2.1 that v e H3() I’1 C3(i

and v satisfies (2.19). By (4.2), in the case (4.1), (2.19) is

(4.27) v"(x) v(x) + lv(x)lv(x) 0 Vx .
By direct calculation we show that

re C2()X{0} is satisfied and lim v(x)=0(4.27) TT0:

Since Vo, vX this completes the proof in case (4.1). The case (4.1’) is similar.
By Lemmas 4.1 and 4.2, we know that when r satisfies (H1) and (H2) and F is

defined by (4.6), (4.7), the conditions (A1)-(A4) of 3 are all fulfilled, and it is sufficient
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to consider the Melnikov function generated by the function Vo given in (4.26). From
Lemma 4.1 and definition (3.13), the Melnikov function M is given by

M(z)=(DH(O, T,vo),

since i(x) 1 by (4.2).
When we set

(4.28) m(z)
(1 -fl)[/)r+l/))]t(X + ) dx for fl 1,

In x[ vo v]’(x + ) dx for 1,

where vo is given by (4.26), it follows from Lemma 4.1 that the Melnikov function for
(4.1) or (4.1’) is given by

(4.29) M()= L(-m)m(-r)+L(+m)m() in cases (H1)(i) and (H1)(iii),

(4.30) L(+m)[m,(-,)+ m()]+[ (x) dx vo()+lv()

in case (H2)(ii).

In connection with (4.28), it is worth noting that

(vU)
(4.31) [Vo v]

tr+2

(4.32) (’+2)v’+2{ 1
(3+4)}-(o’+2)----ov

and furthermore mo(-)= dno(r)/d’, where

xl-t
v+Iv,o](x + z) dx for/3 # 0,

nt (’)
(1 flt+

o

In X[Vo v](x + z) dx for/3 1.

It is easy to prove that liml,l_ nt(r) =0 for 0</3 <3/2 and

M(z)=d{-L(-o)nt(-z)+L(+)nt(’)} in cases (H2)(i) and (H2)(iii)

drd -L(+)n,(-’)+ L(+c)n,(z)+ q,(x) dx-’j
in case (H2)(ii).

Thus in all cases M is the derivative of a function converging to zero as z +c.
This ensures that in all cases there exists at least one Zo R such that M(zo)=0.

By Theorem 3.2 we must seek the simple zeros of M.
In terms of bifurcation in the sense of (1.5) for the problem (1.1), (1.2) we obtain

the following result.
THEOREM 4.3. Letfbe oftheform (4.1) where (HI) and (H2) are satisfied. Suppose

that

(4.33) M(zo)=0 and M’(’o)O
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where M is the Melnikov function defined by (4.29), (4.30). Then there is bifurcation in
LP(R) for (1.1), (1.2) in the sense of (1.5) provided that p_->min {2, 0-/2}. Furthermore
the branch of solutions has the form given by Theorem 3.2 with a 2/0-, where vo is

defined by (4.26) and F by (4.6), (4.7).
This result is an immediate consequence of Theorem 3.2 and Lemmas 4.1 and 4.2.

In general it seems that the location of simple zeros of M must be treated by numerical
integration. See the Appendix. However, there are some cases in which the solution
is easy. For example, if

(4.34) RLI(R) with lim xR(x)-O and | R(x) dx#O,

then we are in case (H2)(ii) with L(+c)-0 and

M(r) I_o R(x) dx vo(r)’+lv(r).

Hence,

(4.35) M(0)=0 and M’(0) R(x) dx-
Another easy case is that in which R satisfies (H2)(i) with

(4.36) L(+) -L(-oo) 0.

In this case,

M(0) L(+o)[-m(0)+ ms(0)] 0,

and

M’(0) 2L(+oo)mo(0) L(+c)
(1 -/3) (0- +J

-L(+) x-a (0-+2j dx

(4.37)

L(+) v.+2},lim x-a{ dx
(0- + 2) -,o+

L(+oe)
lim x-a(v+(x)) + x

r+ 2) -o+

flL(+oo) fo(0"+2)
X-a-l{130(X)tr+l}’ dx since v(0) 0

since (VO(X)tr+l)t < 0 for x > O.

We end this section with two typical examples showing how the various cases in

r(x) Q + C(1 + x2)-v for x e R

where C e \{0}, Q > 0, and 3’ > 0.
First we note that since r is even, this case is covered by the result in [14]. In

terms of the present discussion we note that (H1) is satisfied provided that 0" > 1. Then

#0 by (4.32).

(H2) arise.
Example 4.4. Let f be of the form (4.1) with
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(H2)(i) holds for fl -< min {2 y, 1}, where L(+c)=0 unless /3=23’<1 and v=0, in
which case L(+o)=+23"C. Hence for 0< 3’<, we use fl=23’ and v=0 in (H2)(i) to
obtain the Melnikov function

M(7.) -43’C x-[v’+lv](x + 7") dx

and by (4.36), M(0) 0 and M’(0) 0. If 3’ > 1/2, then (H2)(ii) is satisfied with L(+oo) 0
and we obtain the Melnikov function

M(z) C I_ (1 + x2)-r dx Vo(7.)’+’ v(7").

By (4.34), M(0)=0 and M’(0) 0. None of the results in this paper covers the case
3’ 1/2, but due to the evenness of R the result in [14] applies.

Example 4.5. Let f be of the form (4.1) with

r(x) Q + Cx(1 + x2)- for x R

where C R\{0}, Q > 0, and 3’ > 1/2.
In this case the results in [14] do not apply since r is not even. In terms of the

present discussion (HI) holds provided that r > 1, and (H2)(i) is satisfied provided
that fl =<min {23’- 1, 1}, where L(+) =0 unless/3 23,- < 1 and =0 in which case
L(+) (1 23") C. Thus we get a nontrivial Melnikov function by using/3 23’ 1
and v 0 in (H2)(i) provided that 1/2 < 3’ < 1. For 3’ 1 we apply the case (H2)(ii) with

L(+oo)=-I and 0=0.
For 3’> 1 the case (H2)(ii) again applies with L(+c)=0, but we obtain a trivial
Melnikov function since R(x)dx=O. However, for 3’> 1 we see that r satisfies
(H2)(iii) provided that

/3 -<_ min {2 3’- 1, }
where L(+)=0 unless/3 =23’-1 <3/2 and v=0, in which case L(+) (1-23’)C.
Thus for 1 < 3’ < 5/4 we obtain a nontrivial Melnikov function by using (H2)(iii) with
/3=23’-1 and v=0.

5. More general nonlinearities. In this section we discuss nonlinearities f in (1.1)
that are sums of terms of the form (4.1), and we also allow perturbations containing
a factor u’. The basic idea is to select the dominant contribution, together with the
appropriate change ofvariables, ensuring that it leads to a nontrivial Melnikov function
as in 4. Then we show that the remaining terms are regular (in the sense of (A3))
and lead to Melnikov functions that are identically zero for this same change of
variables. In the simplest cases the dominant term is the one with the smallest value
of the exponent r, so we discuss this kind of situation first. However, there are problems
where the dominant term is not given by the smallest power of u, and we conclude
with some examples of this kind.

We suppose that the nonlinearity f in (1.1) can be written as

N

(5.1) f(A, x, p, q)=fo(x, p)+ E A"’f(x, p)q,
i=1

where f is of the form (4.1) or (4.1’) for 0_<-i=< N with coefficient ri and exponent
Setting ro r and tro =tr, we suppose that fo satisfies (H1) and (H2) with exponent
in (H2) (/3 1 for the case (H2)(ii)) and R(x)= Q-r(x).
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For 1 _-< <= N we suppose that

ni {0, 1, 2," "} ,
and we set

tSi {0, 1}

/zi 2hi- 2 ++ 8i 1 +

For a 2/o- we find that

,-, k"p, k’+lq Qiplp+ R Iplp + 2 (-1)"’ k", p q’
i=1

when fo satisfies (4.1), whereas iffo satisfies (4.1’) we simply replace Ip[p by p[+.
Let y F-1 be the change of variables associated with r via (H2) and (4.6), (4.7).

Let Fo: J x X Y be the operator associated with fo as in (4.17). Thus iffo satisfies (4.1)

Fo(s, v)(x)= v"(x)-v(x)+Olv(x)lv(x)+ R
()

Iv(x)lv(x)

and if fo satisfies (4.1’) we simply replace by Aa X= n(.) and
Y= H-I(). By Lemmas 4.1 and 4.2, F satisfies (A3).

For 1 i N, we set

K,(k, v)(x)= (-1)", (, v(x))v’(x) ,
and

Yo(S)",K,(y(s),

) for O<s<F(1),
Hi(s, v)= for s=0,

[-Hi(-s, v) for -F(1) < s < 0.

The object now is to give conditions implying that Hi satisfies (A3) and DsHi(O, v)-= 0
for 1 <= -< N. From this it will follow that f satisfies the conditions (A1)-(A4) with Vo
given by (4.26) and Melnikov function given by (4.29), (4.30). This objective is attained
by imposing the following conditions.

(H3) For 1 =< =< N, ri CI(R) f’l L(R) with IxrI(x)l <- c for all x with /x, >/3
unless ri 0. Furthermore, f(x, p) r(x)p and 8 1, whereas for 2 <- -< N,
f has the form (4.1) or (4.1’) with tr > 1 or tri -> 1 and 8i {0, 1 }.

Under the above hypotheses it is easy to see that f, given by (5.1), satisfies (A1)
and (A2). Also for s > 0,

Dsni(s, v)(x) (-1)",y(s)",-’T’(s)

if f has the form (4.1), and in the case (4.1’) we simply replace Iol , by Ivl ’’+.
However,/xi >/3 > 0, and by (4.13)

lim y(s)’,-ly’(s) lim y(s)’,-O[-ln y(s)]-=0.
s-0+ s--*0+

Since ri and xr(x) L(R) it follows easily that [[DH(s, v)llY-->0 as s-->0 and by a
similar argument that

-->0 as s-->0.
S y
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Thus we see that (H3) implies that Hi CI(J X X Y) with DsHi(0, v) 0 for 1 -< _-< N.
The information concerning second partial derivatives for Hi required by (A3) is
checked by the same argument. Hence we have established the following result.

THEOREM 5.1. Letf be of the form (5.1) and suppose that (H1), (H2) are satisfied
by r and cr and that (H3) holds. Let y F-1 be the change of variables defined by (4.6),
(4.7) via (H2) using r and or. Then conditions (A1)-(A4) are fulfilled by f, and the
Melnikov function Mfoff is determined by r and cr through (4.26) and (4.29), (4.30).
In particular, there is bifurcation in LP(R) for (1.1), (1.2) in the sense of (1.5) provided
that (4.33) holds and p >= min {2, or/2}.

When ni 0 for 1 =< =< N, i 0 for 2 =< =< N, and rl -= 0, it follows from (H3) that
cri > cr for all i>_-2 and hence the dominant contribution to f comes from the smallest
power or. We end with some examples of situations where the dominant contribution
comes from a higher power of u.

Example 5.2.

X
2

f(A,x,p,q)=i+x2p3+
Setting

X p2.
(1 + x2)2

1 X
Q 1, R(x)

1 + x2’
rl(x)

(1 + X2"2’)
we have f(A, x, p, q) p3 + R(x)p3 + rl(x)p2, where liml,l_o R(x) limlxl_ rl(x) O.
Clearly, (A1) is satisfied andsetting a 1 and g(p, q)=p2, we find that (A2) is also
satisfied. Fuhermore, R and rl LI() with

lim xR(x)= lim xrl(X)=O.

Hence both R and r satisfy (H2)(ii) with L() =0. Thus by Lemmas 4.1 and 4.2,
(A3) is satisfied (with change of variable y(s)= s) and

(DH(O, v), w)=[ R(x) dx v(0)3w(0)+ f[ Yl(X) dx V(0)2W(0)

--V(0) W(0) for all w X.

Since g(p, q)=p3 we see that (A4) holds with Vo(X)= ch-lx and the Melnikov
function in this case is M(z)=4shch-z. By (4.35), M(O)=O and M’(O)#O.

Example 5.3.

f(A, x, p, q) { 1 + (1 + X2)-’/4}p3 + (1 + x2)-l/2p2.
Clearly (A1) holds. Setting a and .g(p, q)=p3, we verify easily that (A2) is

satisfied. Setting R(x)= (1 +x)-1/4 and rl(x)= (1 +x2)-1/2, we find that

lim g’(x)lxl and lim r;x)lxl o.

Hence both R and r satisfy (H2)(i) with fl =, v =0, and

L() for R,

L() 0 for r.
It follows that (A3) is satisfied (with y(s)= s2/4) and that

1
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Again we are in a situation where (A4) holds with

Vo(X) .J- ch-’x
and in this case the Melnikov function is

M(’r) -2 I_o [xl-/2 +
[ch(x + r)]

dx"

By (4.37), M(0) 0 and M’(0) < 0.

Appendix. We present the graphs of some of the Melnikov functions encountered
in 4 (Figs. 1-6). They were obtained through numerical integration by Franqois
Meynard.

A

10.1
0.05

s

FIG. 1. or=2; /3=0.5; L(-) =-1; L(+c)= 1. One value for So: So=0. This agrees with (4.36).

It is convenient to begin with some simplifications of the original formula. From
(4.26), (4.28), and (4.32), we find that for/3 1,

X-t3

mt (’)
(1 -/3)

w(x + -) dx

where

and

w(x)
(cr+2)2+/ 1 { (l + l/t) }(2Q)l+_/o- ch"(crx/2) 1-ch’(trx/2)

4
a =2+--.

Hence there exists C(Q, tr)> 0 such that for/3 1,

(1 -fl)
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A 0.1

0.05

FIG. 2. tr 2; /3 0.5; L(-oo)= 1; L(+oo)= 1. Two values for So: So---+0.87; So--0.87.

2

FIG. 3. tr=2; /3 =0.5; L(-o) 1; L(+oo) =0. One value for So: So-+0.37.

where A(s)= L(-oo)B(-s)+ L(+oo)B(s) with

B(s)= x-t
1 (l+l/a)]

ch (x+s)
1 dx.

Then (4.33) is equivalent to Zo=2So/tr, where A(so)=0 and A’(so)#O.
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A-

0.1

2

FIG. 4. tr=2; /3 1.25; L(-oo) =-1’ L(+oo) 1. Three values for So: So=0; So=+1.63; So--’-1.63.

FIG. 5. tr 2; /3 1.25" L(-c)= 1; L(+)= 1. Two values for So: So---+0.63" So =-0.63.

For tr 2 (a 4), Figs. 1-6 represent the function A for various values of/3 and
L(+o).
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[9] prior to publication. From it I learned a great deal about the problem. I also thank
David Chillingworth for his helpful remarks.
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0.1

FIG. 6. tr=2; fl= 1.25; L(-)= 1; L(+) =0. Two values for So: So=+1.27; So--0.13.
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EQUIVALENCE OF DIFFERENTIAL OPERATORS*

NIKY KAMRANt AND PETER J. OLVER

Abstract. Two versions of the equivalence problem--determining when two second-order differential
operators on the line are the same under a change of variables--are solved completely using the Cartan
method of equivalence.

Key words, differential operator, Cartan equivalence method, invariant, symmetry, Lie algebra
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1. Introduction. The basic equivalence problem to be treated here is to determine
when two second-order differential operators on the real line can be transformed into
each other by an appropriate change of variables. There are two different possible
interpretations of the notion of equivalence, depending on whether we wish to preserve
the differential expression corresponding to the operator or the Lie bracket between
operators. In this paper we treat both versions of the equivalence problem for second-
order operators on the line. The problems here are related to the more general
equivalence problem for second-order ordinary differential equations [4], [5], [11],
but are specialized by linearity. We employ the equivalence method of Cartan, which
gives necessary and sufficient conditions for equivalence. Although the simplest of the
possible equivalence problems arising in the study of differential operators, these
problems provide a good illustration of the power and ease of use of Cartan’s
equivalence method, which offers a straightforward algorithm for solving these and
other equivalence problems important in applications. Extensions to higher-order or
higher-dimensional operators can be readily done using the methods of this paper,
although the intervening calculations will, as a rule, become much more complicated.
In the proof of the theorem, we assume that the reader has a basic familiarity with
the Cartanequivalence method as explained, for instance, in [2], [3], [6], and [7],
although the reader can certainly understand the final results without all the intervening
machinery.

This paper originated in answer to a question raised by Levine [9], who asked
when a differential operator can be expressed as a bilinear combination of first-order
differential operators that generate a finite-dimensional Lie algebra. This problem has
applications to scattering theory in molecular dynamics and quantum chemistry.
Indeed, there are now a number of well-established methods for dealing with such
operators, where the calculation of eigenvalues, spectra, and dynamics is considerably
simplified. The companion paper [8] applies the results of this paper to solving Levine’s
problem completely.

2. Equivalence problems for differential operators. Consider a second-order
differential operator

(2.1) f(x)D2 + g(x)D + h(x),
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where f, g, h, are analytic functions of the real variable x, and D d/dx. If we
apply 9 to a scalar-valued function u(x), we obtain the expression

(2.2) 9[u]=fu"+gu’+hu.

In particular, we can look at the linear, homogeneous second-order ordinary differential
equation 9[u] =0, or the eigenvalue problem 9[u] Au, or the SchrSdinger equation
u, ig[u], in which 9 plays the role of the Hamiltonian.

We will be concerned with the problem of when two such differential operators
can be mapped into each other by an appropriate change of coordinates. It turns out
that two natural classes of transformations can be employed to change the differential
operator. Clearly, as far as the independent and dependent variables are concerned,
the appropriate pseudogroup consists of the fiber-preserving transformations that are
linear in the fiber variable u"

(2.3) p(x), a q(x)u.

The total derivative operators are related by the chain rule formula

1
(2.4) D D.

’(x)

In the first of our two equivalence problems, we identify the two differential
expressions 9[a]= 9[u] (cf. (2.2)), where

Y f(x) + g(x)+ (x)

is another second-order differential operator. The explicit formulae for the new
coefficient functions f, , h, in terms of the original coefficients f, g, h of 9, can be
determined using the transformation rule

1
(2.5) q(x)’

together with the chain rule (2.4). The first of our equivalence problems for differential
operators then amounts to determining conditions on the two differential operators
such that there exists a transformation (2.3) that maps one to the other according to (2.5).

The transformation rule (2.5) has the disadvantage of not preserving either the
eigenvalue problem or the Schr6dinger equation associated with the operator. For
instance, 9[u] hu does not imply 9[] h, since we are missing a factor of q(x).
To rectify this situation, we need to premultiply by q(x) and use the alternative
transformation rule

1
(2.6) 9 q(x) 9.

q(x)"

This transformation rule leads to slightly different formulae expressing the new
coefficients f, g, h, in terms of f, g, h. The transformations (2.6) enjoy the additional
property of preserving the standard commutator Lie bracket [9, ] 9. -. 9
between differential operators. The second equivalence problem is to determine condi-
tions on two differential operators such that there exists a transformation (2.3) mapping
one to the other according to (2.6).

For simplicity, we will explicitly denote the pull-back maps only in the statements of the theorems.
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We will solve both equivalence problems in this paper. Incidentally, if we try to
combine all the transformations (2.3), (2.5), (2.6) (for different functions q(x)), we
end up with the trivial result that all second-order differential operators are equivalent
under this largest pseudogroup.

To apply Cartan’s algorithm to either equivalence problem, we need to recast the
transformation rules (2.3), and (2.5) or (2.6), in the language of differential forms. The
appropriate space to work in will be the second jet space J, which has coordinates
x, u, p, q. Here p represents the derivative u’, and q the derivative u". The immediate
goal is to construct an appropriate coframe, or pointwise basis for the cotangent space
T*J2, that will encode the relevant transformation rules for our problem(s). The first
remark is that as long as u 0, the pseudogroup of transformations (2.3) is uniquely
prescribed by imposing the 1-form equations

(2.7) d= a dx,

(2.8)
aa au

+dx.u

Here c and/3 are functions ./2, whose precise form does not need to be specified in
advance. Indeed, the first equation implies that o(x), with o’, while the second
necessarily requires the linearity of the transformation in u, so that (x)u, with
/3 ,’/. Note that the restriction to u # 0, which means that we are restricting our
attention to either the positive or negative real u-axis, is inessential as far as the
differential operator itself is concerned. (Indeed, analytic continuation will extend our
results across the apparent singular subspace u--0.)

For the derivative variables p and q to transform correctly, we need to preserve
the contact ideal on ./2, which is the ditterential ideal generated by the pair of 1-forms
du-pdx, dp-qdx. In general, a diffeomorphism : j2_+j_ determines a contact
transformation if and only if

(2.9) dfi ff dg A du -p dx),

(2.10) d-gtd=tx(du-pdx)+ ,(dp- qdx),

where A,/x, u, are functions on j2. Equations (2.7)-(2.9) by themselves already constitute
part of an overdetermined equivalence problem on J2. There is an algorithm, due to
Caftan, to reduce this to an equivalence problem of standard form, but in our case,
we can do this by inspection. It is easy to see that the 1-form (du -p dx)/u is invariant,
so the identification

(2.11) dti-/ d)= du p dx
u

can replace both (2.8) and (2.9). The reader can check that the 1-form identities (2.7),
(2.10), (2.11), are equivalent to requiring that the transformation on jz be the prolonga-
tion of a point transformation of the special form (2.3), with the derivative variables
p, q, transforming correctly. Therefore, we take as the first three elements of our eventual
coframe the 1-forms

du-p dx
(2.12) ool dX, 0)2 0)3 dp q dx,

U

with the transformation rules

(’1 A0)1, a52 0)2, 0. B0)2 -t- C0)3, A, C # 0,
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where A, B, C, are functions on j2. This much of the coframe is the same for each
equivalence problem.. To complete the coframe, we need to supplement these 1-forms
with an additional 1-form, which will encode the action of the transformation rule
(2.5) or (2.6) on the differential operator itself.

In both cases, there is an obvious invariant function for the problem. For the
equivalence problem (2.5), the invariant is the differential expression (2.2), i.e.,

(2.13) I(x, u, p, q)= [u] f(x)q + g(x)p + h(x)u.

For the second problem (2.6), the invariant is slightly more complicated"

[u] f(x)q+g(x)p
(2.14) I(x,u,p,q)-- +h(x),

since we need to take care of the extra factor of
I(g, u, p, q) under the identification (2.5) or (2.6). We therefore take our final 1-form
to be the differential w4 dI, so that for the equivalence problem (2.5) we have

(2.15) o)4=fdq+gdp+hdu+{f’q+g’p+h’u} dx,

whereas for the alternative problem (2.6) we take

f g fq+gPdu+f’q+g’P+h’ dx.(2.16) 094=- dq +- dp- u----Z--U U U

In both cases, the four 1-forms to1, w2,093,094, provide a coframe on the subset

(2.17) 12" {(x, u, p, q) J21 u # 0 and f(x) 0}.

From now on, we restrict our attention to a connected component 12 c ll* of the subset
(2.17); note that on such a component, the signs off(x) and u are fixed. We require
only that the last coframe elements agree up to contact, i.e.,

th4 Dr02 + Et03 + (.04

We therefore define the structure group

A 0 0 0

! 1 0 ! "A,B,C,D,E", A’C#OG=
B C
D E

which happens to be the same for both equivalence problems, even though the two
coframes are different.

As a consequence of these preliminary considerations, we have successfully
encoded our equivalence problem in terms of a coframe, and have shown the following.

PROPOSITION 2.1. Let and be second-order differential operators. Let
{tOl, to, to3, to4} and {o31, a32,033,
and 12 of the secondjet space, given by (2.12) and (2.15) or (2.16), the choice of to4 and
4 depending on the equivalence problem under consideration. The differential operators
are equivalent under the pseudogroup (2.3) according to the respective transformation
rule (2.5) or (2.6) if and only if there is a diffeomorphism : 12 12 that satisfies

4

*(t5,) 2 gotoj, i= 1,..., 4,
j=l

where g= (gij) is a G-valued function on j2, and dp* denotes the pull-back map on

differential forms.
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To apply Cartan’s algorithm for this equivalence problem, we must "lift" the
coframes to the space j2x G. The lifted coframe takes the form

(2.18) 01 AtOl, 02=(.02, 03--B002+C003, 04--Do2-l-gto3d-t04,

where the coefficients A, B, C, D, E are now interpreted as coordinates in the structure
group G. We then have the standard reformulation of the equivalence condition of
Proposition 2.1.

PROPOSITION 2.2. Under the setup of Proposition 2.2, two differential operators
and are equivalent if and only if there is a diffeomorphism " 1)x G- 1 x G that
commutes with the natural left action of G, and maps the appropriate lifted coframe
elements to each other"

(2.19) *(0i) 0,, i-1,...,4.

3. Solution of the first equivalence problem. To keep our presentation as short as
possible, we will assume that the reader has some familiarity with the mechanics of
Cartan’s equivalence method as discussed, for instance, in [2], [3], and [6]. We will
solve both equivalence problems, beginning with the setup (2.5), corresponding to the
coframe element (2.15). The solutions are fairly similar intrinsically, although the
parametric formulae differ. We present this case in detail, and briefly indicate how the
other problem goes in the following section.

We begin with the lifted coframe (2.18), based on the base coframe (2.12), (2.15).
The basic tool in Cartan’s method is the invariance of the exterior derivative operation
under smooth maps, so webegin by computing the differentials dOi. They are found
to have the form

dO1 a ^ 01 + o’1,

dOE 0"2,

dO3 fl ^ 02 d- "g ^ 03 -" 0"3,

dO4 t ^ 02 -’}" e A 0 "q-0"4

Here a,/3, y, 6, e, form a basis for the right-invariant 1-forms on the Lie group G, and
the torsion terms take the form

oi Y’. "t’okO ^ Ok, i= 1,’" ", 4.
j<k

In the absorption part of Cartan’s process, we are allowed to replace each 1-form
a,/3, y, 3, e by an expression of the form a +Ez;O;, etc., where the functions z; are
chosen so as to make as many of the torsion coefficients ’k vanish as possible. In the
present setup we can readily "absorb" all the torsion components except

B+Cp 1 C E
"/’212 aCu 7’213 aCu’ 7"314- af’ 7"414- af"

These components are invariants of the problem. Since they depend on the group
parameters, the next step in the process is to normalize them to as simple a form as
possible through a suitable choice of the group parameters. There are two possible
normalizations for these torsion components, depending on r sign (f(x) u), leading
to two different branches for the equivalence problem. (However, as we remarked
above, as far as the differential operator itself is concerned, the division into two
branches is not essential, since we can always change the sign of u by restricting our
attention to a different connected component g/of the domain (2.17). It is nevertheless
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convenient to retain the sign through our analysis.) We normalize the torsion com-
ponents to 0, K1, 1, 0, respectively, by setting

(3.1) A O’1 B -0-2P C 0"2 .E 0.
u u

Here 0"1 +1 is an undetermined sign that must be left ambiguous (even with the
specification of K1), and 0"2 0"1" (sign f). (See [7] for a detailed discussion of these
types of signs.) The normalizations (3.1) have the effect of reducing the original Lie
group G to a one-parameter subgroup, with D the only remaining undetermined
parameter.

In the second loop through the equivalence procedure, we substitute (3.1) into
the formulas for the lifted coframe (2.18) and recompute the differentials. The unabsorb-
able torsion component z413 D can then be normalized to zero by setting D 0. Note
that we could have avoided adding in contact terms in our definition of 04, since tO4

turns out to already be an invariant form.
By normalizing the torsion components, we have managed to eliminate all of the

group parameters. This has had the effect of (a) reducing the structure group to the
identity, and (b) reducing the lifted invariant coframe to an invariant coframe on the
base space j2, known as an {e}-structure or local parallelism. The explicit formula for
the invariant coframe comes from (2.18), (3.1), and we have

(3.2)

du -p dx

03 0"2
f -P--(du -p dx) + (dp q dx)},U

O4=fdq+gdp+hdu+(f’q+g’p+h’u) dx.

Indeed, as the reader can check, these 1-forms do satisfy the invariance conditions

Oi 0i, 1, 2, 3, 4,

under the pseudogroup of transformations (2.3), (2.5). Applying the exterior derivative
to the invariant coframe elements, and re-expressing the resulting 2-forms in terms of
the coframe, we find that the structure equations for our problem take the form

dO1 1/201 ^ 02,

(3.3)
dO2 O1 A 03,

d03=-IO1 ^ 02-f-l(1JO1A 03-1-01A 04--1/202 A 03,

dO4 0,

where

(3.4) I fq + gp + hu, J 0"2
U 3 f_

P g)"
Because the coframe is invariant, the functions I and J are the fundamental invariants
of the problem. Note that we have recovered our original invariant (2.13) as one of
the torsion components in the structure equations (3.3).
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The covariant derivatives F,o, of a function F with respect to the coframe (3.2)
are defined by expressing the differential of F in terms of the invariant coframe"

(3.5)

Explicitly,

(3.6)

dF= F,o 01-1I- F,0202-- F,0303 -t- F,0404

1

Here Dx denotes the differential operator

0 0 0 0
(3.7) Dx --x +pu + q--p + R--q
where

gq+ hp+f’q+ g’p+ h’u
(3.8) g

f
Note that if we differentiate the invariant equation I constant (which is the same as
the ordinary differential equation [u] constant) with respect to x and solve for the
third-order derivative r- u’", we recover (3.8). In this sense, Dx can be identified with
the total derivative operator on j2.

The covariant derivatives of any of the fundamental invariants (3.4), called the
derived invariants, are also clearly invariants. Since the differentials of I and J are of
the form

dI 04, dJ K1KO d1/2JO2-KlO3,
the only independent derived invariant is

K ,J,o, tCltr,x/l--ltxJ
(3.9)

3fp 1 2ff"-f’2 + 2f’g 4fg’-fq +4 ---P(f + g) + u
4f

(Note that K does not have an ambiguous sign.) We can continue differentiating to
deduce higher-order derived invariants; for example,

dK LO1 + (K --I)02- J03--04,
so we have one second-order derived invariant

L= K,o K1J,o,,o,-- cr,,/lfulOxK,
which we avoid writing out explicitly.

Given an { e}-structure as above, we define its rank to be the number of functionally
independent invariants (including all possible derived invariants). The order of the
{e}-structure is the highest-order derived invariant required to complete the indepen-
dent set of invariants. According to the standard Jacobian criterion for functional
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independence, the particular {e}-structure given by the coframe (3.3) will have rank
4 and order 2, provided dI ^ dJ ^ dK ^ dL O, whereby/, J, K, L are a complete set of
functionally independent invariants. Exceptional cases with lower rank (and lower
order) can occur if this wedge product vanishes.

To investigate the structure of the invariants in more detail, we proceed as follows.
Note first that sincef. u 0, the invariants I and J are always functionally independent.
We can eliminate p and q from the original equations (3.4):

f’-2g 2 4P 3f
u -’KlO’2J

u

gp + hu- I 2g2-f’g-3fh 2 rglul 1/ 1

f 3f U-- KIO’I’ 1fl3/2 +"
Substituting these into (3.9), we find that we can write

1 j2 3
K=a(x)u+- --I,

where

3 _g, 15gf’ 2f’2 292+_ h +(3.10) a
6f 2 f"

If the function a(x)= O, then K is a function of I and J. An easy chain rule argument
shows that in this case, besides I and J, there are no further independent derived
invariants. Therefore, if a 0, the rank of the {e}-structure is 2, and the order is zero.

Otherwise, if a does not vanish identically, we can take

K=a(x)u

as a new independent invariant, and compute its derived invariant:

-" / 01 O’14-/x/ K1b(x)IRI3/2-2jI22,
3

where

3a’f+ af’- 2ag(3.11) b(x) o5 341fa31
Note that b is an invariant that depends only on x. If b is constant, then I, J,/ form
a complete set of functionally independent invariants; the rank is 3 and the order 2.
Otherwise, for b not constant, we have an { e) structure of maximal rank, with I, J, K, b
comprising our four fundamental independent invariants. In this case, we complete
the solution to the equivalence problem by computing one final derived invariant"

b,o, o’1 ,/Ifulb’= c(x)lR
where

(3.12) c(x) rl ,/lf/alb’(x)
is also an invariant. In the case of an {e}-structure of maximal rank, the determining
function F for our equivalence problem is prescribed by re-expressing c in terms of b,
i.e., we write

(3.13) c(x)=F[b(x)].
Note that F may be a multiply-valued function.
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Example 3.1. Let us consider the case of a simple operator

(3.14) =DE+h(x)
of Sturm-Liouville type, i.e., f-1, g- 0. Such operators play a key role in quantum
mechanics, scattering theory, and the theory of the Korteweg-de Vries equation. Here

a(x) h(x),
so we have a structure of rank 2 if and only if h 0 and D2. As a result of our
construction, we deduce that a second-order differential operator (2.1) is equivalent
to the differential operator D2 if and only if

(3.15) 3ff"- 2f’2 + 5f’g -6fg’- 2g2 + 9fh 0.

Continuing, if h # 0, then

b=+/-
ihl/.

Therefore b is constant if and only if h(x) (cx + d) -2, i.e., we have either a translate
of the radial Laplace operator

(3.16) D2 k
-t- x-,

when b =-x/6/k 0, or D2+ k, when b 0. Note that k 0 can be scaled to 1.
Finally, in the case when b is not constant, then

hh,,-h2

C=
h

The determining function F will be found by writing

(3.17) h-/ h-
from which

F( t) ff:( t) - .
We note that the ordinary differential equation (3.17) can be solved explicitly by
quadratures, owing to the presence of an obvious two-parameter symmetry group of
translations in and scalings; see [10].

In essence, the collection of all the invariants and their derived invariants will
completely solve our equivalence problem, providing explicit necessary and sufficient
conditions for two differential operators to be equivalent under a transformation (2.5).
The following theorem is a consequence of general results on the equivalence of
{e}-structures [6], [7].

THEOREM 3.2. Let and be real-analytic differential operators. Define thefunction
a(x) by (3.10). If a O, then define the functions b(x), c(x) by (3.11), (3.12). Then
and are equivalent under a change of variables (2.3), (2.5) if and only if:

(i) a =- =-O, in which case both @ and are equivalent to the operator D2; or
(ii) Both a and t do not vanish identically and b b are constant, in which case

both and are equivalent to either the radial Laplace operator (3.16) or the operator
D + 1; or

(iii) Both a and do not vanish identically, both b and b are not constant, the
determining functions prescribed by (3.13) are identical, F F, and the equation b(x)=
b(.) has a real solution branch. (For complex equivalence, the last statement is
unnecessary.)
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The change of variables required to map one operator into the other is implicitly
given as the solution to the equations

(3.18) b(x) b(), ti()t7 a(x)u,

restricted so that the signs K1 -sign (f. u) and ffl sign (f. tT) agree: K1 ffl.
In fact, the connection with the operator (3.14) can be used to complete the

solution to the equivalence problem.
THEOREM 3.3. If is a second-order differential operator, then there is a transforma-

tion (2.3), (2.5) taking into the operator 12 +a(), where the potential a() is given
by the (relative) invariant (3.1 O) when q (x). Moreover, two differential operators
are equivalent if and only if their corresponding potentials differ by the rescaling and
translation group A 2a A + 6 ).

In other words, the equivalence class of a differential operator under (2.6) is
completely determined by its potential; moreover, two potentials are equivalent if and
only if they are rescaled translates of each other.

4. Solution of the second equivalence lroblem. In this case, we begin as before
with the lifted coframe (2.18), now based on the base coframe (2.12), (2.16). In the
first loop through the equivalence procedure, we are left with the unabsorbable torsion
components

B+Cp 1 C E
7"212 ACu 7"213 ACu’ 7"314- Afu’ 7"414- Afu

Again, there are two branches, depending on 1 sign f. Here the sign restriction is
more essential than in the previous equivalence problem, since we cannot change the
sign of f by a transformation of type (2.6). We normalize the torsion components to
0, 1, 1, 0, respectively, by setting

a (7"1 B --002P/, C 02N/I-, E 0,

where 001 is an ambiguous sign, and 002 0011. In the second loop through the
equivalence procedure, the unabsorbable torsion components 7"413 --7"312-- D can both
be normalized to zero by setting D 0. The final invariant coframe is now given by

rl dx

du-p dx
U

(4.1)

03= ’2"/--I { dp q dx P p dx }
04=/,/dq+gu dP +fqu+2gP du + {f’q +

The structure equations take a slightly different form:

dO =0,

dO2 0 ^ 03,
(4.)

dO3 -2J01 ^ 03 q- 01 ^ 04,

+h’}. dx.

dO4-- O,
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where

.oh(_l2g-f’+4Pf)(4.3) J
4/.j u /

is a fundamental invariant of the problem. Interestingly, the original invariant I given
in (2.14) does not appear among the structure functions of the adapted coframe.
Indeed, it is easy to see that it cannot appear even among the derived invariants of
the structure functions, since only the derivative h’ appears in the coframe (4.1), so it
would be impossible to recover the function h, which appears in the expression for I,
by differentiation. Thus, the invariant coframe (4.1) must be supplemented by the
additional invariant I to effect the correct solution to the problem. Although we have
come up with a nonstandard equivalence problem, Cartan himself was already aware
of such possibilities. Indeed,,in his original treatment of the equivalence method, he
allows for the incorporation of additional function invariants into an equivalence
problem, and, as he says, "Rien n’est chang6 la solution..." [1, p. 725]. Here, we
have one invariant provided by the structure functions, and one additional invariant,
both of whose derived invariants must be taken into account when discussing the
solution to the problem.

The covariant derivatives of a function F with respect to the coframe (4.1) are

F,o trlX/-lJxF

F.o2= uF,+pFp -fq+pg(1-u) Fq,
(4.4)

f

o4=Fq
Here

0 o a o

is similar to the total derivative operator (3.7), but

fqP + gP
(4.5) R =-(gq+f’q + g’p+ h’u)

is different. As in 3, if we differentiate the equation I constant with respect to x
and solve for the third order derivative r u’", then we recover the expression (4.5)

Since the differentials of I and J are of the form

dI 04,

the only independent derived invariant is

K J,o, ’1 DxJ
--p2(4.6)

fqUu +f, p
2u

dJ K01 + 03,

2ff"-f’E+2f’g-4fg

Furthermore,

dK L01 2J03 + 04,
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so we have only one further second-order derived invariant:

L= K,o, J,o,,o, 0-1/-l i,,K.
Note that in the case of the transformation rule (2.6), there is always a one-parameter
symmetry group of any differential operator, namely, the scaling u- Au. Since the
invariants must respect this symmetry, there can be at most three functionally indepen-
dent invariants. Thus, the rank of this {e}-structure can be at most 3, and this will
happen when dI ^ dJ ^ dK # O.

To investigate the structure of the invariants in more detail, we proceed as before.
We solve (2.14), (4.3), for p and q:

( 0"2 J+f’-2gP=U\x/-l 4f ]’

uI uh pg ( I

f -u-
Thus

gJ 2g2-f’g -4fh)11f132+

(4.7) K =-a(x)+I-K1J2,
where

(4.8) a
8gf’ 3f’2 4g2+h lg,+

16f -2
The only degenerate case is when a is constant, so the rank is 2 and the order zero.
Otherwise the rank is 3, and we can take a(x) as a new invariant. The final derived
invariant is

(4.9) b a,o, 0"1%/-1 a’.

The determining function is found by re-expressing b in terms of a"

(4.10) b(x)=F[a(x)].

Note that since b has the ambiguous sign 0"1, the determining function F is only
prescribed up to an ambiguous + sign. (Indeed, the orientation reversing change of
variables x-+-x, u + u, will change the sign of f.) One solution to this annoying
complication is to replace the invariant b by its square b2= Klfa ’2.

THEOREM 4.1. Let and be real-analytic differential operators. Define the
functions a (x), b (x), by (4.8), (4.9). Then and are equivalent under a change of
variables (2.3), (2.6) ifand only ifthe signs 1 sign (f) ffl sign (f) agree, and either:

(i) a k are constant, in which case both and are equivalent to the operator
D2 / k; or

(ii) Both a and are not constant, the determining functions prescribed by (4.10)
are identical, F F, and the equation a (x) g.) has a real solution branch.

Example 4.2. Let us consider the case of the operator D2 / h(x). In this case,
a(x)-h(x); hence we have a structure of rank 2 if and only if h is constant. A
differential operator (2.1) is equivalent to the differential operator D2/ k via (2.6) if
and only if a k, i.e.,

(4.11) 4ff"- 3f’2 + 8f’g 8fg’-4g2 + 16fh 16kf
Otherwise, since b h’, the determining function will be found by writing

(4.12) h’=F(h).
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For a fixed .determining function F, the general solution of (4.12) are just the translates
of h, i.e., h(x)= h(x-6). We conclude that two operators of the form (3.14) are
equivalent under the transformation group (2.6) if and only if their potentials are
translates of each other.

Conversely, given a determining function F, we can always construct a correspond-
ing potential h(x) by solving the elementary first-order ordinary differential equation
(4.12). We thus recover the classical result that a general second-order differential
operator can always be transformed into an operator of the form (3.14).

THEOREM 4.3. lf is a second-order differential operator, then there is a transforma-
tion (2.6) taking into the operator +/- )2 .ql_ a (), where the potential a() is given by
the invariant (4.8) when p(x), and the sign in front of2 is determined by the sign
off, the coefficient ofD2 in . Moreover, two differential operators are equivalent if and
only if their signs are the same and the corresponding potentials differ by a translation:
a(x)=a(x+6).

In other words, outside singular points where f(x) 0, the equivalence class of a
differential operator under (2.6) is completely determined by its potential and the sign
of its leading coefficient; moreover, two potentials are equivalent if and only if they
are translates of each other.

5. Symmetries of differential operators. We will call a group of transformations
of the form (2.3) a symmetry group of the differential operator if the corresponding
transformation (2.5) or (2.6) leaves the operator unchanged. (This is more restrictive
than the concept of a symmetry group of a differential equation 10].) It is interesting
to see what the corresponding infinitesimal symmetry criteria are.

PROPOSITION 5.1. Given a vectorfield v sC(x)(O/Ox) + rl(x)u(O/Ou) that generates
a one-parameter group of transformations of theform (2.3) on , define a corresponding
first-order differential operator (x)D + (x). The group generated by v is a symmetry
group of the differential operator @ of the type (2.5) or of the type (2.6) if and only if
the operator equation

(5.1) [7/’, ]+ r/ @ 0

or, respectively,

(.) [, ]=0

holds.
In either case, the proof is straightforward. In the second case, the scaling vector

field with r/= 1 always generates a symmetry group.
Cartan’s method gives us a complete handle on the symmetry group of an

{e}-structure. If the structure has rank r and the underlying space has dimension n,
then the symmetry group forms a Lie group of dimension n-r. For the differential
operator equivalence problems, then, n =4, and so the symmetry group will have
dimension 4-r, where r is the number of functionally independent invariants. This
leads to the following results.

THEOREM 5.2. Let @ be a real-analytic differential operator, and consider the
symmetries of the type (2.5). Define the functions a(x), b(x), c(x) as in 3. Then:

(i) @ admits a two-parameter symmetry group if and only if a =-O.
(ii) admits a one-parameter symmetry group if and only if a does not vanish

identically, and b is constant.
(iii) If b is not constant, then @ can admit only a discrete symmetry group.
Thus a differential operator (2.1) is equivalent to the differential operator D2 if

and only if it admits a two-parameter group of symmetries which is also equivalent to



EQUIVALENCE OF DIFFERENTIAL OPERATORS 1185

the condition (3.15). The two-parameter symmetry group for the operator D2 is, of
course, generated by translations (x, u)- (x / k, u), and the scaling transformations
(X, U)--)(AX, A Eu). Similarly, we have the result that the differential operator is
equivalent to the radial Laplace operator (3.16) or the operator DE/ 1 if and only if
it admits a one-parameter group of symmetries. For the radial Laplace operator (3.16),
the symmetry group is the scaling group (x, u)- (Ax, A 2u); for DE/ 1 the translation
group remains. Finally, for any other differential operator, the symmetry group is at
most a discrete subgroup.

THEOREM 5.3. Let be a real-analytic differential operator, and consider the
symmetries ofthe type (2.6). Let a (x) be the corresponding potential (4.8). Then always
admits the one-parameter scaling symmetry group (x, u)- (x, Au). Moreover, admits
a two-parameter symmetry group if and only if a is constant; otherwise there is only the
possibility of additional discrete symmetries.

See Hsu and Kamran [4] for more detailed information on the use of Cartan’s
equivalence method for determining the possible symmetry groups of general second-
order ordinary differential equations.
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UNCONSTRAINED VARIATIONAL PRINCIPLES FOR EIGENVALUES OF
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Abstract. Certain real-valued functions, whose critical points and critical values are related to the
eigenvalues and eigenvectors of a real symmetric matrix, are described and analyzed. These functions, in
general, are smooth and bounded below. Variational principles for finding various specific eigenvalues and
eigenvectors of the matrix A are described. These problems have a Morse theory. They may be written as
the difference of two convex functions, so there are also natural dual problems that include the classical
constrained variational principles for eigenvalues and eigenvectors.

Key words, eigenvalues, real symmetric matrices, unconstrained optimization, variational principles
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1. Introduction. This paper describes and analyzes some unconstrained variational
principles for the eigenvalues and eigenvectors of a real symmetricmatrix. Extensions
to weighted eigenproblems and to finding singular values and singular vectors of
general real matrices are given.

For almost a century now, variational methods for finding or estimating eigenvalues
of symmetric matrices have been synonymous with variants of Rayleigh’s principle.
They are constrained optimization problems and there is a large literature on such
principles and their theory. For recent summaries see Chatelin [4] or Parlett [5].

Here we describe some families of unconstrained variational principles for finding
various eigenvalues and eigenvectors of a real symmetric matrix A. As described in

2, we consider smooth functions E that are the sum of a function of IIx[I 2 and a
function of (Ax, x, with [[xll being the Euclidean norm. Then the nonzero critical
points of E arise at eigenvectors of A of specific norm. The norm of the critical point,
and the critical value of E, are functions of the corresponding eigenvalue. The Hessian
of E at a critical point has the same eigenvectors as A, so we may compute its (Morse)
index and describe the topological type of the critical point.

Much of this paper is devoted to analyzing some specific functions E that are
bounded below on R" and are minimized, or have critical points, at specific eigenvectors
of A. Thus in 3, a variational principle for the largest eigenvalue of a positive definite
symmetric matrix is described and analyzed. It is used to obtain upper and lower
bounds on this eigenvalue, and a deflation theory for finding the second, third, and
subsequent eigenvalues is developed.

In 4, we analyze certain families of variational principles including some that
are applicable to weighted eigenvalue problems. These results are applied in 5 to
principles for finding the smallest or largest eigenvalues, or the eigenvalues of a
symmetric matrix A closest to a preassigned number/.

Some different classes of functions are described in 6. They have the property
that their only nonzero critical points arise at eigenvectors of A corresponding to
positive eigenvalues of A. This property provides some results applicable in stability
theory, and also enables us to give variational criteria for determining whether A has
any eigenvalues in a given interval and for estimating these eigenvalues.

* Received bythe editors February 3, 1988; accepted for publication (in revised form) November 29,1988.
? Department of Mathematics, University of Houston, Houston, Texas 77004. This research was partially

supported by National Science Foundation grant DMS-8701886 and by the Air Force Office of Scientific
Research.
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These principles are extended in 7 to finding singular values and singular vectors
of general real matrices, while 8 describes some invariance and symmetry properties
of these functionals.

All of these functions either have a specific, finite number of critical points, or
else the set of critical points is infinite but has a finite number of bounded components.
The functions analyzed can all be written as the difference of two convex functions.
Hence we can use nonconvex duality theory as in 1] or [7] to describe various dual
problems. Some of these are described in 9; they may be either constrained or
unconstrained variational principles.

Some of the analysis described here may be extended to provide variational
principles for eigenvalues of compact linear operators on a Hilbert space or for
self-adjoint linear elliptic eigenproblems as in [2] and [3]. Much of this analysis,
however, is specific to finite-dimensional problems and has been developed with a
view towards the numerical computation of eigenvalues.

2. General funetionals. Throughout this paper. A will be a real symmetric n x n
matrix with real eigenvalues A, -< A,_ =<. =< A2 -<- A 1. We shall use only real arithmetic
and the Euclidean norm and inner products

Ilxll- Ilxll=- x] (x, y)= xjyj
j= j=

for vectors x, y in R".
When B is an m x n real matrix, we shall write B 7- for its transpose and B (be)

with b0 being the i, jth component, ker B {x R"" Bx =0} and ! being the n x n
identity matrix. When x, y are in ", then x(R)y (x0,) is a rank 1, n n matrix and
the vector x is said to be normalized if Ilxll- 1. Any other terms from linear algebra
that are not defined here should be taken as in Strang [6].

Our interest is in describing and analyzing certain smooth functions, defined on
all of ", whose extrema, or critical points, are related to the spectral properties of A.
Most of the functions can be written in terms of Ilxll, IIAxll, and (Ax, x). In particular,
many of the functions will have the form E:"+ defined by

(2.1)

where

(A1)

(A2)

E (x) (1/2llxll z) + (1/2(Ax, x))

:[0, o)-R is continuous and twice continuously differentiable on (0, az)
with ’(s) 0 for s O;

’ is twice continuously differentiable with (0)= 0.

In this section we prove some general results about these functions and their
critical points.

We write

rE(x)
OE

(x),
Ox+ Ox.

(x)

02EDEE(x)

for the gradient and the Hessian, respectively, of E at a point x. For scalar functions,
differentiation is denoted by a prime.
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A point in R" is said to be a critical point of E if either
(2.2) (i) E is differentiable at and VE()=0, or

(ii) E is not differentiable at
A critical value of E is the value of E() when is a critical point. E is minimized

at provided

(2.3) E()= inf E(x).
xR

A critical point of E is said to be nondegenerate if E is twice continuously
differentiable at and D2E() is a nonsingular matrix. en is a nondegenerate
critical point, then its Morse index i() is the number of negative eigenvalues of
D2E(). The behavior of E near a nondegenerate critical point may be classified by
its Morse index. In paicular, is a local minimum (maximum) if its Morse index is
zero (or n); it is a saddle point if 1 i() n- 1.

The significant fact about the function (2.1) is that its nonzero critical points are
ceain specific eigenvectors of A. Moreover, the eigenvectors of the Hessian of E at
critical points are precisely the eigenvectors of A. This may be summarized as follows.

THEOREM 1. Let A be a real symmetric matrix with E defined by (2.1). Assume
(A1) and (A2) hold; then E is twice continuously differentiable on -{0} with

(2.4) VE(x)  ’( llxll=)x + W’()(Ax, x))Ax,

D=E(x) .’(11 x =) I + ,"(11x =)x@x
(2.5)

+ ’((Ax, x))A +"((Ax, x))Ax@Ax.

en is a nonzero critical point of E, then
(i) is an eigenvector ofA corresponding to the eigenvalue

’(&llll(2.6) X
W’((A, ))

(ii) I1 11 , where is a solution of

(2.7) ’ + XW’ 0;

(iii) e eigenvectors of D2E() are precisely the eigenvectors of A.
oo From (A1)-(A2) we have that E is twice continuously differentiable, except

perhaps at x 0. When we use the chain rule, (2.4) and (2.5) follow.
When is a nonzero critical point of E, then (2.2) and (2.4) imply that

(2.8) ((Ax, ))A =-’(1111=).
If ’((A, ))
From (A1), ’(s) 0 for s 0; thus =0, which contradicts the assumption that is
nonzero. Thus (i) holds.

Take the inner products of (2.8) with . Then,

’(
and we also have {A, )=, with being the eigenvalue from (i). Hence (2.7)
follows, as 0.

Let {e(: 1Nj N n} be an ohonormal set of eigenvectors of A with

(2.9) Ae
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Since (i) and (ii) hold, then +/ze(k) for some/x > O, 1 _-< k-< n. Then
2 2)(2.10) D2E()e(j) [(i)t(1/2jL/2).+_hj,(1/2hktx2)]e(j)+[@,,(#2)+ hk (Sag# gge(j)

where a is the Kronecker delta.
When j # k, we have D2E()eO}= ve0 with

,()+a’(a).
When j k, (2.10) implies that D2E()e(= vge( with

( +a’(a)+["() + *t ]
Since {e)" 1 j n} is a basis of R", we see that this describes all the eigenvectors

of D2E() and hence (iii) holds.
COrOLlAry 1. Take A, E as in eorem 1 and suppose that e0) is a normalized

eigenvector ofA corresponding to an eigenvalue A. en me) is a nonzero critical
point ofE g and only g # 0 and

(2.11) , 2 +h**, h =0.

Proo If meO) is a nonzero critical point of E, then (2.8) implies (2.11).
Conversely, if (2.11) holds for some # 0 and some 1 j n, then e(j) will be a
solution of (2.8) and thus e( will be a nonzero critical point of E.

Usually the critical values of E depend only on the eigenvalues hi of A. We may
regard (2.11) as an equation for >} in terms of ha. Suppose it has only a finite number
of solutions >(h), 1 kK(j). Then the corresponding values of E() are

and this may be regarded as a function of h alone. In all the specific examples analyzed
in this paper 2 is a single-valued function of h and the critical values of E are
relatively easy to compute.

When B is a general m x n matrix, consider the function H’R" R defined by

(2.12) H(x) (llx ) + 0(11x )
where both and 0 obey (A1). This function can be written in the form (2.1) with
0 and A BrB. The critical points of H are related to the singular vectors of B.

Let ker B {x e R"" Bx 0}; then the analogue of Theorem 1 is as follows.
Tzogz 2. Suppose B is a real m x n matrix and H is defined by (2.12) with

and 0 obwing (A1). en H is twice continuously differentiable on "-ker B with

vH(x) ’(11 I)+ 0’(11 11) x,
D=H(x) ’(x =), + "(1x II=)x@ x + 0’(11Bxll =)BB + O"([[Bx[[ 2)BrBx@ BrBx.
en is a critical point ofH in "-ker B, then
(i) is a singular vector of B corresponding to the singular value

(ii) I , where is a solution 4
,(( + 0-) O.

(iii) e eigenvectors ofDH() are the singular vectors of A.
Proo This follows from Theorem 1 as IIxll= <BBx, x> for all x in N, and the

(right) singular vectors of B are the eigenvectors of A.
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In the following sections, we look at variational principles associated with functions
of the form E or H. Essentially we shall be interested in describing functions E or H
that have specific minima. Generally the minima of E (or H) arise only.at specific
eigenvectors (or singular vectors) of A (or B) and we choose the functions so as to
find the smallest, the largest, or some other special eigenvalue of A. A functionf: R" --> R
is said to be coercive on $" provided

f(x)
lira

3. Variational principles for the largest eigenvalues of positive definite
matrices. Throughout this section, A will be a positive definite, symmetric n x n matrix
with eigenvalues 0 < A, -< A,_ <= -< A2 <- A 1. Here we shall describe some functions
of the form (2.1) whose minima provide information on the largest eigenvalues and
eigenvectors of A.

Consider the function Eq" defined by

1 1
(3.1) Eq(x) =- Ilxll-- (mx,

q

where 1 -< q < 2. This function has the form (2.1) with O(s) s, (s) q-l(2s) q/2. Both
and obey (A1). When q 1, this Eq is proportional to the function g in equation

8.3 of 1], where it was derived as a dual variational problem to Rayleigh’s principle.
The variational properties of Eq may be summarized as follows.

TrEOREM 3. Let A be a positive definite, symmetric matrix and Eq be defined by
(3.1) with 1 <-_ q < 2. Then

(i) Eq is coercive on with

-1
(3.2) "1/2nf Eq(X)=-where

q
(3.3) Y- (2-q)"
This is attained at +A]’/2e(), where e) is a normalized eigenvector corresponding to the
eigenvalue A 1.

(ii) The nonzero critical points of Eq are at +-A/2ek), where ek) is a normalized
eigenvector ofA corresponding to the eigenvalue Ak.

(iii) The critical values of Eq are {-A/2y; 1 =< k -< n} LI {0}.
(iv) : +A’{/2ek) is a nondegenerate critical point ofEq ifand only ifAk is a simple

eigenvalue of A. In this case, the Morse index of 5, is k- 1.
Proof For any x, we have (Ax, x> <_- Allxll =, so

1 1 q/E(x) >-- Ilxll=-- A Ilxllq

Thus Eq is coercive when 1-< q < 2.
Since Eq is continuous and coercive on R", it attains a finite infimum. Eq is also

continuously ditterentiable on "-{0} with

(3.4) VEq(x) x-(Ax, x)(q-2)/2Ax.
Thus the nonzero critical points of Eq obey

(3.5) Ax= cr(x)x
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where tr(x) (Ax, X)(2-q)/2. If; is a nonzero critical point of Eq then it is an eigenvector
of A corresponding to the eigenvalue o-(). Take the inner products of (3.5) with
; then

(A, ;)=  r(;)ll;ll =,
or

q
(3.6) v=ll;ll = whereY-2_q
Thus (ii) follows. Moreover,

(3.7) Eq(;) - -2"
on substituting back into (3.1). Thus (iii) holds and

1 1
inf Eq(x) min Aj A’a <-’J - 23’

as claimed in (i).
Differentiating (3.4) we have, when x # 0,

(3.8)

Let {e(1),
suppose

D2Eq(x) I -(Ax, x}(q-z)/2A + (2- q)
Ax (R) Ax

(Ax, X)2-(q/2)"

.., e(")} be an orthonormal set of eigenvectors of A obeying (2.9) and

(3.9) Y +h/2e().

Then D2Eq()e(J)=(1-(aj/ak))e0) +(2--q)ajke0) as (A;, ;)= a,/(2-q). Thus D2Eq(C)
is nonsingular if and only if ,k is a simple eigenvalue of A. When this holds, we see
that the number of negative eigenvalues of D2Eq(;) is precisely k- 1 when (3.9) holds
as claimed in (iv).

This result has a number of interesting corollaries. The first is related to the number
of critical points of Eq.

COROLLARY 1. Let A, Eq be as in Theorem 3 and define

(3.10) {x Ilxll’ -- and Ax ajx}

for 1 <-j <-_ n. Then the set of nonzero critical points of Eq is U"=I C.
Moreover,
(a) If aj is a simple eigenvalue of A, then C consists of exactly two points;
(b) Ifa a+ a+,, is an eigenvalue ofmultiplicity m > 1, then C C+

C+,, is isomorphic to an mj- 1)-dimensional sphere and each point in
this set is a degenerate critical point of Eq.

Hence the set ofall nonzero critical points ofEq has afinite number ofbounded, connected
components. When A has n distinct eigenvalues, it has exactly 2n elements.

Proof (a) This description of the nonzero critical points of Eq follows from (ii)
of Theorem 3. If )t is a simple eigenvalue of A, then

C {+af/’-eO)}
where e) is a normalized eigenvector of A corresponding to the eigenvalue
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(b) When Aj is an eigenvalue of A of multiplicity mj->__2, then let
{e(, e(J+l), ., e(+m-1} be an orthonormal basis of the eigenspace. Then

Cj x c Rn" x ck e(j+k-1) and 2 c, A
k=l k=l

This is diffeomorphic to a sphere of dimension m-1, and from (iv) of Theorem 3,
each of these critical points is degenerate.

The other claims now follow directly.
This function provides direct, lower bounds on hi. For any x, we have

(3.11) A(>- -2yEq(x).
We often would like to obtain upper bounds on A1. This can be done by using

property (ii) of Theorem 3 and restricting the domain. Since Eq is coercive, we have
that for any R => 0
(3.12) aR inf Eq(x)

is well defined and finite, and this infimum is attained.
THEOREM 4. Take A, Eq as in Theorem 3 and suppose that aR is defined by (3.12).

If aR > -R2/2, then A < R2/’.
Proof. When R2/vA1, then we have that x=+A/2e(1) lies in AR

{x’. [IxlJ_>-R}. Hence aR=aO=-h/2y<---R/2y.
When aR > -(RZ/2y), then R > A (/2, as 2 is not in AR. Thus h < R2Iv as required.
When q 1, Theorem 3 reduces, essentially, to Theorem 8.1 of 1 ]. As q increases

from 1 to 2, y(q)=q/(2-q) increases from 1 to infinity and the infimum in (3.2)
increases to zero when h _<- 1. For all values of h, the expression h/2y is convex in
3’ and when A1 > 1, this goes to infinity as q approaches 2.

Part (iv) of Theorem 3 says that there is a good Morse theory for this function.
When q 1, this theory may be regarded as a dual theory to the Courant-Weyl minimax
theory for eigenvalues and eigenvectors (see 5 of [1]). We might ask whether there
are modified versions of (3.1) that could provide variational characterizations of the
second, third, or other eigenvalues of A.

Let {e(), e(2), e (n)} be an orthonormal set of eigenvectors of A so that (2.9)
holds. Let 1 -_< k-< n 1 and define

(3.13) Vk {X C R"" (X, e(j) 0 for 1 =<j _--< k}.
When we restrict Eq to Vk we have the following result.

THEOREM 5. Let A be a positive definite, symmetric matrix, and let Eq and Vk be
defined by (.3.1) and (3.13), respectively. Then

(i) Eq is coercive on Vk with

(3.4) in .(x)
V 2

where is given by (3.3). This is attained on C+ V.
(ii) The nonzero critical points of Eq on V are /2y, where is a normalized

eigenvector ofA corresponding to some eigenvalue ofA with j >= k + 1.
(iii) The critical values of Eq on V are {-.’/2: k + 1 <=j <= n }.
Proof Since Eq is coercive on ", it is coercive on V. At a critical point of E

on V, standard Lagrange multiplier theorems imply that

(3.) v(x)= Y e
j=l
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for some real numbers tZl," ,/k. That is,

k

-(A, )(q-2)/2A Y Ize).
j=l

Take inner products with and e(t) for 1-<_ 1_-< k. Since is in Vk, we find that

I1 11 =- (A,
<, e(’)) h,<, e()>llll-(=/) , for 1 k.

Thus 0 for 1 k as (, e()) 0, and so is an eigenvector of A corresponding
to an eigenvalue (A, )(2-q)/2. The other results now follow just as in Theorem 3.

This variational principle of minimizing E on V for the (k + 1)st eigenvalue
is a constrained variational principle. It could be rewritten as an unconstrained
variational principle by using the canonical projection Qg ofR" onto V. Let Q"" V
and Eqk n be defined by

k

(3.16) QkX x- (xeO),
j=l

1
(AQkX, QkX)q 2(3.17) Eqk(X) IIQxll=-

q

We see that

and that

for any x Vk,
for any x.l_ Vk,

k+l(3.18) inf Eqk(X)=--.xa 23’
This value is attained at k+l where is a normalized eigenvector of A

corresponding to the eigenvalue Ak+I of A and lying in Vk. Moreover, if x is any point
in R such that QkX , we have Eqk(X)= Eqk(). So there is an affine subspace of
minimizers of Eqk and Eqk is not coercive on ".

4. Variational principles for other eigenvalues. A number of interesting, uncon-
strained variational principles for the eigenvalues and eigenvectors of a real symmetric
matrix A can be described by the problem of extremizing the function F’"-->
defined by

(4.1) F(x) =1/2(r(A)x, x>-Ilxll.
Here we require that

(A3) r(A) be a rational function of A and a positive definite matrix.

The simplest examples are when r(A) is linear, quadratic, or a polynomial in A.
When r(A) is linear in A, then F has the form (2.1). When r(A)= ClA2+ C2L then F
has the form (2.12); both of these cases will be analyzed in 5. The functional
r(A)- A-1, with A being positive definite, has been analyzed in 8 of [1].

Henceforth we shall use the notation

(x a". Ilxll 1 and Ax hjx}, 1 _-<j _-< n.
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Thus Ej is the set of all normalized eigenvectors of A corresponding to the eigenvalue
hi. When h is a simple eigenvalue, then E {+e(} consists of exactly two points.
Otherwise two or more of the sets E will be the same and each will be a bounded,
closed, connected set. We shall also write

E; {x Ilxll 1 and r(A)x r(hj)x} for 1 =<j-<_ n.

THEOREM 6. Let A be a real symmetric matrix, and let Fr be defined by (4.1) with
(A3) holding. Then

(4.2) (i) Fr is coercive on and xinaf, Fr(x) min
<=j<--n

(ii) The nonzero critical points of Fr are r(Ak)-le<k), where e<k) is in Ek and
l <-k<-n. Fr is minimized at the points = r(Aj)-leJ), with e) in E and J being an
integer that minimizes r(Aj), for 1 <=j <= n.

(iii) The critical values ofF are 0 and --(2r(Ak)) -1 for 1 <--k<= n.
(iv) r(Ak)-e<k) is a nondegenerate critical point ofFr ifand only ifr(Aj) # r(Ak)

for allj# k, l <=j<=n. The eigenvalues of D2F() are {r(A)-r(Ak): l <--_j<-n,j k}LJ
{r(Ak)}.

Proof. Since r(A) is positive definite, there exists c > 0 such that

(r(A)x, x)>- cllxll =.
Hence Fr(x)>= c(llxll=- Ilxll)/2 for all x in

Thus F is coercive on n and attains a finite infimum. Fr is continuously differenti-
able on n-{0} with

X
(4.3) VFr(X) r(A)x-

Thus the nonzero critical points of F are eigenvectors of r(A) with II ll being the
inverse of the eigenvalues of r(A). From the spectral mapping theorem we know that
the eigenvalues of r(A) are {r(A)" 1 _-<j =< n}. Thus the first part of (ii) holds.

Moreover, (r(A), )= I111- r(Aj) -1, so F() -(1/2r(Aj)) for somej. Hence the
rest of (ii), (iii), and (4.2) hold.

Differentiating (4.3) we find that, when x # 0,

I x(R)x
D2Fr(x) r(A)- [-(-[ +(4.4)

r(a)

where Q I-P and P is the projection in the direction x;

(x, y)x
(4.5) Py

iix[[2
for y in a n.

Thus when = r(Ak)-lek we have

DEF(:) r(A)- r(Ak)(I- Pk)

where PkY (Y, e(k)) e(k) is the projection in the direction of this eigenvector. Thus

e(j) (r(Aj)-- r(Ak))e(j) ifj # k,DEFr()
r(Ak)ek) ifj k.

Hence (iv) of Theorem 6 holds, and for any particular r(A) we can compute the
Morse index of a nondegenerate critical point.
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COROLLARY. Suppose that A and Fr are as in Theorem 6. Then the set ofall critical
points of Fr has a finite number of bounded, closed components. It is finite if and only if
r(A) has n simple eigenvalues.

Proof. This follows from (ii) of Theorem 6. We have that each E consists of
exactly two points whenever r(Aj) is a simple eigenvalue of r(A); otherwise it is an
infinite set.

The results in this theorem could be generalized to the function where Ilxll in (4.1)
is replaced by Ilxllq/q with 1 < q < 2, but this does not seem to provide any different
information.

Sometimes we are interested in finding weighted, or generalized, eigenvalues and
eigenvectors of A with respect to another positive definite symmetric matrix C. In this
case we replace (4.1) with the function J :R -R defined by

(4.6) J(x) =1/2(r(A)x, x)-(Cx, x)1/2.

Now we assume that the weighted eigenproblem

(4.7) Ax vCx

has real eigenvalues v,_-< v,_-<_... <_-v, and we define the corresponding sets of
normalized eigenvectors by

J {x eN’: Ax= vCx, (Cx, x) 1},

J={xeR’: r(A)x= r(vk)eX (Cx, x) 1}

where 1 -<_ k =< n.
The analogue of Theorem 6 is as follows.
THEOREM 7. Let A, C be real symmetric matrices with C being positive definite and

define J by (4.6) with (A3) holding. Then

1
(4.8) (i) J is coercive on " and inf J(x) min

xeRn l<=k<--n 2r(Vk)"

(ii) The nonzero critical points of J are = r(vk)-ek, where e is in Jk and
l<-k<-n. J is minimized at =r(vr,)-er’, where K is the integer where r(vk) is
minimized.

(iii) The critical values ofJ are 0 and (--2r(vk))- for 1 <= k <- n.
(iv) = r(vk)-ek is a nondegenerate critical point ofJ if and only if r(vj) # r(vk)

for allj # k, 1 <-j<- n. The eigenvalues ofO2J() with respect to C are {r(v)- r(vk): 1 <--

j<--n,j k}U{r(vk)}.
Proof. This proof is similar to that of Theorem 6. Since C is bounded, we have

<Cx, x>’/=<-_ IIcIl’/=llxll, so

C
Ilxll CII 1/ Ilxll

where c is as in Theorem 6. Hence J is coercive. Also, if x # 0,

VJ(x) r(A)x-Cx/x/(Cx, x),

and now (i)-(iii) follow just. as in Theorem 6. The Hessian at x is

Cx (R) CxD2J(x) r(A)-(C/x/(Cx, x))+
Cx, x>
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When = r( vk)- e(k) we have C, ) Ce(k), e(k)/ r( vk)2 1/ r( Vk)2 SO

DEj()e(J r(A)e0 r( Vk)CeO) + r( vk)3(C, e)C,
(r(v) r(Vk)) Ce0 if j k,

r(Vk)Ce(k if j= k,

and thus (iv) holds.
In the remainder of this paper, we shall not pursue these generalized eigenvalue

problems, but most of the results still hold mutatis mutandis. Essentially we replace
[Ix[] by (Cx, X)1/2 and we obtain slightly more complicated expressions for derivatives
and Hessians.

5. Examples of variational principles. By choosing r(A) appropriately we can
describe variational principles for certain different eigenvalues and eigenvectors of A.
The first two examples have r(A) linear or quadratic in A.

Example 1(a). Let r(A) A IXI, where IX is chosen so that Ix < h,, with A, being
the least eigenvalue of A. When A is positive definite we may take Ix 0.

Define F :R --> R by

1 Ix 2(5.1) Fl(X) = (Ax, x)-- Ilxll -Ilxll.
The following theorem shows that minimizing F on " provides upper bounds

on An.
THEOREM 8. Let A, Ix, F be as above. Then
(i) inf,,a- F(x)=-1/2(A,-Ix) and this is attained at (A,-Ix)-e"), where e

is in E,.
(ii) The nonzero critical points ofF are {(Ak--Ix)-ek): e(k) Ek}.
(iii) The critical values of F1 are {--1/2(Ak Ix)-I" 1 --< k =< n} U {0}.
(iv)) (Ak--ix)-ek) is a nondegenerate critical point ofF if and only if Ak is a

simple eigenvalue of A. In this case the Morse index of is (n- k).
Proof. To obtain the proof just substitute r(A) A IxI and r(Aj) A Ix in

Theorem 6.
Example l(b). We can also take r(A)=IxI-A if we choose Ix so that Ix>

with A being the largest eigenvalue of A. Then define F2:" --> by

F(x) --- Ilxll=-<mx, x)- Ilxll.
In this case infxa. F2(x) -1/2(Ix A) and parts (ii)-(iv) ofTheorem 8 hold similarly.
This time the Morse index of is k.

Thus minimizing F2 on " provides lower bounds on A, and the critical points
and critical values of F1, F2 provide information on all the eigenvalues and eigenvectors
of A.

EXAMPLE 2. Let r(A)--(A-IxI)2, whereIx is not an eigenvalue of A. Define
F(Ix, x) by

(5.3) F(Ix, x) 1/211(A- I)xll=- Ilxll.
The following theorem shows that minimizing F(Ix, on R" provides information

on the eigenvalues of A close to Ix.
THEOREM 9. Let A be a real symmetric matrix with Ix not an eigenvalue ofA, and

let F(Ix,. be defined by (5.3). Then

-1
(5.4) (i) inf F(Ix, x)= min

x" ,-<-- 2(,x )"
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If J is an integer at which this minimum is attained, then F(IX,. is minimized at
(Aj Ix)-2e(J), with e) in E2).

(ii) The nonzero critical points of F(IX, are (Ak--Ix)-ek) with ek) in E).
(iii) The negative critical values of F(IX,. are --1/2(Ak IX)2 for 1 <-- k <- n.
(iv) =(Ak--IX)-eek) is a nondegenerate critical point of F(IX,.) if and only if

(Ak-ix)-(A-ix) for allj k, l <=j<-_n.
Here Ek)-- {x" Ilxll 1 and (A-IXI)ex=(Ak-IX)2x}.

Proof. To obtain the proof just substitute (A-ix)2 for r(A) in Theorem 6.
We see that as Ix varies, the minimum value of F(IX,.) varies and provides

information about all the eigenvalues of A. Let

-1
min ) inf F(IX, x).(5.5) a(ix) =,__<__<, 2(a IX

We see that a(ix)< 0 for any real IX and it is singular at the eigenvalues of A. In fact,
we have the following results.

LEMMA 5.1. LetA be a real symmetric matrix with eigenalues
h,, and let a(ix) be defined by (5.5). Then

(i) a is continuous and monotone decreasing on (-c, h,).
(ii) a is continuous and monotone increasing on (h, c).

(5.6) (iii) If a(ix)<--a with a > 0, then A has an eigenvalue in the interval
[ix d, Ix + d], where d (2a) -(/.

(iv) A ispositive definite ifand only ifa(O) isfinite and a(ix is monotone decreasing
on (-, 0).

Proof. Parts (i), (ii), and (iv) follow directly from (5.5).
If a(ix)=<-a, then from (5.4) there is an integer J such that

1
(a ,)_-<.

2a

Thus (iii) follows.
Part (iii) of Lemma 5.1 enables us to find upper and lower bounds on the

eigenvalues of A. Suppose we know that there is a unique eigenvalue a of A in an
interval (ix, IX2)-Then a(ix) will be monotone decreasing on [a-dl,a,) and
monotone increasing on (a, a + d2], where d =(a -ap) and ap is the eigenvalue
of A closest to a but less than a and d2 1/2(AN- Aj), where AN is the eigenvalue of
A closest to a but larger than

Thus there are a number of simple, effective algorithms to improve these upper
and lower bounds on a using information about a(ix).

Moreover, we can use this to find a maximization principle for a, and a minimiz-
ation principle for

Let C(IX) {x "" F(IX, x) <0} and let be the second smallest eigenvalue of
A, 1 being the second largest eigenvalue of A ( A, A1). When A A is the
only eigenvalue of A we can take +oo, =-oo in the following theorem.

THEOREM 10. Let A be a real symmetric matrix, and let A1, 1, A, , C(IX) be
as above. If tx is in (h, 1/2( + h)), then

(5.7) h, max [ix 1/v/]2F(IX, x)],
xC()

while if tx is in (1/2(1 -- 1, /1)), then

(5.8) h min [ix + 1/x/2F(Ix, x)].
xC()
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Proof. Suppose/z is in (A,, ,); then from Theorem 9 we have

-1
inf F(/, x)= ,z= F(/z, )
xa" 2(X. -/x

where (h.-/z)-2e(n) and e(") is in E.. Thus for any x in C(/x) we have

A. =>/, 1/42F(/x, x)

and equality holds here when x x. Thus (5.7) holds.
The argument for (5.8) is similar.
Example 3. Consider the case where r(A)= A-(A2+/x2I) for some/x-> 0. r(A)

will be positive definite provided A is. When A is not positive definite, choose y < h,
then similar results will hold if we use A yI in place of A. Define F3" [0, oo) x Ri" -+ R
by

(5.9) F3(/x, x) 1/2((A + tz2A-’)x, x)-

Just as in the preceding example, minimizing F3(/,," on Ri" provides information on
the eigenvalues of A close to/2. In this case, however, the problem does not become
unbounded below at the eigenvalues of A. The results may be summarized as follows.

THEOREM 11. Let A be a symmetric positive definite matrix and F3 be defined by
(5.9). Then

(5.10) (i) inf F3(/z,x)= min 2 2)"

If J is an integer at which this minimum is attained, then Fa(/X, x) is minimized at
Aj(A +/z2)-eJ) with e in E3.

(ii) The nonzero criticalpoints offa(tZ, are (Ak/2)(A +/zE)-lek with ek in Ek3.
(iii) The critical values of F3(l, ") are 0 and -Ag(A+/x2)-1 for l<-_k<-n.

(iv) : Ak(A+ 12)-ek) is a nondegenerate critical point of Fa(/Z, if and only
if Ak is a simple eigenvalue ofA and AAk /z for any j k, 1 <-j <-_ n.
Here Ek3)= {x eRi"" Ilxll- 1 and Ax + [2m-lx (,k + Id,2/i.k)X}

Proof. Use r(a)= a/(a 2+/,2) in Theorem 6; then the result follows.
The function r(a) a/(a2+/z2) is unimodal with r(0) r(oo) =0 and is maximized

at a =/z. Thus the minimizing J in (5.10) arises at an eigenvalue a of A that is closest
to/z in this special sense. By varying/z we can find all the distinct eigenvalues of A
from information about the infima of F3(/,," ).

6. Variational principles for positive or negative eigenvalues. In the last three
sections, the variational principles generally required some assumption involving
positive definiteness of a matrix. Now consider the function 3p"" --> defined by

(6.1)
1 1

with 2<p <oo. This function has the form (2.1), with (s) =-s, (s)= CS p/2, and C
a constant. For calculations we shall often take p 3 or 4. When p increases to +m,
the function %(x) converges pointwise to the function

(6.2) oo(x) X,(x)-1/2(Ax, x}
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where

Xl(x) {0 if Ilxll <- 1’
otherwise.

o arises in the convex analysis formulation of Rayleigh’s principle (see 8 of[ 1 ]).
The results on extremizing 3p may be summarized as follows.
THEOREM 12. Suppose A is a real symmetric matrix and 3p is defined by (6.1) with

p > 2. Then

(6.3) (i) p is coercive and infxn-p(X)=(-1/2u)[max(O,A)], where u=

p/(p 2) and A is the largest eigenvalue of A.

(ii) The critical points ofp occur at 0 and at : "J 1/(p-2)e(j), where Aj is a positive
eigenvalue ofA and e() is in E.

(iii) When A >0, p is minimized at = All/(P-2)e(), where e() e El; ifA <=0 then
p is minimized at O.

(iv) The critical values of gp are {-Af/2," A > 0}[_J {0}.
(v) = Ak/(P-2)e(k) is a nondegenerate critical point of p if and only if Ak is a

simple eigenvalue ofA. In this case the Morse index of is k 1). Zero is a nondegenerate
critical point of (gp if and only ifA is nonsingular.

Proof. We have that gp(X)>= Ilxll’/p-llall Ilxll = for all x in R". Since p > 2, 3p is
coercive and it attains its infimum on R". Also

(6.4) 7 %(x) -Ilx [[’-=x Ax.

Thus if Y is a critical point of % then Y 0, or else )7 is an eigenvector of A with
eigenvalue [])1[-> 0. That is, )7=0 or )= h/(P-Z)e() with > 0, e(J)e E. Thus
(ii) holds and %(:)=0 or -Ay/2,, where u=p/(p-2). Thus (i), (iii), and (iv) follow.

Differentiating (6.4) we find that, when x 0,

(6.5) DZCJ(x) [[x[[-[I +(p-2)Px]-a

where Pv=(x,y)x/l[x[[ 2 is the projection in the direction x. When x=0, we have
Dzcp(0) =-A. When Ak/(P-Z)e(k) with hk > 0, we have

D2qp(Y)e() hk( e( + (p 2)6ke(k)) Ae()

(hk h)e() ifj # k,
(p 2)Age(k ifj k.

Thus (v) holds.
A symmetric matrix is said to be stable, or negative semidefinite, if all its eigenvalues

are less than or equal to zero. A simple corollary of this theorem is the following.
COROLLARY 1. A real symmetric matrix is stable if and only if infxa- Cp(X)=0.
Proof The proof follows from (i) of Theorem 12.
To obtain the negative eigenvalues of A, we substitute -A for A in (6.1). Alterna-

tively, let

1 1
(6.6) Gp(x) Ilxll (Ax, x)

with 2 <p <, and consider the problem of extremizing G. The results may be
summarized as follows.
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COROLLARY 2. Let A be a real symmetric matrix and Gp be defined by (6.6) with
p > 2. Then

(i) Up is coercive and infxu-Gp(x)-(-1/2,)lmin (0, An)] where ,-p/(p-2)
and An is the least eigenvalue of A.

(ii) The critical points of Gp occur at 0 and at x=[hj[1/(P-2)e(), where h is a
negative eigenvalue ofA and e( E.

(iii) e critical values of Gp are 0 and -[h[/2, where h < O.
(iv) en h, < O, Gp is minimized at [h[1/(P-) e(), where e(") E. If h, 0, Gp

is minimized at zero.
(v) Zero is a nondegenerate critical point of Gp if and only if A is nonsingular.

en = [hk[/(P-)e( is a critical point of Gp, is nondegenerate if and only if hk is
a simple eigenvalue of A. In this case the Morse index of is n- k.

Proo The proof is the same as the proof of Theorem 10.
COROLLARY 3. Let A be a real symmetric matrix. en A is positive semidefinite if

and only if Gp(x) 0 for all x in .
Proo From Corollary 1 we see that h, 0 if and only if infu- Gp(x) 0; hence

the result follows.
These variational principles may be modified to find the eigenvalues and eigenvec-

tors of A lying in any preassigned interval. A functional whose critical values identify
the eigenvalues of A in the interval (, ) (or (-, )) is obtained by replacing A in
(6.1) (or (6.6)) by A-I.

To see if A has an eigenvalue in the interval (, ) replace A in (6.1) by
(A I)(I A) and obtain

1
2].(6.7) X)=! Ilxll + [IIAxI[2

P
--(1 + )(Ax, x)+   mllxll

Then we have the following corollary.
COROLLARY 4. Let A be a real symmetric matrix, and let p(l, , x) be defined

by (6.7). en A has an eigenvalue in the interval (, 2) if and only if
(6.8) inf p(l, 2, X) --(1, 2) < O.

x

Ifa(, )>0 then either A+ or

_
is an eigenvalue of A, where

(6.9) h [(+2) d],

)-4(2ua((6.10) d 2 (: , ,2))’/
If there is a = p(,,)<0 then A has an eigenvalue in the subinterval

[o- , o+ ], where o ( +) and

2 2 1/

Proo Equation (6.7) has the form (6.1) with (A-I)(2I-A) replacing A.
Thus this infimum is negative if and only if (A #1I)(#2I A) has a positive eigenvalue
from (6.3). The eigenvalues of (A-I)(I-A) are (A-I)(-A) for ljn,
so (6.8) holds.

Let

/21-- max
ljn

(hj -/Zl)(/z2- hj) for some 1 _-< J <_- n.

Then from (6.3), (2,a(/z,/z2))/ (hj -/Zl)(/z2- hj). This is a quadratic equation for
hi, whose solution is given by (6.9)-(6.10). More generally, if a(/zl,/z2) > II, then we
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have

(,-,)(- a,)-> (2II)’/

and thus we have that Aj lies in [/o-d,/o+ d] as claimed.
In a similar manner, when/. is not an eigenvalue of A, we can find the eigenvalue

closest to/ and greater than/ by substituting (A-/I)-I for A in (6.1).
Write

1 1
(6.11) J,(x)-- Ilxll" -- ((A I)-’x, x>.

Then we have the following corollary.
COROLLARY 5. Suppose A is real symmetric, tz is not an eigenvalue ofA, and Jp is

defined by (6.11). Then

[ ,a<x. /fa > ,,
(6.12) inf J(x) L’==" X

with "g =p/p-2. When A > I, then this infimum is attained at (Aj- p.)-l/p-2)e), where
A is the eigenvalue ofA closest to I but larger than p. and e<) is in E.

Proof. The eigenvalues of (A-II)- are (A-/)-1, and hence (6.12) follows from
(6.3) and (6.11).

7. Variational principles for singular values. Suppose B is a general m x n real
matrix. We can modify the preceding variational principles to describe functions whose
critical points and critical values identify the singular values and singular vectors of B.

Throughout this section we assume B has singular values

(7.1) rl>_- tr2-> >= trp_-> 0 withp=min(m,n).

Let uO), vO), respectively, be left and right normalized singular vectors of B correspond-
ing to the singular value %. Thus [[u)[I IIv<)ll- 1 and

(7.2) By0) ou0), Bu0)
%v
) for 1 _<-j _-< p.

The functions to be extremized will all have the form (2.12). We shall look
particularly at

7.3) H x): 1/2 Bx x II,
(7.4) H2(x) & IIxll- IIBxll,

1 1
(7.5) H,(x)=-llxll’--llBxll for 2 <p < oo.

Here H generalizes F(0,. ), where F(/x,. is defined by (5.3), H2 has the form
(3.1) with q 1 and A BB, and Hp is related to <gp defined by (6.1) with A BrB.
Each of these functions provides information on the singular values and singular
vectors of B.

First consider H. Its extremal properties may be summarized as follows.
THEOREM 13. Let B be a real m x n matrix and H be defined by (7.3). Then
(i) H is coercive on if and only if rank B n.

(7.6) (ii) /f rank B n, then infxa. H(x)= -1/2tr2,,
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(7.7) while if rank B =< n 1, then infxa Hi(x) -oo.
(iii) H is continuously differentiable on -{0} and the nonzero critical points of

H are trf2v(2) with v() being a normalized right singular vector ofB corresponding to
(iv) The critical values of H1 are {-1/2tr]: 1 =<j p}.
(v) tr-v() is a nondegenerate critical point ofill ifand only if tr2k is a simple,

nonzero eigenvalue of BrB. In this case the Morse index of is n- k.
Proof If H is coercive on R", then there exists R > 0 such that

Ilxll--> R implies Ilnxll->- 1.

Hence Ilnxll--> Ilxll/R and thus rank B n.
Conversely if rank B n, then there exists c > 0 such that

nxll -> cllxll for all x in

and hence H1 is coercive. Thus (i) holds.
Now if rankB=<n-l, then there is an 0 in " such that B=0. Then

H(t)--tllll and, letting t--> oo, we see that (7.7) holds.
Differentiating (7.3), we find that, for x # 0,

(7.8) VHI(X) BTBx X

IIxll"
Hence if is a nonzero critical point of H we have that is a right singular

vector of B and [[[I-= tr] gives the corresponding singular value. Thus (iii) holds
and we have

IIB II=- I1 11
on taking inner products with . Hence H()=-l/2tr, so (iv) holds, and when
rank B n then (7.6) holds.

Differentiating (7.8) we obtain

1 ( XXDH(x) BrB- I-

and thus (v) holds just as in the proof of Theorem 6with r(A) being replaced by the
eigenvalues ] of BrB.

Theorem 13 indicates that H will be most informative when rank B n and thus
m n. The functionals for HE and Hp, however, are always bounded below. The results
may be summarized as follows.

THEOREM 14. Let B be a real m x n matrix, and let HE be defined by (7.4). en
(7.9) (i) H2 is coercive on and infxa. H2(x)=-/2. is infimum is attained

at v), where v) is a normalized singular vector corresponding to the
singular value .

(ii) H2 is continuously differentiable on -ker B and its critical points are ker B
together with {vi): v) is a normalized right singular vector corresponding to ,
ljp}.

(iii) e critical values of HE are {-]/2:1 j p} U {0}.
(iv) kV<k), with k 0, is a nondegenerate critical point ofHE ifand only if

is a simple nonzero eigenvalue ofBrB. In this case its Morse index is k- 1.
oof We have Thus has the form (3.1) with

q 1 and A BrB. The eigenvalues A of A are related to the singular values % of B
by

i={ forlNjNp,
0 ifj> p,
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and the eigenvectors of A are the right singular vectors of B. The proof of this result
now follows the pattern of the proof of Theorem 3 except that now A is only positive
semidefinite.

THEOREM 15. Let B be a real m x n matrix, and let Hp be defined by (7.5) with
p > 2. Then

(7.10) (i) Hp is coercive on n and infxR,, Hp(x)=-trP/qp, where =2/(p-2).
This is attained at tr v 1).

(ii) The critical points of Hp occur at 0 and at cr]vj), where o’ is a positive
singular value ofB and v) is a corresponding normalized singular vector.

prl(iii) The critical values of Hp are {-tr /p o- > 0} [.J {0}.
(iv) : o’ vk) is a nondegenerate critical point of Hp if and only if trek is a simple

eigenvalue of BrB. In this case, the Morse index of is k- 1).
Proof. This result is proven in the same manner as Theorem 12 with BTB in place

of A and tr in place of
It is worth noting that minimizing H2 or Hp for p > 2 provides estimates on or1,

the largest singular value of B. Minimizing H1 tells us whether rank B is n and, if that
is so, it estimates trn. To find other singular values of B we could use functions such
as (5.3), (5.9), or (6.7) with A replaced by BT"B or BrB + I, and then use the correspond-
ing theorems to find the singular values closest to /x or in some interval. Similarly,
results such as the corollary to Theorem 6 can be proven for each of these functions.

8. Invariance properties. A function E" - is said to be invariant under a linear
transformation L" " --> n provided

(8.1) E(Lx) E(x) for all x in .
If E is invariant under a nonsingular linear transformation L and : is a critical

point of E, then L will also be a critical point of E and it will have the same value
as E(:) and the same Morse index if it is nondegenerate.

We observe that all the functions introduced so far are invariant under the linear
transformation L -L Particular matrices A often have other symmetries. The follow-
ing result is often very useful.

THEOREM 16. Let A be a real symmetric n n matrix and let U be a real orthogonal
matrix that commutes with A. Then Eq in 3, F, in 4, F, F1, F2, and F in 5, and
the functions p and Gp in 6 are invariant under U.

Proof. All the norms have been 2-norms and U orthogonal implies that Uxll
Ilxll. Also (AUx, Ux)=(U-IAUx, x)=(Ax, x) as U commutes with A. Moreover,
(r(A) Ux, Ux)= (r(A)x, x) and II(A- txI) Uxll U(A I)xl[- II(A- I)xll so all the
functions listed above are invariant under U as claimed.

This theorem can be used to analyze symmetries in the sets of critical points of
these functions.

9. Dual problems. All ofthe specific functions introduced in the preceding sections
may be written as the difference of two convex functions. Thus we can use nonconvex
duality theory, as developed in 1] or [7], to obtain various natural dual problems. As
will be seen, many of these are well-known constrained variational problems.

Recall that iff:"- is a function, then its conjugate convex (or polar) function
f* :l"- (-o, o] is defined by

f*(y) sup [(x, y)-f(x)].
XR
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To describe the dual variational principles we shall need the dual functions of fl
and f2, where

(9.1) fl(x)=l llAxll p,
p

(9.2) f2(x)
1
(Ax, x) p/:

P
with 1-<p<oo and A real symmetric. A must be positive semidefinite in (9.2). To
describe the polar functions of f, f: we shall need the indicator functional , (x) of
a closed, convex set K in N defined by

(9.3) X:(x) {0 ifxeK,
otherwise.

LEMMA 9.1. Suppose A is real symmetric and nonsingular andfl is defined by (9.1).
Then

(9.4) (i) When l<p< f*(y)=llA-lyllq/qwithq=p/(p-1);

(9.5) (ii) Whenp= l f* (y)={O f 1,
otherwise.

Proof (i) When 1 < p < o we have

f* (y)= sup [(x, y)-l llAxllP].xa p

The expression on the right-hand side is maximized when

(9.6) y [[Axl[-Ax
as A is symmetric. Thus, A-ly ]]Axll-2Ax and []A-yll- liAxll-. Thus the solution

of (9.6) is given by

A-Ey p-2
where r =-----.

Ila-yll" p- 1

If we substitute this in the expression for f* we obtain (9.4).
(ii) When p 1, extremality condition (9.6) becomes

A2x
Y ax

Thus the maximizing lies in the direction of A-2y. Consider

(s) (sA-2y, y)-lsl IIA-yI[
slla-Yll=_ls[ IIa-yll

We see that " R R obeys

max q(s)= f0 if IIA vii,,__-1.,. 1,
-<s< I, otherwise

and thus (9.5) follows, tq

It is worth noting that (9.4) implies that for A real symmetric and nonsingular,

(9.7) L iiAxll +1 iiA-Yll e <x, y)
P q
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for all x, y in R and where 1/p+ 1/q 1. This is a form of H61der’s (or Young’s)
inequality. Also, (9.5) says that when p=l, f*(Y)=Xr,(Y), where K1
{y R"" [Ia-yll-<_ 1}.

LEMMA 9.2. Let A be a positive semidefinite matrix, and let f2 be defined by (9.2).
Then

(9.8) (i) When l<p<c f*2 (y) { q-I(A+y’ y)q/2 foryR(A),
+o otherwise;

(9.9) (ii) When p 1 f*2 (y) XI2(Y).
Here q =p/(p- 1) is the conjugate index to p, A/ is the Moore-Penrose inverse of A,
R(A) is the range ofA and K2 {y6 R(A)" (A+y, y) <- 1}.

Proof We have f* (y) SUpxR- [(x, y)-(Ax, x)P/Z/p].
Suppose (i) 1 <p <; then the expression on the right is concave in x and will

be maximized if and only if there is a solution : of

(9.10) y (Ax, x)(P-Z)/ZAx.
When y is not in the range of A we have f*z(Y)= +o. When y is in the range of A,
and if : is a solution of (9.10), we have that

(y, :) (a:, 9) p/2

on taking inner products with 9. Substituting, we have

(911) f. (y)
l
(ay, y) p/2 wherel 1

-+---1.
q P q

Let {el), e’)} be an orthonormal set of eigenvectors of A that is a basis of
cje(J)R(A) with AeJ)=Ajej, l<=j<=m, Aj>0. Assume Y=F--1 dej) and =Y=I

Then from (9.8), on taking inner products with ek, we have

dk AjC Akk OgAlcCk
j=l

where a ("= Ac})P-2/>O. Now from (9.9) we have

1 d2k p/(p--2)Ckdk a ifp 2.
k=l O k=l Ak

Thus

Og2(p-1)/(P -2) -’.
=-1

and so we have a unique positive solution for a if p 2. When p 2, a 1. Thus there
is a unique Y in R(A) that satisfies (9.10) and this is given by Y= ,A+y for some
constant y, with A+ being the Moore-Penrose inverse.

Now (A+y, y)= (AY, y)p-1 from (9.10), so (9.11) implies that for y in R(A),

f, (y)
1 + p/2p-l))(A y, y)
q

as required.
(ii) When p 1, the extremality condition (9.10) becomes

y= Ax/x/(Ax, x).
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When y is not in the range of A, f*(y)= +c. When y is in the range of A, we can do
another expansion in positive eigenvectors of A to show that f*(y)= Xr2(Y).

COROLLARY. Let A be positive definite and let f2 be defined by (9.2). Then

(9.12) (i) Whenp 1 f*(y)=(A-ly, y)q/E/q withq-p/(p-1);

(9.13) (ii) Whenp=l f*(Y)=Xl(2(y) withKE=(yRn’(A-ly, y)<--1}.

Proof. When A is nonsingular, A/ becomes A-1.
We are now in a position to describe the dual variational principles to the ones

introduced in 3-7. When E .Rn
_

is a function of the form

(9.14) E (x) =fl(LX) -f2(x)

with fl, f2 being convex and lower semicontinuous on n and L an n x n matrix, then
the dual problem is to minimize ’" , where

(9.15) ’(Y) =fE*(LrY) -f*l(y).

This is described in 7 of [1] and in Toland [7]. Moreover, Theorem 5.3 of [1] states
that, under some regularity conditions, the critical points of E and correspond.
When the corresponding critical points are nondegenerate they have the same Morse
indices. In particular, they are of the same type and have the same critical values.

We shall say that the variational principle of minimizing on is a constrained
variational problem if the essential domain of ={y" [(y)[<c} is a proper
subset of

When Eq is given by (3.1), then the dual problem is to minimize

(9.16) Cq(y) =l_p (a_ly y)p/2 --1 [[y []2

where p q’= q(q- 1) is the dual index to q and 1 < q < 2.
When q- 1, the dual problem is to minimize

(9.17)

where

’I(Y) XI,:(Y)-llyll

K: {y " (A-ly, y) <= 1 }.

These results follow from (9.15) and the corollary to Lemma 9.2.
In particular (9.17) is a constrained variational principle but (9.16) is a new class

of unconstrained variational problems for the eigenvalues and eigenvectors of A.
When Fr is given by (4.1) then the dual problem is to minimize

;r(Y) x(r(A)y)- 1/211yll .
Here X1 is defined as in (6.2). Equivalently we can look at

(9.18) r(z) =//I(Z)-1/2llr(A)-zll 2

using the fact that r(A) obeys (A3). These are constrained variational problems.
When r(A)- (A-IxI) or (A-i)2 as in Examples 1 or 2 of 5, these problems

are well-known inverse power methods associated with Rayleigh’s principle (see Parlett
[5]).

To compute the dual problem to minimizing dp given by (6.1) we must first write
A A/-A, where A+, A_ are defined via the spectral theorem as the parts of A
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corresponding to positive and negative eigenvalues of A_. Then (Ax, x)=
(A/x, x)-(A_x, x) with both A/, A_ being positive semidefinite. When A is positive
definite, A_ 0. Now

1 1 1
(9.19) %(x) --- llxll +- (a_x, x)-- (a+x, x),

which has the form (9.14) with L=/,

1
f(x) =1 ilxllp + <A_x, x>,

f(x)=1/2(a+x,x).
From Lernma 9.2 and (9.15), we see that the dual problem to minimizing q3p will

be a constrained problem unless A is positive definite. When A A+ is positive definite,
then the dual problem is to minimize

1 1
(9.20) Gp(y) (a-ly, y)--Ilyll"

q

with q p/(p- 1) being the dual index to p. This is similar to Fr defined by (4.1) with
r(a) a-1 and with Ilxll replaced by I[Yllq/q with 1 < q <2.

Similarly the dual principle, defined by (9.15), to minimizing Gp defined by (6.6)
will be a constrained problem unless A is negative definite. When A is negative definite,
the dual problem has the form (9.20) with -A-1 in place of A-1.

In summary, we have seen that the dual problems to minimizing Eq, with 1 < q < 2
or p or Gp under definiteness constraints, are new unconstrained problems. The other
dual problems are constrained variational problems, some of which are well known.
Essentially the dual problem will be unconstrained if and only if both fl* and f2* in
(9.15) are finite everywhere. This occurs provided both fl and f2 are coercive on
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AN EXISTENCE AND UNIQUENESS THEOREM
FOR DIFFERENCE EQUATIONS*
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Abstract. The nonlinear difference equation Py(t- k) f(t,y(t)) with (j,n- j)-conjugate
boundary conditions is considered, where Py(t- k) 0 is an nth-order linear difference equation and
k is a fixed integer, 0 _< k < n. Peterson considered this type of problem for the cases j n- 1 and
j 1. This paper extends his results to the (j, n-j)-problem. A comparison theorem for solutions of
related linear inequalities is obtained, leading to some disconjugacy results. Then a shooting method
type of proof is used to prove existence and uniqueness theorems for certain boundary value problems
where f satisfies a two-sided Lipschitz condition.

Key words, difference equation, existence and uniqueness, disconjugate, Green’s function,
comparison theorem, boundary value problem
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1. Introduction. In this paper we are interested in proving existence and unique-
ness theorems for boundary value problems for the nonlinear difference equation

(i) Py(t- k) f(t,y(t)), t e [a + k,b + k],

where f(t, y) is a continuous function of y for each fixed t in the interval of integers
[a + k, b + k]. Here, k and n are fixed integers with 0 g k < n, and

Py(t) =_ E ai(t)y(t + i), t e [a, b],
i--O

where an(t) 1. We will be interested in (j, n- j) boundary conditions of the form

y(a + i) Ai, 0_<i_<j-l;
y(b+n-i)-Bi, O<_i<_n-j-1,

where 1 _< j _< n- 1.
A number of recent papers have considered linear and nonlinear equations of the

form (1). The case n 2 and k 1 is discussed in [7], [8], [10], [11], and the case
n 4 and k 2 is discussed in [3], [9], [17]. More general n and k are considered
in [14]. The main existence-uniqueness theorem presented here will use a shooting
method type of proof. Examples of this method applied to difference equations can
be found in [1] and [14].

2. Preliminaries. We are motivated by the results of Peterson in [14] for certain
(n- 1, 1) and (1, n- 1) problems. First, we give some basic definitions. For these
definitions, let L be defined by Ly(t) =o i(t)y(t+i) for t e [a, b], where/n(t) -= 1
and f0(t) 0 for t E [a, b].

DEFINITION (HARTMAN [5]). Let y(t) be a solution of Ly(t) O. We say y
has a generalized zero at to in case either y(to) 0 or there exists an integer j with

Received by the editors June 8, 1987; accepted for publication (in revised form) October 31,
1988.
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1 __< j <__ tO -a such that

(-1)y(to j)y(to) > O,
y(t) =O, to-j<t<to.

We say that Ly(t) 0 is disconjugate on [a, b+n] if no solution y 0 has n generalized
zeros.

The condition (-1)nflo(t) > 0 on [a,b] is necessary for Ly(t) 0 to be discon-
jugate on [a, b + hi. Further discussion concerning this condition can be found in [5]
and [13].

DEFINITION (PETERSON [14]). Let J be a subinterval of [a,b + n] with card
J > n, and let 1 < j < n- 1. We say that Ly(t) 0 is right (j, n- j)-disconjugate
on J provided there is no nontrivial solution y(t) and integers a,/ E J with a + j <_
< f+ n-j- 1 E J such that

u(. + i)=0,
u(Z + i) 0,

O<i<j-1,
O<i<n-j-2,

and y has a generalized zero at/i/+ n j 1. Similarly, we say that Ly(t) 0 is left
(j, n- j)-disconjugate on J provided there is no nontrivial solution y(t) and integers
a, f J with a +j _< </+ n- j- 1 J such that

y(a+i)=O, O<i<j-2,
y( + i)= 0, O<i<n-j-1,

and y has a generalized zero at a + j 1.
In this paper, we will say that Ly(t) 0 is (j, n- j)-disconjugate on an interval

J provided it is both right (j, n- j)-disconjugate and left (j, n- j)-disconjugate on
J. Some results on disconjugacy and right and left disconjugacy can be found in [14]
and in the references given there.

If Ly(t) 0 is right (j, n- j)-disconjugate, then for each fixed s [a, b], there is
a unique solution G(t, s) of the boundary value problem

Lu(t) =Sts, t e [a,b],
u(a+i)=O, O<i<j-1,
u(b+n--i)=O, O<i<n-j-1,

where dit8 is the Kronecker delta. In this case, G(t, s) is called the Green’s function
for (2), and the unique solution of Ly(t) h(t) with boundary conditions in (2) is
given by

b

y(t) E G(t, s)h(s), t [a, b + n].

Some of our results use the following theorem concerning the sign of the Green’s
function (see [15, Thm. 1]). This theorem requires that the equation Lu(t) 0 be
defined on a larger interval. As in [15], whenever necessary we extend the coefficients
by defining i(t) i(a) for t < a, and i(t) i(b) for t > b.

THEOREM 2.1. Assume 2 g j < n- 1 and Lu(t) 0 is (i, n- i)-disconjugate on
[a + j i, b + n + j i] for j 1,..., n 1. Then the Green’s function G(t, s) for
the (j, n- j)-boundary value problem

Lu(t)
u(a+i)=O, O<_i<_j-1,
u(b+n-i)=O, ogi<n-j-1,
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satisfies

(-1)n-JG(t, s) > O, t e [a 4- j, b 4- j], s e [a, b].

Remark. In the case that j n- 1, Theorem 2.1 requires that Lu(t) 0 be
(n 2, 2)-disconjugate on [a 4- 1, b / n -4- 1]. However, Peterson [12, Whm. 8] has
shown that in the case of an (n- 1, 1)-problem, we can assume that the equation is
(n 2, 2)-disconjugate on [a, b 4- HI.

We will first prove some comparison theorems for solutions to certain inequalities
related to the difference equations

(3) Pu(t- k) qi (t)u(t)
(4) Pv(t- k) q(t)v(t)

where

(5) q(t) > q(t), t e [a + k, b + k].

In Peterson’s paper [14], it was assumed that 1 < k < n. Together with the
requirement that (-1)’ao(t) > 0, this guaranteed that no nontrivial solution of Py(t-
k) p(t)y(t) has n 1 zeros at t,..., t + n 2 and a generalized zero at t + n 1.
In the case that k 0, the corresponding condition is that (-1)’[a0(t)- p(t)] > 0
for t e [a, b]. Note that if Py(t) p(t)y(t) is right (j, n j)-disconjugate for some j,
then this condition necessarily holds.

The following is a modification of the comparison theorem in [14, Thm. 1].
THEOREM 2.2. Assume u(t) is a solution of

Pu(t- k) > q(t)u(t)

with u(t) > 0 on [a + k, b + k], and v(t) is a solution o]

Pv(t- k) < q(t)v(t)

such that u(a + i) v(a + i), 0 < < n- 1. I] (5) holds and (4) is right (n 1, 1)-
disconjuate on [a, b + n], then u(t) > v(t) ]or t [a, b + hi.

Proo]. Let w(t) u(t) v(t). Then

Pw(t- k) Pu(t- k) Pv(t- k)
> ql(t)u(t)-q(t)v(t).

Hence,

Pw(t k) q2(t)w(t) > [ql (t) q2(t)]u(t)

and so w(t) is a solution of

Pw(t- k)- q.(t)w(t) (t) + [q (t) q(t)]u(t),
w(a + i) O, O <_ <_ n-1,

with (t) >_ 0 on [a + k, b + k]. By the variation of constants formula (see Peterson
[14]),

t+k-1

w(t) U(t,s- k + 1)[(s)+ (ql(s) q2(s))u(s)],
s-’a+k
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where U(t, s) is the solution of (4) satisfying

U(s + i,s) O, 0<i<n-2,
U(s / n- 1, s) 1.

Since (4) is right (n 1, 1)-disconjugate, w! have that U(t, s) > 0 on Is / n 1, b / n].
Note that in the variation of constants formula, t >_ s- k / 1 and all the terms are
nonnegative for s E [a + k, b + k]. Since the terms of the sum are understood to be
zero for s > b + k, we obtain w(t) >_ O. Hence, u(t) >_ v(t) for t

COIOLLAIY 2.3. Assume (4) is right (n- 1, 1)-disconjugate on [a, b+ n] and (5)
holds. If the coefficient o of u(t- k) in (3) satisfies (-1)n0(t) > 0 on [a, b], then
(3) is right (n- 1,1)-disconjugate.

The work in this paper was motivated by the following existence and uniqueness
result from Peterson [14, Thm. 3]. Peterson’s proof makes use of the comparison
result in Theorem 2.2.

THEOREM 2.4. Assume there is a function p(t) defined on [a + k, b + k] such that

f(t, u) f(t, v)

_
p(t)[u v]

when u > v, t [a + k, b + k]. If Py(t k) p(t)y(t) is right (n 1, 1)-disconjugate
on [a, b + n], then the boundary value problem (1),

y(a + i) Ai, O g i g n- 2,
+

has a unique solution.

3. Existence and uniqueness. We wish to generalize the results of 2 to the
(j, n- j)-problem. We begin with the following analogue of the comparison result in
Theorem 2.2.

THEOREM 3.1. Assume u(t) is a solution of

Pu(t- k) >_ ql(t)u(t)

and v(t) is a solution of

Pv(t- k) < q.(t)v(t)

with v(t) >_ 0 ]or t [a + k, b + k], and

u(a + i) v(a + i),
+ +

O<_i<_n-2,

I] (4) is right (n- 1, 1)-disconjugate on [a,b + n], (3) is (n- 2,2)-disconjugate on

[a, b + hi, and (5) holds, then v(t) > u(t) for t e [a, b + n].
Proof. By Corollary 2.3, (3) is right (n- 1, 1)-disconjugate on [a, b / n]. Set

w(t) v(t) u(t) for t e [a, b / n]. Then

Pw(t- k) Pv(t- k) Pu(t- k) < q2(t)v(t) -q(t)u(t)

and so

Pw(t k) qx (t)w(t) < [q2(t) q (t)]v(t).
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Hence, w(t) is a solution of

Pw(t- k)- q(t)w(t) (I)(t)+ [q2(t)- qi(t)lv(t),
(6) w(a+i)=O, O<_i<_n-2,

w(b + n) 0,

where (I)(t) g 0 on [a + k, b + k]. Then

b+k

w(t) E G(t, s k)[(I)(s)+ (q2(s)- ql(s))v(s)]
s=a+k

where G(t, s) is the Green’s function for (6). Since (3) is both (n- 1, 1)-disconjugate
and (n- 2, 2)-disconjugate, we have by Theorem 2.1 and Remark 2 that G(t, s) < 0,
t e [a + n 1, b + n 1]. Also, v(t) >_ 0 and q2(t) ql (t) < 0, t e [a + k, b + k], imply
that w(t) >_ 0 for t e [a, b + n]. Hence v(t) >_ u(t) for t e [a, b + n]. [:]

COIOLLArtY 3.2. /f (4) is right (n- 1,1)-disconjugate and (3) is (n- 2,2)-
disconjugate and (5) holds, then (4) is right (n- 2, 2)-disconjugate.

Proof. By Corollary 2.3, (3) is right (n- 1, 1)-disconjugate. Assume c,d E
[a, b + n 1] with c + n 2 < d and v(t) is a solution of (4) with

v(c + i) o, O <_ <_ n- 3,
v(c + n- 2) 1,
v(d) O.

It suffices to show v(t) does not have a generalized zero at d + 1. Suppose, on the
contrary, that v(t) has a generalized zero at d+ 1. Without loss of generality, assume d
is the smallest integer greater than c+n-2 such that v(d) 0 and v has a generalized
zero at d + 1.

First consider the case v(t) >_ 0 on [c, d]. Note that by the choice of d, v(d- 1) > 0
and hence we must have v(d + 1) _> 0. Let u(t) be the solution of (3) with

u(c+i)=v(c+i), O<i<n-2,
u(d + 1) v(d + 1).

By Theorem 3.1, v(t) > u(t) on [c, d + 1], and so u(d) <_ O. But then u(t) has n- 2
consecutive zeros followed by two generalized zeros, contradicting that (3) is both
right (n- 1, 1)-disconjugate and right (n- 2, 2)-disconjugate (see [12, Thm. 7]).

Now consider the case v(t) < 0 for some t E [c + n- 1, d- 1]. Let vi(t) be the
solution of (4),

v(c + i) O, O <_ <_ n 2,
v(c + n- 1) -1.

Then vl(t) < 0 on [c-t-n- 1, d] and there exists a > 0 such that

_> o, t e d]

with equality holding at some to [c + n- 1, d- 1]. We can assume to > c + n- 1 is
the first point such that w(to) 0. Then w(t) > 0 satisfies

Pw(t- k) q2(t)w(t),
w(c + i) O, O <_ <_ n- 3,
w(c + n- 2) 1,
w(to) =o,
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and w(t) has a generalized zero at to / 1. Applying the first case to w(t) on [c, to / 1]
leads to a contradiction. [l

In some of the proofs which follow, uniqueness of solutions to certain boundary
value problems for (1) is coupled with the Brouwer Invariance of Domain Theorem
[2] to obtain that solutions depend continously on boundary conditions. A typical
argument verifying this continuous dependence on boundary conditions can be found
in [6].

We are now ready to prove an existence-uniqueness theorem for the (n- 2, 2)-
problem. This theorem is an extension of Theorem 2.4.

THEOREM 3.3. Assume there exist functions p(t) and r(t) defined on [a + k, b + k]
such that

p(t)[u v]

_
f(t, u) f(t, v) g r(t)[u v]

whenever u >_ v, t E [a+k, b+k]. IfPy(t-k) p(t)y(t) is right (n-l, 1)-disconjugate
on [a, b + n] and Pu(t k) r(t)u(t) is (n 2, 2)-disconjugate on [a, b + n], then the
boundary value problem (1),

y(a + i) Ai, O <_ <_ n- 3,(7) y(b / n i) Bi, O <_ <_ l,

has a unique solution.
Proof. We will use the shooting method in this proof. By Theorem 2.4, there

exists a unique solution y(t, m) of the boundary value problem (1),
y(a / i) Ai, O <_ <_ n- 3,
y(a+n-2)-m,
y(b / n) Bo.

Let S (y(b/n- 1, m) m E It}. A standard argument using the Brouwer Invariance
of Domain Theorem shows that y(b / n 1, m) is a continuous function of m. Hence,
5’ is a nonempty connected set. Thus to prove existence, it suffices to show that S is
neither bounded below nor above.

Fix m > m2 and set

Note that

Pz(t- k)

Now define

Py(t- k, ml) Py(t- k, m2)

f(t, y(t, ml)) f(t, y(t, m2))

f(t, y(t, ml)) f(t, y(t, m2)) y(t, ml) y(t, m2)q(t) y(t, ml) -y(t, m2)

Then z(t) is the solution of the boundary value problem

Pz(t- k) q(t)z(t),
z(a + i) O, O < < n- 3,
z(a + n 2) 1,
z(b + n) O.
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Note also that p(t) <_ q(t) <_ r(t) for t E [a / k, b / k]. Since Py(t- k) p(t)y(t) is
right (n- 1, 1)-disconjugate, we have that both

(8) Pz(t k) q(t)z(t)

and

(9) Pu(t- k) r(t)u(t)

are right (n- 1, 1)-disconjugate by Corollary 2.3. Now use the fact that (9) is also
(n- 2, 2)-disconjugate and apply Corollary 3.2 to obtain that (8) is right (n- 2, 2)-
disconjugate. It follows that z(t) > 0 on [a, b+ hi. Next, apply Theorem 3.1 to obtain
that z(t) > u(t), where u(t) is the solution of (9),

=(a + i) + i),
+ +

O<_i gn-2,

Hence,

for t E [a, b + hi. Letting t b + n 1 we obtain

(10) y(b + n 1, ml) y(b + n 1, m2) _> u(b + n 1)(ml m2).

Since (9) is both (n- 1, 1) and (n- 2, 2)-disconjugate on [a, b + n], it follows from
[12, Thm. 7] that u(t) > 0 on [a + n 2, b + n 1]. Letting ml oc we see that

lim y(b + n 1, m) oc,

and similarly, letting m2 -o we see that

lim y(b + n l, m)

It follows that S R and the existence part of the proof is complete.
For the uniqueness of solutions, suppose on the contrary that y(t) and y2(t)

are distinct solutions of the boundary value problem (1), (7). Since solutions to the
(n- 1, 1)-problem are unique, we can write y(t) y(t,m), y(t) y(t, m2), for
some ml m2 q R. Without loss of generality, we can assume that m > m2. But
then (10) shows that y(b+n- 1, m) y(b+n- 1, m2), contradicting the assumption
that both y(t) and y2(t) were solutions to the same (n- 2, 2)-problem. Hence the
uniqueness condition is satisfied and the proof is complete.

Example. Let A be defined by Ay(t) y(t + 1)- y(t) and consider the difference
equation Ay(t- 1) e-t sin y(t) for t q [1, 4]. Note that for u _> v, -[u- v] _<
el-t(sin u- sin v) _< [u- v] for t q [1, 4]. Using [16, Thin. 2], we can show that the
equation Ay(t 1) -y(t) is right (4, 1)-disconjugate on [0, 8], and Ay(t 1) y(t)
is (3, 2)-disconjugate on [0, 8]. By Theorem 3.3, there is a unique solution of the
boundary value problem

ASy(t 1) e-t sin y(t),
y(i)=Ai, 0gi<2,
y(8-i)=Bi, o g g l.

te [1, 4],
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We conclude with a comparison theorem and an existence-uniqueness theorem for
the general case.

THEOREM 3.4. Let 1

_
j

_
n- 1. Assume u(t) is a solution of

and v(t) is a solution of

with

Pu(t- k) > qx(t)u(t)

Pv(t- k) < qg.(t)v(t)

u(a + i) v(a + i), O

_ _
j -1,

u(b+n-i)=v(b+n-i), O<_i<_n-j-1.

If one of the following holds:
1. u(t) > 0 on [a+ k,b + k] and (4) is either disconjugate on [a,b+n] or

(i, n i)-disconjugate on [a + j i, b + n + j if for j 1 g < n, or
2. v(t) > 0 on [a+ k, b+ k] and (3) is either disconjugate on [a, b+n] or (i, n-i)-

disconjugate on [a + j i, b + n + j if for j 1 < < n,
then (-1)n-in(t) > (-1)n-Jv(t) for t E [a, b + n].

Proof. First assume that condition 1 holds. Set w(t) u(t)- v(t). Then

Pw(t- k) Pu(t- k)- Pv(t- k) > ql(t)u(t)- q2(t)v(t)

and so

Pw(t k) q2(t)w(t) > (ql (t) qg.(t))u(t).

Hence, w(t) is a solution of

(11)
Pw(t- k)- q2(t)w(t) (t) + [qi (t) q2(t)lu(t),
w(a+i)=O, O<i<j-1,
w(b+n-i)=O, O<i<_n-j-1,

where (t) > 0 on [a + k, b + k]. Then

b+k

w(t) E G(t, s- k)[(I)(s) + (q (s) q2(s))u(sl]
s=a+k

where G(t, s) is the Green’s function for (11). By the disconjugacy assumptions on (4),
we have that (-1)n-G(t,s) > O, t [a+j,b+j]. Since u(t) > 0 and q(t)-q2(t) > 0
for t e [a + k, b + k], it follows that (-1)n-Jw(t) >_ 0 for t e [a, b + n]. Hence, in this
case, (-1)n-Ju(t) > (-1)n-Jv(t) for t e [a, b + n].

The proof in the case where condition 2 holds is similar and will be omitted. [3

THEOREM 3.5. Let 1 < j < n-1. Assume there exist functions p(t), r(t), defined
on [a, b] such that

p(t)[u ,] _< y(t, y(t, _< v]

whenever u > v, t [a, b]. /f Py(t) p(t)y(t) and Py(t) r(t)y(t) are disconjugate
on [a, b + n], then the boundary value problem

Py(t) f(t, y(t)), t e [a, b],
y(a + i) Ai, O < < j -1,
y(b+n-i) B, O < < n-j-1,
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has a unique solution.
Proof. The proof is by induction on decreasing values of j. The cases j n 1

and j n- 2 are contained in Theorems 2.4 and 3.3. Assume j <_ n- 3 and that the
theorem holds if j is replaced by j + 1. Then there exists a unique solution y(t, m) to
the (j + 1, n- j 1)-problem

Py(t) f(t,y(t)), t e [a,b],
y(a+i)-Ai, O<_i<_j-1,
y(a / j) m,
y(b+u-i)=Bi, O<_i<_n-j-2.

Fix ml > m2 and define z(t) and q(t) as in the proof of Theorem 3.3. Then z(t)
is the solution of the boundary value problem

Pz(t) q(t)z(t),
z(a-t-i) -O, 0_<i<_j-1,
z(a / j) 1,
z(b/n-i)=O, O<_i<_n-j-2.

Note that p(t) <_ q(t) <_ r(t) for t e [a, b]. By results of Eloe [4] and Peterson [13], the
equation Pz(t) q(t)z(t) is disconjugate on [a, b + hi.

To simplify the notation, we consider the case that n- j is odd; the case for n- j
even is similar. Let v(t) be the solution of

Pv(t) p(t)v(t),
v(a + i) z(a + i), O <_ <_ j,
v(b+n-i)-z(b+n-i), O<_i<_n-j-2.

By the disconjugacy assumptions, we have v(t) >_ 0 for t E [a, b / hi. By Theorem 3.4,
it follows that z(t) >_ v(t) for t E [a, b + hi.

The remainder of the proof can be modeled after the proof of Theorem 3.3.
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HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS*

M. F. BARNSLEYf, J. ELTONf, D. HARDINg, AND P. MASSOPUST

Abstract. Interpolation functions f: [0, I of the following nature are constructed. Given data

{(t,, x,) [0, 1] xl: n=0, 1,2,..., N)

with 0 to < tl <" < tN 1, f obeys

f(tn)=x,, n =0, 1,2,...,N.

Furthermore, the graph off is the projection of a set G in RM (M an integer greater than or equal to 2)
that is homeomorphic to [0, 1] and is the attractor for an iterated function system consisting of affine maps
in RM. The latter characterization ensures that f can be computed rapidly while possessing many "hidden"
variables, on which its values continuously depend, which allow great flexibility and diversity in the
interpolant, making it potentially useful in approximation theory. Estimates and exact values for the fractal
dimensions of G and the graph off are obtained.

Key words, fractal, self-aftine, iterated function systems, fractal dimension, fractal interpolation

AMS(MOS) subject classifications. 26A30, 41A30, 58F12, 58F13

1. Introduction. A function F: [0, 1]-, n is self-attine if its graph G obeys

G U w(G)

where the union is over a finite set of affine maps wi: n+lin+l. There has been
recent interest in such functions with n 1 because of their potential utility in approxi-
mation theory [B], [BH] and in computer graphics [DHN]. Specific properties when
n 1 include the availability of fast algorithms for computing the values of such
functions; the possibility of choosing the wi so that F interpolates given values; and
the computability of their moments 10 x"F(x) dx, their indefinite integrals

Iolo l...Io 
and their Fourier transforms, 6(k)= 1o eikXF(x) dx. Moreover, in the case of equally
spaced interpolation points, the fractal dimension of these functions can be expressed
in terms of the coefficients in the affine transformations. Such functions yield solutions
to special types of functional equations [HI, and have been related to special types of
dynamical systems [HM] for which Lyapunov exponent calculations can be made.

Here our main aim is to show how the class of one-dimensional interpolation
functions can be usefully widened by considering the projections of the graphs of
higher-dimensional self-affine functions. We show that we still have the advantages of
rapid computability, the feasibility of interpolation, and the ability to express the
fractal dimension in terms of underlying parameters. The class of functions obtained
is much more diverse because their values depend continuously on all of the "hidden"
variables, namely, the coefficients of the possibly high-dimensional affine maps that
determine the function. In pursuing our main aim we will reveal a number of facts
about multidimensional curves, including space-filling and fractal-filling curves, that
are surprising and suggest new lines of investigation and applications.
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Department of Mathematics, La Grange College, La Grange, Georgia 30240.
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E

FIG. 1. The Sierpinski triangle. A, B, C, D, E, F label vertices of three subtriangles.

FIG. 2. 0, 1, and 2 label the images of the large triangle under maps Wo, wi, and w2. respectively.

FIG. 3. 00, 01,. ., 22 label the images of the triangles in Fig. 2 under the maps Wo, wi, and w2.
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We show how the class of functions introduced here was conceived. Let S c R2

denote the Sierpinski triangle, illustrated in Fig. 1 and specified more precisely below.
Label points A, B, C, D, E, and F on S as in Fig. 1. Let Wo, w, w2 be three aftine
transformations w: 2 2, of the form

a b

where a, b, c, d, e, and f are real constants. The maps are uniquely specified by the
requirements wo(A) A, wo(E)= B, wo(C) F, w(A) F, w(E) E, w(C) D,
WE(A) D, wE(E) B, wE(C) C. Thus w0 takes the triangle ACE onto the subtriangle
AFB, wl takes ACE onto FDE, and WE takes ACE onto BDC. The orientations are
important as we will see. Each map is a strict contraction, and S is the unique compact
subset of RE so that [BD], [H]

2

S U w(S).
i=0

We now construct a continuous map b of [0, 1 onto S. Each point of S possesses
at least one address, which consists of a triadic decimal r .tr, tr2o’3 trn. , where
tri e {0, 1, 2}, and each tre [0, 1] corresponds to a unique point on $ (see [BD], [HI).
The point b(tr)e S corresponding to o’e [0, 1] may be computed by

b(o-) lim w, w2o. w.(A).

This addressing system is readily understood: the original large triangle is mapped
onto three smaller triangles labeled 0, 1, and 2 under maps Wo, Wl, and WE, respectively;
see Fig. 2. All addresses that begin with .0 correspond to points in region 0. Now apply
all three maps to the latter subtriangles to obtain nine smaller triangles labeled 00,
01,..., 22 as illustrated in Fig. 3. All addresses that begin with .12 correspond to
points that lie in the region labeled 12.

We can show [H], [B] that the map b: [0, 1] S is continuous; see also 2.2. The
curve obtained can be thought of as a "space"-filling curve where the space is S with
fractal dimension log 3/log 2. This curve can also be obtained as the limit of the
recursive refinement procedure suggested in Fig. 4; we find a sequence of piecewise
linear functions b,: [0, 1] S that converges uniformly to b.

Now let us write rp( t) (f( t), h(t)). Then f: [0, 1] is an example of the type
of function discussed in this paper, which we call a hidden variable fractal interpolation
function. A plot of f(t) corresponding to A=(0, 0), C=(1, 0), and E =(1/2, x//2) is
shown in Fig. 5. First, we note that f(t) is not self-affine: its graph does not consist of
the unioa of affine images of itself. Second, f(t) can be computed using standard
iterated function system (IFS) algorithms, which are rapid because the graph of f is
the projection of the attractor for a set of three-dimensional affine maps. Third, the
fractal dimension off can be computed exactly (it is 2-1og3 2). Fourth, given any set
of data (ti, xi) for 0, 1, 2, , N, a generalization of the above procedure yields a
function f that interpolates the data while retaining many degrees of freedom.

The structure of this paper is as follows. In 2 we review iterated function system
(IFS) theory, including the basic characterization and computation of attractors of
IFS; then we give the basic theorem on the existence of attractors of IFS that are
graphs of certain functions with domains and ranges in compact metric spaces. These
domains and ranges may themselves be fractal objects, characterized as attractors of
IFS. We show, in particular, the construction by which these graphs can be made to
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t=1/2

t= N
=0 = =

t=0 t= t= t= t= t=l

FIG. 4. Illustration of the generation of the "space-filling" curve b: [0, ]--> S by recursive refinement.

FIG. 5. Plot of a hidden variable fractal function corresponding to a Sierpinski triangle, as described in
the text.
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interpolate data. Examples are given to illustrate the appearance and diversity of these
functions.

In 3 we estimate the fractal dimension of the graphs of certain functions that
map attractors of IFS onto attractors of IFS, in the case where the IFSs are formed
of similitudes that contract more on one attractor than on the other. When a certain
open set condition prevails the estimate is the actual value.

Section 4 is devoted to the main hard theorem: (a) we prove the conjecture of
Hardin and Massopust [HM] on the fractal dimension of self-affine functions in one
dimension; (b) we compute the fractal dimension of certain hidden variable interpola-
tion functions.

2. Construction of fractal interpolation functions.
2.1. Attractors of IFS and the deterministic algorithm for their evaluation. Let K

be a compact metric space with metric d (., ). Let wi: K --) K for 1, 2, , N, where
N is a finite positive integer, be strict contractions; that is, there exists a constant
0-<_ s < 1 such that

d(w,(x), w,(y)) <- s. d(x, y) Vx, y K,
We call (K, w: 1, 2, , N) an IFS. (This definition of an iterated function system
is more restrictive than elsewhere (see [BD], for example) but serves well for this
paper.) There exists a unique compact set A c K such that

A wi(A).

A is called the attractor of the IFS.
Let H denote the set of nonempty compact subsets of K, and endow it with the

Hausdorff metric

h(B, C)=max {maxmin d(x, y),maxmin d(x,
yc yc

for all B, C H. Then H is a complete metric space. Define W: H--) H by

w() w,().

Then W is a strict contraction with

h(W(B), W(C))<-_s h(B, C) VB, CH;
and A is the unique fixed point of W.

The deterministic algorithm for the computation of A is to choose any Ao H
and define

Then

An+l-" W(An).

A lim An.

Suppose, for example, that K =[0, 1] x [0, 1]cR2. Then h(An, A) <- sn(1- s), whence
the number ofiterations needed to evaluate A to a desired precision is readily calculated.

The deterministic algorithm is well suited to the evaluation of A when it is the
graph of a function in Rn. An illustration is given in Fig. 6, where we show the
computation of an attractor for two affine maps in 2. In other situations, for example,
when A represents a digitized image, or not all the maps are contractions, or we are
concerned with measures supported on A, the random iteration algorithm (described,
for example, in [BD]) is more appropriate.
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FIG. 6. A sequence of graphs offunctions Ao, A, A2,. ., computed using the deterministic algorithm,
that converge to the attractor A of an IFS in R consisting of a pair of afline maps.

where q max {(sl + Oc), s2} < 1.

2.2. Construction of functions using IFS. In this section we present a general
construction for an IFS whose attractor is the graph of a function F: I--> K where J
(D I) and K are compact metric spaces.

We use d(.,.) for the distance function in both J and K; the argument will
specify which function is applied. We define a distance

(2.1) d((t,Xl), (tE,X2))=d(t, tE)+Od(X,X2)

between points (tl, X1) and (t2, 22) in J x K, where 0 > 0 is to be specified. Then J x K
is a compact metric space.

Let l: J--> J be a strict contraction" there is a constant..0 <- Sl < 1 so that

(2.2) d(l(t), l(tE))<-s d(tl, t2) Vt, t2eJ.
Let k: J x K -> K and let there be constants c and s2, with 0_-< s2 < 1, so that

(2.3) d(k(tl,X),k(tE, X))<-c.d(tl,t2) Vtl, tEJ, XK,

(2.4) d(k(t,X),k(t, XE))<-_s2 d(XI,X2) VtJ, X1,X2K.

LEMMA 2.1. If O in (2.1) is equal to (1-Sl)/2c, then W: JxK->JxK defined by
W(t, X)=(l(t), k(t, X)), with and k as above, is a strict contraction.

Proof.
d( W(tl, X1), W(t2, X2))= d(l(t), l(t2)) + Od(k(t, X1), k(t2, X2))

<-_ Sld(t, t2)+ Od(k(tl, X1), k(t2, X))

+ Od(k(t2, X), k(t2, X2))

<-_ (s / Oc)d(tl, t2)/ OsEd(X, X2)

<- q(d(t, t2)+ Od(X, X2))

qd((t, X1), (t2, X2))
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Now we consider the following construction. Let W" JxKJxK for i=
1, 2,. ., N be a finite set of maps of the structure

(2.5) W(t, X)= (li(t), k,(t, X))

where li, k obey (2.2)-(2.4), and let 0 in (2.1) be chosen according to Lemma 2.1.
Then (J x K, W:i= 1, 2,..., N) is an IFS and possesses a unique attractor G. Also
(J, li: 1, 2, , N) is an IFS; we denote its attractor by/. Let Pt: J x K J be the
projection operator defined by Pt(t, X) for all (t, X) J x K. Then clearly PtG= L
We will give conditions so that G is the graph of a function F" I --> K.

Let

(2.6)

and suppose

(t,X)JK for j=0, 1,2,. -, N

W(to, Xo) (t,-1, X-I) and W(t, X) (t,, X)
(2.7)

for 1, 2,. ., N.

Then {(tj, X)" 0, 1,. ., N} c G because (to, Xo) G as it is the fixed point of W1,
(t, Xv) G as it is the fixed point of WN, and (t, X) G for 1, 2,. ., N- 1 as
W(tv, XN)= (t,, X).

Now assume that the maps l" I I are invertible over their ranges l(I), that

(2.8) l(I) fq/(I) b when li-Jl {0, 1},

(2.9) l(I) f’l 1,+1(I) t, for i= 1, 2,..., N- 1.

THEOREM 1. Let {J x K, W" 1, 2,. , N} be an IFS of the special structure
described above, so that it obeys (2.5)-(2.9). Then its attractor G is the graph of a
continuous function F: I - K such that

F(tj)=X forj=O,l,E,...,N.

Proof. I is a compact metric space with the distance function d inherited from J.
Let r= {f: I K’f is continuous on I, f(to) Xo, f(t) X}. Define a metric d on
rby

d(f, f) max (d(f(t),fE(t))" tI}.

Then is a complete metric space because the uniform limit of continuous functions
is continuous. Define T: :- by

(Tf)(t) k,(IC, l(t), f(IC, l(t))) for l(I), f .
(Recall that I- t.J l(I).) We show that T is well defined and that it takes . In
view of (2.8) and (2.9), (Tf)(t) is well defined at points I\{to, tl," ", t}. Also, it
is continuous on each of the compact sets l(t). Now observe that

lim (Tf)(t)= k(Ic, l(t,), f(lc, l(t,)))
t-’

tli(I)

k, tN, f( tN k, N, XN
k,+1 to, Xo) k,+1 to, f(to)

k,+l(lC,(t,), f(lc,+ll(t,)))= lim (Tf)(t),
t"-

te li+l(l
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which shows (Tf)(t) is both well defined and continuous at each of the points
{to, t,. ., t}. Moreover,

(rf)(to) kl(l-l(to), f(/-l(to)))
kl(to, f(to)) kl(to, Xo)= Xo,

(Tf)(tN) kN(/l(tv), f(/l(t)))
=k(t,f(tN))
kv(t, Xv) Xv,

so indeed Tf ; when f r.
We now show that T is a strict contraction in r. For li(I) andf, f2 , we have

d ((Tf,)(t), Tf2)(t)) d (k,(l-l(t), fl(17(t))), ki(17(t), f2(171(t))))
<- s2 d(f(17(t)), fE(17(t)))

<-- s2 d(fl, rE)
whence d(Tf, Tf2) <- SEd(f, f2). Hence T possesses a unique fixed point, namely a
function F such that TF F. We readily verify that the graph of F is an attractor
for the IFS (Jx K, W:i= 1,2,..., N) and so it must equal G.

Example 1. Let J [0, 1] and let 0 to < tl <" ( tv 1. Then choose li(t)
ti_ +(ti-ti-1)t, so that the attractor of the IFS {J, li: i= 1,2,..., N} is I-[0, 1]. Let
K be a sufficiently large bounded subset of R and

ki t, X) bit + aiX +
b, c,(xv Xo) (x, X,_l),

ei xi-1- CiXo, Icil < 1 for I, 2," , N.
Here the ai’s are the only adjustable parameters, once the interpolation points
{(tj, xj): j 0, 1,..., N} have been specified. The attractor of the corresponding IFS
(J x K, W: 1, 2,..., N), where

W(xt) =((ti-,,-1) a0,)(xt) +(t,_)b e/

is the graph of a self-ane function F: [0, 1 such that

F(tg)=xg, j=0, 1,2,...,N.

An illustration is provided in Fig. 7. Such functions are considered in [B] and [BH].
Example 2. Let J [0, 1] and let 0 to < t < t2 < t3 1. Then choose l(t)

t_+(t-t_)t, so that the attractor of the IFS (L/: i=1,2,3) is I=[0,1]. Let
K [0, 1 ] x [0, 1 2 and let the maps k(t, X) depend only on X (x, y), and each
be of the form

x a c e

where the constants a, b, c, d, e, f are fixed by requiring that

k(0, 0) (0, 0), k(1, 0) (.25, .5), kl(.5, 1) (.5, 0),

k2(0, 0) (.25, .5), k2(.5, 1) (.5, 1), k2(1, 0) (.75, .5),

k3(0, 0)= (.75, .5), k3(.5, 1)= (.5, 0), k3(1, 0)= (1, 0).
The attractor G for the resulting IFS will be the graph of a function F: [0, 1]
[0, ] x [0, 1 ] such that F(to) (0, 0), F(tl) (.25, .5), F(t2) (.75, .5), F(t3) (1, 0).
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FIG. 7. Example of a self-affine function in one dimension. The interpolation points are marked 0, and
the vertical scaling parameters are a 0.2, a =-0.3, a ---0.2, and a ---0.2. See Example 1.

In particular, ifwe write F(t) (f(t), h(t)), thenf(t) interpolates according tof(to) 0,
f(tl) .25, f(t2) .75, f(t3)= 1. Various views of G, including the graph off, are shown
in Fig. 8. We see that G is a Sierpinski triangle when viewed from "above" the xy-plane,
while it provides an intricate one-dimensional function h(t) when projected onto the
yt-plane. Note that this example is "diagonal" in that there is no coupling between
the and X variables. F is a map, from the elementary attractor I onto the attractor
S, of a two-dimensional IFS, and is the same as the map b constructed in the
introduction using the code space.

Example 3. Let J here be J x K in Example 2, so that here corresponds to (t, X)
in Example 2. Let l,(t) here be (l,(t), k,(t, X)) in Example 2. Then I here is the graph
G c R in Example 2. Let K here be J x K in Example 1, and the maps ki here be the
maps W in Example 1, with N 3. Then the attractor for the IFS (J x K, W, {1, 2, 3})
obtained here will be the graph of a function that maps the entity represented in
Fig. 8 onto the function shown in Fig. 7. Again, we are here dealing with a diagonal
construction where the maps ki depend only on X.

Example 4. Let J=[0,1] and let to=O, tl=1/2, and t2--1. Choose l(t)=
(t-t_)t+t_. Let K =[0, 1]x[0, 1] and define maps k(t,X): K-K by

1/2(-1 (i- 1)
k,(t, X)= 1/2(_1),_ +- (i-1)

where X (x, y) and {1, 2}. Then the attractor A for the IFS (K, ki, {1, 2}) is a
Peano Curve. Figure 9 shows A and also different views of G, the attractor of the IFS
(JxK, W, i{1, 2,3}) with W( t, X) (l,( t), k( t, X)). Note that k is again diagonal
in that it is not coupled to t.

Example 5. Let J=[0, 1] and K=[0, 1]x[0,1]. Let {X:j{0,..., N}} and
{(tj, Oj): j {0,. ., N}} be given sets of distinct data points in K and J x K, respec-
tively, with 0 to <" < tN 1.
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(0, 1)

(0,0) (1,0)

(0,1)

(0,0) (1,0)

(0,1)

(0,0) (,o)
FIG. 8. Several views of the attractor Gfor the IFS in Example 2.
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(0, .6)

(0, .6)

(o,o) (1,o)

,(o, 1)

(o,o) (1,o)

FIG. 9. Several views of the attractor G for the IFS in Example 4.

Define maps l" J by

li( t) t, t,_l)t + t,_,

and k," JxKK by

k(t, X) ( Ax, Ax,
\Arh Ayi Ay

with X (xj, yj) and (R) (, r/), for all j {0, , N}.
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(0, 1)

(0,1)

(0,0) (1,0)

(0,1)

(0,0) (1,01
FIG. 10. Views of the projections of the attractor for the IFS in Example 5.



1230 M.F. BARNSLEY, J. ELTON, D. HARDIN, AND P. MASSOPUST

Then the attractor G of the IFS (JK, Wi, i(1,..., N}), where W(t,X)=
li( t), ki( t, X)), is the graph of a continuous function containing {(tj,(R)j):j
{0,..., N}).

Note that if Oj X, for all j {0,..., N}, then the ki are maps as considered
in Example 2 and the projection of G onto K is the attractor A for the IFS

0

FIG. 11. Several views of the attractor for the IFS in Example 6.
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FIG. 12. Views of the attractor Gfor an IFS of the form as in Example 7.
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(K, ki, {1,. -, N}), where ki" K -> K"

ki Ay

Ayi
Figure 10 shows different views of G for N 4, {X’j {0,. ., 4}} {(0, 0), (1/4, 1/2),
(, 1/4), (, 1/2), (1.0)} and {(tj, @j)’j {0, , 4}} {(0, 0, 0), (1/4, , {), (-o, -, o), (, 1/2, ),
(1, 1,)}.

FIG. 13. Views of the attractor for an IFS of the form as in Example 7.
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with
Example 6. Let J [0, 1 and K [0, 1 x [0, 1 ]. Choose maps W(t, X): J x K

W(t, X) 0 si cos 0i -s sin 0i (t, X) + a
0 sisinOi scosOi] fli

i {1,..., N}. Let N=4. Determine s, 0i, a, and/3 such that WI(0, 0, 0)=(0, 0, 0),
W4-- (1, 1, 0)-’- (1, 1, 0), W2(0, 0, 0) Wl(1, 1, 0)-- (1/4, , 0), W3(0, 0, 0) W2(1, 1, 0)--
(1/2, 1/2, v/4), W4(0, 0, 0) W3(1, 1, 0) (, , 0). Figure 11 shows views of the attractor
G of the IFS (JxK, W, i{1,... ,4}).

Example 7. Let J, K be as in Example 6. Let maps W: J x K be defined as in
Example 6 above. Determine the parameters s, 0, ai, and/3i according to (2.7) for
some set of interpolation points {(tj, X): j {1,. , 4}}. Figure 12 shows three views
of the corresponding attractor, for an arbitrarily chosen set of parameter values. Figure
13 corresponds to a different set of parameter values.

3. Fractal dimension of graphs of self-afline functions.
3.1. Definition of fractal dimension and related topics. Let E be a bounded set in

R" and for e > 0 let c(e) be the minimum number of balls of diameter e necessary
to cover E. If

log V(e)
(3.1) lim dim E

-,o log 1 / e

exists, then it is called the (fractal) dimension (also known as the capacity or box-
counting dimension) of E. Note that if E is a surface of finite area A then (e)oc Ae-2

and thus dim (E) 2 or if E is a curve of finite length L then (e)oc Le -1 and hence
dim (E) 1.

Sometimes it is useful to consider covers by sets other than e-balls. Let { cg: e > 0}
be a family of covers of E and let V*(e) be the minimum number of sets C c
needed to cover E. Suppose that there exist positive constants Cl and c2 so that

c,() _-< r,() _<_ c_()

then it is clear that W(s) in (.1) can be replaced by *(s). Another notion ofdimension
is Hausdorff dimension HD (E):

with

HD (E) =sup {0<= d <: Hd(E)>O}

Hd(E) lim (if lUcIa

where the inf is taken over all countable covers q/ of E such that ]UI -< e and
u, sup {Ix- yl: x, y U}.

Note that

HD (E) <- lim inf
log V( e

-,o logl/e

Let (K, w, i= 1,. ., N) be an IFS with attractor A and suppose that:

(3.2) (a) wi: K K is a similitude, i.e., d(wi(x), w(y)) sd(x, y), for some 0=< s <
1 for all i;



1234 M. F. BARNSLEY, J. ELTON, D. HARDIN, AND P. MASSOPUST

(b) There exists a nonempty open set O such that U wi(O)
_
O and wi(O) fq wj(O) b

for i#j.
Then a result of [Mo] (similar results are found in [HI and [BD]) shows that HD (A)

v Sd 1. We now show that under conditionsis the unique positive solution of i=
(3.2), dim (A)= HD (a).

PROPOSITION 1. Let {K, wi, i= 1,..., N} be an IFS satisfying (3.2). If A is the
attractor of this IFS, then HD (A) dim (A).

Proof. For e > 0 let W(e) (W(e), 1,. ", N) be the minimum number of e-balls
required to cover A (w(A), i= 1,..., N), respectively. Since w is a similitude we
have df(e)=(e/si) and thus

i=1 i=1

Let _s=min{s" i= 1,. ., N} and g=max{si" i= 1,..., N}. Let D be the unique
v sO 1 and choose c > 0 such thatpositive solution of __1

(3.3) df(e)<=ce- for _s=<e-<l.

Suppose W(e) < ce- for (g)"_s <_- e <= 1. Then if (g)"+’_s <= e <-_s we have (g)"_s <- e/si<= 1
and so if(e) -< = ce By induction

(e)<-ce- for0<e-<l

and so

But also, as previously noted,

log .N’( e
lim sup _<- D.
-o log 1/e

lim inf
log (e => D

-,o logl/e

and so dim (A) D.

3.2. Dimension of self-attine functions. We now consider dim (G) (recall the nota-
tion of 2). We restrict our attention to the following situation:

(a) k" K- K, i.e., no coupling between J and K;

(b) d(l(z,), li(’2))<=sid(o’l, 7"2) V"/’l, ’T’2

d(ki(i),k,(2))<-s,d(l,2) V,,2K where0<s,<l Vi=I,. .,N.

THEOREM 2. Let F: I K be as in 2, and let D be the unique positive solution of
sO 1. Then dim (G) < D.
Proof. Let V(e) (ff(e)) be the minimum number of e-balls needed to cover G

W(G)). Since W maps any (e/si)-ball into an e-ball we have C(e) -< (e/si) and thus

i=1 i=1

As in Proposition 1 this implies dim (G)=< D. lq

We now consider the special case where the IFS {K, ki, i= 1,. ., N} satisfies the
conditions of (3.2). In particular, we have Example 6 in mind; however, we will remain

v sO= 1. Byslightly more general here. Let D be the unique positive solution of =1
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Theorem 2, dim (G)<= D. However, as A =projr G we have dim (G)>_-dim (A)= D
and thus we have Corollary 1.

COROLLARY 1. dim (G)= D.
Next consider the "equal scaling" case of Example 2.6: li(t) t/N + (i 1)/N,

for all 1,. ., N. We can relax the conditions si => 1/N in Corollary 1.
NTHEOREM 3. dim (G) D, where D is the unique positive solution of ,= s 1.

Proof. For simplicity we assume all s’s are nonzero. Let rE(n)=
{[( i-1)/ N", i/ N"] x B: i=l,...,N, with B a 1/n-ball in K}. Let *(n) be the
minimum number of sets from (n) and let (e) and p(e) be the minimum number
of e-balls necessary to cover G and A=projrG, respectively. Note that *(n)_->
c(2/N"). Let

Gi Gl[(i-1)/Nn,i/Nn]xK
and let tolto2""" to,, where to{1,...,N}, be the code corresponding to [(i-1)/
N", i/N"]. Let 3 be a minimal (1/N" I]_-i so,,)-cover of A. By applying W,o,"
to {[0, 1] x B B } we can cover G with

sets from ’(n). Thus

N N N
D<-m"c E E 1-Is ,

tOl=l ton i=1

by (3.3). Thus for 2/N"<-_ e <-2/N’- we have

log N(e) < log (cN")
log 1/e =log (N"-/2)

and so

log At(e)
lim sup <- D.

-,o log 1/ e

As dim (A)= D we have the desired result.

4. Fractal dimension of projections of self-affine functions.
4.1. The dimension of one-dimensional self-affine functions. In this section we

consider the dimension of the graphs of the functions constructed in Example 1. (We
use the notation of Example 1 here.) We show that if

N

(4.1) Y ]ail> 1 and {(tj, xj):j=0,. ., N} is not collinear,
i=l

then dim (G) is given by

N

(4.2) E lail hdim<)-l..i 1.
i=1
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v [albd_l Since h(d) is strictly decreasing, limd+_ooh(d)=oo, andLet h(d)==h(2)-< max=l,...,v lal< 1, there is a unique D (-00,2) such that h(D)= 1. Also D> 1
N

if and only if Y,= la,l> 1; thus (4.2) uniquely determines dim (G) (1,2).
Let us now define a class of covers that allows us to relate covers of different sizes.
DEFINITION. For 0 < e < 1, {r} ?=o is called an e-partition if
(a) (-e/2, 1),
(b) e/2 < 1+1- 1 e,

for 1, 2,..., n-1. A cover of G will be called an e-column cover of G with
associated e-paition {z}o if there are positive integers no, , nm and real numbers
o,"" ", m such that

={[Zk, YkWe]X[kW(jk--1)e,k+jke]’jk=l,’’’,nk; k=0, 1,’’ .,m}.
Note that consists of k=O nk closed e x e squares arranged in m + 1 columns. Let
1[ denote the cardinality of and define *(e)= min {l[" is an e-column cover
of G} and let (e) be the minimum number of e x e squares [a, a + e] x [b, b + el,
a, b R, required to cover G. Lemma 4.1 below shows that *(e) can be used in the
calculation of dim (G).

LEMMA 4.1. (e) *(e) 2(e), for all 0 < e < 1.

oo Clearly, W(e) W*(e).
We introduce a third class of covers" a cover of G will be called an e-

nonoverlapping cover of G if it consists of e x e squares with nonintersecting interiors
of the form [ke,(k+l)e]x[y,y+e], where k{O, 1,...,l/e]} and y. Define
**(e) min {1[" is an e-nonoverlapping cover of G}.

Clearly, W**(e) 2(e). If is a minimal e-nonoverlapping cover of G then,
since G is the graph of a continuous function, is also an e-column cover of G. Thus
X*(e) X**(e) 2X(e). D

In the proof of Theorem 4 we show that (e) satisfies the functional inequality

Zi=1 i=1

for some ill, fiE > 0 and all 0 < e < 1.
To show that the 1/e term becomes negligible we need the following lemma.
LEMMA 4.2. If (4.1) is satisfied, then

lim e*(e) .
e0

Proo As {(b, x)’j=O,..., N} is not collinear there is some l [1,..., N-l]
such that Vlh-(t-to)Xt-tol>0. Let =min {b" i= 1,..., N}. Since F is con-
tinuous we obtain

g(e)e 2 2 la,,"" a,l
11" ik=l

a --V for0<e<b

_
and keN.

=1

N
Since (= lal)> 1 the lemma is proved. (See [HM] for more detail.) S

The investigation of the following theorem commenced in [BH] and [HM].
ToN 4. Let F be the function with graph G generated by the IFS (K, ,

i= 1,..., N), where

+ Vi=l,...,N
Ci ai xi- /
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N
with ai, bi, ci, ti, Xi as in Example 1. If ,i= la, l> 1 and {(tj, xj)’j 0, 1,. ., N} is not

collinear, then dim (G) is the unique real solution D of Y.I [ailb-1= 1; otherwise
dim (G)= 1.

Proof. We first obtain functional inequalities for V*(e). Let 0< e < 1 and let cg
be a minimal e-column cover of G with associated e-partition {’}%0. For i
{ 1, , N} let a, b + e ], a, b , be the smallest interval of the form k, r + e that
covers [ti_l, t]. Let

%={C: Cc [, r+]x}

and I%1. Since F is continuous, max,to. IF(t)l M <. Since there are at most
two columns in + there is some a>0 such that = *(e)+a/e for
0<e<l.

Suppose a 0. Then is inveible. Consider a typical column R in that
consists of n e x e squares; then W?I(R) is a parallelogram that can be covered by

squares of side e/b as in Fig. 14. Applying W7 generates an (/b)-column cover
of G. Since there are at most 2b/e + 2 columns in there is some > 0 so that

e X ---"
=1 B i=l

Next we obtain a lower bound for *(e). Let be a best e/b-column cover of
G and R a typical column of . Note that (R) is a parallelogram that can be
covered by

e x e squares. In this way we generate a cover cgi of W(G) consisting of e x e squares.
As there are at most [(2bi/e)+2] columns of @ there is some ge2>O such that

for 0<e<l.

Note that (3 cg may not be an e-column cover of G because the columns of cg may
not join up properly with those of rg+l; however, an e-column cover cg can be
constructed from U cgi by replacing at most two columns from cgi kl rgi+ with at most
two properly spaced columns, and so

E I%I+(N) + 1
i=1

Thus there is/32 > 0 such that

and so we have established (,).
Case 1. Condition (4.1) is satisfied.
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FIG. 14. The rectangle and its images under the maps W and W7, . See the proof of Theorem 4.

Here we will show that there exist positive constants B1, B2, and eo so that
B1e- < ,N’*(e) < BEe-D for0< e < eo. (Recall that D is the unique solution of h(D) =1
and that D (1, 2).)

Let _b =min {b," i= 1,..., N}, /7= max {bi" i= 1,..., N}, and Y =,1 la, > 1.
By Lemma 2.1 we can select eo> 0 small enough so that

for 0 < e =< eo
o
b
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Pick kl > 0 small enough so that kle-D < (ill/( "Y 1))eft and select k2 large enough
so that

Define

Then we have

(4.3)

for eo =< e <= eo/_b. Note that

c,(e) < /3:
_

-o eo=e + k2e foreo<=e
1-,/ _b_
(e)= e + k,e

d(e)=
1-/

e + ke

6(e)_-< c*()-< 6(e)

((E)
i=1 Z "---’E

If beo-<- e -<_ eo then So <-- e/bi-<- eo/_b so that

and in the same way c*(e) >- b(e) for beo<= e <= So.
Suppose (4.3) holds for b%o<= e <= eo; then, as in the preceding argument, (4.3)

must hold for /"+leo-< e =< So. By induction (4.3) holds for 0< e =< So. Since D> 1
there exist positive constants B and B2 such that
for 0 < e =< eo.

NCase 2. r E,_- a, < 1.
As in Case 1, select k2>0 so that *(e)<=(e)=(#2/(1-,))e-+k2e- for

0 < e =< 1. Since D < 1 and/32/(1 /) > 0 we obtain At(e) =< B2e- for some B2 > 0.
As G is the graph of a continuous function on [0, 1] we have V(e)=> 1/e and

thus dim (G)= 1.
Case 3. , E a, 1.

NLet 6(e)= (#:/E,= la, In (b,))(ln (e)/e)+ k2/e and note that

=1

for e > 0 and any .k_ R. As in Cases 1 and 2, select k_ > 0 so that r(e)=< b(e) for
0< e =< 1, which shows that dim (G)= 1.

Case 4. {(tj, xj)" j 0,. ., N} is collinear.
G is a line segment and thus dim (G)= 1.

4.2. Dimension of projections. Let us now calculate the dimension of g graph (f)
under the assumption that (3.2)(a) is satisfied and that J [0, 1].
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THEOREM 5. Let f: I be defined as in 1 above and let g be its graph. Suppose
that A satisfies (3.2). Then dim (g is the unique positive solution d of

N

(4.4) . s,ba -’= 1
i=1

where bi ti- ti-1, for all i.

Proof. We will use the notation introduced in the proof of Theorem 4. Let { -}o
be an e-partition with associated e-column cover c. Assume that c is also a minimal
cover of g. Choose k {1,..., m} and consider the collection Ck of all e x e squares
from c that lie above [Zk-1, rk]. The continuity off implies that Ck is a rectangle of
width e and height hk. Let H {IIo" 0 [0, 27r)} be a plane bundle whose axis is the
t-axis. Let IIo e II and let hk(O) be the height of the projection of glt._,,. onto IIo.
Denote by k(_k) the maximum (minimum) of hk(O) over 0 e [0, 2r).

Define k k/ e and

_
k _k/ e. Then

_() _<- c*() -< 2().
Following the argument given in the proof of Theorem 4 we obtain functional
inequalities for (e) and At(e). (Note that {(r,xj):j{0,... ,N}} is collinear,

i--1 si 1.) These functional inequalities then imply that_
e >-- Ae -d and (e <= Be -d

for positive constants A and B and where d is the unique real solution of
N sibdi-1 1 l-]
i-----1

Example 8. Let K [0, 1 x [0, 1 and let g be the graph off, which is the projection
of the attractor G of the IFS (J x K, W, {1, , 3}), where the maps W: J x K are
defined by

Wi(t,X)= 0 a, -c, (t,X)+
0 Ci ai /

and the constants a,, b,, c,, c,,/3,, and 2,, are determined by (2.7) with {(0, 0, 0), (, i76o, ),
(, , ), (1, 1, 0)} as the set of interpolation points. Then b =o, b2=, b3 1-, and
the scaling factors are s x/-6-/10, s2 x/]0/10, and s3 v/10. The dimension d of
g is then approximately d 1.5075. Figure 15 shows the projections of G.

If in addition we now assume that the attractor A of the IFS (K, ki, 1, , N)
also satisfies (3.2b), then we can derive the following relation between dim (g) and
dim (K)= n.

COROLLARY 2. Under the hypotheses ofTheorem 5 and the assumption that (3.2b)
holds, we have that

1
(4.5) 1 _-< dim (g)-< 2

n

Proof. The statement follows readily from the Cauchy-Schwartz inequality applied
to (4.4) and the fact that E s-> 1 and E s’ -< 1 (the first inequality reflects the connected-
ness of A, and the second, the fact that dim (A)=< n). D

Example 9. For the attractor G in Example 2 we have Sl s2 s3 1/2 and b b2
b 1/2. Hence d 2- log 2/log 3 1.3691 < 1.5.

Example 10. For the attractor of Example 4 we have Sl s2 1/x/ and bl b2 1/2.
Thus d 1 + log2 x/ 1.5.
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(0, 1),

(o,o) ,o)

FIG. 15. The projections of the attractor Gfor the IFS in Example 8.

by
Example 11. Let J=[0, 1] and K =[0, 1]x[0, 1Ix[0, 1]. Define maps W: JxK

1/4 0 0 0 (i- 1)/4
W(t,X)=

0 a, c, d,
(t,X)+

a, ]"
0 ei fi gi !0 hi ki li "yi /

for all {1,. , 4}, where the constants ai, ci, di, ei, f, gi, hi, ki, li, ci, fli, and )’i are
determined by (2.7) with {(tj, X.)’j{0,...,4}}={(0,0,0,0), (1/4,1/4, v//8, x//6),
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(1/2, 1/2, //4, f/6), (, , f/4, 0), (1, 1, 0, 0)}. Then s, s2 s3 s4 -12 and bl b2 b3
b4 1/4. Hence d 1.5 < 2-] .

The following example due to M. Berger shows that if (3.2a) does not hold, then
(4.5) need not be true.

Example 12. Let J=[0, 1] and K =[0, 1Ix[0, 1] and define maps W: JxK by

(t, x) 0 b, (t, x) + x,_
0 Yi ai

where Xi (y;), bi xi xi-1, Ayi Yi Yi-, and [ai[< 1, for all s { 1,. ., N}, for some
positive integer N > 1. Suppose further that (4.1) holds.

From Theorem 4 we know then that the attractor A of the IFS (J x K, W,
is {1, , N}) is the graph G of a continuous function (see also Example 1) and that
d =dim (G) satisfies EiN=I [ailbdi -1-- 1. For all e >0 we can choose ai and bi such that
2- d < e. Let g be the projection of G onto the ty-plane. Then g is identical to G since
the scalings along the t-axis are the same as along the x-axis. Hence dim (g) dim (G)
d, and we see that (4.5) need not hold.

Acknowledgments. We thank Dr. Marc Berger for providing Example 12 and
Norman Fickel for correcting an error in the proof of Theorem 4.
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THE DIMENSION SPECTRUM OF THE MAXIMAL MEASURE*

ARTUR O. LOPES"

Abstract. A variety of complicated fractal objects and strange sets appears in nonlinear physics. In
diffusion-limited aggregation, the probability of a random walker landing next to a given site of the aggregate
is of interest. In percolation, the distribution of voltages across different elements in a random-resistor
network (see [T. Halsey et al., Phys. Rev. A (3), 33 (1986), pp. 1141-1151]) may be of interest. These
examples can be better analyzed by dividing certain objects in pieces labeled by indexes, but that leads to

working with fractal sets and the notion of dimension [Halsey et al. (1986)].
The dimension spectrum of a system has been introduced and measured experimentally, and a substantial

literature in physics addresses this topic. In several important cases, rigorous proofs of the results presented
in [Halsey et al. (1986)] have been established.

Here, rigorous mathematical proofs of some results in this theory are given, specifically for the maximal
entropy measure of a hyperbolic rational map in the complex plane. In this case the fractal object is the
Julia set (see [H. Brolin, Ark. Mat., 6 (1966), pp. 103-114], [A. Freire, A. Lopes, and R. Marl6, Bol. Soc.
Brasil Mat., 14 (1983), pp. 45-62]), which has been extensively studied in the physics literature.

Key words. HausdoriI dimension, entropy, maximal measure, rational maps, pressure, spectrum of
dimension, large deviation

AMS(MOS) subject classification. 58F11

0. Introduction. In recent years the role of the concept of dimension has been
investigated by several authors in trying to understand nonconservative dynamical
systems.

The possibility of an infinite number of generalized dimensions of fractals appears
in a natural way in the context of relevent physical problems of critical phenomena.
This topic is particularly active in the physics literature. Such problems appear in the
configuration of Ising models, percolation clusters, and fully developed turbulence.
In general, we can describe such models by dividing the object into pieces and rescaling.
In this situation we very often obtain several different values of dimension.

We are interested in developing the thermodynamic formalism for chaotic repellers
obtained from hyperbolic rational maps in the complex plane and its relation to the
spectrum of dimensions.

The same problem for attractors has been investigated in [9]. In general, an
attractor can have an arbitrarily fine-scaled interwoven structure of hot and cold spots
(high and low probability densities). By hot and cold spots we mean points on the
attractor for which the frequency of visitation to the region for typical orbits is either
much greater than average (a hot spot) or much less than average (a cold spot). In
these several different points we can have different local values of dimension, and the
aim of this theory is to understand the situation globally.

Now we will explain more carefully the situation we are going to consider. We
will analyze the dimension spectrum of the maximal measure (sometimes called the
balanced measure) [1], [8], [17] of a hyperbolic rational map f on the complex plane

P(z)
f(z)

Q(z)
where P and Q are complex polynomials.
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The dimension spectrum of a system was introduced and measured experimentally
by Halsey et al. [10], Hentschel and Procaccia [11], and Jensen et al. [12]. See also
[2], [5], [9], [26], and [27] for analyses of important cases.

In [2] and [27] the theory is applied to several different systems, among them
cookie-cutter maps, and it is related to the measure of maximal entropy. In [5] critical
mappings of the circle with golden rotation number are considered.

We will use thermodynamic formalism as in [27] and also classical large deviation
theory as in [5] to obtain our result for the maximal measure of a hyperbolic rational
map.

For each complex number z and positive real number , denote by B(z, ) the
ball of center z and radius in the usual norm of R2.

We will say that a certain measure v has exponent a on z if

v((z,))

for sc small enough. (Here means lim_,o (log v(B(z, s))/log s) a.)
We will also say that z scales with exponent a.
Given a measure v, one of the main goals of the Dimension Spectrum Theory is

to understand the set of points that scales with exponent a.
For a fixed, the structure of such a set of points can be very complicated, and

this set can also have v-measure zero and two-dimensional Lebesgue measure zero.
The Hausdortt dimension.gives more detailed information on how small the sets of
the plane with two-dimensional Lebesgue measure zero are. When the Hausdorff
dimension of a set is a noninteger number, we say that this set is a fractal. It is natural
to ask, in terms of Hausdorff dimension, how small these sets are with respect to the
variable a.

Experimental results in 10] and 12] have suggested that the Hausdorff dimension
of such sets is a differentiable function of a, in the case of a certain measure of critical
mappings of the circle with rotation number equal to the golden-mean.

We point out, as has been done in [5], that without some restrictions on the
measure v, nothing interesting can be said about the problem.

A given probability v is called invariant for a map f if

v(f-I(E))--v(E)

for any set E, where the probability is defined.
If we are working in the context of statistical physics with problems in the

one-dimensional Z lattice, and in each position we have two possibilities of spin, let
us say + and -, then the natural space to consider is the Bernoulli model {+,-}Z.
As we do not have any reason to consider a distinguished position for the value zero
in our lattice, then in our problem we will consider only probabilities that are invariant
by the shift map (see [3] and [29] for more references). This is a simple motivation
for considering invariant probabilities in general problems.

In cases where f is a rational map, the support of any invariant probability is the
Julia set (see [4], [6], [8], [21] for definitions). In almost all the cases this set is of
fractal dimension [6], 14]. There are no smooth invariant measures to consider in this
situation.

Consider, for example, the map f z2+ : when is small. In this case the Julia
set is a nowhere-differentiable Jordan curve for : 0. In fact, the Julia set is a fractal
Jordan curve for : inside the main cardioid of the Mandelbrot set (and : 0) [6].



DIMENSION SPECTRUM OF THE MAXIMAL MEASURE 1245

The Julia set can also be a Cantor set or even a combination of parts that are
locally disconnected and locally connected. The Julia set can even be the all complex
plane for some nonhyperbolic rational maps. In the case of hyperbolic rational maps
anyway, the Julia set always has two-dimensional Lebesgue measure zero.

There is an important conjecture that claims that the hyperbolic rational maps
are dense in the set of rational maps (see [21]).

In [8] and [17] it has been shown that among all invariant probabilities, there
exists a special one that obtains the maximal value of the entropy (see [19], [33] for
exact definitions). We will call this probability the maximal measure.

The entropy of an invariant probability is a measure of the degree of randomness
of the system given by the action of the map f and the invariant probability we are
considering. In this case the maximal measure is the more chaotic one.

Following the principle that in the absence of external thermal sources nature
tends to maximize entropy, we can see the maximal measure as some kind of Gibbs
state. Ifwe must take into account external sources, we are then led to consider maximal
pressure probabilities (see [3], [29] for interesting considerations about this). In 1,
for some other reasons, we will have to consider maximal pressure probabilities.

We will denote by u the maximal measure for a hyperbolic rational map. We
point out that, in [8] and 17], the results are for general rational maps, and hyperbolicity
is not assumed.

Here we will develop all the theory to show the following theorem.
THEOREM. Consider u the maximal measure ofa hyperbolic rational map; then the

Hausdorff dimension of the set of points that scale with exponent a is a real analytic
function of the variable at.

We will relate these concepts of scaling exponents with the pressure, the Legendre
transform of the pressure, entropy, and large deviation. In fact, one of the main
ingredients of the proof is the close relation of pressure and free-energy (see 1 for
definitions). This relationship is explored in a more general context in [16].

The analogous claim for nonhyperbolic rational maps is not always true. In [26]
an example of a quadratic polynomial is shown such that there exists a point a where
there is no differentiability. In this situation we can say, using an analogy with statistical
physics, that phase transition exists.

The theorem stated here can also be seen as a statement concerning the non-
existence of phase transitions for the maximal entropy measure of a hyperbolic rational
map.

A natural question to ask is, why do large deviation techniques appear in the
understanding of the problem? The reason is that there exists a certain such that for
a u-almost-everywhere point z in the Julia set, the point z scales with exponent (see
[22], [20]). This follows basically from properties related to the Birkhoff Ergodic
Theorem [19]. If we want to consider a certain fixed a different from the above-
mentioned and look for the set of points z that scales with exponent a, then we are
in part not covered by the Birkhoff Ergodic Theorem. The above-mentioned theorem
is a result on mean values and, therefore, in considering deviations of the mean, we
must use large deviation techniques. We refer the reader to Ellis [7] for references
concerning large deviation. We can find the general theory of ergodic theory and
thermodynamic formalism in Waiters [33], Marl6 [19], and Ruelle [29], [30].

Several results are known for the maximal measure [1], [8], [13]-[15], [17], [18],
[20], [22]. In particular, the moments of this measure can be obtained by a three-term
relation from the coefficients of the rational map (see 1], 13]). The three-term relation
is a consequence of the functional equation that the complex potential generated by
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the maximal measure satisfies around infinity [13]. This functional equation is known
as the Bochner equation in the case of polynomial maps [1]. In the case where the
rational map is not a polynomial, the functional equation has another form (see
13 ], 14]). There are several connections of such results with Classical Potential Theory

[31], [4], [13]. In particular, [4] and [13] show that this maximal measure is the charge
distribution in the Julia set if and only if f is a polynomial.

The degree of the rational map f will be denoted by d. We will also denote by J
the Julia set. The entropy of the maximal measure is log d [8], [17].

We will show here that, in fact, the set of points that scale with exponent a can
be considered as the support of another measure (different from u, and we will not
lose dimensionality with this procedure (see the proof of Theorem 4)). We refer the
reader to [9]-[ 12] and [26] for some applications of the spectrum of dimension theory
to statistical mechanics.

It is worthwhile mentioning the following heuristic analogy. In problems ofphysics,
when we can apply renormalization techniques, in general, it is because we have some
good self-similar properties. We can take a partition of the object we want to consider,
and from this partition, by some well-defined procedure, we can obtain another with
some additional coarse information. Now, the procedure is repeated with the new
partition. If we have some good self-similar properties, we can expect to have with
this procedure microscopic information from the macroscopic information. In this
case, scaling properties appear in a natural way. The spectrum of dimension techniques
are suitable for application in this situation. Perhaps one reason this theory works well
for a rational map f is because we can think of the inverse branches off as a natural
way to obtain new partitions. Because these inverse branches are holomorphic, we
have good self-similarity properties that come from the conformality and from the
Koebe Distortion Theorem (see [8]).

Here is the structure of this paper. In 1 we will introduce the main properties
of ergodic theory and large deviations that we will use. In 2 we will present the main
theorem and give an outline of the proof. In 3 we will give the formal proof of the
main theorem.

1. Ergodic theory and large deviation. Let M(f) be the set of invariant probabilities
for f, that is, the set of measures v such that v(f-l(A))= v(A) for any set A in the
Borel sigma-field of R2. The support of all these measures is J.

DEIINITION 1. For a HSlder continuous g:J R and v M(f), we will define
the pressure of v with respect to g by

h(v)+ I g(z) dv(z)

where h(v) denotes the entropy of v. We will denote such an expression by P(v, g).
DErINITIOY 2. We will call P(g) sup {P(v, g)lv M(f)} the topological pressure

of the function g.
In the case where f is hyperbolic, there exists a unique measure that attains such

supremum. This measure is ergodic. These measures are sometimes called Gibbs
measures [3], [29], [30]. There exist examples of Ck maps such that this supremum
is not attained (see references in [19], [33]).

DEFIYTIOY 3. In the case where there exists a unique probability in M(f),
denoted by v(g), such that P(g)= h(v(g))+ g(z)d(v(g))(z) we will call this measure
the maximal pressure measure for g:J R. When f is hyperbolic, this is always the
case [3], [28].
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DEFINITION 4. For g constant and equal to zero, the maximal pressure measure
is called the maximal measure.

Let Zo be a point in the Riemann sphere, and for each n N, let us denote by
z(n, i, Zo), i {1, 2,..., d"} the d"-solutions (with multiplicity) of the equation

f"(z)=zo.

We denote the delta Dirac measure on z by 6(z).
Let u(n, Zo) be the probability

d

d-" Y 6(z(n, i, Zo)).
i=1

In [8] and [17], it has been shown that for any Zo (but at most two exceptional
points), and independent of Zo, there exists the weak limit

lim u (n, Zo) u,

and the measure u is the maximal measure of the rational map f Hyperbolicity is not
assumed to obtain this result. Also, u is ergodic and has entropy log d. We will denote
z’ the z(n, i, Zo) for a certain fixed z0.

DEFINITION 5. For any real tR we will denote P(t)=P(g), when g(z)=
-tloglf’(z) I.

From [23] and [24] it is known that P(t) is convex and real analytic in the variable
when f is hyperbolic.

DEFINITION 6. For a given probability v we will call the Hausdortt dimension of
the measure v, denoted by HD(v), the value inf{HD(A)lv(A)= 1, A a Borel set in J}.
Here HD(A) is the Hausdortt dimension of the set A.

DEFINITION 7. For any real R we will denote u(t) as the maximal pressure
measure for g(z)=-t log If’(z)l.

It also follows from [20], [22], and [24] that if f is hyperbolic, then

P’(t) - log If’(z)ld(u(t))(z)= -h(u(t))" (HD(u(t)))-1.

THEOREM 1 [20]. Letfbe a rational map and let v M(f) be an ergodic probability;
then there exists a Borel set A such that v(A)= 1, and for all z A,

lira
log v(B(, r))= h(v) log If’()l dr(z) HD(v)

--,o log r

where B(z, r) denotes the disk of radius r and center at z.
THEOREM 2 [28]. Iff iS a hyperbolic rational map, then

P(t)= lim 1log " I(f")’(z’)[-’.
n-c n i=1

In 2 we will explain why we need the pressure in this formulation.
Let W { W, :n 1, 2, 3, -} be a sequence of random variables that are defined

on probability spaces {(r,, ,, P,), n 1, 2,...} and that take values in R, where r,
is a set, , a o’-field, and P, a probability.

Here we will consider -, J, and ft, the Borel g-field on J, n N.
DEFINITION 8. For each n N define

c,,(t) n -1 log E.{exp tW.}

where E. is the expected value with respect to P..
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in J.
We will consider in this case the weak topology in the space of signed-measures

The following hypotheses are assumed to hold:
(a) Each function c,(t) is finite for all R.
(b) c(t)=limn_. cn(t) exists and is finite for all R.
(c) c(t) is differentiable as a function of R.
THEOREM 3 [7]. Assume hypotheses (a), (b), and (c) hold, and denote for each

compact Borel set K in E

Q(K)=P,{zJIn-IW,K} and I(z)-sup{zt-c(t)},
tR

Then the following conclusion holds:

lim n -1 log Q,(K)-- inf {I(z)}.
K

DEFINITION 9. The function c(t) is called the free energy of W,.

zeR.

DEFINITION 10. The function I(z) is called the deviation function of the process
[7]. In fact it is the Legendre transform of c(t). The function I(z) contains information
about the deviations of the mean of the process.

2. An outline of the proof of the main theorem. Some ideas presented here were
adapted from ideas in [5] and [27].

It follows from [8] that in the hyperbolic case, for any z J (this is not a
u-almost-everywhere statement), there exists

lim lim n -1 log u(B(z, n, e))=-log d

where B z, n, e) {y
It is also true in the hyperbolic case that the diameter d(z, v, e) of B(z, n, e) is

of the order I(/=)’(z)l-, for any z e J, for n large and e small [8], [22].
Therefore, if we ask whether z is such that u(B(z, so))= sea, it is natural to consider

the above definition.
DEFINITION 11. Let J(a) be the set ofpoints z J(f) such that there exists the limit

lim n -1 log I(f")’(z)l-- -log d.

In this case, u(B(z, n, e)) is of order d(z, n, e). When we use arguments of [20] it
follows that this is equivalent to requiring that z satisfies

limlogu(B(z,))=a.

DEFINITION 12. Let (a) be the Hausdortt dimension of the set J(a).
THEOREM 4. Suppose f is a hyperbolic rational map and u the maximal measure.

Then for a given a, there exists a unique R such that P’(t) -log d/a, and (a)=
HD(u(t)), where u(t) is the maximal pressure measure for -t log If’(z)l. The function

is real analytic on
We will now give an outline of the proof of Theorem 4 as we mentioned in the

Introduction.
The proof is divided in two parts; this is very characteristic of large deviation

results [7]. We must deal with the lower bound and the upper bound in separate cases.
In the first part, we show f(a)_-> HD(u(t)), where satisfies a Legendre condition

of the form P’(t)= -log d/a. This part can be seen as an application of the formula
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HD(v) h(v)/ log If’(z)ldv(z) (that is true for any invariant measure v [20], [22])
and the Manning-McCluskey picture, which means in our case that (a) is the Legendre
transform of the pressure [24].

The pressure contains information about u(t) in the form

P’(t) -f log If’(z)ld(u(t))(z).

This information is about the Lyapunov number of u(t). Using this information
we obtain a set with dimension HD(u(t)) such that for any point z on it, the measure
u scales with exponent a in z. This set is the support of the measure u(t). In this way
we show (a)>-UD(u(t)).

Now, in the second part, it is more difficult to show that (a)<-_HD(u(t)).
We will try to give a heuristic idea of the proof, even under the risk of oversimplify-

ing some more difficult and subtle parts of the demonstration. First, to have a
geometrical picture of the problem, consider for simplification f(z)- z2+ sCz, when s
is small. In this case d 2. Note that zero is a fixed point of f. The main ideas of the
proof are presented in this simplified case. The Julia set in this situation is a nowhere-
differentiable Jordan curve. This curve is very close to the unitary circle and the
dynamics of f is very similar to that of z2 on the unitary circle (they are in fact
topologically conjugated). Now consider a nonself-intersecting curve 3,o, from zero to
o, cutting the Julia set in the unique fixed point in this set. Taking pre-images of this
curve, we obtain the new curves 3,11 and 7. The Julia set without these two curves has
two connected components denoted by A and A each one with u-measure d -1 _1

m2o

Now consider 3,, T, T3, and 3,, the pre-images of the curves 3, and 3,. Now
the Julia set without these four curves has four connected components denoted by A1E
A, A, and A. Each of these components has measure d -E-- 2-2. Repeating the
procedure inductively, we obtain at level n, a total of d"= 2" curves 3,’, 3,,. , 3,,,.
The Julia set without these 2" curves has 2" connected components denoted by
A, A,..., A,,, each one with u-measure 2-"= d-". Ifwe select an initial point Zo
not in 3,1, then we can suppose that in each A’, {1, 2,..., 2"} there exists one and
only one z(n, i, Zo) (see the notation in 1).

Now we look at level n, which has the elements of the partition A’, A’,. , A-
that contains elements z such that If"’(z)l is of order d-". By the Koebe Distortion
Theorem (see [8]) we conclude (in fact, we have to consider subsets of the A’,

{1, , 2"}, but we do not want to be too technical here in 2) that if A’ contains
a z such as the one above, then the z(n, i, Zo) contained in A’ also has this property.

Note that from the Birkhoff Ergodic Theorem (concerning mean values) and the
Shannon-McMillan-Breiman Theorem (about entropy of partitions), almost all the
z(n, i, Zo) should satisfy

[f"’(z(n, i, ZO))I -HD(u)

and be of order d-". This is a simplified way to look at the formula

h(u)
HD(u) j. log If’(z)l du(z)"

Therefore, the large deviation here appears to give information on how many elements
z(n, i, Zo), i {1,2,..., 2"} deviate from the mean and satisfy that I(f")’(z(n,i, Zo))[
is of order d-".
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Here it becomes clear why we must consider the pressure P(t) in the formulation
given by Theorem 2. We must consider the random variable given by -log If"’(z)l in
the pre-orbits of Zo at level n. At this moment the close relation of c(t) and P(t), which
we will explain in 3, is essential.

The diameter of each element A’ of the partition is of order If"’(z(n, i, Zo))1-1,
where z(n, i, Zo) is the only pre-image of Zo at level n in A’.

From the considerations above, we can cover the set of points that scale with
exponent a with a controlled number of elements of the partition, and we also have
control of the diameter of the elements of the partition that we are using to cover the
set J(a). This partition can be obtained with a diameter as small as we want. The
value HD(u(t)) (it appears here as information that comes from a Legendre transform)
is exactly the value that we must consider for the Hausdorit measure to be finite. In
this way we prove finally that (a)<-HD(u(t)).

The above explanation is not exactly as the proof will be done, but it gives a good
idea of the main ingredients of the demonstration.

3. Proof of the maia theorem. Here we will show the proof of the following
theorem.

THEOREM. Supposef is a hyperbolic rational map and u is the measure of maximal
entropy. Then for a given a, there exists a unique R such that P’(t)= -log dc and
(a)= HD(u(t)), where u(t) is the maximal pressure measure for -t log If’(z)l. The

function is real analytic in the variable a.

Proof. (a) (a) >= HD(u(t)).
For a given a, from the convexity and analyticity of P(t) (see [28]), we have that

there exists a unique such that P’(t) -log d/a. For this value of t, consider u(t)
the maximal pressure measure for the function g log ]f’l. From the crgodic theorem
we have that for a set A such that u(t)(A)= 1, for all z A,

lim
1

log I(f’)’(z)[-= -f log ]f’(z)ld(u(t))(z)= P’(t)=

Therefore

lim n- log If"’(z)l =-log d

and A c J(a).
As the Hausdorff dimension of u(t) is infimum of the Hausdorff dimension of all

sets of measure zero, we have (a)>-UD(u(t)).
(b) (c) _-< nO(u(t)).
Now we will use a large deviation property as introduced in 1.
Consider for each n N the measure u(n, Zo) as defined in 1.
We will denote z’ the z(n, i, Zo) to make the notation simpler. To apply Theorem

3, consider % J, , Borel or-field on J, and Pn u(n, Zo). Consider also the random
variable W, -log [f"’(z)l.

From Theorem 3 we have that

d

lim n -1 log If"’(zT)l-’= P(t)
nx3 i=1

vM(f)
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Therefore

c(t) lira n -1 log E,{exp

lim n- log d-" If"’(zT)[-’ P(t)-log d.

This relation of pressure and free energy is essential for the rest of the proof.
From the differentiability with respect to of P(t) [16], [19], we have that for

any/3 e R and > 0

lim n -1 log P,{n- W, (fl , fl + :)}

is almost equal to -I(/3), where I(fl) =supsEs {s-c(s)}.
Therefore for/3 -log d/a, we have I()= t-c(t), where c’(t)=-log d/a.
As P’(s)- c’(s) for any s s R, we remark that is the same one obtained in part

(a) of this proof.
Therefore, 1(/3)= -t log If’(z)[d(u(t))(z)-h(u(t))+ log If’(z)ld(u(t))(z)+

log d=log d-h(u(t)).
Therefore

lim log P. { n- Wn log da -1 , log da

is approximately equal to h(u(t))-log d. In this case

d-"#{zTli {1,..., d"}, n -1 log If’(zT)l- (-log da-- sr, -log da -1 +

is of order exp ((h(u(t))-log d)n), and finally

#{z’lie (1., d"} and [f"(z’)1- e (exp (( logda .:)n), exp ((_logd+a :)n))}
is of order

exp (h(u(t))-(log d)n) exp (log d")=exp (h(u(t))n).

As mentioned in 2, this information allows us to control the number of points with
a certain deviation of the mean.

Now we will state some properties of hyperbolic rational maps that are proved
in [8] and [18].

Considering perhaps a finite iterate of f, we know from [18] that there exists a
curve containing all the critical values off such that:

(a) u() O.
(b) X C- is a topological disk.
(c) There exist branches bi" X C, i= 1,..., d, of f-l" that are injective and

f(X) X where bi
fm(.ffc)))c has u-measure zero, and satisfies(d) The set X=(f’q,_>_of

f-’(X)=X.
(e) Set X ’ fqX; then the disjoint union X U d__ X is such that if n =< 1,

1 < ij < d, j 1, .., n, we have d" sets of the form f’l j=l f-(Xj)). Let us denote each
such set by A’, {1,. ., d"}.
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From [18] we have u(A)= d.
(f) We can suppose there exists just one z’ in each A’ because we can obtain u

as lim,_.o u(n, Zo) and this limit does not depend on Zo.
Now let us return to the proof of the theorem. First we will show that J(a)f’l X

has dimension smaller than HD(u(t)), where X depends on the curve . Then we
move the curve a little and we obtain the same result. By the injectivity (c) we have
that these J(a)fq X cover J(a) when we consider several ditterent disjoint curves ,
and from this it follows that f()<-HD(u(t)).

Now we will show that J(a)f’lX has dimension smaller than HD(u(t)) for any
curve . This will be obtained in the following way. Consider a conformal representation
k:XD1 and X(r)=cb-l(Dr) (where D={zCIIzl<r}, 0=<r=<l). Consider also
for each A’, i {1, 2,. , d"}, the corresponding A(r) such that A(r)=f-"(Xr) for
some branch f-" and AT(r)c A’;, and assume b(z’) 0.

We will first show J(a) f-I { f’l ,_>_o f-"(X(r))}hasdimensionsmallerthanHD(u(t)).
Note that J(a) is invariant by f. In this case, using the same proof presented in [32]
for Theorem 4 and in [25] for Theorem 1.1, we conclude that limr_l HD(J(a)f’l

f’l ,of-"(’(r)))) HD(J(a) f3 X) -< HD(u(t)). Therefore, it is enough to show that
HD(J(a)fq(f’l,_of-"(f((r)))<=HD(u(t)), and we will show this now.

From the distortion theorem for univalent functions [8], there exist cr, Cr > 0 such
that for n large enough

cr < I(f’)’(t)l I(f")(z)l-’ < C,

for any t, z in A’(r). It also follows from [8] that for any so>0, there exists K >0
such that for n large enough, if D(n, i, ) is the ball of center z’ and radius
Kl(f)’(zT)l--% then

(***) D(n, i, s) A’.

Consider Y=J(a)f’lX. Then for each z Yf’lf-"(;(r)) such that I(f")’(z)l is
of order d-" we have that z is in a certain A!(r) and therefore from (**)

I(f")’(zT)l and I(f")’(z)l are of order d-".

The cardinal of such possible z’ is of the order exp (h(u(t))n) from (.). It is also
true that such z is in D(n, i, s) from (***).

Now let us remember some properties of HD(Y). From each T> 0 consider

HDT(Y) lim HDT,(Y) inf E (diam B,)r
80 Y UB

diam B <= t$

where Bi are balls in C.
We also know that if for all T> HD(u(t)) we have HT(Y) finite, then HD(Y) -<

HD(u(t)).
Now observe that for each n N, Y is contained in exp (h(u(t)n)) balls of radius

Kl(f")’(z’)[ -(1-), and [(fn)’(z’)[-1 is of order exp (-log d. n. a-). For each nthe
sum

E (diam D(n, i, e))r<=K exp(h(u(t))n)exp(-Tlog d. n. a-l(1- e))

K exp (h(u(t))-Tlog da-l(1-e)n).
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For

T> HD(u(t))= h(u(t)) log If’(t)ldu(t) -h(u(t))P’(t)-1

h(u(t)), c(log d)-1

we have that the above sum is uniformly bounded. As the diameter D(n, i, e) goes to
zero [8] because f is hyperbolic, we have

and finally the theorem is proved.
The analyticity of (a) follows from the analyticity of P(t) [23], [28].
As we have mentioned in the Introduction, no dimensionality is lost by considering

the support of u(t) instead of J(a) because, as we have just shown, the two sets have
the same Hausdorff dimension.

Acknowledgments. We thank P. Collet for supplying us with references on the
subject and J. Yorke for some helpful conversations on the topic.
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Abstract. It is shown that the reciprocals of a class of Laplace transforms are superadditive. This is
used to establish the uniqueness of maximum likelihood estimates for a statistical inference problem.
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1. Introduction. In this paper we show that, for p _-> 2 and for x and y in (0, oo),

(1)
1

+ 1
<

1

Yk__o(1/(x+k)p) Y.k=o(1/(y+k)p) Y.k=o(1/(x+y+k)’)

This will follow as a special case of the superadditivity of a class of reciprocals of
Laplace transforms, as established in Theorem 2. The special case of (1) when p 2
is used to establish the strict concavity of log [L(r, s)], where

[ r(r+ s) r-1 s-l]"L( r, s := ; C C2

(Here, F denotes the gamma function, G and G2 are both positive, G + G2 < 1, and
n is an integer.) This, in turn, will establish the uniqueness of the maximum likelihood
estimates of the parameters in the beta distribution.

First, we present a new and simple characterization of a subclass of the completely
monotonic functions.

2. Strongly completely monotonic functions. Recall that a real-valued function g
is completely monotonic on (0, ) if and only if (-1)"g<)(x) 0, where 0<x< and
n 0, 1, 2,. .. We are interested in the more restrictive, condition"

(-1)"x"+lg<")(x) is nonnegative and nonincreasing for 0<x <
()

and n =0, 1,....

Such functions will be called strongly completely monotonic on (0, ). As an example,
the function g(x)= 1/x is strongly completely monotonic in (0, ); however, the
function g(x)= e is completely monotonic, but not strongly completely monotonic.

THEOREM 1. efunction g is strongly completely monotonic on (0, ) ifand only
if

(3) g(x)= e-’(t) dr,

where is nonnegative and nondecreasing, and where the integral converges for all x in
(o,).
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(4)

Proof. If g is given by (3), then

(-1)"x"+lg(")(x) x"+ t" e-Xtck(t) dt

r" e-’ck dr >- O,

because b(x)>-0. Furthermore, the left side is a nonincreasing function of x because
b(x) is nondecreasing.

Conversely, suppose g is strongly completely monotonic on (0, ). Then g is
completely monotonic and, according to a representation theorem of Bernstein
[5, p. 161], there is a nondecreasing (not necessarily bounded) a such that

g(x) e-x’ da( t) (0 < x < c).

Furthermore, we may assume that a is normalized, that is, a(0)=0 and a(x)=
(a(x-)+a(x+))/2 for 0<x<oo [5, pp. 13-14]. Using the Post-Widder inversion
formula [5, p. 290], it follows that

a(t)-a(O+)= lim (-1)" "+g(") du

for all in (0, ). From (2), it follows that the integrands are nondecreasing functions
of u. Hence the integrals, and consequently a itself, are convex functions of t. The
properties of convex functions imply that there is a nonnegative and nondecreasing
function b such that a’(t)=b(t) except, possibly, for a countable set on (0, o).
Representation (3) follows. [q

3. A class of superadditive functions. Let

: {f: f is a continuous, real-valued, n0nnegative
function defined on [0, o) satisfying f(0)=0}.

IffE , then f is said to be superadditive provided that, for x and y in (0, ),

(5) f(x + y) >=f(x) +f( y).

Beckenback [1, p. 424] remarked that "tests for superadditivity appear to be difficult
to establish, and more difficult to apply." In this section and the next, we establish a
test for superadditivity and apply it to a problem in statistical inference.

IffE , thenfis said to be star-shaped provided that, for a in (0, 1) and x in (0, ),

f(,x)f(x).

This is equivalent to saying that

(6) f(x)/x is nondecreasing on (0, ).

It follows from (6) that

f(x+ y) x
f(x+ y) +yf(x+ y) f(x.!+ f(y)>=x y =f(x)+f(y).x+y x+y x y

Hence, iff is star-shaped, it is also superadditive. (See Hardy, Littlewood, and Polya
[4, p. 83] and Bruckner and Ostrow [2, pp. 1207-1209].) We remark that, iff(x)/x is
strictly increasing on (0, c), then strict inequality always holds in (5).
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THEOREM 2. Suppose g is strongly completely monotonic and xg(x) does not reduce
to a constant, i.e., rk is not constant in (3). Define f by f(O) 0 and f(x) 1/g(x) if
0 < x < o. Thenfis star-shaped and therefore superadditive. Furthermore, strict inequality
always holds in (5).

Proof. Let n =0 in (2). Then xg(x) is nonnegative and nonincreasing, and (6)
holds for f. An analysis of (4) shows that xg(x) is strictly decreasing if and only if
is not a constant function. The remarks after (6) complete the proof of this
theorem.

To illustrate, suppose p => 2. For > 0, we define

bp(t) tP-/(1-e-’).
If we set bn(0) 0 for p > 2 and b:(0) 1, it follows that bp is a continuous, increasing
function on [0, o). Furthermore, if x > 0, the Lebesgue monotone convergence theorem
implies that

io e-X’dpp(t) dt p-1 e-Ix+k)’ dt
k=0

p-1 e-(x+k)t dt
k=0

F(p) k=O (X + k)p"

An application of Theorem 2 yields (1) in the Introduction.
It is worth observing that (1) fails for p in the interval (1, 2). Indeed, if 1 <p < 2,

it can be shown that there is a positive number n(p) such that (1) is reversed if x and
y are in the interval (n(p), o).

In the next section, we shall need the special case of (1) when p 2. We then
have an inequality concerning the psi (digamma) function, g(x)= F’(x)/F(x), since
ff’(x) =o 1/(x+ k)2. Actually, 1/ff’(x) is more than superadditive: it is convex on
(0, ). This fact, which we shall not need in the sequel follows from a rather tedious
argument that establishes the inequality (g,,)E_>1/2g,g,,, This derivative inequality is
equivalent to

1 >__v/( 1)1/2( 1)
1/2

2 (x + k)3= (x + k)2 (x + k)ak--O 2 k=O k=0

an inequality of the form , akbk >- Cx/ a2k x/, bEg
with ak 1/(X+ k), bk 1/(X+ k)2, and C x//2. Thus the convexity of 1/g’(x) may
be formulated as an inverse Cauchy-Schwartz inequality.

4. A statistical inference problem. Suppose we model a random phenomenon using
a beta distribution that has probability density function given by

f(x; r, s)=
F(r+ s) xr_l(l__x)S_l, O<=X<: 1
r(r r(s 

Here, r and s are positive numbers to be chosen later. Suppose that X1, X2,..., Xn
is a random sample. The likelihood for this sample is

(7) L(r, s;
L---)(--)G 2

i=1

where G1 [1-IZ1 x,] 1/" and G2=[I]Z1 (1-xi)] 1In.
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One way of choosing r and s is to find their values that maximize the right side
of (7), these being the maximum likelihood estimates. If G1 =0 or G2 =0, the right
side of (7) can be made infinite by choosing r or s less than 1. So it is natural to
assume that G1 > 0 and G2> 0, which is not a severe restriction because the probability
of this happening is 1.

Gnanadesikan, Pinkham, and Hughes [3] have studied the maximum likelihood
estimates for (7) but have not addressed the question of the existence and uniqueness
of such a solution. This question is important because, in practice, the maximum
likelihood estimates are often found by using iterative techniques. Gnanadesikan,
Pinkham, and Hughes do observe that G1 + G2 -< 1 with equality if and only if Xl x2

xn, which occurs with probability 0. So, we could assume

(8) G1 + G2 < 1,

which, like our earlier restrictions on G1 and G2, would not be severe. In fact, the
next result shows that there is also a mathematical reason for assuming (8).

THEOREM 3. The logarithm of the likelihood function (7) is strictly concave on
(0, ) x (0, o). Hence, it has at most one local extremum, which must, if it exists, be an
absolute maximum. In fact, the likelihoodfunction has an absolute maximum ifand only
if (8) holds.

Proofi We write the left side of (7) simply as L(r, s), and view it as defined on
(0, o) x (0, ). The Hessian matrix of -log L(r, s) 1In is

[t’(r)-’(r+s) -’(r,+s) ]-g,’(r+s) ,’(s)-g, (r+s)

The diagonal elements of this matrix are positive on (0, ) x (0, c) because ’ is strictly
decreasing, and the determinant is positive on (0, )x (0, ) because of (1). Hence,
the matrix is positive definite. Consequently, log L(r, s) is strictly concave on (0, c) x
(0, o) and has a local extremum at no more than one point. If this extremum exists,
it is necessarily an absolute maximum.

A point will produce a local extremum of L( r, s) if and only ifthe partial derivatives
of log L(r, s) are both zero there. This requirement yields the following system:

(9)
d/(r)-(r+ s)=log (31,

(s)-b(r+ s)= log G2.
To investigate (9), we establish (10) and (11) below.

Suppose that g is a function defined on (0, c) such that r <- g(r) for all r. Then
g(r) r + n(r) + 0(r), where n(r) is a nonnegative integer and 0-< 0(r) < 1. Now @
(x+l)=@(x)+(1/x) for x>0. So, for q a nonnegative integer, @(x+q)=

q--1 q--1@(X)+k=O 1/(x+k). (If q=0, define k--O 1/(x+k)=O.) If r -> 1, it follows that

g(r)- 1 g(r)- O(r) r+ n(r)
log < log log

r r r

’n(r) dx n(r)--I 1
(10) -< L

o r+ X-- k=0 r+ k
d/( r + n( r) d/( r)

<- d/(g( r) d/( r).

In a similar manner, if r > 1,

(11) t(g(r)) if(r) < log
g(r)
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Without loss of generality, suppose log G2 >- log G1. Subtracting the equations in
(9) we conclude that, if r and s satisfy (9), we must have

(12) (s)- 6(r) log GE/G1 >-_0.

Since is strictly increasing, (12) can be regarded as defining a function s(r) that
satisfies s(r)>-_r for r in (0, c). Then (10)-(12) imply that

s(r) G(13) lim
r- r G1

Further, (10), (11), and (13) imply that

(14) lim[(r+s(r))-(r)]=log(l+GE/G).
r--

Now d/’(x+ 1)=’(x)-l/x2. Since ’(x+ 1)>0, it follows that ff’(x) > 1Ix2. So
(r+ s(r)) d/(r) >- (2r)- (r) " 6’(x) dx > 1/(2r). Hence,

(15) lim [(r+ s(r))-(r)]= +o.
r-O+

From (14) and (15), we conclude that the equation

(16) d/(r+ s(r))- (r) -log G1
is satisfied for some r if -log G1 > log (1 / GEl G1), i.e., 1 > G + G2. Furthermore, if
(r+ s(r))- (r) is a strictly decreasing function of r on (0, c), then (16) is satisfied
for some r if and only if 1 > G1 / G2, i.e., if and only if (8) holds. Since (12) and (16)
are equivalent to (9), it only remains to show that (r/ s(r)) (r) is strictly decreasing.
But using (1), (12), and the implicit function theorem, we see that

d [4’(r+s(r))-4’(r)]=4’’(r)4’’(r+s(r)) ’(r)+d/’(s(r)) d/’(r/s(r))
<0. !

REFERENCES

[1] E. F. BECKENBACK, Superadditivity inequalities, Pacific J. Math., 14 (1964), pp. 421-438.
[2] A. M. BRUCKNER AND E. OSTROW, Somefunction classes related to the class ofconvexfunctions, Pacific

J. Math., 12 (1962), pp. 1203-1215.
[3] R. GNANADESIKAN, R. S. PINKHAM, AND L. P. HUGHES, Maximum likelihood estimation of the

parameters ofthe beta distributionfrom smallest order statistics, Technometrics, 9 (1967), pp. 607-620.
[4] G. H. HARDY, J. E. LITTLEWOOD, AND G. POLYA, Inequalities, Second edition, Cambridge University

Press, London, 1952.
[5] D. WIDDER, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.



SIAM J. MATH. ANAL.
Vol. 20, No. 5, pp. 1260-1269, September 1989

1989 Society for Industrial and Applied Mathematics

015

APPLICATIONS OF A TECHNIQUE FOR EVALUATING INDEFINITE
INTEGRALS CONTAINING PRODUCTS

OF THE SPECIAL FUNCTIONS OF PHYSICS*

JEAN C. PIQUETTE"

Abstract. An earlier article [J. C. Piquette and A. L. Van Buren, SIAM J. Math. Anal., 15 (1984), pp.
845-855] described an analytical technique for evaluating indefinite integrals involving special functions.
The technique replaces the integral by an inhomogeneous set of coupled first-order differential equations.
This coupled set does not explicitly contain the special functions ofthe integrand, and any particular solution
of the set is sufficient to obtain an analytical result for the indefinite integral. One difficulty with the technique
is that the process of uncoupling one of the functions of the set from the remainder is not straightforward
and, in some instances, may be intractable. In the present article, the relevant set is uncoupled for a number
of special cases in which the integrand contains one or more Bessel functions, Legendre functions, Hermite
functions, or Laguerre functions. The utility of the given analytical expressions is demonstrated by presenting
several examples. Several of the indefinite integrals evaluated have not been previously tabulated.

Key words, integration, antidifferentiation, special functions, systems of differential equations
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1. Introduction. A previous article [1] presented an analytical technique for
evaluating indefinite integrals of the form

(1) I dxf(x) l-I /’)(x)
i=1

where (i)R,, (x) is of the ith type of special functions of order/i obeying the set of
recurrence relations

(2a) R() ’. ()
,+,,,.,,, at,(x)R (x)+ b,(x).t,g_l(X),

(2b) DR’)- R)(x) d(x)Ri). ()= c.(x) + ._,(x).
Here a., b,, %, and d, are known functions corresponding to _.,). The symbol D
represents d/dx. The functionf(x) and the product H R both are assumed continuous
(or with at most a finite number of discontinuities) over an interval [x, x2], ensuring
that the integral I exists in the same interval. The technique is a generalization of one
used by Sonine [2] (described by Watson [3]) to evaluate indefinite integrals involving
products of Bessel functions. Piquette and Van Buren [1] extended the technique to
include most of the special functions of physics, including Legendre functions, Hermite
functions, and Laguerre functions. The technique replaces the integral that is to be
evaluated by an inhomogeneous set of coupled first-order differential equations. The
coupled set does not explicitly contain any of the special functions ) and any
particular solution of the set is sufficient to yield an analytical expression for the integral
I. Here we use the term "birecurrent functions" that was introduced in [1] for the
functions R )

The method of 1] assumes that the integral I of (1) may be represented by

(3) I ’ ’ Ap, p2... p,n(X) I-I It(i)....+..(x).
Pl=0 p2=0 pm=O i=1

* Received by the editors March 9, 1987; accepted for publication (in revised form) November 18, 1988.
t Naval Research Laboratory, Underwater Sound Reference Detachment, P.O. Box 568337, Orlando,

Florida 32856-8337.
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where the 2 coefficients Aplp2... p,.(x) are functions to be determined. The technique
replaces the integral I with the coupled set of differential equations

(4) f(x) ,5o.p DAn + ., Bpq Aq,

where 8 is a Kronecker delta defined to be zero unless p P2 Pm= 0. In (4),
the shorthand notation Ap Apa,2...p.,(x) and Bpq npl,p2,...,pm, ql, q2,"’,qm(X) has been
used. Also, the notation Y’.{q represents the multiple summations Eq,=0 E 0 Eq2 qm

The functions B,q are known functions resulting from repeated applications of the
l(i) An analyticalrelations of (2) and the regrouping of terms in the form I]=

expression for the functions Bpq appears in a subsequent publication [4].
One difficulty with the technique is that the process of uncoupling one function

A, from the remainder of the set is not straightforward, and may be intractable in
certain cases. To increase the general utility of the method, the present article provides
uncoupled equations for several special cases in which the integrand involves one or
more Bessel functions, Legendre functions, Hermite functions, or Laguerre functions.
The usefulness of the expressions is demonstrated by obtaining solutions to the
uncoupled equations in several particular cases, thereby obtaining the associated
indefinite integrals. Several of these have not been previously tabulated.

2. Integrands containing one birecurrent function. First we will consider integrals
of the general form

(5) I= f dxf(x)R,(x).

In this case, the assumed form generated by (3) reduces to

(6) I Ao(x)R, (x) + AI(X)R,+(x).

The resulting coupled set obtained from (4) is

(7a)
-Ao(x)[a(x)d, (x) b(x)c, (x)]

+ bv.(x)DAo(x)+ b,(x)d,+,(x)A,(x)= b,(x)f(x),

(7b) d,(x)Ao(x)+ b,(x)OA(x)+ b,(x)c,+l(X)A(x)=0.

Note in this case that, since (7b) does not contain DAo, this equation can be solved
algebraically for A0 in terms of A and DA. This expression may be substituted into
(7a) to yield an uncoupled equation for A. Since we have used generic expressions
for the functions a, b, c, and d, it is clear that the coupled set (7a, b) can always be
uncoupled regardless of which particular function R, is contained in (5). Therefore,
the method always results in a set that can be uncoupled when it is applied to integrals
containing a single birecurrent function. Of course, obtaining a particular solution to
the resulting uncoupled inhomogeneous differential equation is not straightforward.
However, a number of special cases have been considered successfully in [1]. Also,
the uncoupled equations for the special cases where R, represents either a Bessel, a
Legendre, a Hermite, or a Laguerre function are also given in 1]. Therefore, we will
not consider this case further in the present article.

3. Integrands containing two Legendre functions. Unlike the case considered in
2, the coupled set for the case in which the integrand contains two arbitrary birecurrent
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functions cannot be uncoupled for the general case in a straightforward way. In this
section, we consider the particular case in which the integral of interest is of the form

(8) I= I dxf(x)P,(x)P(x),

where P can be either the first or the second solution to the Legendre differential
equation. For the moment, we restrict our attention to cases in which/z 12. In this
case, the general assumed form generated by (3) yields the expression

I= Aoo(x)P(x)P(x)+ Aol(X)P,(x)P+l(x)
(9)

+ A,o(x)Pg+,(x)P,,(x)+ AI,(X)Pg+(x)P,,+,(x).

The function A can be uncoupled from the coupled set obtained from (4) to give

(x2-1)2D4AII(X)+ 10x(x2-1)D3All(X)

-2(4-/x 12 +/xx2 + 12X
2 + 2,2X2 " 122X2 --/2__ 122__ 12x2)D2A(x)

(10) -6x(-2 + tx + 12+ Ix2+ 122)DAll(X)

+(/z + 12)(-1 +/z- 12)(1 +/x- 12)(2 + gt + 12)All(X

=2(1 +/x)(1 + 12)Of(x).

The remaining functions A can be expressed in terms of Ax(x) and its derivatives.
The expressions are

-x (x2-1)
Aoo(X) f(x) Df(x)

1 + Ix + 12 (t- 12)(1 + Ix + 12)

(11) +gooo(x)A(x)+goo(x)DA(x)+goo2(x)D2A(x)

+ goo3(x)D3A,l(X) + goo4(x)D4Al,(X),

-(1+ 12)
AoI(x)-- f(x) + golo(X)All(X)+ gOlI(X)DAII(X

(12) (/z 12)(1 +/z + 12)

+ gol2(X)O2A,l(X) + go,3(x)D3All(X),

(l+/z)
Alo(x) f(x) + gloo(X)Al(X) + go(x)DAl(X)

(13)

+ goE(X)DEAll(X) + gloa(x)DaAll(X).

The parametric functions g in (11)-(13) are given by

g000(X) [ -b 12+/.12 + 1.1,122--212X2 q- ].,212
_./.,2122__ 122X2

__
2 123X2 4- 124X2 --/. 12X

2 4122X2

(14)
2122x2 /3 2--/.g123X2+2/.212X2 //, -- 12X2""/Z --2123- 124]

+[(1 +/x)(1 + v)(/x v)(1 +/x + v)],

gOOl (x) -x[12 12 v 3/xv2 4/xx2 + 16 vx2

+ 3/z2v + 3/z2x2 +/x3x2 + 9v2x2- vax2

(15)
+ 3/122X2 3/.212X2 3/.2 _/./,3 _9122 + 123 12X2]
+ [2(1 +
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(16) goo2(X)
[(X2-1)(8-/.t 3/2 5/.tX2 + 9VX2 + I.,2X2+3/22X2--2--3/22--24X2)]

2(1 +/x)(1 + v)(/z v)(1 +/x +/2)

(17)

(18)

x(-1 + x2)2(10 +/z -/2)
gooa(X)

2(1 +/,)(1 + v)(/z v)(1 +/z +/2)’

(-1 "" X2)goo4(X)
2(1 +/ )(1 + v)(/z -/2)( 1 +/, +/2)’

(19) golo(x)

(20) gOll(X)

(21) go12(X)

(22)

-/xx(1 +/x -/2)(2 +/x +/2)
(1 +/z)(/z v)(1 +/z + v)

[2- 3/x v+3x2 +/2x2 -- 32x2 +/22x2 32-/22 6x2]
2(1 +/x)(/z -/2)(1 +/x +/2)

3x(-1 + x2)
(1 +/z)(,u, v)(1 +/z + v)’

(- 1 + x2)2
gola(X)

2(1 +/x)(/, -/2)(1 +/x +/2)’

(23) gloo(X)

(24) glol(x)

(25) glo2(X)

(26)

vx(1-,u, + v)(2 +/z + v)
(1 + v)(/ v)(1 + ,u, + v)’

[2 -/z 3 v +/A,x2 - 3/2X2 "" [A,2X2 + 3/22X2 [./,2 3 22 6X2]
2(1 + v)(/x v)(1 +/x +/2)

-3x(-1 + x2)
(1 + v)(/z v)(1 +/x + v)’

-(-1 + x2)2

glO3(X)-"
2(1 + v)(/x- v)(1 + + v)"

Although the expressions above are complicated, they are straightforward to
evaluate, with the exception of (10), the differential equation for All. However, recall
that any particular solution of (10) is adequate for obtaining the integral of (8). There
are several cases in which this is not difficult to do.

For example, iff(x) I in (8), the inhomogeneous term in (10) vanishes. Therefore,
a particular solution to (10) is simply All(X)-0. Substituting this into (11)-(26)
immediately yields the indefinite integral

(27)
dx P,,(x)P,(x)=

(l+v)
-(gt-/2)(1 + tx + v) P.(x)P,+I(X)

(1 +/z)
(/z-/2)(1 +/x +/2) P+,(x)P,,(x)

when the resulting expressions for Aoo, Aol, and Alo are substituted into (9). An
integral equivalent to (27) can be found, for example, in [5].

The differential equation (10) can also be solved for most functions f(x) of the
form x t, where is a natural number, thus yielding the antiderivative

(28) I= f dxx’P(x)P,,(x).
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A particular solution to (10) for f(x)= x can be represented by the truncated series

!-1

(29) A(x) E’ bp x’.
p

In (29), the quantities bp are constants given by

(30a)
(30b)

bp=-

(2/)(1 +/x)(1 + v)
b,-1-

(/.t + v+l+ 1)(/x + v- 1+ 1)[(/x- v)2-12],
(p + 1 )(p + 2){(p + 3)(p + 4) bp+4( 1 6p,,-3) + 2bp+2[/z + v +/z 2 + v2 (p + 2)2]}

(/x + v +p + 2)(/x + v-p)[(/x v)2- (p + 1)2]
(O_-<p </- 1).

The prime on the summation in (29) signifies that p =0, 2,..., l-1 when is odd,
and p 1, 3,..., l-1 when is even. The particular case 0 is excluded, but note
that this case is covered by (27). The orders/x and v are arbitrary (and may even be
complex), except for the particular cases in which the denominators in (30) vanish.
The desired antiderivative corresponding to any particular value of is obtained by
substituting the resulting expression for All into (11)-(26). The results of these calcula-
tions are then substituted into (9). This process is difficult to perform for the general
case. However, one particular case is

(31)

f ( 335 515x2 235x4dxxSp1/3(x)P2/3(x)=
2352 39--+ 33--- +x____) P/3(x)P2/3(x)

685x 575X3

+\ 784 1176 -4 /
P1/3(x)P5/3(X)

(235x 295x 2_x_5 P/(x)Pi/3(x)+\ 1- 588 21 ]

25X4p+
]

4/3(x)Ps/3(’x).

The uncoupled equations given by (10)-(26) are not valid if /x=v. In this
special case a different uncoupling scheme is required. The uncoupled set for this
case is given by

(-1 + x2)2D3A,(x)+6x(-1 + x2)D2AI,(X)
(32) 2( 1 2v + 2vx2 + 2vZx2 2v2 3X2)DA(x)

-4v(v+ 1)xA,,(x)= 2(v+ 1)2f(x),
(-1 +x2)2 (-1 + x2)(2+ v) (v+x2)

(33) Aoo(X) -i-1 + -" D2A"(x)+
(1 + v)2 xDAll(X)+

(1 + ,---’-"- Al,(X),

(- 1 + x2)
(34) Aol(x) DA(x) XAl(X),

2(1+ v)

and Ao(X) Ao(X). As one particular example ofthis case, we letf(x) x; a particular
solution of (32) is then All =-(1 + v)/2v. When the resulting solutions obtained from
(33) and (34) are substituted into (9), this yields the integral

2v 1 + v ]
[P(x)]E-2xP(x)Pv+’(x)+[P+’(x)]2
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The expressions given in (32)-(34) also apply if the integral of interest is

(36) I f dxf(x)P,,(x)Q,,(x),

where Q,,(x) is the second solution to Legendre’s differential equation. This follows
from the fact that the functions P and Q each obey the same recurrence relations. As
a particular example ofthis, letf(x) x in (32). A particular solution ofthis differential
equation is then

1 +/,)(-4+ 2/, + vx2 +/,2x2 + 2/,2)
(37) All(X)

6v(1- /,)(2+ /,)

Substituting this into (33) and (34), we obtain the integral

dx x3p(x)Q(x)

(-3/, 4/,x’- + 6/,X4 +/,2X2 + 3/,2X4 "-/,3X2 "" 2/,2 + 2/,3 -4/,2) P,,(x)Q,,(x)
6/,(-1+/,)(2+/,)

(38)
x(1 +/,)(-4 +/, + 2/,x2 +/,2x2 + 2/,2)+ [P(x)Q/(x)+ P/(x)Q(x)]

6/,(-1+/,)(2+/,)

1 +/,)(-4+ 2/, +/,x2 +/,-x + 2/,-)
"t- P.+l(X)O,+l(X)

6/,(1-/,)(2+/,)

when the resulting solutions for the functions A are substituted into the representation
of (9).

4. Integrands containing the square of a Bessel function. We now turn our attention
to integrals of the form

(39) I f dxf(x)Z(x),

where Z is an arbitrary cylinder function, i.e., any solution of Bessel’s differential
equation. In this case, (3) provides the representation

(40) I Aoo(x)Z(x) + 2Am(x)Z(x)Z.+,(x) +
Once again, we can uncouple AI from the set generated by (4), giving

x3D3mll(X) 3x2D2A,l(X) + x(7-4/,2 +
(41)

+ 4(-2 / 2/,2- xE)Al(X) 2xaf(x),
(2+2/,+x2)DEAI(x) -(3+2/,---------" DA(x)+ A (x),(42) Aoo(X)

2 2x x2

1 (1+/,)
(43) Am(x) =- DA,,(x)- A,,(x).

x

As an example of this class of integrals, we first let f(x) 1/x2 in (39). Next, we
consider the case in whichf(x) 1Ix4. The first of these examples results in the integral

(44) x2- dx (4v2_ 1)x Z,,(x)-_l +2------T Z,,(x)Z,,+(X)-l_4v-------- Z,,+,(x)
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and the second example yields

Z2,,(x) [-9- 6v + x2(6+ 16v + 8v2) + 36v2 + 24,3 + 16x4]
x4 dx=

3x3(1 _4v2)(9_4v2 Z2,,(x)

[2(-3 + 4v + 4/,,2 + 8X2)
(45) L 5-(i--i- ] z,,(x)Z,,+l(X)

2( 1 4 v2 8x2) 2

-3x(1- 4v2)(9- 4u2) Z+I(X)

when the particular solutions to (41) for All, given by the coefficients of the 2Z,,+,(x)
terms in (44) and (45), are substituted into (42) and (43), and the resulting expressions
are used in (40). A result equivalent to (44) can be deduced using [6, p. 257, eq. 21],
although that formula is restricted to Bessel functions of the first kind. This integral
can also be found in formula (4) of [7, 1.13.3, p. 50]. To obtain a result equivalent
to (45) combine formulas (1) and (4) of [7, 1.13.3, p. 50].

5. Integrands containing the square of a Hermite function or the square of a Laguerre
function. We next consider integrals of the form

(46) I= f dxf(x)HE(x),

where H is any solution of the Hermite differential equation. In this case, (3) gives
the assumed form

(47) I Aoo(X)H2(x) + 2Ao,(X)H,,(x)H,,+,(x) + A,,(x)H2+,(x).
The coupled set resulting from (4) may be uncoupled to yield

(48) D3All(X)+6xD2Al(X)+2(5+4v+4x:)Da(x)+16x(l + v)Al(X)=2f(x),

(49) Aoo(X) D2AII(X) + xDA(x) + 2(1 + t,)Al(X),

(5O)

Next consider the integral

Ao,(X) =1/2DA,,(x).

(51) I= J dxf(x)L2(x),

where L is any solution of the Laguerre differential equation. The assumed form of
the solution provided by (3) for this case is

(52) I Aoo(x)L2(x)+2Ao(x)L,,(x)L,,+(x)+A(x)L,,+(x).2
The coupled set generated by (4) may be uncoupled to obtain the equations

x2D3All(X) / 3x(1 + x)D2All(X)
(53) +(1 +Sx+4vx+2xE)DA(x)+2(1 + 2x)(1 / u)A(x)

2(1 + ,)2f(x),
x2 x(3+2u+x) (1 + ,+x)

(54) Aoo(X)=2(1+ )2 DZAll(X) / 2(1+/)2 DAIs(x)+
l+v

A(x),

x
(55) Ao,(X) DA,,(x) Al,(X).

2(1 + ,)
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6. Integrands containing higher powers of birecurrent functions. In addition to the
special cases presented above, the general cases of integrands containing a single
arbitrary birecurrent function raised to either the second, third, or fourth power have
each been uncoupled analytically. It is reasonable to conjecture that integrands of the
form

(56) I= f dxf(x)[R,(x)]",

where n is a natural number, can always be uncoupled. However, an analytical
demonstration of this has proved elusive so far.

As one example in this category, we consider the integral

(57) I f dxf(x)za(x),

where Z is again any solution of Bessel’s differential equation. The assumed form
generated by (3) in this case yields

4I Aoooo(x)Z4(x) + All(x)Zv+l(X + 4Aoool(X)Z3,(x)Zv+l(X)
(58)

2 2+ 6Aool(X)Z,.(x)Z,,+l(x) + 4Ao(x)Z,,(x)Z3+(x).
The function Alll(X) can be uncoupled from the set produced by (4) to give

xSDSA(x) lOx4D4Allll(X) 5x3(-13 + 41,2-4x2)D3Allll(X)
+ 15x(-19+ 121,- 8x2)DEAll(X)

(59)
+ x(781 1281,2x2 7401,2 + 641,4+ 392x2 + 64x4)DA(x)
-64(16-6u2x2- 201,2 + 4u4+ 9x2 + 2x4)Al(x) 24xSf(x).

The remaining functions A are expressed in terms of AI(x by the equations

1
Aoooo(X) =- DaA(x)

(60)

(5 + 21,)
D3Ai(x)

12x

(-55-36v+41,2- 16x2)
24x2 D2AI(x)

(-175-1481,- 401,x2 + 281,2 + 161,3- 84X2)
-I

24X3 DAy,It(X)

(32+321,+ 161,X2-- 81,2-- 81,3 + 20X2 + 3X4)
3X4

At(x),

1 D3Allll(X)_aoool (x) 2"

(61) +

(3 + 21,) D2Allll(X)
8x

(37+421,+81,2+ lOx2)
24x2 DA(x)

(8 + 121, + 31,X2 "+" 41,2 + 4X2)
3x

Allll(X),

1
(62) Aoo11(x)=- D2A,,,,(x) (7+61,)

12x
DAllll(X)’

(4+ 61, + 21,2 + X2)
3x2

(63)

A,,ll(X),
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In view of the complexity of the diiterential equation (59), it is difficult to obtain
solutions for arbitrary orders u. Therefore, in this case, we restrict our attention to
examples of particular orders.

As one example in this category, we considerf(x) 1/x, u 1. A particular solution
to (59) for this case is Allll(X)- x2/4. This produces the integral

f dxZ41(x) X
2 (3qt_X.) 3X

X 4
Z(x)+

4 Z(x)- Zl(x)Z(x)
(64)

(+Xa]z(x)Z(x)+4( 3x 1)+6k2 12/ 8 fx Z(x)Z2(x).

As a second example, we let f(x)= 1/x and u 3. A paicular solution to (59) can
also be obtained for this case, thus yielding the integral

ex x -k4 x x+ z(x+ x+ z(x

+4
108 54X 3 Z(x)Z(x)

(65)

( 7 1 4 x )+6 6+3X+3x+li34 Z(x)Z(x)

( x
+4

108 8x x
Since the analytical expressions for the uncoupled equations resulting from the

special cases when n 2, 3, 4 are extremely complicated, they will not be displayed.
We will instead provide a tabulation of indefinite integrals obtained by computing
paicular solutions to these uncoupled equations for ceain special cases. In view of
the very little previous work that has been done concerning integrals containing more
than two special functions, (64), (65), and the following integrals appear to be original
tabulations:

dxxZ/3(x) -x- Z/3(x)-(4x/3)Z/3(x)Z/3(x
(

+(+ )x z/(x)Z4/(x) xZ]/(x)
9 3

,4x 
12 3 - [P/3(x)]3+(-4+2Ox)P/3(x)[P4/3(x)]

(67)

(68)

(69)

16+ (9x 25x3)[P1/3(x)]2P4/3(x) ---f x[P4/3(x)]3,

dx e-3X2xZH32/3(x)= e-3X2(- x(5+6x2)H32/3(x)+-(1 +6x2)H/3(x)Hs/3(x)-- xH2/3(x)H/3(x) +1-!g H35/3(x)},
dx e-2xz x3H3_2/3(x)

16 H31/3(x)+ (1-4x2)g/3(x)H-2/3(X)

9x(1 x)/-//3(x)I-I_/(x) +
1
(-8 + }4

20x2)H32/3(x)
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dx e-3XxL32/3(x

e-3X L32/3(x)
24

625x 853x2 675x 225x4 27x5"]
24 16 16 16 16

[ 125 125x 125x2](70) + L35/3(x)
24 12 16

[125 125x 275x2 75x3]+3
24 8 16 16

L2/3(x)L/3(x)

[ 125 125x 515x
+3 2-+ --- L/3(x)Ls/3(x)

6 16 8 16 .]

dxx[P1/2(x)]4=
16 4

x2 [P1/2(X)]4+-- xP1/2(x)[P3/2(x)]3

(99)(71) +6
16 2

x2 [P1/2(X)]2[p3/2(X)]2

(33x ) 81
+4\--+3x [P1/2(x)]3p3/2(x) -- [P3/2(x)]4.

In (66)-(71), Z denotes the Bessel function, P the Legendre function, H the Hermite
function, and L the Laguerre function.

Note added in proof. Since the time of writing, additional progress has been made
on the uncoupling problem. A manuscript [8] describing this work has been submitted
for publication.
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A NONTERMINATING q-CLAUSEN FORMULA AND
SOME RELATED PRODUCT FORMULAS*

GEORGE GASPER AND MIZAN RAHMAN:

Abstract. This paper uses Gasper’s proof of Rogers’ linearization formula for the continuous
q-ultraspherical polynomials and a quadratic transformation formula for well-poised basic hyperge-
ometric 21 series to derive a nonterminating q-analogue of Clausen’s formula for the square of a
certain hypergeometric series. This formula is extended to a q-analogue of the Ramanujan and Bai-
ley extension of Clausen’s formula by employing the Gasper and Rahman nonterminating q-extension
of the Sears-Carlitz quadratic transformation formula. Additional product formulas are derived.

Key words, basic hypergeometric series, Clausen’s formula, q-analogues, Ramanujan and
Bailey product formula, nonnegative functions
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1. Introduction. Clausen’s [13] formula

(1.1) 2F1 a,b;a+b+x ( 1)3F2 2a, 2b, a+b;2a+2b, a+b+;x

Ixl < 1, provides a rare example of a hypergeometric series that is expressible as the
square of another hypergeometric series. Ramanujan’s [25] rapidly convergent series
representations for l/r, one of which was employed by Gosper in 1985 to compute r to
more than 17,000,000 decimal digits, are based on special cases of (1.1); see the Chud-
novskys’ survey paper [12]. Clausen’s formula was used in Askey and Gasper [4] to
prove the nonnegativity of a certain sum of Jacobi polynomials which, in turn, played
an important role in de Branges’ [10] celebrated proof of the Bieberbach conjecture.
One might say that it was de Branges’ work that revived an interest in the methods
that Askey and Gasper used in their proofs of the nonnegativity of certain sums and
integrals of orthogonal polynomials; see, for example, Askey [1], [2] and Gasper [14].

Current literature in special functions also reveals a vigorous interest in gener-
alizing almost every result in ordinary hypergeometric series to basic hypergeometric
series. An rCs basic hypergeometric series in base q is defined by

(1.2) rCs
b bs

;q,z (’:- ":’’si’n[(-1)nq(’)l+s-rzn’
where () = n(n 1)/2,

r

(1.3) (al, a2,"’, at; q)n H(aj; q)n
j-’l

*Received by the editors September 19, 1988; accepted for publication October 27, 1988.

Department of Mathematics, Northwestern University, Evanston, Illinois 60208. The research
of this author was supported in part by the National Science Foundation under grant DMS-8601901.

:Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6,
Canada. The research of this author was supported by the Natural Sciences and Engineering Research
Council of Canada under grant A6197.

1270



A NONTERMINATING q-CLAUSEN FORMULA 1271

and (a; q)a is the q-shifted factorial defined by

1, n 0
(1.4) (1-a)(1-aq)...(1-aqa-1), n= l,2,...

The base q is usually a complex number with absolute value less than 1. The series
(1.2) terminates if one of the numerator parameters is of the form q-m, m 0, 1, 2,....
It is assumed there are no zero factors in the denominators of the terms of the series.
If r s + 1 and the series does not terminate then we assume that Izl < 1 and Iql < 1
to ensure convergence.

Jackson [21], who spent almost all of his mathematical career in studying basic
hypergeometric series, derived the following product formula

21 [qa, qb ] [ qa, qb ]qa+b+l/2
q’ x 21 q(a+b)/2

q’ xql/2

4qb3 [ qa’ qb’ q(a+b)/2’ -q(a+b)/2 Jqa+b, q(a+b)/2+l/4, _q(a+b)/2+l/4
q’ xql/2

where Ixl < 1 and Iql < 1, as a q-analogue of (1.1) in the sense that it tends to
Clausen’s formula as q 1-. Additional proofs of (1.5) have been given by Singh
[28], Nassrallah [23], and Jain and Srivastava [22].

Unfortunately, the left side of (1.5) is not a square and so (1.5) does not have this
most important property of(1.1); in particular, (1.5) cannot be used to write certain
sums of basic hypergeometric series as sums of squares of basic hypergeometric series
as was done in [4], [14] for hypergeometric series. Recently, the authors independently
derived (see [16]) such a formula by showing that

(1.6)

abql/2, -abq/2, -ab
q’ q

[a2 b2, ab, abz, ab/z]54 a2b2, abq/2, -abqU2, -ab
;q’ q

provided the series terminate. The terminating case of Clausen’s formula follows from
(1.6) by replacing a, b, z by qa, qb, eiO, respectively, setting x (1 cos 0)/2, and then
letting q ---, 1. Formula (1.6) was employed in [16] to prove the nonnegativity of
certain basic hypergeometric series and to derive q-analogues of the Askey-Gasper [4]
inequality

(1.7) (a+2)a I-n, n + a + 2, a+

n! 3F2 a+3 a + 1
;x -> 0,

2

where 0 _< x _< 1, a >_ -2, and n 0, 1, 2,..., and of the differential equations de
Sranges [10], [11] used in his proof of the Bieberbach conjecture.

Since (1.6) holds only when the series terminate (see [16]), while (1.1) holds for
Ixl < 1 irrespective of whether the series terminate, it is irresistible to inquire whether
there is a nonterminating q-Clausen formula that gives (1.6) in the terminating case,
possibly after application of a transformation formula. As was pointed out in [16],
there are several ways of deriving (1.6), such as using the Rogers’ [27] linearization
formula for the continuous q-ultraspherical polynomials Ca(x; lq), the Gasper and
Rahman [17] formula for the product of terminating 43 series, or the Rahman and
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Verma [24] integral representation for the product Cn(x; lq)Cn(y; lq). Even though
each of these formulas involves only terminating series, we will show that a slight
modification of Gasper’s proof in [15] of Rogers’ linearization formula leads to the
following nonterminating q-analogue of Clausen’s formula (1.1):

(1.8)

g2(x) (axql/2/b’bxql/2/a;q)
54 [ a2’b2’ab’-ab’-abql/2

(x’l/’-/a-’, abx’---l/"- "q3= abq/2, a2b2, abxq/2, abqU2/x
q’ q

(qx, qx, a, b; q)+ (abqU2, abqU2, ab/xq/2, abxqU2; q)

"[ql//b’bql//’ql/’-ql/’-
O, ,

where (a; q)oo rlk=o(1- aqk), Iql < 1, Iql < 1,

(qa2x2’ qb2x2; q2)
sW7 (-abxq-1/2g(x) (-2b---x2; q2)o

;a, b,-a,-b,-x; q,-qx),

and

(1.10)
r+lWr (a; bl, b2,..., br-2; q, z)

a qal/2 --qal/2 bl b2 br-2 "]
r+lCr .al/2, _al/2, aq/bl, aq/b2, aq/br-2

;q’ zJ
When r s / 1 the basic hypergeometric series (1.2) is said to be balanced if

z q and blb:...b8 qala2...aB+l; it is called well-poised if bl qal/a2, b2
qal/a3,...,b qal/as+l, and it is called very well-poised if, in addition, a2

1/2
1 ,a3 -qa The a3 series in (1.6) and the 5a series in (1.6) and (1.8) are

all balanced while the series in (1.9) and (1.10) are very well-poised.
We will derive (1.8) and some equivalent forms of it in 2 and show in 3 that the

Clausen’s formula (1.1) is a limit case of (1.8). Also, in 4 we shall derive a q-analogue
of the Ramanujan [26] and Bailey [6], [7] extension of Clausen’s formula

(1.11)

c 2 2F1 a+b+l-c; 2

c, a+b, a+b+ 1-c ;x

which gives (1.1) when c a / b / 1/2 and the quadratic transformation

(1.12) 2F1 (a+b+l)/2; 2 2F1 (a+b+l)/2 ;x

is used. See Askey [3].
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2. Proof of (1.8). Rogers’ continuous q-ultraspherical polynomials, Cn(x; lq),
are defined by

C,(x; lq) (; q)k(/; q)n-k

k:O
(q; q)k(q; q)n-k cos(n- 2k)0

(f; q)n einO 2X [ q-n,
(q; q)n l

] -2i]-lq-n ;q, q-e

where x cos and n 0, 1,...
proved that

Using an induction argument, Rogers [27, p. 29]

(2.2)
min(m,n)

C,(x; lq)C,(x; lq)
k--’O

ak(m, n)C,+,-2k(x; lq),

where

(2.3)

ak(m,n) (,6; q)k (,6; q)m-k(fl; q)n-k(q; q)m+n-2k
(q; q)k(q; q)m-l:(q; q)n-(2; q)m+n-2:

(2; q)m+n-k(1
(q; q)m+n-k(1 )

Gasper [16] deduced (1.6) from (2.2) by setting m n, using Askey and Ismail’s [5]
43 series representation for Cn(x; lq) and the 65 summation formula [29, IV. 9].

The key to the discovery of a nonterminating q-Clausen formula is the observation
that Gasper’s [15] proof of (2.2) is independent of the fact that the parameter n in
the 21 series in (2.1) is a nonnegative integer.

In view of (2.1) let

(2.4) f(x)= 21[ a’ 3 ]qx/ 

which reduces to the 21 series in (2.1) when a q-n and x e-2i. Temporarily
assume that Ixl <_ 1, and Iql < I/1 < 1. From Heine’s transformation formula [8, 8.4,
Eq. (2)] it follows that

(x; q) 21[q/2, q/ ](2.5) f(x) (qx/; q)o oq/;q,x
Multiplying the two 21 series in (2.4) and (2.5) and collecting the coefficients of xJ
we find that

(2.6)
(oq/2, q/;(ilx; q)o

AjS2(x)
qx/ q 0" -’q’/-;;-where

q-J , q-J/o, o ](2.7) Aj 43 /2
;q’ q

q-J, q-J/a, oq/
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is a terminating balanced series. Following [15] we now use Watson’s transformation
formula [8, 8.5, Eq. (2)] to express the 43 series in (2.7) as a very well-poised s7
series:

(oq/, 0q/132; q)j
A:i (o2q/, oq/2; q)i sW7 (a2/; a, a, f, c2q+l/2, q-:i; q, q/)

Using (2.8) in (2.6) immediately leads to the formula

f2(x

The interesting property of the 21 series in (2.4), (2.5), and (2.9) is that they are
well poised and so we may apply the quadratic transformation formula [18, Eq. (3.8)]

(2.10)

2t aq/b
;q’ qx/b2

(qx/b, aqx/b;q)
(aqx/b, qx2/b2; q)o sW7 (azlb; x, all2, -all2, (aq)ll2, -(aq)ll2; q, qxlb2)

We then use Bailey’s transformation formula [8, 8.5, Eq. (3)] to express the resulting
sW7 as a sum of two nonterminating balanced 43 series. After some simplifications
this gives

c2q2k+
(2.11) 21 c2q2k+t/

q,

Since we have assumed that Ixl _< 1 and Iql < IZl < l, we can now substitute (2.11)
into (2.9) and change the order of summation to obtain the formula
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By [29, IV. 9]

(2.13) 6W (o2/; o,, q-m; q,oqm+l/2)
(a2q/, 0q/,62; q)m
(oq/, o2q/2; q)m

and by [29, IV. 7]

(2.14)
6Wg (a2/fl; c, fl, oq-m/x; q, xqm+l/)

(o2q/, oq/2, xq, oxq/; q)o (oxq, xq/; q)m
(aq/, o2q/2, oxq, xq/; q)o (xq oxq/; q)m

Using (2.13) and (2.14) we then obtain the formula

which gives the square of a well-poised 21 series as the sum of two balanced 54
series. By analytic continuation, (2.15) holds when Iql < 1 and Iqx/l < 1.

If a q-n, n 0, 1,..., then (a; q) 0 and so

where

(2.17)

However, by [5, Eq. (3.10)],

(2.18) (2; q)nf(x) (3; q)n
q-n, 2qn, (/X) 1/2, (/x)l/2

43 ql/2, _ql/2,

_
It follows from (2.16)-(2.18) that

(2.19)
ql/2, _ql/2,

_
q’ q

q-n, 2qn, , fiX,
54 ,2, ,ql/2, _ql/2,

__
;q’q
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which is formula (1.6) written in a special form.
Before closing this section we need to show that (2.15) is equivalent to (1.8). By

(2.10) and Bailey’s 87 transformation formula [9, Eq. (4.3)], we have

(2.20)

Now set a al/2 and b (q)1/2/ to obtain from (2.15) that

(qa2x2, qb2x2; q2)
(qx2, qa2b2x2; q2)o sW7 (-cbxq-I/2; a, b, -a, -b, -x; q, -qx)

(axql/2/b’bxql/2/a;q) [ a2’b2’ab’-ab’-abql/2 ](xql/2/ab, abxql/2; q)o 54 abql/2 a2b2 abxql/2, abql/2/x
q, q

(qx, qx, a2, b2; q)o+ (abq1/2, abq1/2, ab/xq1/2, abxql/2;

54
qx, qx2,abxql/2,xq3/2/ab

;q’ q lax[ < 1, ]q[ < 1,

which is formula (1.8).

3. Some variations of (2.9). If we replace a and b by qa and qb, respectively,
in (2.21) and take the limit q 1-, then the left side can be seen to approach the
left side of (1.1) with x replaced by 4x(1 x)-2 while the first term on the right of
(2.21) approaches the right side of (1.1) with x replaced by 4x(1 -x)-2. So (2.21)
can justifiably be called a q-Clausen formula provided we can show that the limit of
the second term on the right side as q 1- is zero. This can be done by using
the asymptotics of the theta functions somewhat along the lines followed in [24], but
an easier approach is to use (2.20) for the 21 function in (2.9) and then take the
term-by-term limit from a uniformly convergent double series. First, by an obvious
transformation of summation indices we obtain from (2.9), (2.20), and (1.9) that

(3.1)

(a2xql/2, -a2xql/2, -abxql/2, bxql/2/a; q)
(xq1/2, -xq1/2, abxq1/2, -a3bxql/2;
o (-a3bxq-1/2; q)m(1 + a3bxq2m-1/2)(a2, ab, -a2, -ab, -x; q)mY (q; q)m(1 + a3bxq-"i_ax-:l/21/2 _---a--q--:bql, 2-xq/,,qY2;21/2 q)m

m’-0

(-xq)m sW7 (a3bq-/2; a2, aq/2/b,-abq’/2, -a3bxqm-1/2, q-m; q, bql/2/ax).

Then, replacing a, b by qa, qb and letting q 1-, we obtain

(3.2)

{2Fl(a,b;a + b+ 1/2;z)} 2
o (2a)m(a + b)m

m!(3a+b+1/2)mm--O

Zm
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3a/b-1/2,(3a+b)/2/,2a, a-b4-1/2,-m ]5Fa
(3a4-b/2)-

;1
,a + b+ -,2a + 2b, 3a + b+ 1/2 + m

(by [29, III.13])

where z -4x(1 -x)-2. This completes the proof that (2.21) is a q-analogue of
Clausen’s formula (1.1). Clausen’s formula can be used to show that if a and b are
replaced by qa and qb in (2.21), then the second term on the right side tends to zero
asq 1-.

Similarly, it can be shown that formula (2.15) is a q-analogue of the formula

(3.3)

2F1 a + 1 -b ;x

(1 x)-2a 3F2 [a,a 4- 1/2 b,a 4- 1 2b

a 4-1-b, 2a 4-1- 2b (1 x)2

where Ixl < 1 and 14x(1- x)-21 < 1.
It may be of interest to point out some other aspects of (3.1). The very well-

poised sW7 series on the right side of (3.1) is terminating and so can be transformed
to a terminating balanced 43 series by Watson’s formula [8, 8.5, Eq. (2)]. Thus we
find that

(3.4)

(a2xq1/2, -a2xq1/2, -abxq1/2, bxql/2/a;
g2(x) (xql/2 -xql/2, abxql/2, -a3bxql/2; q)

o (-a3bxq-1/2; q)m(1 4- a3bxq2m-1/2)(a2, ab, -ab; q)m

ab 43
q-m, _a3bxqm-1/2, b2, _abql/2

a2b2, abql/2, abxql/2
q’ q

If a2 or ab or -ab is of the form q-n n 0, 1, 2,..., then by changing the order
of summation the double sum on the right side becomes a sum of very well-poised
65 series which can be summed by [29, IV. 9], reducing the right side of (3.4) to a
multiple of a 54 series. This is essentially the route taken in [16] to derive (1.6). In
general, this change in order of summation is not valid since the double series does not
converge absolutely, as can be seen by observing that if it were absolutely convergent
then we would have

(3.5)

(a2xq1/2, -a2xq1/2, -abxq1/2, bxql/2/a; q)oo
(xq1/2, -xq1/2, abxq/2, -a3bxql/2; q)oo

a2 2 ab 1/2 a3 1/2o b ab, -abq ;q)k(-- bxq ;q)2k

k=0

q-k2/2 (__)xq k
6W5 (--a3bxq2k-1/2; a2qk, abqk, --abqk; q, xqU2-k/ab)

but the 6W5 series clearly diverges for sufficiently large values of k when x



1278 GEORGE GASPER AND MIZAN RAHMAN

By applying Bailey’s [9, Eqs. (4.3)-(4.6)] transformation formulas to the
series in (2.21) and transformation formulas for well-poised series to the 21 series in
(2.15), these formulas can be written in many equivalent forms. In particular, since it
follows from (3.8) and (3.9)in [18] that

[ a, qal/2, -qal/:,
(3.6) 43 al/2 --al/2

b ] [ ]aq/b
q’x (1- bx) 21

aq, bq

aq/b
q’ x

which can also be verified directly, (2.15) can be used to write the square of a very
well-poised 43 series as a sum of two balanced 54 series. In addition, Jackson’s [20]
transformation formula

;q,x q’o 22 ;q, bx
c, ax

can be applied to the 21 series in (2.15) to derive formulas which after changes in
variables are q-analogues of the formulas

(3.s) 2F2 (a+b+l)/2;x 3F2[ a,b,(a+b)/2 ]a + b, (a + b + 1)/2
;4x(1 x)

and

(3.9) 12Fl [ a’ 1- a [=(l-x)2c-23F2 a+c-l,c-a,c- 4x(1-x
c, 2c 1

where Ix < 1 and 14x(1- x)l < 1.

4. Additional product formulas. Let Us start by proceeding as in the
derivation of (2.6) to derive the more general formula

c
;q,x 21 ;q,y

(ay/7; q)
t.y; q) [ a, b ] [7/,7/ _](4.1) ,__ _., 2 ;q,x 21 ;q,

c

(Y; q)
j=0

with

[q-j ql-j/..,/, a, b _](4.2) Bj 43 ;q,
aql-j/.y, /ql-j//, c

provided max(lxl, lyl, < 1. In order to apply Watson’s transformation for-
mula [8, 8.5, Eq. (2)] to the 3 series in (4.2), it is necessary that the series be
balanced, that is

(4.3) 7 oc/ab and y x.
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Then, assuming that (4.3) holds,

(4.4) (acla, aclb;q)j
Bj (aCl ’ac/ab; q) sW7 (ac/q; a, b, a, anc:qJ-/ab, q-J; q, q/)

and hence

;q,x 21 ;q,x
c ac/ab

(abx/c; q)o (,c/ab, oc/a, ac/b; q): (a__)
j

(; q) (q,/,;q)
j=O

(l ocq2k_l)(oc/q, a, b, o, o2qj_l/ab, q_j; q)k ( q )
k

k=O
(1- ac/q)(q’ ac/aiac/b’ c’ abql-:i/’c"acq:i; q)k

(abx/c; q)o o (1 acq2k-l) (ac/q, a, b, a; q)k(aflc2/abq; q)2kxk
(; q) =o

c ( ./q)(q. .-/..;,/q; q)(.; q)

with

(4.6) C 43 [ c2q2k-1/ab’ c/ab, ocqk/a,
acq2k, acqk/ab,

acqk/b ]ac2qk-1/ab
q’

To proceed further we now observe that the quadratic transformation formula (2.11)
is a special case of the authors’ nonterminating extension [18, Eq. (1.2)]

(4.7)

32 [ a, b, c aqx 1
aq/b, aq/c; q’ -cJ

(ax;q)o [al/2, -al/2, (aq)l/2, -(aq)l/2, aq/bc ](x; q)o 54 aq/b, aqlc, ax, qlx
q’ q

(a, aq/bc, aqxlb, aqxlc; q)+ (aq/b, aq/c, aqx/bc, x-1

.5a[xal/2, -xaU2, x(aq)U2, -x(aq)U2, aqx/be ]aqx/b, aqx/c, xq, ax2 q’ q

of the Sears-Carlitz transformation formula for a terminating well-poised 32 series.
Thus, if we set a a and aq/c then the 43 series in (4.6) reduces to a well-poised
a2 series to which we can apply (4.7) to extend (2.11) to

acq2t:/b, q/b, cq, abx]32 acq2t:, aqk+l/b
q’ --(ax; q)(-cq/bx)t:q()

(/;q)(,q/; q)

I aqk’ (ac/b)l/2qk’--(ac/b)l/2qk’ (ac/b)l/2qk+U2’-(ac/b)l/2qk+U2
(4.S) 5(4

acq2k, aqk+l /b, axqk, cqk+l/bx
(ac/b, a, abx, aqx/c; q)(aq/b, c/bx; q)k(ac; q)2k+ (ac, aq/b, abx/c, c/bx; q)oc(a, abx; q)k(ac/b; q)2k

54 abxqk, aqx/c, bxq1-k /c, abx2/c q’ q]
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Substituting (4.8) into (4.5) and changing the order of summation, we find that

;q,x ;q,x;q,x
c aq/b

(ax, abx/c; q) (a; q)m(ac/b; q)2mqm

" bxlc; q) &o= (q’ aqlb, ax, cqlbx, ac; q)

(4.9) 6W, (ac/q; a, b, q-m; q, cqm/b)
(ac/b, a, abx, aqx/c; q)oo <x> (abx/c; q)m(abx2/c; q)2mqm

"-I-
(ac, aq/b,x, c/bx; q)oo mZ-f:o (q, abx2/c, aqx/c, abx, bxq/c; q)m

6W5 (ac/q; a, b, cq-m/bx; q, xqm).

Since each of the above 6W5 series is summable by [29, IV. 7], it follows from (4.9)
that we have the product formula

(4.10)

;q,x 2 ;q,x
c aq/b

(ax, ab:r, lc; q)<,<> [a, (aclb)1:, -(aclb)12, (acqlb) 112, -(acqlb)112

(X’,’b’x’/c’i q)’ 6,:>, aqlb, c, aclb ax, cqlbx
;q’ q

.,i

(a, c/b, ax, bx, axq/c; q)o,::>+ (c, aq/b,x,x,c/bx;q)oo
r x(ablc)12, -x(ablc) 12, x(abqlc)i:, -x(abqlc)12 I6b5

ax, bx, axqlc, bxqlc, abx2 Ic q’ qj
where Ixl < 1 and Iql < 1. This formula reduces to (2.15) when a ct, b , c ctql3
and x is replaced by qxlJ.

By applying transformation formulas to the 21 series in (4.10), this formula can
be written in many equivalent forms. In particular, to derive a q-analogue of the
Ramanujan and Bailey product formula (1.11), replace b in (4.10) by c/b and apply
Jackson’s transformation formula (3.7) to obtain

2[a, b cx] [ a, b axq];q,-- 22 ;q,-
c, ax abq/c, ax c

(x, ax/b; q)oo [ a, b, (ab)i-/2, -(ab)I/2 (abq)l/2 -(abq)i/2
(4.11) (ax, x/b; q)<x> 65 abq/c, c, ab, ax, bq/x

;q’ q

(a, b, cx/b, axq/c; q)oo+ bl ;
r x(alb) 1/, -x(alb) 1/2, x(aqlb) 1/2, -x(aqlb) ’/2 ]

65
ax, cxlb, axqlc, xqlb, ax21b

q’ q

when max(Iql, laxqlcl, lcxlbl) < 1. If we replace a,b,x in (4.11) by qa, qb, zl(z 1),
respectively, and let q -+ 1-, we get

C
;Z 2F1 a+b_c+l;Z

[a, b, (a + b)12, (a "4- b "+" 1)/2
(4.12) 4F3 ;4z(1 z)Jc, a+b, a+b+ 1-c
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which on setting z (1- 1 x)/2 gives (1.11). Note that when c (abq)l/2,
formula (4.11) gives the square of the series

a, b
22 (abq)l/2, ax

q, x(aq/b)U2]
as a sum of two balanced 54 series.
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DUALITY FOR FAMILIES OF NATURAL VARIATIONAL PRINCIPLES
IN NONLINEAR ELECTROSTATICS*

J. F. TOLAND" AND J. R. WILLIS’

Abstract. Standard duality theory embeds a given minimisation problem into a family of such problems
and relates the solution of the original problem to a particular member of the dual family of problems. This
theory is extended, in the specific context of the nonlinear electrostatic theory of a composite dielectric
material, by considering a family of minimisation problems, parametrised by the imposed data, whose
solutions define a convex function ofthis data. Here, the primary variable is the electric field. A corresponding
family of dual problems is constructed, in which the primary variable is the electric displacement. The
novelty of the formulation is that the duality is interpreted in terms of the space of the parameters that
define the original family, so that the dual family generates a convex function of a dual set of parameters.
It is demonstrated, under mild hypotheses on the electric properties of the nonlinear dielectric material,
that these two convex functions are Legendre transforms of each other. As a by-product, the precise
complementary duality principle between individual pairs of variational problems (as opposed to families
of variational problems) is elucidated.

Key words, duality, Legendre transforms, electrostatics

AMS(MOS) subject classifications. 49A55, 49A52, 49A27, 78A30

1. Introduction. This paper is concerned with two families of variational problems
in the nonlinear electrostatic theory of a composite dielectric material. In one the
dependent variable is the electric potential, and in the other family it is the electric
displacement field. Each family is parametrised by the imposed data, and as such each
minimisation problem defines a convex function of the space of imposed data. Our
main goal is to show that, under very generous hypotheses on the electric properties
ofthe nonlinear dielectric material, these two convex functions are Legendre transforms
of one another. As a by-product, the precise complementary duality principle between
individual pairs of variational problems (as opposed to the families of variational
problems) is elucidated. The main result is explained in detail in 3.4, but it is
appropriate to give a sketch of it here.

Let II denote a connected open bounded set containing a composite material with
variable dielectric constant. The material may contain regions of conductor where the
dielectric constant is infinite, and regions of insulator where the dielectric constant is
zero. Let Fo denote a prescribed nonplanar portion of the boundary F of ll, and let
Hp denote a space of functions on fI vanishing in a weak sense on Fo. Then the
primary family of boundary value problems may be written loosely as

(1.1) min
1 In/#- E(x, V(x)+ A) dx F(A).

Here E: ft R R U { +} denotes the electric energy density function (whose
properties are described in detail in 3.2), AR3, and the equilibrium potential

= + A.x is A.x in a weak sense on F. The significance of this formulation is as
follows. First, in the particular case that F F, A is the mean value over fl of the
equilibrium electric field; this case has direct relevance to composite media and is
highlighted in [6] and [7], for example. Other cases may also have physical significance.
For instance, ifF consists ofportions oftwo distinct parallel planes and is prescribed

* Received by the editors June 15, 1988; accepted for publication November 30, 1988.
School of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom.
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to be constant on each, then A provides a measure of the potential difference between
the planes, although it is not, in general, the mean value over fl of the electric field.
In every case, F(A) is the mean energy function associated with A. An alternative
formulation is to let E*(x,. be the Legendre transform of E(x,. and to pose a
variational problem for the electric displacement which can be written loosely as

(1.2) min 1__. In E*(x, w*(x)) dx =f.(A*)

w*.n=O onF\F

A noteworthy feature of problem (1.2) is that no boundary data are imposed in the
case F F, A* prescribes only the mean of w* over ft.

Our purpose is to say precisely that f. and F are Legendre duals of one another
and to establish (3.12) and (3.13) when the variational principles are correctly formu-
lated in Sobolev spaces over a domain fl with sufficient regularity on the boundary.
It is important to recognise that this result is different from one that says that two
variational problems (as opposed to two families of variational problems) are related
by duality. As a consequence of the present considerations we find an answer to the
following question. If, for given A eRa, q is a solution of (1.1), what is the mean
electric displacement that must be imposed in problem (1.2) to obtain the same
equilibriumg. The solution is given in 3.4.

This paper puts the work of Talbot and Willis [6] and Willis [7] in its application
to electrostatics in a precise functional analytic context. These authors seem to have
been the first to address the question of duality for families of variational problems
parametrised by spaces of prescribed data. In fact, the duality theory is implicit in the
work of Ekeland and Temam [2], although 2 of this article seems to be the first place
where the present implications of classical Fenchel duality theory have been explicitly
recognised for a generally parametrised family of variational problems. Clearly, the
work of 3 is only one special case where this viewpoint is valuable. Extensions to
certain others, as addressed, for example, by Talbot and Willis [6], Willis [7], and
Ponte-Castafieda and Willis [4] would be straightforward. On the other hand, an
extension to finite deformation nonlinear elasticity would be less so, in view of the
need to relax convexity assumptions (see, e.g., Ball [ 1 ]). This latter problem is a subject
of ongoing research.

2. The duality theory. Let V, V*; W, W*; and X, X* be three pairs of topological
vector spaces in separating duality, the duality pairing being denoted by (,), and let

(the extended reals)

be a proper, convex, lower semicontinuous function (proper means -oo anywhere,
and +oo). For fixed A X, let

(2.1) F(A) inf :(v, 0, A).

Now define A" VX WxX -’) R by

tbA(V, W,A)=(V, W, A+A).

Then

(2.2) F(A) inf (I)A(U, O, 0).
uV
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By standard Fenchel duality (see Ekeland and Temam [2])

(2.3) F(A) _-> sup A*(0, W*, A*),
(w*,A*) W*xX*

whence

F(A) -> sup {(A*, A)- *(0, w*, A *)}
(2.4)

(,*.*) w*x*

sup {(A*, A)- inf *(0, w*, ,*)}.
A*X* w* W*

Here :* denotes the Legendre transform of (which is called the polar function of
by Ekeland and Temam [2]).
Now let

Then (2.4) says that

F.(A*) inf :*(0, w*, A*).
W* W*

F(A) _-> sup {(A*, A)- F,(A*)}.
A*X*

In other words,

(2.5) F(A) _-> (F,)*(A), A e X.

Taking the Legendre transform of both sides of (2.5) gives

(2.6) F*(A*) -_< (F.)**(A*) F.(A*), A* X*.

We now apply standard theory to the question of equality in (2.5). We adopt the
convention that equality in (2.5) means that both quantities are finite and equal for
all A X. There follows the well-known criterion for equality (Ekeland and Temam
[2, Chap. III, Prop. 2.1]).

PROPOSITION 2.1. Equality in (2.5) holds if and only if hA(0, 0) is finite and hA is
lower semicontinuous at (0, 0), where

(2.7) hA(W, A)= inf (v, w, A+A).

It is interesting to ask whether equality in (2.6) follows from equality in (2.5).
This will be so if and only if F. is a proper convex lower semicontinuous function of
A*. The next proposition gives hypotheses when it is.

Let A*e X*, w W, and

HA.(W) inf {(v, w, A)-(A*, A)}.
(v,A) VxX

PROPOSITION 2.2. Thefunction F,:X* R is a proper convex lower semicontinuous
function if HA.(0) is finite and HA* is lower semicontinuous at O Wfor each A*e X*.

Proof. Let A* be fixed,

W(v*, w*, A *) *(v*, w*, A* + A *)

and note that (since **=)
**(v, w, A)= :(o, w, A)-(A*, A).

By hypothesis,

HA*(W) inf **(v, w, A)
(v,A) VxX
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is finite and lower semicontinuous at 0 W. Hence by [2, Chap. III, Prop. 2.1],

(v*,A*)= inf *(v*, w*,A*+X*)
W* W*

defines a function which is finite and lower semicontinuous at (0, 0) V*x X*. A
fortiori, (0,. )" X* is finite and lower semicontinuous at 0 X*. But/(0, A*)
F,(A*+ A*). Hence F. is finite and lower semicontinuous on X*.

Let us suppose that the hypotheses of both propositions hold. We then conclude
that

(2.8) F(A) (F,)*(A), A X

and

(2.9) F*(A*) F,(A*), A* e X*.

Moreover,

(2.10) F(A)+ F,(A*) _-> (A, A*),

and

(2.11) F(A) + F,(A*) (A,

if and only if either one of the following two extremality conditions hold:

(2.12) A* 0F(A) or A 0F,(A*).
Remark. If F and F, are defined and finite on a finite-dimensional space, then

the subdifferentials are everywhere nonempty. In 3.4 the significance ofthese observa-
tions is made clear in a particular example.

Now we are in a position to formulate the electrostatic boundary value problems
sufficiently precisely so that the results indicated in 1 can be inferred from the above
interpretation of duality theory.

3. Mathematical formulation.
3.1. The composite. In this section we specify the domain occupied by the com-

posite and its dielectric properties in a sufficiently precise way so that the duality
theory of the preceding section can be invoked in appropriate spaces of admissible
functions. What we have in mind is a body of composite material possibly containing
interior regions of conducting material where the dielectric constant is infinite and
regions of insulating material where the dielectric constant is zero.

Let f R3 be a bounded, open connected set which represents the region occupied
by the composite, including insulating and conducting regions. Let F denote the
Lipschitz boundary of I. Suppose that the closed subset F of fl occupied by insulator
is the union of a set of zero measure and the closure of an open set with Lipschitz
continuous boundary. (It is possible to weaken this assumption on boundary regularity
by supposing only minimal smoothness in the sense of Stein [5, Chap. VI, 3].) The
conducting region in 11 will be denoted by G, and it is a closed set which does not
intersect F. Let F, F denote a subset of F of positive two-dimensional measure, which
is not a subset of a plane. (F, may contain flat portions of the boundary F, provided
it is not entirely coplanar.)

3.2. The electric energy density function. The electric displacement D may be
written formally in terms of the electric field E as D=E’(x, E), where denotes
differentiation with respect to E, and x f. To pose the electrostatic boundary value
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problem variationally there is no need for E to be differentiable, but the regularity of
solutions of the variational problem is determined by the differentiability of E. We
assume, first of all, that E, which is possibly infinite at points x G, is a Carath6odory
function:

(i) For all E R3, x - E(x, E) is measurable on 12;
(ii) For almost all x f, E E(x, E) is continuous on R3.
In addition we suppose
(iii) E E(x, E) is a proper, convex, extended real-valued function for almost

all x
(iv)

for all smooth functions u such that u(x)= O, x G;
(v)

E(x,E)=0, xeF, ER3;
(vi) There exist q > 1, b :f (0, ), and c Ll(f) such that

E(x, E) >-_ b(x)lEI- c(x), x \f

where 1/b L(f), for some a > 1/(q- 1).
Conditions (i) and (ii) are more or less unavoidable in a modern treatment of the

calculus of variations; (iii)-(vi) ensure that the variational problem is bounded below
and is convex, and guarantees the lower semicontinuity needed to invoke the theory
of 2 in certain Sobolev spaces of pth power integrable functions where

(3.1) p= >1.
l+t

Condition (iv) allows f to contain a region G of conducting material. We simply
put

(x, 0)= 0, x o,
E(x,E)=+, xG, E0.

The integrand in the variational problem then penalises the conducting region
naturally and forces E 0 in G. Condition (v) allows f to contain regions of insulator.

3.3. Function simees. Let denote the space of all smooth functions on I that
are zero in a neighbourhood of F, and let Hp denote the completion of Coo with
respect to the norm

dx.

Throughout this section p is given by the formula (3.1). We note, immediately, that if
u Coo, then Poincar6’s inequality [3, Thm. 3.6.4] yields

I ’u(x)lP dx<=(const) Io lVu(x)’P dx.

Hence the norm I1" I1 is equivalent to [. Ip where

lulg [ Ivu(x)l dx, u
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Moreover, it follows that the space

is a closed subspace of (Lp(fl)) 3. Since is not a subset of a plane, we know that
the only constant function in Vp is zero.

Now we are in a position to formulate the electrostatic boundary value problem
in a precise way.

3.4. Boundary value problems. The family of primal problems parametrised by
AR is

(3.2) A" inf
1 In v,(x, A+ dx.

To put this in the context of 2, we define our spaces of functions as follows:
X {A: A E R3}, the constant functions in (Ln(fl))3;
V= Vp, a closed subspace of (Ln(fl)) 3 with Vf3X={0};
W any topological complement of X0) V in (Ln([1)) 3;
X* (V0) W) -L (L,,(fl))3;
v*
w* v)

where p- +p’- 1 and .1_, as usual, means the annihilator. Each is a normed linear
space with respect to the. norm inherited from (Lp(l’l)) 3 or (L,([I)) 3. Let (u, v)=
(1/Itl) j’. u(x). o(x) rig, (u, o) (L,(a))’ x (tp,([)) 3.

LEMMA 3.1. Each of (X, X*), (V, V*), and (W, W*) is a pair of Banach spaces
in separating duality (using the dual pairing of (L, (l’l)) and (L,,(fl)) 3 given above),
and X* has dimension three.

Proof. Because of the symmetry in the definitions, it will suffice to show that the
result holds for (W, W*). If w W, then by the Hahn-Banach theorem there exists a
bounded linear functional f on (L,(fl)) such that f(w)# 0 and f(XO) V)=0, since
X0) V is a closed subspace. Hence fe W* and f(w)#O. Now suppose w*e W*. If
w* 0, then there exists u e (L,(I’I)) 3 such that w*(u) # O. But u v+ w+ x V0) W0)
X, and so w*(w)#O since w*(v+x)=O. Hence (W, W*) are in separating duality.

Since X has dimension three, let X =span {el, e2, e3}. By the Hahn-Banach
theorem there exist three boundedlinear functionals f,f2, and f3 on (L,(fl)) 3 such
thatf(e) 8i andf(V0) W) 0, 1, 2, 3: Hence these are three linearly independent
elements ofX*. Now suppose thatf X* and x te + flee + ’Ye3 X. Thenf(V0) W)
0, and f(x)=f(ae+fle2+/e3)=f(e)f(x)+f(eE)fE(x)+f(e3)f3(x) and so fe
span {f, f2, f3}. [3

Let us suppose now that, with respect to the function spaces just specified, the
functional

.(v, w, A) E(x, v(x) + w(x) + A) dx

satisfies the hypotheses of the propositions of 2. (The proof that this is so under the
assumptions of 3.1 and 3.2 is the substance of 4.) To calculate the dual family of
problems parametrised by A* X*, we need to calculate the Legendre transform of
r. Now ]r(0, 0, 0)[ < o by condition (iv), and so, by [2, Chap. IX, Prop. 2.1], we find
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that

*(0, w*, A*)

sup {(A, A*)(v,w,A) Vx WxX + {w(x) w*(x)- (x, v(x) + w(x) + A)} dx

sup ifl--] {(v+w+A)’(A*+w*)-E(x,v+w+A}dx
(v,w,A) Vx WxX

,(Lp(a))sup {U" (A*+ w*)-E(x, u)} dx

_1 f W*(x, A*(x) + w*(x)) ,ix,

where E*(x, u*)=sup,n3{u, u*-E(x, u)} for all u*ER3. (Here. denotes the usual
inner product in R3.)

Hence, in the light of 3.3, the dual family is parametrised by the three-dimensional
linear space X* as follows:

(3.3) *A*" inf
1 fn.. v*(x, A*(x)+ w*(x)) dx,

and for each A*e X* we let F.(A*) denote the right-hand side of (3.3). The physical
significance of P’A* may be elucidated by the following observations.

If x E F, then E(x, E) 0 for all E, and so

E*(x, 0) 0, E*(x, u*) +o, u* 0.

As a consequence, any w*e W* where the integral in (3.3) is finite has the property
that A*(x)+ w*(x)= 0 almost everywhere on F, the region containing the insulator. If
A* X* is fixed, then (3.3) is finite only if, in a weak sense,

(3.4) Div (A* + w*) 0 on

(3.5) (A*+ w*)= 0 on F,

(3.6) (A* + w*).n 0 on r\r,

and

(3.7) [fI-- (A*(x) + w*(x)) dX=l A*(x) dx,

since, by definition of the spaces,

(3.8) fn (A*(x)+w*(x)) Vcp(x) dx=O, q,I, and

Because of Lemma 3.1, we know that the mapping

(3.9) A*-’> r’A- A*(x) dx

w*(x) dx O.

is a linear bijection from X* onto Ra. Therefore, the family of dual principles can
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be rewritten in terms of variational problems for electric displacements with mean
x*= 1/l l A*(x)dx as follows (see (1.2))"

(3.10) .: inf 1_ Ia E*(x, u*(x)) dx.
Div u* 0,

(/Inl) u*(x) dx=x*,

u*.n=O F\F,

Note that for (A, A*) X x X*,

1 f A* *(3.11) (A, A*) - .la
A. (x) dx A. A

and note that the primary family of problems can be written in a weak sense as

inf
1 f_- E(x, V(x)) dx.

tp wI,P ("),
ff,=A, F

(This means that is admissible if ( -A. x)e p.) The duality theory of 2 can now
be written out in the following weak sense:

(3.12) F*(A*) =f,(A*) and (f,)*(A) F(A),

i.e.,

inf
o Wl"P(t),
q=A.x r

inf
U* (Lp,(-))
Div u* 0,

(/11) u*(x) dx--x*,

u*.n=O F\Fo

| E*(x, u*(x)) dx >-A. A ,

and equality holds if and only if

(3.13) A* 0F(A) and A Of.(A*),
where f,(A*) denotes the right-hand side of (3.9) and 0F denotes the subditterential
of F.

To complete the discussion, we note that both F and f. are defined on R and
are convex. Hence at every point A, 0F(A), and at every point A*, 0f.(A*) .
M^oreover, under the hypotheses on E, F(A) and f.(A*) are both attained at points of
Hp and W*.

The physical significance of these observations is an answer to the following
question. If A R and A has equilibrium potential given by A. x / o, o Hp, what
mean electric displacement must be prescribed to obtain the same equilibrium in this
nonlinear problem? The answer is obtained by solving the first equation in (3.13).

Note that, because of the growth condition (vi) on the electric energy density
function, there always exists 0 Hp such that F(A)= (A+Vo).

4. Lower semicontinuity. This section contains proofs of the technical results
needed to invoke the theory of 2 for the nonlinear dielectric functions. Throughout
we will suppose that f and E are as specified in 3.1 and 3.2, and that p aq/(1 + a) >
1. Let : (Lp(f))3 be defined by

(4.1) r(u) =]-l E(x, u(x)) dx, u e (Lp(12)) 3.
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Because of conditions (i)-(vi) in 3, is a proper convex function, and our first task
is to show that it is lower semicontinuous with respect to the norm topology on (Lp(1)) 3.
Suppose u, + u in (Lp(F)) 3. Then, extracting a subsequence if necessary, we may
suppose that u,- u pointwise almost everywhere. Since E is bounded below on \F
by the integrable function -c and condition (v) holds, it is immediate from Fatou’s
lemma that

(u)_-< lim inf- E(x, u(x)) dx.

In other words, is lower semicontinuous on (Lp(fl)) 3. Because is convex it is
lower semicontinuous with respect to weak convergence as well. Hence we can infer
(2.5) and (2.6) without making any growth assumptions (such as condition (vi)) on
E. But we need to verify the hypotheses of Propositions 2.1 and 2.2 to get equality in
these inequalities.

Let A 6 X and let hA be defined by (2.7). Then hA(0, 0) < by condition (iv). Let
A be fixed, and let (w,, A,) WxX be such that (w,, A,)(0,0), and let v, V be
such that

(4.2) (v+w,+A+A)= E(x,v+w+A+A) dxNhA(W,A)+l/n.

Now the boundary of (flF) is Lipschitz, and so by Stein’s extension theory
[5, Chap. VI, 3], there is no. loss of generality in supposing that

IIvII(L,(m)(const)IIv. II(L(.X)) since E(x, g)=0, x F.

If hA(W.,h.) as n, then it is trivial that hA(O,O)liminfhA(W.,h.). So
suppose ha(w, h) is bounded, by M, say. Then by (4.2) and condition (vi), putting
v. + w. + h. + A u., we get

F F

(by H61der’s inequality)

b(x)lu(x) dx b(x)-/- dx
F F

E(x, u.(x)) dx + Ilcll,(m b(x)

since E(x, E) =0, x e E Hence u. II(,(m is bounded. Since w. + A.0 in (Lp())3,
we conclude that (v.) is bounded in (Lp(f)) and hence in (Lp (fl)) 3. Since p > 1, (v.)
has a weakly convergent subsequence, v. v, say, and v e V because V is weakly
closed. Since is weakly lower semicontinuous in (Lp(O)) we find that

hA(0, 0) (v + A) lim inf (v. + w. + A. + A)

_-< lim inf hA(W., a.),

which proves that the hypotheses of Proposition 2.1 hold.
Finally, to verify the hypotheses of Proposition 2.2, we note that the argument

for HA* being finite and for HA* being lower semicontinuous is identical to the one
that we have just given. [3
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ELECTROSTATIC PROBLEMS FOR TWO CONDUCTING SPHERES*

ANDREW H. VAN TUYLt

Abstract. Investigations are carried out for two spheres at given potentials V and V,, and for two
spheres at potential zero in the presence of an outside unit point charge. Integral representations involving
elliptic functions are obtained for the solutions of these problems, starting from series solutions in dipolar
coordinates. These integral representations are used to obtain the asymptotic behavior of the charge density
as the distance e between the spheres tends to zero. Integral representations are found for the limiting
charge density as e-> 0, and convergent and asymptotic expansions for the limiting charge density are
obtained. These results are used to investigate circles of zero charge density in the limit e--> 0.

Key words, electrostatic problems, two spheres, potential, charge density

AMS(MOS) subject classification. 31B20

1. Introduction. The potential outside two charged conducting spheres was first
given by Poisson [17] in 1811. Further investigations were carried out by Plana 16]
in 1845, Kirchhoff [10] in 1861, and Carl Neumann [13] in 1863. Dipolar coordinates
were used in 13], and the Green function for the exterior of two spheres was given
for the first time. Later work concerning two charged spheres includes investigations
by Jeffery [5], who developed the use of dipolar coordinates further, and Russell
[18]-[21]. A detailed treatment of electrostatic problems for two spheres has been
given by Kottler in [11]. More recently, electrostatic problems for two spheres have
been of interest in connection with the conductivity of granular materials (Keller [9],
Batchelor and O’Brien [2], and Jeffrey [6], for example). In [7], Jeffrey has used an
approach for nearly touching spheres based on the method of matched asymptotic
expansions.

The present paper is concerned with investigations of the solutions of the electro-
static problems for two spheres defined by the following conditions: (1) The spheres
are at given potentials V1 and V2; (2) The spheres are at potential zero in the presence
of an outside point charge. These will be referred to as the first and second problems,
respectively. The present investigation starts from the solutions of the first and second
problems in dipolar coordinates in the form given by Ernst Neumann 14]. The solutions
of these problems, including the potentials, charge densities, and total charges, are
first expressed in terms of definite integrals that involve elliptic functions. From these
integrals, definite integral representations are found for the limits ofthe charge densities
in the first and second problems as the distance e between the spheres goes to zero.
Convergent and asymptotic expansions are obtained for the charge density at the inner
axial points of the spheres as e goes to zero, and for the limiting charge density.

Kirchhoff [10] found that the charge density at the inner axial points of two
spheres with potentials and radii equal-to unity is asymptotically proportional to
e -3/2 exp (--2-17r2e -1/2) as e tends to zero, correcting the orders of magnitude e2 and
e3 given by Poisson [17] and Plana [16], respectively. In 7 of the present paper,
Kirchhoti’s result is obtained from the integral representation for the charge density

* Received by the editors September 29, 1987; accepted for publication (in revised form) November
18, 1988. These results have been obtained at various times during the past 40 years, starting from portions
of the author’s unpublished Ph.D. thesis. Most of the results of 4-6 were obtained at Indiana University
in 1953 under Army Ordnance Contract DA-33-008 ord-454.

" Applied Mathematics Branch, Code R44, Naval Surface Warfare Center, Silver Spring, Maryland
20903-5000.
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in 6. In 8, the corresponding result is found for the charge density in the second
problem. It is found that the behavior with respect to e remains the same as in the
first problem, but with a coefficient which depends on the position of the point charge.

In 10, the limiting charge densities in the first and second problems as e 0 are
expressed in terms of definite integrals. In 11-14, these integrals are used to obtain
various expansions, both convergent and asymptotic, for the limiting charge density.
One of these expansions is a power series expansion in the neighborhood of the outer
axial point. In 15, this expansion is used to find the ratio V2/V1 > 1 such that, in the
limit e 0, all the charge on sphere 1 is negative while V1 is positive.

2. Dipolar coordinates. Dipolar coordinates ’0, 0, and b are defined by the
equations

(2.1) x+ip=ia cot 1/2(0 + i’0),

(2.2) y p cos b, z p sin b,

with a > 0, p > 0. Let the points (a, 0, 0) and (-a, 0, 0) in Cartesian coordinates be
denoted by A1 and A2, respectively. The coordinate surface ’0 =constant is a sphere
with A1 and A2 as inverse points, and 0 constant is a spindle with A1 and A2 as vertices.

When ’01 > 0, the sphere ’0 "01 has radius a csch ’01 and center at x a coth "01,

y z 0. Let P1 be an arbitrary point on the sphere ’0 "01 > 0, let its center be denoted
by O1, and let the angle between 01P1 and the negative x-axis be denoted by to1.
Denoting the coordinates of P1 by the subscript 1, we have

(2.3) xl a(coth ’0i- csch ’01 cos tol),

From (2.1) and (2.2), it follows that

pl a csch ’01 sin to1.

(2.4) sin 01
sinh ’01 sin to1

cosh ’01 cos tol

with 01 r when to1 0 and 01 0 when
Given the two spheres ’0 ’01 and "0= "02, ’01>0> ’02, the former contains A1 in

its interior and the latter contains A2. Let their radii be rl and r2, respectively, and
let the distance between their centers be c. Since A1 and A2 are inverse with respect
to both spheres, we have

(2.5)

which yields

/r+ a2 +/r+ a2 c,

(2.6) a
2c r12 2c r22"

Substituting c rl + r2 + e, e > O, we find from either expression for a in (2.6) that

x/e(e + 2rl)(e + 2r2)(e + 2rl + 2r2)
(2.7) a

2(e + rl + r2)

In the special case rl =r2 =r, (2.7) simplifies to

(2.8) a =1/2x/e(e+4r).
We also have

(2.9) "01 sinh-1
a
--, ’02 _sinh_

a

’1 F2
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We can calculate a, r/l, and */2 by use of (2.7)-(2.9) when rl, r2, and e are known.
When e-. 0, we see that

x/2rr2e [1 + O(e)],(2.10) a
rl + r2

[1 + O(e)],2r2e(2.11) r/1 rl(rl+r2)
and

+,:),
(2.12) r/l- r/_=. .. [I + O(e)].

From (2.4), (2.10), and (2.11), we find that

(2.13) cot [1 + O(e)]

as e 0. Finally, at a given point in space, we find from (2.1) that

2ax
(2.14) r/-x2 + p2 [1 + O(e)]

and

2ap
(2.15) 0 -x:+ pu [1 + O(e)]

as e -> 0. Equation (2.7) does not appear to be in the literature.

3. Solutions of the electrostatic problems. In the coordinate system of 2, let the
given spheres be the coordinate surfaces r/= r/ and 7 r/2, respectively,
In the first problem, we assume that the spheres are charged to constant potentials V
and V2, respectively. In the second problem, the spheres are at zero potential in the
presence of a unit point charge at the point (r/o, 00, bo), where r/l > r/o> r/2. We will
start with the solutions of these problems as given by Ernst Neumann in [14].

It is convenient to express the solutions of the first and second problems in terms
of the function

1 exp (Nr)
(3.1) I(’, 0)= sinh N

P.(cos 0),
n=0

where N n +1/2, 0-< 0 <= r, P(cos 0) is the Legendre polynomial of degree n, 8 > 0,
and Re " < 8. We see that I(’, 0) is an analytic function of sr for Re sr < 8, and that
(3.1) and

OI(, O) 1 N exp (Ng’)
(3.2) asr .=o sinh Nt$ P"(cs 0)

are continuous with respect to 0 at 0 0 and r when Re " < & The latter follows
immediately from uniform convergence with respect to 0 in the interval 0 =< 0 =< r, since
we then have IP.(cos 0)1 =< 1.

Let the potential outside the spheres in the first problem be written in the form

Then from [ 14] and (3.1), we have

(3.4) Vl=w2[I(l, 0)+ I(-’l, 0)-I(’2, 0)-I(-’2-28, 0)],
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and

(3.5) V2)=,1/2[I(1, 0)-I(-1, 0)+ I(’2, 0)-I(-’2-28, 0)],
where , 2(cosh r/-cos 0), 8 r/1 ’12, ’1 r/- r/1 r/E, and 2 r/ 8. For the charge
density on sphere 1, we have

(3.6) D1 ()Dl1+(V1-V2) D122

where

(3.7)

and

@3/2 0

D1-4vra 0-" [I(sr’ 01)+ I(-’,

1/31/2 0
(3.8) D12-4,rra [I(’, 01) --1( , 01)]1=-n2,

with g’l 2(cosh r/l-cos 01). Finally, the coefficients of capacity and induction are
given by

(3.9) Cll 2a lim I(-r/1- r/z, 0),
0->0

(3.10) C12 =-2a lim 1(-8, 0),
0-0

and

(3.11) C22-- 2a lim I(r/1 + */2, 0).
0-0

The charge density on sphere 2 is obtained from (3.6)-(3.8) by interchanging subscripts
1 and 2 and reversing the signs of r/1 and */2.

The potential satisfying the second problem is the Green function for the exterior
of the spheres with respect to the point (r/o, 00, bo). Denoting this potential by
G 1/r + H, we have

(3.12)
2a

[I(srl + r/o, Y)+ I(-l-r/o, y)

I(’2- r/o, Y) I(-’2 + r/o- 28, y)],

where g’o 2(cosh r/o- cos 0o) and cos y cos 0 cos 0o+ sin 0 sin 0o cos (b bo).
Finally, the charge density and total charge on sphere 1 are given by

(3.13) D*= /21/31/2 t9

8vra2 T-;[I(’, yl)+ I(-r,

and

(3.14) Q* -g’/2[I(r/o- r/1- r/2, 0o)- I(-r/o- 8, 0o)],
respectively. As before, we obtain D2* and Q2* by interchanging the subscripts 1 and
2 and reversing the signs of r/o, r/l, and r/2. We note that -D* and -D2* form the
kernel for the solution of the Dirichlet problem for the exterior of the two spheres.

4. Analytic continuation of I(’, 0). When 0 < 0 < r and Re " < 8, 8 > 0, we find that

I(’, 0)-I(’-28, 0)= Z exp N(’-8)P.(cos 0)
n-----0

(4.1)
=[2 cosh (’- 8)-2 cos 0] -1/2.
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We see that the right side of (4.1) is positive when " is real, and that it is single valued
when the ’-plane is cut along the line Re’=8 from 8+(2rn+O)i to 8+
[(2n+2)zt-O]i and from 8-(2rn+O)i to 8-[(2n+2)r-O]i, n>=O. Since
I(’-28, 0) is analytic for Re " < 38, it follows that it is the analytic continuation of
I(’, 0)-[2 cosh (’- 8)-2 cos 0] -1/2 in the region 8 < Re " <38. Repeated application
of (4.1) leads to the result

(4.2) I(r, O)= E {2 cosh [sr- (2r 1)8]-2 cos 0}-1/2+ I(-2m8, O)
r--’-I

with m>= 1, valid for Re ’<(2m+1)8 when the ’-plane is cut from (2r-1)8+
(2nr + O)i to (2r- 1)8 + [(2n + 2)7r- O)]i and from (2r- 1)8- (2nTr + O)i to (2r- 1)8-
[(2n+2)r-O]i, n>=O, l <-r<-m.

We have

(4.3) II(sr 2m8, 0)l <
lexp (’/2)1 exp (-mS)

sinh (8/2)

for sufficiently large m. Hence, the expansion

(4.4) t(, o)= E (2 cosh [’-(2r- )8]-2 cos o)-/
r=l

holds for all " in the cut plane. Substitution of (4.4) in (3.3)-(3.5) gives the solution
of the first problem as obtained by the method of images.

5. Integral representations for I(’, 0). As before, let 8 > 0 and 0 < 0 < r. When
-8 < Re " < 8, we have

(5.1)
cosh NI(sr, 0)+ I(-r, 0)= E P,(cos 0)

--o sinh N8

and

(5.2)
sinh N" p,, (cos 0)I(’, 0) I(-sr, 0) .--o sinh N8

Substituting

(5.3)
2 Nt dt

(cos 0)= /
r J0 (2 cos 0-2 cos t) 1/2

[23, p. 315], in (5.1) and interchanging summation and integration, we obtain

(5.4) I(’, 0)+ I(-’, 0) _2 (2 cos 0 2 COS t) -U2
cosh N" sin Nt

dt
7r 0 ,=o sinh N8

when -8 < Re " < 8. The interchange of summation and integration is valid by [3, p.
495], since the series in (5.4) is uniformly convergent with respect to for 0-<

_
r,

while the integral of (2 cos 0-2 cos t) -1/2 between 0 and r is convergent. Similarly,
from

(5.5) P, (cos 0) _2 f COS Nt dt
r Jo (2 cos t-2 cos 0) 1/2

[23, p. 315], and (5.2), we have

(5.6) I(’, 0)-I(-’, 0)
2 [ (2 cos t-2 cos 0) -1/2 sinh N" cos Nt
r do n=o sinh N8

dt
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when -8 < Re " < & Finally, let k be defined by the equation

(5.7) 8 rK’/K,

where K is the complete elliptic integral ofthe first kind with modulus k and K’= K(k’),
k’2 1- k2. Then from (5.4), (5.6), and [23, p. 511], we obtain the integral representa-
tions

Kk
(2 cos 0 2 cos t)(’, 0+ (-’,

x sn--(t+i)+sn--(t-i) dt

and

(5.9)
KkI(r, 8)- I(-r, 8) -i- (2 cos t-2 cos 0) -1/2

[ K K ]x sn--(t+i)-sn--(t-i) dt

for-8 <Re ’< 8, 0< 0< 7r.

From (4.4), it follows that

(5.10) I(sr- 8, 8) + I(-" 8, 8) I(’- 8, 8) +/- I(-sr + 8, 8) = (2 cosh ’- 2 cos 8) -1/2

for all " in the cut ’-plane. When Re " > 0, we can verify that

fo [ 1 1 ](2cos0-2cost) -1/2 csc- + i) + csc- i) dt

(5.11) 27r(2 cosh ’-2 cos 0) -1/2

and

(2 cost 2 cos 0) -1/2 csc(t+i’) csc(t-ir) dt

-2,ri(2 cosh r-2 cos 8) -1/2.

The former can be shown by substituting cos (t/2)= cos (8/2) sin b, and the latter, by
substituting sin(t/2)=sin(O/2)sink. From (5.8)-(5.12), and using the addition
theorem for sn u, we obtain

K
(2 cos 0- 2 cos t)I(-8, 0)+I(--8, 01=- o

(5.3)

ns--(t+i)+ns--(t-i)--- csc-(t+i)+csc-(t-i) dt

and

I(-8, 0)-I(--8, 0)
r"

(2cos t-2 cos 8)-1/2
(5.14)

{ K K 7r [ 1 1 ]}ns--(t+il-ns--(t-i)-- csc-(t+i)-csc-(t-i) at

when 0<Re " <28. However, both sides of (5.13) and (5.14) are seen to be analytic
for -28 < Re r < 28, and hence, it follows by analytic continuation that they are valid
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in the larger region. The preceding treatment can be extended to give integral representa-
tions which are valid in still wider strips of the st-plane.

Substituting cos (t/2)=cos (0/2) sin b in (5.8) and (5.13), and sin (t/2)=
sin (0/2)sin b in (5.9) and (5.14), we find that

(5.15) lim [I(’, 0)+ I(-’, 0)]= K---kcd iK____,

iKk iK(5.16) lim [I(’, 0)- I(-’, 0)] sn,
00 7/"

and

(5.17) lim[i(_6,0)+I(__6,0)]=K(dciK r i)o-= " "rr 2K sec
(5.18) im [I( ,0)- I(- ,0)] ___iK(ns iK esc i)o-o 7r 7r 2K

We see that (5.8) and (5.13) remain valid for 0=0, and that (5.9) and (5.14) remain
valid for 0 7r. In particular, from (5.13), we have

(5.19) loim 1(-6)=2r ns cSCr2K csc- dr.

6. Integral representations for the solutions of the electrostatic problems. We have
-6< r-r/-%< 6 and -26< r/<26 when 2r/_< r/<2r/, where 6= r/- r/. Then
from (3.4), (3.5), and the preceding section, and using the addition theorem for sn u,
we obtain

(6.1)

and

(6.2)

V2)=2K 1/2 K
---0 (2cost-2cosO)-l/2Im ns-- [t + i(r/-2r/1)]

K zr 1
+ ns + irl -- csc - + irl dt

when 2r/2 < < 2/1. We see that the region exterior to the spheres, defined by ’12 < T <
rtl, is included in this inequality. It is easily verified that differentiation of the integrals
in the preceding section with respect to sr can be carried out under the integral sign.
From (3.7), (3.8), (5.7), and (5.8), we therefore have

(6.3)
K KKZk d/31/2 (2 cos 01 2 cos t) -1/2 Im cn + irl2) dn + irtz) dtDll 27r4a "n"

and

(6.4)
K KK2k q3/2 (2 cos 2 cos 01) -1/2 Re cn (t + it/2) dn (t + irl2) dr.D12 2--4- 7r
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From (3.9)-(3.11), and the results ofthe preceding section, noting that
we find that

aKk f K iaKk iK
(6.5) Cll- Jo Resn--[t+i(*/+*/E)]CScxdt+ sn-- (*/1 + */2),7/-2

(6.6) C - ns csc csc dr,
2K

and

2iaKk iK
(6.7) C22 Cll sn (*/1 + */2).

Similarly, in the second problem, we have -8 < */-*/1-*/2--*/o < 8 and -28 <
*/- */o < 28 when */2 < */< */1 and */2 < */o < */1. Then as before, we have

H=-/2 (2 cosy- cos Re ns [t+i(

(6.8)
K

ns [ + i( */ */o)] +-- csc + i( */ dt,

D= K2k 0/203/2
(6.9)

(2cosyl-2cost)-l/2Imcn--[t+i(*/2-*/o)]dn--[t+i(*/2-*/o)]dt,

and

Q* -220/2 (2 cos 0o-2 cos t) -1/2

Re ns--[t+i(*/-2*/l)]-ns--(t+i*/)+’-ICSC-(t+i*/)r wdt
(6.10)

"Oo
+ J (2 cos t-2 cos 0o)-/

o

Im nsK[t+i(*/-2*/1)]+ns--(t+i*/)-’-’ICSC-r
dt

when */2 < */ < */1 and */2 < */o < */1.

7. Behavior of DI! at the inner axial point as e -0. Passing to the limit 01 r in
(6.3) by use of the substitution cos(t/2)=cos(O/2)sin4, substituting */2

/1- ’K’/K, and using the addition theorems for cn u and dn u, we obtain

K2kk,a sn

C,/-(7.1) D111’==-i 4w3a iK*/l"

This expression was given in an equivalent form by Kirchhoff [10, p. 99], in terms of
a modulus related to the present one by Landen’s transformation. To obtain a series
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for Dlllo,= which converges rapidly for small e, we first find by use of Jacobi’s
imaginary transformation [23, p. 506] that

K2k’2 b]/2 srl (g k’) cn (- k’).(7.2) D11]o=- 4ra
Noting that k’2 sn (u, k’) cn (u, k’)=-(d/du) dn (u, k’) and referring to [23, p. 511],
we obtain the expansion

(7.3) D,,Io,=-2a ,= 1 + q,2n sin,K,
where q’= exp (-K/K’). Denoting the remainder after the first term of the series in
(7.3) by R, we have

(7.4) IRI < E nq < ,)2n=2 (1-q

and hence,

b 2 ( K ) 2

q
K

(7.5) Dill o,___ 2ra
sin [1 + O(q’)]

as e 0. Finally, expressing (7.5) in terms of geometric quantities by use of (5.7) and
the asymptotic results of 2, we obtain

(7.6) Dlllo,__,=(r/tr) sinfl(tr/e)3/2 exp[-2-1r2(tr/e)l/2][l +O(e)]
where

rr2 2rlr2(7.7) /3
r + r2 r + r2

When the radii of the spheres are equal, we have */1 -1/2 log q rK’/2K, and we
find

(1 + ql/2)2 K2k,2kl/2
(7.8) Dlllo’==2zr3(1-ql/2)ql/4 1 + k

Transforming (7.8) to the modulus kl by Landen’s transformation [23, p. 507], where
kl (1 k’)/(1 + k’), and denoting the corresponding values of q and K by ql and K1,
respectively, we obtain

(1 + ql)2 k,kr2(7.9) Dl,lo,=,=4r3(l_ql)ql/2
Equation (7.9) agrees with 10, p. 100] when the subscripts are omitted, after correcting
2r to 4r on pp. 89 and 97 of [10].

8. Behavior of D* at the inner axial point. When 01 =r, we have yl 7r-00.
Substituting 01 r and ,/2 */1-rK’/K in (6.9), replacing by r-t, and using
Jacobi’s imaginary transformation, we obtain

K2k’2 0/203/2 (2 cos t-2 cos 00) -1/2O*lo,= 4"--4-- 5_

(8.1)
Re sn (*/1 */o + it), k’ cn ( no+ it), dt.



1302 ANDREW H. VAN TUYL

Expanding the integrand as in (7.3) and interchanging summation and integration, we
find

(8.2)
nK

I///2 I//31/2 (K) 2 nq’" nK fro csh-7 tdt

2rEa2 -; qa,, sin
,=1 1 + 7 (2 cos 2 cos 0o)7"

When 0 <- 0o < r, the interchange of summation and integration is justified by [3, p.
495]. Referring to [23, p. 315], we can write (8.2) as a series of Legendre functions of
the form

(8.3) D* o,=, 4ra2

nq nK
,,=1 1 + q,2n sin7 (t- "rlo)P-l/2+i(nr/r’)(COS 0o).

As e-->0, we will assume that the point (Xo, Po, bo) is fixed and that it remains
outside both spheres. Defining

(8.4) g lim r/o_ 2xorl

we see that the condition

(8.5) -r2<g<l
rl

insures that the point charge lies outside both spheres when they are tangent to each
other.

We have

(8.6)

nKt
cosh dt

(2 cos 2 cos 0o) 1/
nKOo< r cosh K" < ’q’-"/"

for 0o sufficiently near 0. Hence, writing

(8.7) D*l lOl=,
q’ sin

K
2d,131/2 ( K) 2 { K-’5, rt rl }4,ira2 -7 1 + q,2 P-/E+i(K/K’)(COS 0o)+ R

we obtain

Since 0o0 as e 0, we have IRI= O(q’-) for any fixed number sr in the interval
0<s<l.

When 0 <= 0o < v/, we have

(8.9) 0o2-t2>2 cos t-2 cos Oo>(1-O---)(Og-t2)>O,
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and hence,

KOot
csh :-:K":

(8.10) /_ t:

K KOo

Io cShK--S’tdt 1 fo csh-
-t

dr<
(2 cos t- 2 cos 0o) 1/2

<

/1--’"’O /1
dL

Referring to [23, p. 366], we find that (8.10) is equivalent to

(8.11) Io(KO) 1 (KOo)<g- P-1/2+i(K/K’)(COS 00) < Io
\ K’/ -/1 020 \ K’/

6

where Io(z) is the modified Bessel function of the first kind of order zero. It follows that

0o, 

as e 0. Finally, from (8.7), (8.12), and the asymptotic results of ] 2, we have

(/sin A Io(flh)(/e)3/2 exp [-2-2(/e)/2][ 1 + O(e)](8.13) Dlo,= =-4xg+pg
where B and are given by (7.8), g is defined by (8.4), and

Oo 2por
(8.14) h=lim A fl(1-g).

The preceding results do not hold uniformly with respect to the location of the
point charge when 0 0o . When Xo 0, we see that the value of e required for a
given relative error tends to zero as po tends to zero.

9. An asymptotic expansion for De at the inner axial point. Substituting
-K’/K in (6.4) and using the addition theorems for sn u and cn u, we find that

dn[(l-it),k’]K /2Io’,(2cost_2cos01)_,/2Re -] dt.
sn it), k’

Hence,

Noting that dn u/sn2 u =-(d/du) cs u, and referring to [23, p. 512], we obtain

(9.3)
sn2 (--,k’) -7 csc2 -7+- n=, 1+ q’2" cs K---7

This corrects the corresponding result in the author’s PhD. thesis.
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for ]Im z[<2w. In particular, (9.3) holds for Im z=-w. Hence, the left-hand side of
(9.3) is purely imaginary for z r/l- iw, and we have

dn[K(r/1-
r it),k’]

Re

(9.4)

Krl Kt
cosh

( Kt2
cosh -7- cos

K,/....._1 cos
K’ cosh--
K K*/’ 2

csh-"7- cs K’]

nq,2 nKrll
2 COS-----’--

-" 2(t) n=lE 1" q’2"K’ nKt nKwcosh-- cosh K’ ]"

From (9.2) and (9.4), justifying interchange of summation and integration by the
Weierstrass test, we obtain

Kr/___ cosh Kt , Kw
3/2[K\2frl-COSK,-, 1-cos cosh --(

D21o,= 82a
cosh-cos cosh cos

(9.5)

E
nqa" nKn’Io" ( nKt nK+4 cos K; cosh-cosh K’]seed1 + q’"

Denoting the sum in (9.5) by S and the integral in the summation by I, we have

(9.6)

and

sinh
nK zr + t)

sinh
nK cr t)

ii1= 2
2K’ 2K’

cos (t/2)

< 2r sinh nKzr f nKr/2K’ sinht dt
K’ Jo

< 2r sinh
nKzr

cosh nKr
K’ 2K’

< rqt-3n/2

dt

q,1/2
(9.7) Isl < vr Y’. nq’"/2= ,1/2)2".=1 (1-q
Hence, with 8 r/l-r/2 wK’/K as before and/z KrI/K’, we have

(9.8) D12I o,=
3/2 { fr2/ 8U RC}8zra6 oo

[g(u)-g(r2/6)]sec’" du+
where

(9.9) g(u)

and

(9.10) IR’I<

1- cos/z cosh u

(cosh u-cos/z)2’

(1 q,1/2)2"
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We have the identity

(-4)"+1x2"+2 1/2

(9.11) sec x --1-mE2mx2m + | E2,+l(t cos 2xt dt
m=o (2m)! (--T-ios Jo

[15, p. 35], where the Em and E,(t) are the Euler numbers and Euler polynomials,
respectively. Noting that (- 1) "+lEE.+1( t) > 0 for 0 _--< <-- 1/2, and referring to 15, pp.
24-25], we obtain

fl/2 fl/2 (_1).+1E2.+2
(9.12) (-1)"+1jo E2"+’(t) cs2xtdt<(-1)"+lo E2,+(t) dr= (2n+2)22,+2

when 0< x < r/2. We therefore have

fo"r2/ U
[g(u) g(r:/8)] sec du

(9.13)

f uEm[g(u)-g(r2/)] du +g),
m=0 (2m)! o

where

(9.14) IR(.2)I< (-1)"+1E2"+2 u2"+21g(u)-g(rr2/#) sec du.

We have /( 2), and hence, takes the values 0 < when 0 1 <.
en 0 , we find that

1 +cosh u 2(1 + e-U)2

g(u)]<(coshu_l)= (l_e-U)’ e

(9.15) < 7.04e-

when u > log 5, and

(9.16)

when u > 12. Similarly, from

(9.17) g’(u)

we obtain

Ig(u)l < 2.0001e

2 sin2/z sinh u cos/z sinh u
+

(cosh u-cos )3 (cosh u-cos )2,

(9.18)

2 sinh u sinh u
Ig’(u)l < +

(cosh u 1)3 (cosh u 1)2

[8(1+ e-U)e 2(1+e-U)1

< 2.0001e-"

when 0 -</z-<_ r and u > 12. We also have

(9.19) ulg(u)l< u2(1 cos #)
(1 -cos/ + u2/2)2 < 1

for all u > 0 and for 0_<-/ _<- r, and

(9.20) x. e <= u" e du < 2X e
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for x > 2n, n >= 0. The second inequality follows from the asymptotic expansion for the
incomplete gamma function 1, p. 263], and can also be obtained by use of integration
by parts and induction. From the preceding, we find that

(9.21)

,I 2/2 U
1,/2n

Jo
+2[g(u) g(cr2/8)[ sec du

flog5 f at2/25
< v/ u2" du + 7.04x/ U

2n+2 e du +
d 0 d log

7"04x/ (’tr) 2n+3+ 3

log

/ U
2n 7.04U2n+2 e-"] du

d0

+ 7.04x/ U
2n+2 e du +

o 2n+3
e

7.04x//(2rl d-2)!- (7r2/2t)2n+2 e-r2/2 I1 2n+3

< 7.04x/(2n + 2)!

for 0_-</x _-< r and 7r2/5 > 4n + 4, n -> 0, since log 5 < 2, (r2/25)2n+2 e-r2/2 <
fEn +2)!/2v/, and Jog5 u2, 7.04u2"+2 e-) du <g5 (u2" 7.04u2"+2/5) du < O.
Noting that Ig(u)-g(TrE/)l’<-Ig’(u)l, we find from (9.18) that

e_,/ u
g(u)-g sec -- < 2.0001 (e-" sec --4.00027r ( e-U e-V)(9.22) <

r’-/iS u

4.0002r
e

for u > 12. Hence,

/
u+lg(u) g(Tr2/tS)l sec du <

(9.23)
"/T J .tr2/25

16"0008 ( q1") 2n+3 e-r2/2

when r2/ > 24. It follows from (9.21) and (9.23) that R<n2)= O(i2"+2) as 0, and
hence, that the right-hand side of (9.13) is an asymptotic expansion. We see that (9.13)
is also convergent, since it can be shown that integration and summation can be
interchanged when the Maclaurin series for sec (Su/2r) is substituted in the left side
of (9.13). Alternatively, it can be shown directly that R is O(n-) as n oo and that
the nth term of the series in (9.13) is O(n-2).

To obtain a simpler, but divergent, asymptotic expansion, we write

(9.24)

u2m[g(u) g(’rr2/ 8)] du
m=0 (2m)! o

m=0 (2m)!
u2mg(u) du+R
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where

(9.25) u2mg(u) du+
m=o (2m)!

It follows from (9.16) and (9.20) that

m=O (2m)!
2e-2/+

for 7r2/a > 12.
Referring to [4, p. 38], we have

(9.27)

g(’n’2/a) (-)2"+’ }2m+1

2"0001 (-) e-2/}2m+l

d Io U
TM duu2mg(u) du =-- sin/z

cosh u-cos

where B,,(x) is the nth Bernoulli polynomial. Finally, noting that 8 -log q, we obtain
the asymptotic expansion

d/312 ( E2mB2m(tZ/2"n’)
(log q)2m + Rn}(9.28) D121’==-STra log q ==o (2m)!

for Ilog ql < 7r2/(4n + 12), n _-> 0, where

(9.29) g, g() + g)+g
When a is sufficiently small, we can obtain more convenient bounds for the

exponentially small terms in the remainder. By use of the inequality

(2n + 2)!> (2n + 2)2n+2 e-(E"+E)v/2,rr(2n + 2),(9.30)
n _-> 0, we obtain

X2n+3e-X ( X )
2n+3

(9.31)
(2n + 2) v< 2n+2

e_X+En+2 n+l

r

for x > 0. We see that x2"/3 e is decreasing for x > 2n + 3. Hence, when x > 2c(n + 1),
c > 1, we have

x2n+3 e-X f
(9.32)

(2n + 2)
< c2n+3 e-(C-l)(2n+2) n + 1

C e-2(c-1)
< 4-

since the right side of the first line of (9.32) is decreasing with respect to n for n _-> 0.
In particular, we find

X2n+3 e-X 33 e-4
(9.33)

(2n+2)!
< x/- <0.28, x>6n+6

6 e-o
(9.34) < < 0.0056, x > 12n + 12.

Similarly, we have

x2n+2 e-X 62 e-o
(9.35) < < 0.0005

(2n+2)t 2
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and

x2n/2 e-X 62 e-4
< <0.1861(9.36)

(2n+2)! 2"-

when x > 12n + 12.
From (9.10) and (9.36), we obtain

(9.37) [R ()1 < 2.36(2n + 2), (22) 2"+2

when r2/6 > 12n+ 12. Similarly, from (9.14), (9.21), (9.23), and (9.33), it follows that

(9.38) IR)[ < 11.4(-1)"+E2,+2 \-5]
Using the inequality

(9.39) (-1)nE2.()
zn 4

(2n)! r

[1, p. 805], we obtain the simpler bounds

(9.40) IR)I < 14.6(2n +2)!

7/’2/6 > 12n + 12, and

8 8.0004  ; (9.41) IR)] <-- (n + 1) e + e- 1/(2m + 1),
"gi" "ff \0] m=0

r2/ > 12. As in (9.31)-(9.36), we find that (n+ 1)x2"+2 e and
x2"+3 e-’ Y’.,___o 1/(2m+ 1) have the same upper bounds as (9.35) and (9.34), respec-
tively, when x > 12n + 12. We therefore obtain

(9.42) ]R)[ < 0.016(2n + 2) (22)
2"+2

when 7r2/6 > 12n + 12, which is almost negligible compared with R) and R). Finally,
we have

(9.43) IR, I< 17.0(2n + 2) (22) 2"+2

for r2/6 > 12n + 12 and 0 =< tz <- r.
We see that/x is a function of e for given values of rl and r2 except in the cases

r + c with r2 constant, ra r2, and r2 + c with r constant. We then have/z 0, r/2,
and 7r, respectively. In the case/z 0, sphere 1 is an infinite plane when r2 is finite.
Similarly, when/ =Tr, sphere 2 is an infinite plane when r is finite. We have

B2,,(I,,/2r)=B2,,, /z =0

(9.44) =-2-2"(1- 2’-2")B=,,, /z r/2

-(1 21--2n) B2n,
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1, pp. 805-806], and from (2.9)-(2.12),

-log q sinh_
a 2/2e
rE vr2

(9.45) 2 sinh-1
a

2 X/-e rl=rE=r

sinh_
a

=.

We can express (9.28) as an asymptotic expansion in powers of e by use of
(2.7)-(2.9). The approximation of lowest order is given by

(9.46) D2[ 01= (2e)-[ 1 + O(e)],
and is independent of the radii. The leading term of (9.46) is also given by an
approximate analysis of Maxwell [ 12, p. 154] for the case oftwo nearly parallel charged
surfaces.

10. Integral reoresentations for the limiting charge densi as e 0. It follows from
(7.1), (9.1), and (9.3) that

Dll 47r2a -; sin
K’

(10.1)

and

Kt K’ql 2

cosh--;-cos K’ /
(2 cos0-2 cos t) 1/2

rlq
’2n sin

r/Kr/1
K’ I+4 ’. q,2O (2o=1 1 + 0

Krll Kt)f;, Kt_ cos
Kr/1 2

)1/2
D12 4,tr2a

cosh -7] (2 cos t-2 cos 01

sinh nK___t dt
K’

COS 191 2 cos t) 2

(10.2)
nK,11 nKt

nq’2 cos
K f cosh-TdtJ00 12+ 4 . ,20

o=1 1 + q (2 cos t-2 COS 01)
when 0< 01 < ,r. Let the sums in (10.1) and (10.2) be denoted by $1 and $2, respectively.
We have

nKt

fo

sinh-- dt

fo

nKr dt

(2 cos 0-2 cos t) 1/2
<sinh

K’ (2 cos 191-2 cos t) 1/2
(10.3)

1
< - q’-K(cos 191)

where K (k) is the complete elliptic integral of the first kind with modulus k. Hence,
1

nq,O
q’K (cos Ol)

Isl < K(cos 01) o=1E 2(1 q,)2
(10.4) O[q’ log 1 q
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as e -, 0. Similarly,

and

(10.6)

It follows that

(10.7)

and

(10.8)

where

nKt
cosh -- ato,

(2 cos t’-’2 cos 0,) ’/2
< q’-"K(sin 01)

q’K (sin 01)
(1 _q,)2

O(q’).

lim Dll lim sin 11-.o -o 47r2a

lim Dl2 lim I2e-,o e-,o 47r2a

(10.9)

(10.10)

Kt
dt

fo

sinh
K’

I1=
( __Kt 2

cosh
K’

cos
K’ ]

(2 cos 01 2 cos t)l/2

( Kt)1- K--, cosh --; dt

f0t
COS

osh -;- cos-) (2 cos t-2 cos 01) 1/2

Substituting sin (t/2)= u sin (01/2) in (10.9) and (10.10), we obtain

(10.11) 11
dl

and

sinh Kt(U) du
K’

cosh --7--cos K’ J
x/U2-1

(10.13) lim K/---!1
,-o K’ fl’

where/3 is given by (7.7), and

KOlu(10.14) lim_,o Kt(U)K, lim_,o K au,

Knl Kt(u)
1-cos

K’
cosn

K’. ]du
(10.12) 12= [ Ki(u) rr112

Lcosh K’
cos -’] 41 u

where t(u)=2sin-l(u sin (01/2)). We have
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where

(10.15)

We also have

a =/3 cot (to/2).

(10.16) lirn,@,31!= (K) 2 rcsc (1/2)
o4rEa ’7 4r,(r,+r2)2

It can be shown by the Weierstrass test that 11 and 12 are uniformly convergent with
respect to e in an interval 0 <_- e =< el for 0 < to1 =< r. Hence, they are continuous at e 0.
Finally, when to1 # 0, we obtain

r CSC
3 (tO1/2) f sinh au du

(10.17) lim Dll sin/3
o 4rl(rl + r2)2 Jl (cosh au-cos fl)2x/u2- 1

and

(10.18) lim D12
r2
2 csc3 (__w.!_/2) Io (1-cos/3 cosh au) du

4rl(r, + r2)2 (cosh au-cos fl)2x/i u2"

The discussion for Dll holds also for D* when we assume that (8.5) is satisfied, giving

1/2131/2 (t)
2 K(I- o)

(10.19) lim D* -lim sin I3
e-*0 e-*0 8qr2a2 g’

where

(10.20)

Kt
dtsinh

.K’

I3=( Kt" K (r/1 r/o))
2

cosh’;-cos K’ (2 cos 71-2 cos t)

Proceeding as before, we find

(10.21) lim D*
eO

r2
2 csc (to,/2)

4rl(rl + r2)2(x20+ p),/2
sin A

sinh r,u du

(cosh Ku-cos h)2x/u2 1

where

K lim Kyl/K’

(10.22)
fix/cot2 (tol/2)-2h cot (tOl/2) cos (tP bo) + h2,

and where h and A are given by (8.14).
We see that (10.17) gives the charge density in the first problem when the spheres

are tangent and at unit potential, and that (10.21) gives the charge density in the second
problem when the spheres are tangent. Carl Neumann [13, p. 46] has expressed the
latter in terms of a definite integral involving the Bessel function Jo(z).

11. Expansions near to =0 for the limits of D and D*. We have

sinh au 1 02
log 1 e-"+) 1 e-’-)

(cosh au-cos /3)2 u sin fl aa aft
(11.1)

2

-sin/3 ,=1

n sin nfl e
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for tu>0 when/3 is real. Substituting (11.1) in (10.17) and referring to [22, p. 172],
we find

(11.2) lim Dll
r22 csc3 (ol/2)

n sin n Ko(na),
-,o 2rl(rl + r2)2 n=l

where Ko(z) is the modified Bessel function of the second kind of order zero. The
interchange of summation and integration is valid by [3, p. 495] as before. From the
asymptotic expansion of Ko(z) [23, p. 374], it follows that (11.2) is convergent for
0 < to1 < r. For sufficiently large t, we have

Ko(na) e-’-
(11.3) ---[l+O(a-1)]<e-(n-1)’, n>=2.

Ko(a) vn

Hence,

(11.4) n sin n Ko(na)
,,--- Ko(a)

< Y. (n+l) e-"< )2=O(en=l (1--e
)’

and

(11.5) n sin n8 Ko(na) Ko(a)[1 + O(e-)].
sin/3 _=1

r2 csc (tOl/2) sin/3 e-
2rl(rl + r2)2

(11.6)

1+ (-1)
12"32"’’(2m-1)2 -.-1)].+O(a23ram otmm=l

Expressed in terms of to1, we have

(11.7) lim Dll
2r22 sin/3 f -5/2 / O(tol

-o rl(rl + r)
o e- 1 + )].

Starting from (10.21), in the same way we find that

(11.8) lim DI* r2 csc3 (tol/2)
-.o 2rl(rl + rE)2(x+ p)1/2 --=1

n sin nA Ko(nK)

for 0< A < r and r >0 when (8.5) is satisfied, and that

(11.9) lim D* 2r2 sin A 3f w]-5/2 e-2’/"[1 + O(1)]
o r,( r, + r:):(x+

as w 0 with Wl < 2 cot- h. When w 2 cot- h while o, we have r 0. We see
that the latter occurs arbitrarily close to 1 0 when Xo 0 and Po > 0 is sufficiently small.

12. An asymptotic expansion for the limit of D. en the integrand of

’ (1- cos cosh au) du
(12.1) I

o (cosh au-cos ):1- u:
is expanded in powers of e as in ] 11 and integration and summation are inter-
changed, the resulting series does not converge. However, we can obtain an asymptotic

It follows that as to1-> 0,

r22 csc (tol/2)
lim Dll sn fl Ko(a)[ 1 + O(e-)]
-o 2rl(rl +/’2)2
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expansion for large a by use of the identity

(12.2) (1 z:) -/2 (2m)!
22m( z2m ""A Z

s=o m!)

where

(1.
n !)2 (1 ’(1 2) dt

[26, p. 108], n _-> O, which is valid when z2-1 is not a positive real number. When
O< x < 1, we can verify that

X
2n+2

(12.4) t2"+l(1-t2) -1/2 dr< x2)I/2<x2"+2,1+(1-

and hence, that

(12.5) 0 <f"(x)< (222"n +n 1)!!)2 x2n+2(-1 X2) --1/2

From the preceding, we obtain

(2m)! t_2m_ fo (1-cos fl cosh V)VTM dv
(12.6) I

m=O 22re(m!)2 (cosh v- cos fl)2
where

(2n + 1)! -2n-3(12.7)
22"(n !)2

n(1)

[1 cos fl cosh vlv2"+2 dv

(cosh v-cos fl)2/1--()
for n =>0. Referring to (9.15), (9.19), and (9.21), we find

-cos fl cosh v[v2n+2dv

(cosh v-cos fl)2 1-

2 f =/2 l1- cos fl cosh vl v2n+2 dv
o (cosh v cos )2

2 flog5
(U2" 7.04U2n+2 e-u) du<.o|

14.08 g/2n+2 e-U du

14.08
(2n +< x/

(12.8)

for 0-</3 _<- w and a > 4n + 4, n => O. We have

f0 u2n+2 du (2n+2)1 ()(12.9) x/1-u2 22"+2[(n+1)!]2 n+l

n->0. The inequality follows by use of the asymptotic expansion for the gamma
function. As in (9.15), it follows that

(12.10)
[1-cos fl cosh vl
(cosh v-cos fl)2 < 2.005e-V

when v> 8. Using (12.10) and (9.30), and noting that a2"+3 e-/2 is a decreasing
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l1 cos/3 cosh vlv2"+2 dv
/- (cosh v-cos/)

function for a > 4n + 6, we obtain
n+2 du

< 2.0053"/ e-/ - u:

(12.11)

2"O05(2n+2)!a2"+3 e-’/2 /’4f(2n + 2) 2n+2 e-2"-2J2r(2n + 2) 7-1- 4

2"005(2n+2),( a ) 2"+3

e-a/2+2n+2
2 2n+2

2.005
<83 e-6(2n + 2)!

2

< 1.273(2n +2)!

when a > 16n + 16, n->0. Hence, it follows that (12.6) is an asymptotic expansion for
/, where

(2n + 1)! -2n-3(12.12) IgJ)l <9.403 22,(n---- (2n + 2) a

As in the ease of the asymptotic expansion of 9, (12.6) is also a convergent
expansion. In order to obtain a simpler asymptotic expansion, for which the coefficients
can be expressed in terms of known functions, we write

(12.13)

where

22m((2m)! a-2m-1 fo (1-cos/3 cosh/))l)2m dv
=0 m !)2 (cosh v cos/3 2

(2m)t -m- IO (1--COS cosh v)vm dv

m=O 22re(m!)2 (cosh v- cos/3)2

It follows from (9.16) and (9.20) that

(12.15) IR)I <4.00023 -1 e-" (2m)!
22m(m=O m!)2

for a > 4n + 12. Finally, referring to (9.27), we obtain the asymptotic expansion

(12.16) limD12=rEcsc3(to1/2){ (_a)m(2m)[
-.o 4rrl(rl + r2)2 m=o (m!)2 BErn + R,

where

(12.17) R,, RI)+ R?).

The preceding estimates for R,) and R hold for a > 16n + 16 and for 0 -</3 <_- or, n _-> 0.
From (12.12) and (12.9), we obtain

(12.18)
[R,I)I < 18.8063-3, n 0

9.403(2n + 1) --2n--3< (2n+2)!a n=>l

(2m)! --2m-1 (1-cos/3 cosh V)V2m dv
(12.14) R)= E 22m(m[)2

a Ja=0 (cosh/) cos -)-
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when a > 16n + 16. Proceeding as in (9.30)-(9.36), we find that

(2m)! 82 e-14
(12.19) a2"+2 e-’* z2 22re.m!.2<( <0.000016

=o 2v/’-

when t, > 16n+ 16. From (12.15) and (12.19), it follows that

(12.20)

IRaqi < 4.0002a -2"-3 a2"+2 e-
2TM 2

"=0 (m

< 0.00007(2n + 2)! a -2"-3.

Finally, we obtain

IR.I < 18.9a -3, n 0

(12.21) 9.45(2n + 1)
(2n + 2)va -2"-3< n_->l

when a > 16n + 16 and 0 _-</3 _-< r.
The case/3 r corresponds to the limit r2- oo with rl held constant. Hence, sphere

2 becomes the plane x =0 in.this limit, and from (10.15), we find

(12.22) a r cot (t01/2).

As tO " 0, we have

(12.23)

lim D12 r2 1
[1 + O()] 0 </3 < r

e-,O rl( rl + r2) 71"021
1

rr,o [1+ 0(o)], /3 r.

Similarly, the case/3 0 is obtained by passing to the limit rl oO with rE held
constant. In this limit, sphere I becomes the plane x 0. Let (0, Yl, zl) be a given point
on the plane x 0, with pl x/y21 / z2. Then taking the limits rl oo and to1 0 such
that rltol Pl, we obtain

(12.24)

a lim "fir2 /91
cot

?1"00 rl + r2 2rl

2rr2
01

and

(12.25) limD12 2r--- I (-1)m(2m)!B2"(-) 2"+1

-.o rp3 "=o (m !)2

where R, is bounded by (12.21).
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13. Expansions for the limiting charge density in terms of inverse radicals. By the
procedure of [23, p. 134], we obtain

1 =+1 2 { 2rn+fl 1 ]coshz-cosf l-cosfl sinfl .=o 2rrn+fl
(13.1)

+ (2rn -/3 2rn -fl
for 0</3 < r and for all values of z not equal to +i(2rn+fl) or +i(2rn-fl). We then
have

(13.2)

sinh z 0 1

(cosh z-cos/3)2 Oz cosh z-cos/3

4z { 2rn + fl 2rn fl 1
-sin/3 .=otz2+(2rn+/3)21--=, [z2+";:S)212J

and

(13.3)

1- cos/3 cosh z 0 sin/3
(cosh z-cos/3)2 0/3 cosh z-cos

=-2
.=o [z2+(2"n’n+fl)212--?=, [z2+(2rn-/3)212J

when we use the expansion

(13.4) csc2 =4.=-ooE (2rn+fl)2.
The latter follows, for example, by differentiating an expansion for cot (/3/2) in [3, p.
296]. From (13.2) and (10.17), we find

(13.5) lim D11
eO

rr22 csc3 (to1/2) 2rn +/3
4rl(rl + r2)2 =-Y"o [a 2 + (2rn +/3)213/2

for 0 </3 < r and a-> O, and from (13.3) and (10.18), we have

(13.6) lim D12
e-0

2rn +flrr2
2 csc’ (toJ2) ,

a2 )213/24r(r+r2)2 .=o[ + (2rn +/3
2rn -/3 "[

=1 [a +(2-n-fl)2]3/2j"

The interchanges of integration and summation are justified by [3, pp. 499 and 495],
respectively. Similarly, from (13.2) and (10.21), we obtain

(13.7) lim D*
-+0

rr{ csc (to1/2) 2rn + a
4rl(rl + r2)2(Xo2 + p)l/2 =-Y’o [r 2 + (2rn + h )2]3/2

when 0< A < r, K _>-0, and (8.5) is satisfied.
We can express (13.5) and (13.6) in terms of to1 by substituting (7.7) and (10.15).

Denoting r2/rl by b, we obtain

(13.8)
b2 2n(b+l)+b

lim Dll- Y )2-,o 4rrl ,=-oo {nE(b+ 1 -2n(b+ 1)[n(b+ 1)+ b] cos to1 +[n(b+ 1)+ b]2}3/2
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and

(13.9)
bE {, 2n(b+l)+b

lim D12--e-.o rrl --o {hE(b+ 1)2 2n(b+ 1)In(b+ 1)+ b] cos to1 +In(b+ 1)+ b]2}3/2

2n(b+l)-b }+ y’.
{n2(b+l)2

,=1 -2n(b + 1)[n(b + 1)- b] cos tO +[n(b + 1)- b]2}3/2

When b 1, these expansions become

1 (-1)"(2n + 1)
(13.10) lim Dll ye-.o 4rrl =o[(n+l)2 2n(n+l)costol+n2]3/2’

(13.11)
1 2n+l

lim O12--o 4qrrl ,-=o [(n + 1 )2 2n( n + 1 cos to1 +/12]3/2"

The expansion (13.8) was given by Poisson [17, pp. 74-79] for b= 1,2, and 4 and for
rl 1, with the case b 1 expressed in the form (13.10).

14. Power series expansions for the limiting charge density. We can express (13.5)
and (13.6) as power series in c by expanding each term in powers of a and interchanging
the order of summation. The interchange is valid because of the absolute convergence
of the double series obtained. We find

(14.1)

csc (,o,/2)
lim Dll-o 16rr1(rl + rE)2

E (-1)"
(2n+l)! /3 /3 a 2,,

22 2n+2, --" 2n+2,1--
n=o (n!)2

and

(14.2)

r2
2 csc3

lim D12-o 16rrl rl + r2)2

y,. (_1)
(2n+l)! fl tl

2n

,=o 22,(n!)2 " 2n+2, +" 2n+2,1-

where ’(s, a) is the generalized zeta function. It follows by the ratio test that (14.1)
and (14.2) converge for ]a] </3 when O</3 _-< or. Similarly, from (13.7), we have

lim DI* r22 csc3 (tol/2)
-.o 16rrl(rl + rE)E(x+ p)1/2

(14.3)

E (-1)"
(2n+1)! A A r 2.

,=o 22,(n]) 2n+2, - 2n+2,1-

for [r] <A, with 0<A < .
We see that (14.1) and (14.2) converge for /2 <w , and that a vanishes when

Wl . It follows from (10.22) that r 0 when w 2 cot- h and o, where h is
given by (8.14). Hence, (14.3) converges in a region of sphere 1 containing this point
in its interior. When =o and hl, (14.3) converges for 2eot-(h+l)l
2cot-1 (h-l). When h<l, we find that (14.3) converges for 2cot- (h+l)wwhen o, and for 2 cot- (1 h) w when o+ .
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Starting from the expansion (13.4), we can express the coefficients of (14.2) in an
alternate form. We have

" +2, +" n+,- =(2r)/ 2 (n+)--(14.4)
(2)2n+2 d2n fl

=4(2n+ 1) dfl2 csc2
and hence,

22,, CSC
2

-.o 16r,(r, + r2)2 0 (n!)2 2"

When rl rE, and hence,/3 r/2, we have

lim D2 -csc3 (to/2) E (-1)" 22" (2k+ 1) -2"-2
-0 47rrl n=o (n !)2 =o

(14.6)
71"CSC3((-01/2) (22"+2-1)B2,+2 2n

2.,
16r ,=o nl(n+ 1)!

where B, is the nth Bernoulli number. We note that we can also obtain (14.2), (14.5),
and (14.6) directly by substituting the Maclaurin expansion of (1-
cos/3 cosh au)/(cosh czu-cos/3)2 in (10.18) and interchanging integration and
summation.

15. Circles of zero charge density. We see that lim_.o Dll and lim_,o D12 are finite
and positive for Ol ,r, and that lim+o D2 becomes infinite as o - 0. When V2 > V1 >
0, it follows from (3.6) that lim_,o D is always negative in the neighborhood of w 0,
and that it vanishes for some value of o between zero and ,r when V2/V1 is sufficiently
near 1. As V2/V1 increases, a value is reached above which the charge on sphere 1 is
completely negative.

The power series expansion for the limiting charge density in the neighborhood
of Ol r is given by

(15.1) lim DI a.a2", lim D12 bnot 2n
e0 e--,0n=O n=O

together with (3.6), where a, and b, are defined by (14.1) and (14.2), respectively.
When a circle of zero charge density lies sufficiently near the point O) q’/’ it satisfies
the equation

(15.2) , (a,,-pb,,)oe =0,
n--O

where

(15.3) v= + v
If al- pbl does not vanish when ao-pbo 0, we can invert this series and obtain

2a as a series in powers of (ao-pbo)/(al- pb). We see that this condition is satisfied
when

(15.4) ba bo
al ao
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for 0 < fl < r, and we can then verify that -(ao pbo)/(al pbl) > 0 when ao pbo> O.
We see that (15.4) follows from the inequalities

st(2, fl/2cr) ’(4, fl/27r)
(15.5) 1 < <

’(2, 1-fl/2r) ’(4, 1-fl/2r)

for 0 </3 < r. The first inequality is obviously satisfied, since/3/2r < 1/2, and the second
follows from the result that (s,a)/(s, a2) is an increasing function of s when
a2 > a > 0. To prove the latter result, we use the relation

(s,a)_IoXS-e-al" /foXXS-le-a2x
(15.6) ’($,a2)-- l_e_

dx
l_e_,

dx

[23, p. 266], and refer to a theorem by Karlin [8, Thm. 3.4, p. 285]. It follows that
(15.4) holds, and hence, that a2.--.-(ao-pbo)/(al-pb) as ao-pbo-->O. Hence, the
charge on sphere 1 is completely negative when

1 + ao/bo
(15.7) V2>

V1 1- ao/ bo"
We find that the right-hand side of (15.7) becomes infinite as r/r2-> oo, and that

it tends to 1 as r/rE-> O. Thus, when sphere 2 is a plane, the charge on sphere 1 is
completely negative in the limit e-> 0. When r r2, we have

1 + ao/bo 71.2 -" 8G(15.8)
1 ao/ bo 7"1-2 8G

6.765. .,
where G n__o (-1)"(2n + 1)2 is Catalan’s constant.
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VARIATIONAL PRINCIPLES FOR EIGENVALUES OF COMPACT
OPERATORS*
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Abstract. Variational principles for finding real and complex nonzero eigenvalues, and associated
eigenvectors, of a linear compact operator K on a Hilbert space are developed and analyzed. When K is
self-adjoint, certain unconstrained variational problems are described for finding the positive, respectively,
negative, eigenvalues of K and the corresponding eigenvectors. These principles are extended to generalized
eigenproblems and to nonlinear compact operators. For nonself-adjoint linear operators, a minimization
problem for certain positive real eigenvalues is described. All the positive real eigenvalues may be described
as critical points of a Lagrangian functional. These characterizations are then extended to describe complex
eigenvalues and eigenvectors of nonself-adjoint, compact linear operators.

Key words, variational principles, eigenvalue problems, nonself-adjoint compact operators
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1. Introduction and notation. This paper describes and analyzes some variational
principles for the eigenvalues and eigenvectors of a compact operator on a Hilbert
space. When the operator is linear, these variational principles are related to those
described in [2]-[4] and arise by systematic use of some simple concepts from convex
analysis.

Let H be a real, separable Hilbert space with an inner product (,) and let K H --> H
be a compact linear operator. When K is self-adjoint there is an extensive theory,
based on Rayleigh’s principle, characterizing the eigenvalues and eigenvectors of K
as solutions of various constrained variational problems (see [6] or [10]). In 2 we
describe certain functionals, defined and finite on all of H, whose critical points are
eigenvectors of K corresponding to either positive or negative eigenvalues. These
functionals have well-defined second derivatives and we can characterize the Morse
indices of the critical points. The theory extends related results for self-adjoint matrix
eigenproblerns as described in 6 of [3]. Variational principles for generalized eigen-
problems are also developed, as are principles for certain eigenvalues and eigenvectors
of nonlinear compact operators.

In 3 these results are extended to obtain a variational principle for some positive
eigenvalues, and corresponding eigenvectors, of a nonself-adjoint, compact, linear
operator K. The basic constructions here are based on some methods from convex
analysis; in particular, the use of conjugate convex functions. The solutions of this
variational principle are saddle points of a Lagrangian. We then show, in Theorem 7,
that each eigenvector of K, corresponding to a real positive eigenvalue, may be
characterized as a critical point of this Lagrangian.

The next section, 4, generalizes this work and describes how to characterize the
complex eigenvalues and eigenvectors of a compact operator as the critical points of
a Lagrangian depending on an angular variable 0.

The work described in this paper originated as part of a project to develop
variational principles for various nonself-adjoint eigenproblems such as those described
in Chandrasekhar’s [5] book on hydrodynamic stability. Both theoretically and numeri-
cally, there often are advantages to formulating problems as critical point problems.
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Moreover, variational characterizations often lead to good constructive methods for
finding solutions. The principles described here appear to be quite different from those
obtained for the largest eigenvalues of stochastic matrices as described, for example,
in Horn and Johnson [9].

Whenever a term is not defined in this paper, it should be taken in the sense of
Zeidler’s text [11]. Given a functional f: H R, its Gateaux derivative, or gradient,
will be denoted by Vf(x) and a point in H is a critical point off whenever Vf() 0.
A critical value of f is the value of f at a critical point and the Gateaux second
derivative off will be denoted D2f(x).

The functional f is said to be coercive on H provided

lira inf
f(u)

2. Self-adjoint compact operator eigenproblems. Let H be a real Hilbert space and
K :H H be a compact, linear self-adjoint operator.

Let the positive eigenvalues of K be {Aj: j J/}. Here J/ is a subset of the positive
integers and we shall assume that

’1 > ’2 >" > An > 0 whenever n J+.
Similarly, the negative eigenvalues of K are {Aj: j J_} with J_ being a subset of the
negative integers and

A-1 < A_2 <’ < A_, < 0 whenever n J_.

Either J/ or J_ may be empty. For each j J_ t.J J+, we shall let

(2.1) E {e H: Ke Ae and Ilell--- 1}

be the corresponding set of normalized eigenvectors. When A is a simple eigenvalue
of K, then E consists of two points. If Aj is an eigenvalue of multiplicity m > 1, then

E is ditteomorphic to an (m- 1)-dimensional sphere.
Consider the functional Fp:H defined by

1 1
K(2.2) Up(u)--- Ilull u, u>

with 2 < p < oo. The first variational principle we shall analyze is that of minimizing
Fp on H. Define

ap inf Fp(U).

THEOREM 1. Suppose H, K, Fp, as above, with p > 2; then
(i) Fp is weakly lower semicontinuous (w.l.s.c.) and coercive on H and

-1
(2.3) up =r [max (0, al)]

where 3’ P 2)- and

(2.4) r=py.

(ii) When J+ is empty, then Fp is minimized at O; otherwise it is minimized at
A e, where e is in El.



VARIATIONAL PRINCIPLES AND COMPACT EIGENPROBLEMS 1323

(iii) The critical points of F, are 0 and Aej, where j is in J/, and ej is in Ej.
(iv) The critical values of Fp are 0 and (-1/2r)A forj in J+.
Proof. Let fp(u)= (1/p)llull . Then fp is continuous and convex; hence it is w.l.s.c.

The quadratic form (Ku, u) is weakly continuous since K is compact; hence Fp is
w.l.s.c. Moreover,

1
F(u)- Ilull-IIKII Ilull =.

Since p > 2, this is coercive. Hence Fp is bounded below on H and attains its
infimum

Fp is Gateaux ditterentiable on H with

(2.5) VF(u) Ilull-=u- Ku
so is a critical point of Fp if and only if it solves

(2.6) Ku Ilull -=u.
Hence t 0 or t is an eigenvector of K corresponding to the (positive) eigenvalue ,
with all -=.

When Aj, we see that a A}’ej with e in E.
Take inner products of (2.6) with a; then

SO

(2.7) F(a) (-) Ilall-2-p-
2p Ilall (pP)X"

Hence (iii) and (iv) follow.
Since p > 2, F is minimized when , is largest. This occurs at A when J+ is

nonempty, or at =0 if J+ is empty. Thus (2.3), (2.4), and (ii) follow. [3

This theorem shows that the unconstrained variational problem of minimizing Fp
on H provides a variational principle for finding A and eigenvectors lying in

If we can find a ff H such that Fp (if) < 0, it then follows that K has at least one
positive eigenvalue A. This can be used to obtain a lower bound on A as stated in
the following result.

COROLLARY 1. Suppose K H + H is a compact, linear self-adjoint operator and F,
is defined by (2.2) with p > 2. Suppose F() < 0; then the largest positive eigenvalue A
ofK obeys

(2.8) a= sup-2rFp(u)>--2rF,(a)
Co

where r is given by (2.4) and Co is the set of u in H such that F,(u) <0.
Proof The proof follows from (2.7) and part (ii) of the theorem, l]

To find upper bounds on h, one can consider the functional F" H x [0, oo)+ R
defined by

(2.9) F(u,)___l llull.+ 1

p - Ilull=- (Ku, u}.
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We see that F,(u, O) F,(u) for all u in H, and for any/zl >/x2=>0, we have

F,(u, tz) >- F,(u,/z2) for all u in H.

Consider the problem of minimizing F,(u, I) on H and let

ap (/z) inf Fp(u,/z) with/x > 0.

COROLLARY 2. Suppose K, H as above and F,(.,/.) is defined by (2.9) with I > O.
Then

(i) F, is w.l.s.c, and coercive on H;
-1

(ii) (2.10) an(/z)=r [max (0, A1-/z)]

is a strictly increasing function of tz on [0, A 1).
Moreover, a(l) 0 if and only if I >- A 1.

Proof. We have Fv(u,/z)= F(u)/ /Ellull.
The extra term here is w.l.s.c, since/z > 0 and helps the coercivity. Thus (i) holds,

and

Hence the argument in Theorem 1 provides (2.10). The other results follow from
inspection of (2.10).

This provides upper bounds on A1, for if we can show that infun F(u,/2) 0,
then A --</2. I-!

It is worth noting that we may find the negative eigenvalues of K by replacing K
with -K in (2.2). The results may be stated in terms of minimizing

1 1
(2.11) F,(u)= Ilull / <Ku, u>
on H with p > 2. Let t, infun Fp(u).

COROLLARY 3. Suppose K" H --> H is a self-adjoint, compact linear operator and
is defined b.y (2.11) with p > 2. Then

(i) Fn is w.l.s.c, and coercive on H.
(ii) t, =-(1/2r)[max (0,-A_I)]" and this is attained at I;t_le with e in
(iii) The critical points of, are 0 and labile with j in J_ and e in E.
(iv) The critical values ofF are 0 and (-1/2r)lA]r forj in J_.

Proof. The proof is just like that of Theorem 1, except now

v(u)--Ilull -=u + ru
and hence the critical points of Fp arise at eigenvectors of K corresponding to negative
eigenvalues.

LEMMA 2.1. VF, H "-> H defined by (2.5) is Gateaux differentiable with D2Fn(O)
-K and

(2.12) DEF(u) Ilulln-=I-r +(p-2)llulln-P
for u O. Here Px (x, u)u/I[ u 2 is the projection in the direction u. Fn is convex on H
if and only ifK is negative semidefinite.

Proof. Consider b(t)= Ilu+ thllp-E(u+ th) for t_>0, h in H. We see that

1t-l(c(t) b(0))= hllu + th 11"-2+ Ellu / thll -’- u II’-]u.
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Taking limits as decreases to 0, with u # 0 we see that

lim t-l(b(t)-b(0)) Ilull-h+(p-E)llull-(u, h)u.
t0

Hence (2.12) follows. When u =0, this limit is zero. F will be convex on H if and
only if (D2Fp(U) h, h} -> 0 for all u in H. This implies that -K is positive
semidefinite.

When t is a nonzero critical point of Fp, one may define t to be nondegenerate
if zero is not in the spectrum of DEFp(). When t is a nonzero, nondegenerate, critical
point of Fp, the Morse index of t is defined as the number of negative eigenvalues of
DEFp(t) counting multiplicity. For eachj, let ds be the multiplicity of As as an eigenvalue
of K. The following theorem shows that the unconstrained variational problem of
extremizing Fp on H has a nice Morse theory. It is a counterpart to the Courant-Fischer-
Weyl minimax theory associated with Rayleigh’s principle.

THEOREM 2. Suppose =Afe with e in Es, j in J+ being a nonzero critical point of
Fp. Then is a nondegenerate critical point of Fp if and only if A is a simple eigenvalue
of K. In thts case, the Morse index of u s 5".k= dk.

Proof Let ek) be a normalized eigenvalue of K that is orthogonal to e. Using the
facts that Ilall P,- P,. we have

D2Fp(t)e(k) (Aj Ak)e(k)

as (e(k), e)=0. Moreover, D2Fp()e=(p-2)Ase.
Since K has a complete orthonormal set of eigenfunctions, so does D2Fp(). Its

eigenvalues are AS--Ak for k #j and (p-2)As if As is a simple eigenvalue of K. When
As is an eigenvalue of K of multiplicity ds> 1, then we can choose a normalized
eigenvector of K orthogonal to e and such that D2Fp().=O. Hence ti will be a
degenerate critical point of Fp if and only if As is a simple eigenvalue of K.
When t is nondegenerate, we see from the expressions for D2Fv()e(k) that

the number of negative eigenvalues of D2Fp(), counting multiplicity, will be
j-1Ek=l ds.

It is worth noting that

lim Ilull <- 1,
p- [oo otherwise

where X1 is the indicator functional of the unit ball in H.
Rayleigh’s principle for finding the largest positive eigenvalue of K is equivalent

to minimizing

Fc(U) Xl(U)-1/2(Ku, u).
This may be regarded as the convex analysis version ofRayleigh’s principle (see 1, 8]).

The functionals Fp defined by (2.2) define a one-parameter family of variational
problems that are smooth, unconstrained and converge, in a certain sense, to Rayleigh’s
principle as p increases to infinity.

There are a number of interesting and useful extensions of these principles. One
may obtain variational principles for other eigenvalues by imposing orthogonality
conditions. Suppose one knows the rn largest eigenvalues A1, A,..., A,, of K and
the corresponding eigenspaces. Let {el, , eM} be a corresponding set of orthonormal
eigenfunctions of K which is a basis for the direct sum of these eigenspaces. Define

(2.13) nm= {u H: (u, es) O, 1 <=j <= M}
and consider the problem of minimizing Fv on Hm.
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THEOREM 3. Let K H H be a compact, self-adjoint linear operator and F,, Hm
be defined by (2.2), (2.13), respectively, and with p > 2. Then:

(i) Fp is w.l.s.c, and coercive on H,,.
(ii) ap,, =inf,nm Fp(u)=(-1/2r)[max (0, Am+l)] r.
(iii) When ap,, < O, this infimum is attained at A Vm+le where e lies in Em+.
Proof. Hm is a closed subspace of H. Since (i) holds on H, it holds on Hm then

apm is finite and it is attained.
A critical point t of Fp on Hm obeys

M

(2.14) VF,(u)- X --Ilull -:u gu
j=l

from the Lagrange multiplier rule. Take inner products of (2.14) with ek for 1 _-< k _-< M;
then, using the self-adjointness of K,

(Ka, ek)= Ak(a, ek) Ilall ek)--tz/jk
where jk is the Kronecker delta.

Since t is in H,,, this implies ],/’k 0 for each 1 -<_ k-<_ M and thus t is either zero
or an eigenvector of K corresponding to the eigenvalue all

The rest of this proof now parallels that of Theorem 1.
There are also similar results for finding A-(re+l) by minimizing F on the subspace

orthogonal to the eigenspaces corresponding to A_, A-E,""", A-re.
Another generalization of these principles is to the generalized eigenproblem of

finding nontrivial solutions U of

(2.15) Ku AAu

where A" H- H is a continuous, self-adjoint, linear operator which is also positive
definite. That is, there is an ao> 0 such that

(2.16) (Au, u)>-_ aoll u = for all u in H.

In this case, define Jp" H--> R by

(2.17) Jp(u) =l (Au, u)p/2
1

p

with 2 <p < o and consider the problem of minimizing Jp on H.
Let

,p= inf J,(u)

and EjA {u H: Ku AjAu and (Au, u)= 1}.
THEOREM 4. Let K H --> Hbe a compact, self-adjoint, linear operator andA: H --> H

be continuous, linear, self-adjoint and positive definite. Suppose Jp is defined by (2.17)
with p > 2, then

(i) Jp is w.l.s.c, and coercive on H with

-1

=T-r [max (0, A1)]

and A is the largest positive eigenvalue of (2.15).
(ii) When ,p < O, then Jp is minimized at A e, where e is in EIA. If pp 0, Jp is

minimized at zero.
(iii) The critical points of Je are zero and A}’e, where A is a positive eigenvalue of

(2.15) and ej is in EjA.
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(iv) The critical values ofJv are zero and (-1/2r)A;, where Aj is a positive eigenvalue
of(2.15).

Proof. We have that Jv is w.l.s.c, and coercive as before, since A is positive definite.
Now

(2.18) VJ,(u) (Au, u)(p-2)/2Au Ku.

Hence t is zero or an eigenvector of (2.15) corresponding to the positive eigenvalue

(A, )(p--2)/2.
Take inner products of (2.18) with t; then

(K, ) (A, )/)= X,
SO

Thus t A’e, where e is in EA and A is a positive eigenvalue of (2.15). The proof
now parallels that of Theorem 1.

Finally, it is worth noting that similar variational principles may be studied for
nonlinear, compact, potential operators. Let K" H -, H be a nonlinear operator which
is the derivative of a functional X:H-, R which is weakly continuous and obeys

’(u)
(2.19) lim sup =M

with M finite and for some 0 < <= q oo. Then consider H--> R defined by

(2.20) (u)
P

with p > rain (1, q). We have the following result.
THEOREM 5. tppose Z:H- is a weakly continuous, Gateaux-differentiable

functional that obeys (2.19) and let be defined by (2.20) with p > rain (1, q). Then
(i) F is w.Ls.c, and coercive on H and

(2.21) a inf (u) isfinite.

(ii) The infimum in (2.21) is attained at a point in H obeying

(2.22) VX(u) Au

with

(2.23) A a -’- --> 0.
Proof Since X is weakly continuous, is w.l.s.c. Also

F(u) 1 (u)

Thus

->lim inf Ilull’--M
as p > q, so S is coercive. Thus a is finite and this infimum is attained. is Gateaux
ditierentiable with

V(u)--Ilull,-u
so any minimizer must obey (2.22), (2.23).
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(2.24)

Now consider "H- R defined by

P

and assume

(2.25)

for some 0 _<-- q <.
 C(u)

lim inf M >-Ilull-. I111 q

COROLLARY 4. Suppose (" H- is a weakly continuous, Gateaux-differentiable
functional obeying (2.25) and that ; is defined by (2.24) with p > min (1, q). Then

(i) is w.l.s.c, and coercive on H and

c7 inf :(u isfinite.
uH

(ii) This infimum is attained at a point in H obeying (2.22) with -II all 0.
Proof The proof is just as before.
Note that in these results, we have not required any symmetries for ’c, so there

is no reason to believe that t 0 is a critical point of :/" or that zero is an eigenvalue
of Vff" in Theorem 5.

3. Eigenproblems for nonself-adjoint compact operators. Henceforth K" H--> H
will be a linear compact operator which is not necessarily self-adjoint. Let Ks
1/2(K + K*) and Ka =1/2(K-K*) be the symmetric and antisymmetric parts of K.

Define F" H --> by

(3.1) F(u)--l llull -1
P -(Ksu, u)

where 2 < p < o. The conjugate convex function F*" H is defined by

(3.2) F*(v) sup [(u, v)- F(u)].

We will need the following results about F*.
LEMMA 3.1. Suppose F is defined by (3.1) with p > 2, Ks is a linear, self-adjoint,

compact operator and F* is defined by (3.2). Then
(i) F* is w.l.s.c, and convex on H.
(ii) F*(0) -inf,n F(u) (1/2r)[max (0, A)] where A1 is the largest eigenvalue

of Ks and r is defined by (2.4).
(iii) F*(v) >= 0 for all v in H.
Proof. Since Q(u, v) (u, v)-F(u) is convex and weakly continuous in v for each

u in H, this supremum is w.l.s.c, and convex so (i) holds. We have (ii) from Theorem
1, and (iii) holds upon putting u 0 into the right-hand side of (3.2).

From definition (3.2) of F* we see that

(3.3) F(u)+ F*(v)>=(u, v)

for all (u, v) in H x H. This is sometimes called a generalized Young’s inequality. In
this problem F need not, in general, be convex, so the strong results of convex analysis
do not hold. However, we have the following.

LEMMA 3.2. Suppose F and F* are defined by (3.1) and (3.2), then (3.3) holds for
all (u, v) in H x H. If equality holds in (3.3) at (a, ), then

(3.4) VF(t) v".
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Proof. From (3.2), for each v in H, F*(v)>-(u, v)-F(u) for all u in H. Thus (3.3)
holds. Moreover, if F*(t3)= (a, t3)-F(a), then a maximizes (u, v)-F(u) on H. Hence
it obeys (3.4).

Define the functional E" H--> R by

(3.5) E(u) F(u)+ F*(Kau)

and consider the problem of minimizing E on H.
TI-IEOREM 6. Suppose K" H --> H is a linear compact operator and E, F are as above.

Then
(i) E is w.l.s.c, and coercive on H, so E attains its infimum on H.
(ii) E (u)>= 0 for all u in H, and if E()= 0 then a is a solution of

(3.6) Ku Ilull
Proof. F and F* are w.l.s.c, from Theorem 1 and Lemma 3.1, respectively. F is

coercive from Theorem 1, while F* is nonnegative. Hence E is coercive and (i) holds.
From (3.3) we have E(u) F(u)+ F*(Kau) >- (K,u, u) =0 for all u in H and using

the antisymmetry of K.
From Lemma 3.2, equality holds here provided

gau VF(u) Ilullp-2u gsu,

which is (3.6). l-i

We see that when K is a self-adjoint operator, Ka=0 and then E(u)=
F(u)+ F*(0)= F(u)-ap, with ap being the infimum of F on H.

Note that not every solution of (3.6) obeys E(t)=0. In particular we have
E(0) F*(0) is given by (ii) of Lemma 3.1, and thus when A > 0, E(0) will be nonzero.

To illustrate this result, consider the following example.
Let K" H --> H be a compact, linear operator and let { ej "j J} be an orthonormal

set of eigenfunctions of K corresponding to nonzero eigenvalues of K. Let H1 be
the closed subspace spanned by this set.

Extend this to an orthonormal basis {ej’j J} of H and assume J2 J-J1 is
nonempty. We have

(3.7) (Ku, u)= Aj(u, ej)2
JJl

for all u in H, where {A :j J1} is the set of nonzero eigenvalues of K. In this case
we can prove the following.

LEMMA 3.3. Assume K, H as above with F defined by (3.1) and (3.7). Let A1 be
the largest positive eigenvalue ofK and v be orthogonal to H. Then

1

(3.8) F*(v
1
rr

Here q pip- 1 is the conjugate index to p, r pip- 2 is as in (2.4) and r, r/ q. When
K has no positive eigenvalues, then

f*(,,) _1 i1, 11
q

for all v in H2 H H.
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Proof. From (3.2), we see that we have to maximize

1
(u, v)-

1
ilull / y A<u, e)2

on H. This functional is weakly upper semicontinuous (w.u.s.c.) and its negative is
coercive on H, so it attains its supremum.

The functional is Gateaux differentiable on H, so its supremum must occur at a
critical point. Write u (u, e) for all j in J. The critical points arise at fi, where
(3.9) o- Ilall-=E/Aa-0 forj in J1,

(3.10) v-Ilall-=a=o forj in J2.
When v is in H2, we have v =0 for j in J and from (3.10),

2Ilall =-=) E uj Ilvll =.
Let fi fi)+ fi2) be the oahogonal decomposition of fi defined by the projections
onto H, Hz. This last equation implies Ila’)ll==llall=-(llvll/llall-=)= upon re-
arrangement.

If a)=0 then Ilvll Ilall -’ and (Kfi, fi)=0. Then F*(v)=(a,
(/q)llvll .

When fi)#0, we must have IlallP-Z= A for some k in J. In this case

where v (p 1)/(p 2) r q.
If o 7 then this is impossible, so fi’ 0. en

{J," Iloll }, K,(v) is a finite set when re0, and Ilu’ll =w, where W is any of
the values p (X- Ilvll=)/,

Suppose Ilu’ll w ;then I111-== and we have

upon taking inner products of (3.9) and (3.10) with ft. Thus the value of (3.9) at fi is

Ilall
1 1 1 2)

q -(Ku, >--(F-IIollq

Considered as a function of k, this is maximized when k is largest, that is, at ,
and then

F*(o) AT+ Iloll =

which yields (3.8) as claimed.
Suppose now that K" H H is a compact linear operator obeying (K 1)" H

range K is a proper closed subspace of H spanned by an oahonormal set {ej’j J},
with Kej Ajej for all j in J and (K2)" range Ka H2 H.

Then the functional E for this problem is defined by

1 1

where F(v) is given by (3.8) and involves only constants r, q depending on p,
depending on K, and

In paicular, we see that F(v) is an increasing function of vll. Thus if K is a
compact linear operator obeying (K 1) and (K2) then is minimized at in H, where
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IIK  II--0 and minimizes F(u)=1/2llull’-1/2(Ku, u). From Theorem 1, this implies
t A ’e, where A is the largest eigenvalue of K, e is a corresponding normalized
eigenfunction and , (p 2)-.

If t is a critical point of F corresponding to an eigenvalue Ag ofK with 0 < Ag < A,
then

1

so t does not minimize E on H.
Nevertheless, we have Kff=O from assumption (K2) and
Thus Ka [[al]n-2ff, but E()>0. This shows, again, that the converse of (ii) in

eorem 6 does not hold.
Example. Let be a Lebesgue measurable set in " and L2() be the space of

all L2- integrable, measurable, real-valued functions defined on ft. This is a Hilbe
space with respect to the inner product

(u, v)= J. u(x)v(x) dx.

Define a linear operator K" LZ(fl)o Lz() by

Ku(x) G(x, y)u(y) dy

where G’ x o is a measurable function obeying n Jn [G(x, y)[z dx dy <. Then,
from standard results, K is a compact linear operator.

Assume that G(x, y) G(x, y)+ Gz(x, y), where
(i) G(x, y) G(y, x) a.e. on flx fl,

J

GI(X, y)= E Ae(x)e(y)
j=l

with {e" 1 jJ} an oahonormal set in L(O), and
(ii) G(x, y) -G(y, x) a.e. on x and

foGz(x, y)e(y) dy 0 a.e. on for 1 j J.

When G obeys (i), (ii), then K obeys conditions (K1), (K2), and we have that K is
the compact operator defined by the finite-rank kernel G and Ka is the compact
operator defined by the kernel G.
e functional E" L(O)o for this problem is

1 u2(x) dx G(g y)u(x)u(y) dx dy + F(K2u)(u) =p
where Ku(x)= G(x, y)u(y)ay an

F(K2u)
IK=u(x)l= dx if IIK=ull

A 2A
[Ku(x)l dx iflIK=ull

Here q=p/p-1, r=p/p-2, and we assume AA for all ljJ, and A>0.
e first two terms in the expression for E(u) constitute the explicit expression

for the functional F,, defined in 2, when K corresponds to the integral kernel
on L().
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The analysis here depends on the computation of F* in Lemma 3.3. Other formulae
for computing F* may be based on the results in [7] and [8].

4. Lagraagiaa formulation. We may find further information about this variational
principle for the eigenvalues of nonself-adjoint operators by considering a saddle-point
formulation of the problem.

Define L" H x H --> R by

(4.1) L(u, v)-<Kau, v>/l <llull’-Ilvll
1

p - [(Ku, u>-(I,:v,

(Kau, v)+ rp(u)- Fp(v)
where 2 <p < oo, and Fp, Ka, K are as in 3.

When L is defined by (4.1), we see that

(4.2) E(u) =sup L(u, v)

upon using (3.2) and (3.5). Thus the primal problem (P) of minimizing E on H is
equivalent to finding a infn supon L(u, v).

The dual problem is obtained by defining

(4.3) G(v) inf L(u, v).
uH

It is (*) to maximize G on H and to find

a* sup inf L(u, v).
vH uH

The functional L is said to have a saddle point if there is a (t, t3) in H x H such
that

(4.4) L(u", v) <-_ L(, ) <- L(u, )
for all u, v in H. L has a saddle point (t$, t3) if and only if is a solution of the primal
problem (), is a solution of the dual problem and a a*. See Theorem 3.1 in [ 1]
for this and related results.

We always have a* _-< a and when a* < a we call 5 a a* the duality gap. The
basic properties of the Lagrangian (4.1) may be summarized as follows.

TI-IEOREM 7. Let K" H H be a compact, linear operator and define L by (4.1)
with 2 < p < oo. Then

(i) L(u, v) L(v, u) for all u, v in H.
(ii) L(., v) and -L(u,.) are w.l.s.c, and coercive on H.
(iii) Equation (4.2) holds, and if G is defined by (4.3), then G(v)=-E(v).
(iv) L has a saddle point if and only if a O.
(v) L is Gdteaux differentiable on H x H and (a, a) is a critical point of L if and

only if a is a solution of (3.6).
Proof. Part (i) holds by inspection and (ii) holds as in the proof of Theorem 1.

Equation (4.2) follows from (3.2)-(3.5) and the last part of (iii) holds from the
skew-symmetry of L.

From Theorem 6, we have that a, a* are finite and are attained, so there exists
a in H such that a E(a) =-a*.

Thus the duality gap is 8 a- a*= 2a. Hence when a 0, there cannot be a
saddle. When a 0, we have from (ii) that there is a t3 in H such that

(4.5) E(t) sup L(t$, v)= L(a, t3).
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But E(t) =0 and L(a, t) =0 so we can take a in (4.5). Then (t, t) will be a saddle
point of L when a 0.

L is Gateaux ditterentiable with respect to both u and v and we have

Dut(U, v)=-KAY+ IlulI-Zu-Ku,
DoL( u, v) Kau v -v / Ksv.

Thus (t, t) will be a critical point of L if and only if a obeys (3.6). l-1
From this theorem, we see that the problem of finding a a in H such that E(a) 0

is equivalent to finding a saddle point of this Lagrangian. Moreover, the nonzero
critical points of this Lagrangian ofthe form (a, a) are eigenvectors ofK corresponding
to positive eigenvalues. Thus this Lagrangian provides a critical-point formulation for
finding the positive eigenvalues of a general linear compact operator.

We can be more specific about the saddle points of L.
COROLLARY 5. Under the conditions of Theorem 7, (0, O) is a saddle point of L if

and only if (Ksu, u)<= 0 for all u in H. Moreover, (a, a) is a saddle point ofL ifand only
ifE(a) =0.

Proof. From (ii) of Lemma 3.1, we have F*(0)= 0 if and only if

(4.6) (Ku, u) <- 0 for all u e H.

Thus E(0)= F*(0)= 0 if and only if (4.6) holds.
From Theorem 7, we see that L has a saddle point if and only if a 0 and in the

proof we showed that when a 0 the saddle points have the form (a, ), where t is
a solution of E (a) 0.

The Lagrangian (4.1) is not convex-concave unless (4.6) holds; hence the set of
saddle points of L, in general, is not a convex set even when it is nonempty.

This Lagrangian has a well-defined second derivative given by

(D2F(u) -Ka )DZL(u, v)
Ka -D2F(v)

with DZF(u), DZF(v) being defined by the expressions in Lemma 2.1. Just as in
Theorem 2, we can use this to define nondegeneracy and type of a critical point of L.

The variational and critical point principles described here appear to be new, even
in the finite-dimensional (i.e., matrix) case. In particular, they are different from those
described in [4].

5. Complex eigenvalues and eigenvectors. In this section we characterize the com-
plex eigenvalues and eigenvectors of a linear compact operator K" H --> H as the critical
points of a real-valued Lagrangian depending on an angular variable 0.

Since we want to work only in real arithmetic, we need to rewrite some of the
standard definitions. A complex number it it1+ iit2 is said to be an eigenvalue of K
if there is a nonzero vector (vl, I)2) in H x H such that

(5.1)
KI)I All)l- it2t2,

Ko2 it2D1 d- it 1/)2

These are the real and imaginary parts of the usual characterization with v v + it2
and v, v2 s H.

If it Iale ’, then this may be rewritten as

v cos OK sin
(5.2) N(O)

v2 -sin OK cos OK
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Define H2 H x H; then H2 is a Hilbert space under the inner product [v, w]
(vl, wl)+ (v2, w2), where v (), w (,) are in H2. Henceforth H2 will have this inner
product, the corresponding norm, and the induced topology. Let S1= [0, 2r] with the
endpoints identified; then for each 0 in S we have ’tr(0)’H2--) H2 is a compact linear
operator. From the equivalence of (5.1) and (5.2) we see that K has a nonzero complex
eigenvalue IAle’ if and only if ’t:(0) has a positive real eigenvalue IAI.

This problem, of characterizing positive real eigenvalues of compact operators,
was treated in 3, so we will extend these results to this case.

Let

( cos OK sin OK.)ff{(0) ((0) + ff[*(0))
-sin OK, cos OK

where K, K. are the symmetric and antisymmetric parts of K. Similarly

( cos OK, sin OK)r. (0) 1/2(Y{(0) Y(*(0))
-sin OK cos OK,

Define G" HE X S - by

(5.3) G(v, o)=l [llvlll=+ llvzll]/ 1

p

where v (vl, v2) is in H2 and 2 < p < o0.

Then

G(v, 0)-1 [llv,[l=/ v,_ll’-] v2)]+sin O(Kavl, v2)
p 2

in terms of the components Vl, v2.
Define the conjugate convex function G*" H2 x S --) R by

G*(w, 0)= sup (Iv, w]-G(v, 0))
H

and the functional J" H $i ._> R by

(5.4) (v, 0)= G(v, 0)+ G*(ra(O)v, 0).

Consider the variational principle of minimizing (v, O) on H2 x S
THEOREM 8. Suppose K" H --> H is a compact linear operator and (O), G, c are

defined as above. Then
(i) cg(., 0) is w.Ls.c, and coercive on H2 for each 0 in
(ii) C(v, O)>= 0 for all v in H2;
(iii) If C( v,,, )= 0 then is a solution of

with

(5.6) Ixl- I1 11
Proof. This follows just as in the proof of Theorem 6. Here we are working with

’t:(0) and H2 in place of K and H.
The Lagrangian corresponding to this function is : H2 x H2 x S --) defined by

(5.7) (v, w, O)=(ra(O)r, w)+ Cg(v, 0)-(w, O)
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Again this is skew-symmetric in v and w with

e(w, v, 0)=-(v, w, 0)

and our interest is in finding the critical points of (.,., 0).
THEOREM 9. Suppose K: H--> H is a compact linear operator and 7(0), & are

defined as above. Then .(.,., O) is Gateauxdifferentiable on H2 and a nonzero point
(, vt,, ) is a critical point of (.,., ) if and only if. + i: is an eigenvector of K
corresponding to the complex eigenvalue I111-= e’.

Proofi Just as in Theorem 7, we have

O,..(v, w, 0)= ,(0)0 Ilwll’-=w /
Thus (, , ) is a critical point of (.,., ) if and only if obeys

()w-
and this is equivalent to aving W -" iw2 a complex eigenvector of K corresponding
to the eigenvalue A IXI e with Il II ll as required. [q

These last two theorems show that all nonzero eigenvalues and eigenvectors of a
compact, linear operator K defined on a real Hilbert space may be found from the
critical points of this real-valued functional .. The functional is twice continuously
Gateaux differentiable and defines an unconstrained problem. Throughout this paper,
p can be taken as any number in (2, oo). The choices p 3 or 4 lead to particularly
simple formulae for these linear eigenvalue problems. For nonlinear problems, as
described in Theorem 5 and its corollary, the choice of p depends on the properties
of K.
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DECAYING SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS IN Rrv*
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Abstract. This paper is concerned with the existence and asymptotic behavior of positive solutions of
semilinear elliptic problems of second order in R, N-> 2. Positive solutions in RN that decay uniformly
to zero at o are obtained under various structure conditions by either a direct variational approach or a
new approximation procedure. Sharp decay estimates are proved for two general classes of problems.
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1. Introduction. Existence theorems and sharp asymptotic estimates are obtained
for positive solutions u(x) in R% N >-2, of semilinear elliptic eigenvalue problems of
the form

(1)
--Au + b(Ixl)u Ap(Ixl)f(u),

u Co(RN), lim u(x)=0

for some A >0, where b, p are bounded, locally HiSlder continuous functions in
R/ [0, o), b(r) => 0, p(r) > 0, f is locally Lipschitz continuous in R/, f(t) <= 0 for all
=> T and some constant T, f(t) > 0 for 0 < < T, and f(t) 0(tv) as 0+, y > 1. In

general, p(r) is not restricted by any monotony or decay conditions at o. The conditions
on f(t) imply that (1) has a bounded nonlinearity, i.e., f(t) is bounded above in R+.

The extensive literature on the theory and applications of (1), usually dealing
with the case of constants b, p or special structure, is indicated in [1], [2], [4]-[9],
[11]-[15], and references cited in these sources. Differential equations of this type
arise in many scientific areas including quantum field theory, fluid mechanics, astrophy-
sics, gas dynamics, chemistry, and Riemannian geometry.

Our results are separated into two basically distinct cases:
(i) b(r)>= bo>0; and (ii) b(r)>=O. A primary goal is to deal with case (ii) when

p(r) does not satisfy a strong decay condition, such as p(r)= O(r-a) as ro, a> 2.
The usual variational approaches in the Sobolev space W’2(RN) are not possible in
case (ii) since (1) generally has no positive solutions u L2(R), as is well known in
the "zero mass" case b(r)=0. Also the method of subsolutions and supersolutions
has not been successful in case (ii). The fascination of such problems is in part due
to the sensitive dependence of the conclusions on the asymptotic behaviour of f(u)
as u 0+ and p(r) as r c, measured by the constants y and a in (4) below. To date
there is no indication that the difficulties inherent in case (ii) can be handled by the
methods of ordinary differential equations, e.g., the shooting method, trajectory analy-
sis, fixed-point theorems, or Lyapunov techniques. Instead, our method employs a
sequence of differential equations

(2) --AUk+lb(,xl)+lT-I tlk---Akp(IxI)f(Uk), xR,
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of type (i), with positive radial solutions lgk W’2(RN) and corresponding ’k >0,
k 1, 2,.... The idea is to prove that {Uk} has a subsequence that converges locally
uniformly in C2(Rt) to a positive solution u of (1) as .k oo. For the full y range
described by (4), this is the first procedure devised to date that can treat the zero mass
case (and generalizations) regardless of the nonlinear structure of f(u).

A necessary prerequisite for this program is the construction of such positive pairs
(Ak, Uk) of (2) without the assumption of any monotony or decay conditions on p(r)
as r- oo. As far as we are aware, such a theorem is not contained among similar
results of Berestycki and Lions [1], [2], Gidas, Ni, and Nirenberg [5], Strauss [13],
Stuart [14], and others. Accordingly, we have sketched a proof of Theorem 1 below
that we believe is of independent interest in view of its relevance to nonlinear field
theory [2], [13].

THEOREM 1. In case (i), problem (1) has a positive solution pair (A, ux), with
ux e w’E(RV), such that ux(x) and IV ux(x)[ are asymptotically bounded by constant
multiples of Ixl <-N)/ xp (-4go Ixl) as Ixl- .

In case (ii) a positive solution pair (A, ux) of (1) does not exist in general without
restrictions on p or y. An example showing this is

-Au=A(l+lxl’)-l(u’-u), xR% N>=3,
(3)

u Co(RV), lim u(x)=0

for a-> 0, 1 < y </3. In fact, if such a solution pair exists, then ux satisfies

-Au => (A/2)(1
for all sufficiently large Ix], implying y > (N- a)/(N- 2) by a well-known oscillation
criterion [10, p. 76]. In the ease where a 2, it therefore follows from Theorem 2
below that the condition y > 1 is necessary and sufficient for the existence of a positive
solution pair (A, ua).

For Theorem 2 we impose the additional hypothesis

p(r)=O(r-) as r=lxl-o, N->3,

(4) N-2a+2
y>l if a->2, y> if0-<_a<2.

N-2

THEOREM 2. In case (ii), if (4) holds, problem (1) has a positive solution pair
(A, ux) with ux L2V/<ru-2)(Rv) and ux(r)= O(r2-v)/2) uniformly as r->c.

For a domain G c R, the norms in Lq(G), Lq(RtV), and E w’E(Rt) will be
denoted by II" II,, I1" II , and II" II,,=, respectively. We will use the notation

fT(t)={fo(t) if 0----< t----< T,
otherwise,

F(t)= f(s) as, Fr(t)= fr(s) as,

I(b) = ,,, [Iv4,1=/ b4, 2] dx, qb e E,

J( I ,F(, dx, E,

(s,)
v(Ixl,o) d/z(to),
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where/z denotes the usual surface measure on the unit sphere $1 in R. The operator
P is an orthogonal projection from L2(RN) into radial L2 functions. It is known [14,
Lemma 6.1] that P extends to a bounded linear mapping from E into E such that

(s) IIVPvll=--< IIPIVvl I1= -< IlVvll=, vm E.

Geometrically (Pv)(x)= V(r) represents the spherical mean of v(x) over the sphere
S, of radius r in R.

Proof of Theorem 1. Let {Vn} be a weakly convergent sequence in E, with weak
limit v, and define u Pv, u. Pv.. Then [14, Lemma 6.1] {Un} is uniformly bounded
in the norm 11" I1,,= in E, and so also in the norm I1" I1=. By the hypothesis that p(x) is
bounded and f(t)= O(t) as t-->0, there exists a constant C > 0 such that

f, fu.x)IJ(u.)-J(u)l <- Clt[" dlt dx
,I u(x)

(6)
2"-’c [G(u, u, o)+n(u, u, 0)] dO

by Fubini’s Theorem in LI(IIN x [0, 1]) and a slight computation, where

(7) G(u., u, 0) f lu.(x)- u(x)lElu(x)l" / O’lu.(x)- u(x)l’] dx,

(8) n(u., u, O) f, lu=(x)- u(x)lElu(x)l + Olu=(x)- u(x)l3 dx,

and B’ denotes the complement ofthe unit ball B inRThe Cauchy-Schwarz inequality
yields

(u. u, 0)< Ilu.-ull=,[llull + 0

and hence the compactness of the Sobolev embedding W’=(B) Lq(B) for 2 q
2N/(N-2), N3 (or q 1, N 2) guarantees the existence of a subsequence of
{u,}, again denoted by {u,}, such that lim, G(u,, u, O)=0.

To obtain an analogue of this for (8), we use an a priori estimate of Strauss [13,
Lemma 1] for radial functions z E"

(9) Iz(r)l Co(r)llzll,.=, Ixl r
where (r) r-/, N 2, and Co is a positive constant independent of z. Application
of (9) to (8) shows that there exists a constant K, independent of n, such that

n(u=, u, o) g II-’(u= u)ll=,,[ll u I1=,,+ Ollu. u =,,].

From the decay of (r) as r, multiplication by - is a compact operator from
W’(B’) into L=(B’) by a theorem of Berger and Scheehter [3, m. 2.7], i.e.,
lim.ll#-’(u-u)ll=,,=0 for a subsequence {u} of {u,}, implying that
lim, H(u, u, 0)=0. It then follows from (6)-(8), if v, v weakly in E, that

(10) lim J(Pv)= J(Pv)

for a subsequence {v,*} of {v,},.i.e., the functional J," v J(Pv) is weakly sequentially
compact.
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By the continuity of p and Fr, there exists a nontrivial radial function b E such
that d J(b) > 0. Consider the constrained minimization problem

M=inf {I(v): v E, J(Pv)= d},

and let {v,} be a minimizing sequence in E with lim,_.I(v,)= M. Since I is an
equivalent norm on E, {v,} is bounded in E and therefore has a weakly convergent
subsequence, also denoted by {vn}, to a function vE. Since (10) holds for a sub-
sequence {v,*}, it follows that Pv 0 since d J(Pv) and J(0) 0. The Euler-Lagrange
principle shows that I’(v)= )tJ’(Pv) for some real A, where I’ and J’ denote Fr6chet
derivatives. By the assumption f(t)= o(t) as t--> 0, standard procedure enables us to
write the last functional equation as

(11) I,N [Vv. Vw+ bvw] dx A I.,pfT-(Pv)Pw dx
for all w e E. Since Pw e E for all w e E, this can be rewritten as [ 14, Lemma 6.1]

(12)’ [V(Pv) Vw+ b(Pv)w] dx A pfr(Pv)w dx

for all w E, from which u Pv is a nontrivial weak solution of the problem

(13) -Au+bu=Apfr(u), uE.

Since (12) holds in particular for w Pv, it follows that A # 0. In view of the regularity
r’2+(R) forhypotheses on b, p, f, standard elliptic regularity theory shows that u

some a (0, 1), i.e., u is a classical solution of (13).
To verify that u >= 0 throughout R, suppose to the contrary that u < 0 in a nonempty

set fl. The definition of fT shows that -Au + bu 0 in fl and ulon 0, implying the
contradiction u(x)=--0 in fl by the maximum principle.

Since u(x) is nontrivial and nonnegative in R, (12) with w Pv u shows that
A > 0. Also 0-< u(x) <= T in R, for if U(Xo) > T is a positive maximum of a solution
of (13), then in appropriate coordinates

AP(Ixl)fT( U(Xo) --(Au )(Xo) + b (Ixol)U(Xo) bou(Xo) > O,

contrary to the definition of fr(t). Therefore fr(u)=f(u) in (13), and hence u is a
solution of (1). Since f(t) >= 0 for 0<= <= T, -Au + bu >- 0 in R, implying that u(x) > 0
throughout RN by the strong maximum principle. The decay estimates in Theorem 1
can be deduced from the property limlxl_. u(x) 0 uniformly in Rv (since u E) by
a slight modification of the argument of Gidas, Ni, and Nirenberg [5, Prop. 4.1].

3. Proof of Theorem 2. The idea ofthe proof is to apply Theorem 1 to the sequence
of equations (2) and appeal to the three lemmas below. We will use the following
additional notation:

(14) Ik(b)= IVb + b+ b2

LEMMA 1. Under the assumptions of Theorem 2, for every k 1, 2,..- there exists
a positive solution pair (Ak, Uk) of (2) such that Uk E, the sequence (llVu ll= is bounded,
and

(15) O<Uk(r)<--Mr2-v/2, r >= 1

for a positive constant M independent of k.
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Proof. Such a sequence (’k, l/k) is guaranteed by Theorem 1, where Uk PI)k and
Vk is a solution of the constrained minimization problem

(16) Ik(Vk)=inf {Ik(V): V E, J(Pv)=d}.
It follows from (5), (14), and (16) that

Hence ]]VUkl]2 is bounded, implying (15) by the estimate of Berestycki and Lions for
radial functions in E [2, Lemma AIII].

LEMMA 2. The sequence {Uk} in Lemma 1 has a subsequence that converges locally
uniformly in C2(Rv) to a nontrivial function u C2o(Rv) satisfying

(17) 0 <- u( r) <- Mr(2-N)/2, r >-- 1.

Proof. The existence of such a convergent subsequence is a consequence of the
uniform estimate (15) by a standard argument based on Schauder and Lq-estimates

in bounded domains of RN (see, e.g., [11, Thm. 4.3]). To prove that the limit u(r) is
not identically zero, we use (15), the uniform bound O<Uk(r)<= T in R, and the
assumption F(t)= O(tv+l) as t- 0+ to conclude that there exists a positive constant
C, independent of k, such that

(18)

0< d J(u)- f.p(Ixl)F(u(Ixl)) dx

c I p(Ixl)[u(Ixl)]’/’ dx.

By (4) and (15), p(r)[uk(r)]+l<=Clr-s for r_>--l, where C1>0 is another constant
independent of k and

b a + (N-2)(’Y+ I)
> N

2

since (N-2)(T+ 1)> 2N-2a by (4). Therefore pu+le L(RV), and since {pu+1}
converges pointwise to pu+1 L(Rt), the Dominated Convergence Theorem applied
to (18) shows that

0< d C p(Ixl)[u(Ixl)] +’ dx,

proving that u is nontrivial.
LEMMA 3. The sequence {’kt in Lemma 1 is bounded.
Proof. The analogue of (11) for (Ak, Uk) is (taking w= v Vk, Uk PVk in (11))

implying by (14) and (16) that

(19) 211 vl) >= 2Ik (Vk) Ak II pukf(Uk) dx,

k 1, 2," . It follows as in Lemma 2 that pukf(Uk) LI(R) and {pukf(Uk)} converge
pointwise to puf(u) LI(RV). By Fatou’s Lemma,

lim inf Ittk-.oo
Ptlkf Uk dX >-- fttN puf u dx 8 > O
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since u is not identically zero by Lemma 2 and f(u)> 0 in 0< u < T. It is then a
consequence of (19) that 2Ii(vl)>--Shk, and hence {hk} is bounded.

To complete the proof ofTheorem 2, let h be the limit of a convergent subsequence
of {hk}. Since a subsequence of {Uk} converges to u in Coc(RN) we can let k-c in
(2) to conclude that u ux is a solution of the differential equation in (1). Since [[VUk[[2
is bounded by Lemma 1, {][Uk[[2v/(-2)} also is bounded by a standard Sobolev
Embedding Theorem. In view of the convergence of {Uk} to Ux, Fatou’s Lemma shows
that ux L2N/(N-2)(RN). We can prove that I(Vu)(Ixl)l, as well as u([x[), has uniform
limit zero as Ixl- by use of interior H61der estimates for (1).

Since A -> 0, it must be that A > 0, for otherwise ux would be a nontrivial, nonnega-
tive solution of Aux 0 in R with uniform limit zero at c, contradicting the maximum
principle. The strict positivity of ux throughout R then follows from the strong
maximum principle.

4. Asymptotic estimates. The asymptotic estimate (17) for the solution u(r) of (1)
in Theorem 2 can be sharpened to

(20) u(r)= O(r2-+) as r-lxl-,o
for arbitrary e > 0. To prove (20), first note from (4) that

(21) y- 1 2(2- a + 28)/(N-2)
for some 8 > 0. Consider the recursive sequence defined by

N-2 1
(22) tro- 2 trk+l=- [(a-2)+trk(y+l)]’ k=0,1,2,’’’.

Then trk => tro by induction and hence

O’k+l--O’k=1/2[a--2+O’k(y--1)]>--8, k=0, 1,2," "’,

implying that {trk} is increasing and trk-->O as k--> c. Let m be the smallest integer
for which trm+l > N-2-e. We know from (17) that u(r)= O(r-o) as r--> o. If u(r)=
O(r-k-,) for an integer k, 1 _<- k_<- m, consider the function VA(r) A(1 + r2) -k/2, r>0,=
for a constant A > 0. A calculation gives

AO’k[(N 2- crk)rE + N]
-(A)(r)

1 + r:)<+4)/2

whereas the assumptions on p and f imply that u(r) satisfies

-(Au)(r)<-_Ap(r)f(u(r))<=Cr--’-, r>-_l

for some positive constant (7. Since r < N 2- e for k <- m, and r + 2 < a + yr_l by
(21) and (22), positive constants A and R can be selected such that

-(AVA)(r)>=-(Au)(r) for r>-_R,

VA(R)>-u(R).

Since VA(r) 0 and u(r) - 0 as r oo, the maximum principle implies that VA(r) >-- u(r)
for all r_-> R, and hence u(r) O(r-) as roo. In particular, u(r) O(r-) as roo.

N-2- e, so Crm+lTo complete the proof of (20) we redefine Crm+ =Crm+ by
our choice of m. The argument above can then be repeated with O’k_l, O"k replaced by

respectively, in view of the inequalitiesO’m) O’m+

trm+l + 2 -_< trm+l + 2 < a + ytrm,

resulting in u(r)=O(r-;"+,) as r->.
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Under any one of the three additional hypotheses I, II, or III below, e can be
replaced by zero in the asymptotic estimate (20), i.e., the solution u(r) of (1) in
Theorem 2 has a "removable singularity" at oo:

(I) lim infr-.oo rVb(r) +oo for some v < a + (N 2)(3’ 1).
(II) 3">(N-a+2)/(N-2).

(III) b(r)mO, f, pe C(O, oo), and there exist positive constants C, C2, C3, C4,
to, and ro such that

(A) CtV <-f( t) <- C2t for 0<t-<to, where 3’ satisfies (4) for 0=<a<2;
(B) C3r-<-p(r)<=C4r for r>-ro;
(C) (logp)’(r)=O(r-’) as r-oo, (log g)’( t) O(1) as t->0+, where g(t)=

t-vf( t), t>0.
The upper estimates for f(t) and p(r) in (A) and (B) have already been imposed,

of course, as hypotheses for Theorem 2. The proof below in case (III) is based on
an a priori estimate of Gidas and Spruck [6, Thm. 3.6(iii)] for equations of type
--Au h(r)u, requiring extra conditions similar to (B) and (C) above.

COROLLARY. flatly one of the conditions (I)-(III) holds, the solution u(r) of (1)
in Theorem 2 satisfies u(r)= O(r2-/v) and u’(r)= O(r-) as r-->oo.

Proof. (I) Sincef(t) O(t) as t-0+, it follows from (1), (20), for a sufficiently
large constant Ro> 0, that

-Au <- Cr-auv- b(r)]u
(23)

<-[Cr-V-b(r)]u<-O

for all r-> Ro, where C, C are positive constants and

,= a + (N-2- e)(3’- 1) < a + (N- 2)(3,- 1).

The comparison function v(r)=Ar2-N satisfies Av=0 and V(Ro) >= u(Ro) for a
sufficiently large constant A > 0. Let w v- u. Then

-Aw->O for r=lxl>=Ro, w(Ro)>-O, and w(r)-->O as r-->,

implying that u(r)-< v(r) for all r-> Ro by the maximum principle.
(II) As in (23), u satisfies

-Au < Cr--(-2-) for r_>- Ro.
A calculation shows that v(r)= A(1 + r2) (2-N)/2 is a solution of

-Av AN(N 2)(1 + r2) -(N+2)/2, r>-_O.

Since a + 3’(N-2)> N+ 2 by assumption (II), e can be selected small enough and
R >-Ro large enough that -A(v- u)=> 0 for all r_>-R. The conclusion then follows as
in case (I) by a sufficiently large choice of A > 0.

(III) For b(r)=-O, the solution u(r) in Theorem 2 satisfies -Au Ah(r)u, where
h(r)=p(r)g(u(r)). Since u(r)-->O as r--> , conditions (A) and (B) imply that there is
a constant r _>- ro such that

(24) C Car <-_ h(r) <= C2C4r-a for all r_-> r.
In view of (1) and the decay estimate in Theorem 2, there exists a constant C > 0 such
that

(25) O<-[rN-u’(r)]’= XrV-’p(r)f(u(r)) <- Cr", r >- r,

where a =-a-3"(N-2)/2+ N-1. Integration over (r, r) implies that

(26) O<-u’(r)<-_Kr-v+K2r, r> r
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for some constants K1 > 0, K2 > 0, fl a N+ 2. Since y(N 2) > N 2a + 2 for
0<-a<2 by (4), it follows that fl<-N/2, from which u’(r)=O(r-mE) as r-->oo by
(26). Then assumption (C) yields the asymptotic estimate

(27) (logh)’(r)=(logp)’(r)+(logg)’(u(r))u’(r)=O(r-)
as r- oo. In view of (24) and (27), Theorem 3.6(iii) of [6] is applicable for y in our
range (4), 0-<_ a < 2, implying that either u(r) O(rE-N) as r oo or u(r) >- Cra-2/-1

for large r. However, the second alternative is impossible since u LEN/(N-2)(IN) by
Theorem 2 and

If we use the estimate u(r)= O(r2-v) instead of the estimate stated in Theorem
2, then t in (25) is replaced by

tz =-a-),(N-2)+N-1 <a-3<-1,

implying the boundedness of rV-lu’(r) for r_-> rl.
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HYPERBOLIC-PARABOLIC SINGULAR PERTURBATIONS
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Abstract. A hyperbolic-parabolic singular perturbation problem is considered for a quasilinear wave
equation that arises in one-dimensional nonlinear elasticity. An initial boundary value problem is treated,
in which there is an initial layer at 0. It is proved that the solution of the reduced problem approximates
the solution of the full problem uniformly on sets bounded in the time direction. An initial-layer corrector
and an additional outer expansion term are provided, which yield a uniform (e2) approximation.
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linear elasticity, nonlinear heat equations
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1. Introduction. In this paper we consider the singular perturbation problem

(1.1) e2u,,+u,-[tr(ux)]x=f(x, t), x(O, 1), t>O,

(1.2) u(x, O; e) 4(x), eut(x, O; e) q/(x), x [0, 1 ],

(1.3) u(O, t; e)= u(1, t; e)=O, t->O,

that arises in one-dimensional nonlinear elasticity. For small positive e, the function
u can be interpreted as the nondimensional displacement of the planar oscillations of
a (nonlinear) hyperelastic string that is oscillating in a highly viscous medium. The
scaling leading to (1.1)-(1.3) in the linear case (r(z)= z) is given in [8].

For nonzero e, (1.1) was considered in an often-referenced but unpublished 1975
work of Nishida (see Nishida [11] where the Cauchy problem is treated). Equation
(1.1), as well as corresponding linear and semilinear versions [5], [9], has also been
considered as a model for heat conduction to avoid the paradox of infinite speeds of
propagation for the parabolic problem (see the bibliographies of [11 and [12]).

For e 0 we have, in place of 1.1 )-(1.3), the well-posed parabolic initial boundary
value problem

(1.4)

(1.5)

(1.6)

Ut-[tr(Ux)]x=f(x, t), xe(O, 1), t>O,

U(x, O) tb(x), x [0, 1 ],

U(O, t) U(1, t) O, => O,

where the initial condition on ut in (1.2) has been omitted. Thus there is a nonuniformity
near 0, where an initial layer is present.

Our main result (Theorem 5) is the following: on the closure of any rectangular
region Q-" (0, 1) (0, to) in xt-space on which (1.1)-(1.3) has the solution u, with
properties given by Theorem 2, and on which (1.4)-(1.6) has solution U, with properties
given by Theorem 3, we have

(1.7) u(x,t;e)=U(x,t)+eUl(x,t)+eV(x,t/e2)+7(e2) ase0+

* Received by the editors December 30, 1987; accepted for publication March 30, 1989.

" Department of Mathematical Sciences, Virginia Commonwealth University, 1015 West Main Street,
Richmond, Virginia 23284.

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716.
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uniformly on Q. In (1.7) the function U is a first-order corrector to the outer solution
U and the function V is an initial-layer corrector, which we describe in greater detail
later in this introduction.

In a previous paper [6], we considered, in place of (1.1), the nonlinear wave
equation

(1.8) e:utt+ut-g u2x(x,.t) dx Uxx=f(x, t)

with a nonlocal scalar nonlinearity. We refer to [6] for further information about
singular perturbations for hyperbolic equations and related works, mentioning here
only the recent work of Benaouda and Madaune-Tort [1] on semilinear hyperbolic-
parabolic singular perturbations. The required estimates for (1.8) are somewhat less
complicated than the present case, and it was the insight gained there that enabled us
to handle (1.1).

A key point in our analysis here and in [6] consists of higher-order e-weighted
energy estimates. Energy estimates for hyperbolic singular perturbation problems seem
to have been introduced by deJager [3] (see also deJager and Geel [4] and Geel [7]).
Higher-order energy estimates were also used by Nishida [11] and have been used
effectively in recent years for problems in continuum mechanics (see, for example,
Dafermos and Nohel [2] and Slemrod [13]) in more complicated situations than that
considered here, but not concerning singular perturbations.

Several points should be emphasized. Quite a bit of smoothness is required for
our result. This is due in part to our method, but it should also be observed that the
uniform nature of the result (1.7), with correctors present, requires smoothness beyond
that needed for the existence of weak solutions of (1.1)-(1.3).

With the extra smoothness, we prove the local existence-uniqueness of u u in
(1.1)-(1.3) for any e in some interval (0, eo] and U in (1.4)-(1.6). Nishida [11] obtains
global smooth solutions for the Cauchy problem for (1.1), provided a small data
assumption is satisfied. Our asymptotic result is of an ideal type in that it is valid
uniformly on any rectangular domain for which the above-mentioned u and U are valid.

Our methods do not use any tools that are specifically tied to one space dimension.
It is therefore expected that our results can be carried over to more space variables,
but with an attendant increase in regularity assumptions.

Both u u and U are treated by the Schauder technique. A related linear problem
for u is considered in 2 and the nonlinear hyperbolic problem in 3. Section 4
contains the corresponding result for U as well as the (linear) problem for the corrector

U1. There also the elementary problems for the initial-layer correctors are solved
explicitly. The main result appears in 5.

Let us now close this introduction by describing the problems that characterize
the higher-order correction terms. The natural Ansatz [8], [9]

N

(1.9) u(x, t; e)= U(x, t)+ Y [U,(x, t)+ V,_,(x, t/e2)]e ",

where z’--t/e 2 is the stretched time variable, leads in the usual way to the following
problems. For the outer solution U1 we have the linear parabolic problem (P1)"

(1.10) U,-[tr’(Ux)Ulx]x=O, (x, t) Q,

(1.11) Ul(X, 0) (x), x[0, 1],

(1.12) U(0, t)= Ul(1, t)=0, t[0, to].
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For the initial-layer correctors V,, we have simple linear ODE problems. For the
initial-layer corrector V-- Vo of lowest order, we have the problem (o)"
(1.13) Q+ I2=0, r>0, x(0, 1),

(1.14) 9"(x, 0) q(x), x [0, 1],

(1.15) V(O, r)= V(1, r)=O, r>O,

together with the matching condition

(1.16) lim V(x, r) =0, x [0, 1].

Here and below, O/Or is denoted by ". ".
The higher-order initial-layer correctors are determined by very similar problems.

In particular, for V1 we have the problem (P1)"

(1.17) QI+ 121 O,

(1.18) v(/rl(X, O)---Ut(x, O),

(1.19) VI(O, )= VI(1, )=0,

with the same matching condition as for V,

(1.20) lira Vl(x, ) O,

->0, x6(O, 1),

x [0, 1],

z>O,

x[0, 1].

The problems for the outer solutions U,, n => 2, are found to be nonhomogeneous
linear parabolic problems, but are similar to that for U1. The same is true for the
ODEs for the initial-layer correctors V,, n -> 2. The proof ofuniform asymptotic validity
for the Nth order expansion (1.9) follows from a priori estimates like (5.1). The method
should be clear from our treatment here of the case N 1.

2. A related linear problem. As a tool in treating (1.1)-(1.3), we consider the
related linear hyperbolic problem ()"

(2.1) L[u] "-e2u,+u,-a(x, t; e)Ux,=f(x, t),

(2.2) u(x, 0; e)= b(x), eut(x, 0; e)= 0(x),

(2.3) u(0, t; e)= u(1, t; e)=0,

x (0, 1),

x6[0, 1],

t[0, to],

0<t<to,

under hypotheses on the data {b, q,,f} and a(x, t; e) appropriate for the subsequent
use of the Schauder technique in dealing with the nonlinear problem (1.1)-(1.3) on
Q--" (0, 1)x (0, to), which we refer to as (P).

Specifically, we make the following hypotheses for arbitrary eo in (0, 1 ] and to > 0.
Assume

(a.1) aH3(Q),

and, for positive constants ao and al, independent of (x, t; e) Q x (0, eo]

(a.2) O< ao<= a(x, t; e),

(a.3)

(a.4) L(O, 1) norms of{a(., O; e), ax(’, O; e), eat(., O; e)}--< al,

(a.5)

(a.6)

L2(0, 1) norms of{axx(., 0; e), ea,x(’, 0; e), e3at,( 0; e)}<-- al,

EL2(Q) norms of {a,, a,,, ax,x eatx, eatx,, at,, e3attx, eSa,t} <= al
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Moreover, we impose the compatibility condition

(a.7) ax(0, t; e)= ax(1, t; e)=0, t[0, to],

For the data, we require that

(4.1) 4 H4(0, 1), b $"=0

(0.1) E H3(0, 1), 0="=0
(f.1) fsH3(Q), f=fx=O

e (0, eo].

at x =0, 1,

at x 0, 1,

at x =0, 1.

fro(x, t) Z j(t) sin hrx= 2 E (f(x, t), sin hrx) sin hrx.
1=1 1=1

From elementary regularity results for systems of linear ODEs, it follows that the
unique solution {Atm}7’=l of (2.6)-(2.7) belongs to Hs(0, to), so that Urn, m=
1, 2,..., belongs to C4(Q)f HS(Q) and, in fact, is analytic as a function of x for
fixed t.

To show the convergence of the Um to the solution u of (), we use energy
estimates of higher order with appropriate e-weights. Let

l for { 42+21D 2 }(2.9) E(t) X e Um, +a(x, t; e) ID,um 12 dx
O[a[3 a,=O

and

In what follows, we will often abbreviate L(0, to; L2(0, 1)) as L(L2).
THEOREM 1. If a, ok, , andfsatisfy the above hypotheses, the problem ) has a

unique classical solution u C2(t) with Du L(L2), ]a]_-<4, such that each of the
following norms is bounded by a constant independent of e in (0, eo]"

E3 3(r.1) L(Q) norms of { u, ux, Uxx, Uxxx, Etlt, etltx, eUtxx, Utt, glttx, E5tlttt},

E3 E7(r.2) L(L2) norms of {U,,x,o, eUtxxx, Uttxx, e Utttx Utttt},

E
4(r.3) L2(Q) norms of {ut, Utx,

Proof. Imposing on the m-term Faedo-Galerkin approximation

(2.4) Urn= U,,(X, t; e) Akin(t; e) sin rrX,
k=l

the orthogonality conditions with L2(0, 1) inner product (.,.

(2.5) (Lu,, fro, sin l’x) O, 1= 1, 2,..., m,

as well as projected initial conditions, we are led to the following initial-value problem
for the coefficients {Atm} /=1

(2.6) 2--,,e l-ltm+Am+2 E k2"a’2atk(t; e)Akm=fl(t),
k=l

(2.7) At,,(0; e) 2(b, sin lrx), cAlm(0; e) 2(, sin lzrx),

for 1, 2,. ., m. The functions ark(t; e), fro(X, t) and J(t) are defined by

atk(t; e)=(a(x, t; e)sin krx, sin lrx)
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where the usual multi-index a =(al, a2) is used" D D, ,,5D,. The term in E(t)
corresponding to a (0, 0) is the usual energy at time of the vibrating string governed
by (2.1).

Our basic energy estimate is

(2.10)

where

o113
e4’lD’ Um, dx ds

H3o) exp K(s) ds-< IIfmll =

1
F e4 (eZID’u 12+a(x, t; =) dx,(2.11) S( t) =- olal3

(2.12, K(s)=Ko(l+sup
0xl

e constant Ko is independent of m and e.
e estimate (2.10) is established in the appendix, where it is also shown how

appropriate estimates of fro in the Ha(Q) norm and of F(0; e) lead to the inequality

(2.13)
sup

O<--tto al0

with constant C independent of m and e.
From this energy inequality, we see that each of the sequences {Dum}m--l, for

0-<_ lal--< 4, is bounded in L(L2) and so contains a weak* convergent subsequence. If
u denotes the weak* limit of the subsequence for a = (0, 0), then for 0 < lal -< 4, there
is a subsequence {D Um)_- that has limit D u, the ath weak L2(Q) derivative of u.
Hence D’u.L(L2), 0_-<]a]-<4, and u.H4(Q), so that U C2(0) by the Sobolev
embedding theorem.

To see that the limit u satisfies (2.1), we merely let mj tend to infinity in

t
(Lum-fm)/(t) sin hrxdxdt=O

for arbitrary/z e L2(0, to). It follows by a standard density argument that (2.1) is satisfied
almost everywhere in Q and hence everywhere in Q, since all the functions involved
are continuous in Q.

To see that the weak* limit u satisfies the initial condition u(x, 0)= 4,(x), we
proceed in a similar and familiar way. We note that for a e L2(0, 1) and/3 e C[0, to],
such that/3(0) 1 and/3(to) =0,

t
Urns(X, t)a(X)’(t) dx at

t
u(x, t)a(x)’(t) dx at,

and

,o
Um.,(X, t)a(X)fl(t) dxdt

’o
ut(x, t)a(x)fl(t) dxdt,
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from which

Um (X, O)a(X) dx--, u(x, 0)a(x) dx,

and the condition follows since urn(x, O) 4m(X) 4(X) in L2(0, 1). A similar argument
shows that eu,(x, 0)= q,(x) and that u Ux,, 0 when x 0, 1.

It is conceivable that there are distinct subsequences of {Urn} that converge to
different limits, and thus generate different solutions of (). However, global unique-
ness for solutions of () follows from an easy energy integral argument. In particular,
if u and t are classical solutions of (,), the function z u t satisfies the correspond-
ing completely homogeneous IBVP. With

1 [ z, + a(x, t; e)z,,] dx,

we quickly derive the identity and bound

IF.(t) + z, dx ds atZx axZxZ, dx ds

Io’ Io’_
2

2
z, dx ds + K1 IE(s) ds,

where

K aff Isu_p la, l+su_p la12}.I, Q Q

Gronwall’s lemma immediately implies

:(t)-= 0 z--0 u--

It follows that each subsequence of {urn} must converge to the unique solution u of().
The assertions (r.2) and (r.3) of Theorem 1 on the order e behavior of the various

derivatives of u follow directly from the inequality (2.13) when we use the lower
semicontinuity property of weak* limits. With these established, (r.1) follows by means
of the Sobolev embedding theorem. This completes the proof of Theorem 1. 1-1

3. The quasilinear hyperbolic equation. With Theorem 1 of 2 established, the
way has been prepared to approach the questions of existence and uniqueness for the
quasilinear problem (P) by means of the Schauder technique and the Banach contrac-
tion mapping theorem. Indeed, the fixed point will also be seen to inherit the regularity
and order e behavior built into the linear problem (). We proceed then with the
following theorem.

THEOREM 2. Let f, 4 and satisfy hypotheses (f.1), (b.1), and (.1), respectively.
Let tre C4(R) with 0< tro_-< tr’(z) for all z. Then the quasilinear hyperbolic problem
(P) consisti_ng of (1.1)-(1.3) on Q has a unique Classical solution u C2() with
D’u L(L2), ]al_-<4, such that corlclusiors (r.1), (r.2), and (r.3) of Theorem 1 hold.
The interval [0, to] may be small, but it is independent of e in (0, eo].

Proof. Let (e, to) be the complete metric space

={v L(O, to; H(O, 1))Iv, s L(O, to; L(O, 1))}
with e-dependent metric d d defined by

d2(l), 17)--" sup [(tx-17x)2A-e2(l)t-17t) 2] dx.
ot
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For suitable functions v v(x, t; e), with e (0, Co], let

6(v)-" max sup e4"2+21D"v, dx,
o--<11-3 LOt___.to

Io  ofo’ },o
dx dssup ]Dlvx[2 dx, e4a2 ID l)tl 2

Ot-- to

Let --- (M, to, e) be the subset of o consisting of functions v v(x, t; e) such that
for given positive M

{v e H4(Q): D’v L(0, to; L2(0, 1)), < 4, and (v)_-< ME}
and

v(O, t; e) v(1, t; e) Vxx(O, t; e) Vxx(1, t; e) O,

v(x, o; ) (x), ev,(x, o; ) q,(x),

eEv,(x, 0; e) =f(x, O)+o"(’(x))"(x)-O(x)/e.

The set is a closed subset of . Indeed, let {v,} be a sequence in that converges
to e in the metric on . Since L(L) is the dual space of L(L), any bounded
set in L(L) is sequentially compact in the weak* topology of L(L). Since 6(v,)
M, n 1,2,. ., each of the sequences {Dv,}, la[4 is bounded in L(L) and so
has a subsequence that converges to an element of L(L), D v, w, weak*. If v is
the limit function corresponding to a (0, 0), it follows easily from definitions that
w" D v, the ath weak L derivative of v. Also, by the lower semicontinuity propey
of weak* sequential convergence,

e2a2+lD vt L(L2) lim [Ie22+1D v., L(L2) M,

IID’VxIIL(L2) li [[DvnIIL(L2) M,

for [a[ 3, and by a similar argument involving weak convergence in L2(Q),

Hence we conclude that (v)M2. The conditions on Q are seen to hold for v by
arguments similar to those in Theorem 1. Since v, with respect to the metric d, we
clearly have v, weakly in L2(Q). On the other hand, a subsequence (v) has
been shown to converge to v weakly in L2(Q). By uniqueness of weak limits, each
subsequence must converge to v . Hence and is closed.

For a given v in , consider the linear IBVP (2.1)-(2.3), with

a(x, t; e)’(Vx(X, t; e)).

It is a straightforward matter to verify that this function satisfies hypotheses (a.1)-(a.7)
of Theorem 1. Hence, for each v in , we obtain a unique solution u of () that
enjoys all the propeies guaranteed by Theorem 1. Denote this solution map by
5: u v.

Seeking fixed points of 5, we first show that $ maps into itself for appropriately
chosen M and to. For v in the energy inequality (2.10) implies, by the lower
semicontinuity propey of weak* limits,

(u)< /o[1111 = = = 1
o,>+llllo,>+llf(x,O)ll,]+llfllo exp K(s) ds
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where K(s) is given by (2.12) and

II/(x, )11* 11----2 IDf(x’ 0)12 dx.

We now choose M > 1 so large that the data at 0 is bounded above as

ko [11 2/"/4(0,1 + , ="3(0,1) "q-liT(x, 0)II,]-<1/2M,
and then choose to sufficiently small so that Ilfll =H3(o) < 1/2M. In considering the exponen-
tial factor, it is important to note that

fo sup Jail dE= f’o sup I(tl/4tr"(vx))(t/4Vtx)l dt
do Ox<-I dO 0------- x--<--

--<- sup Vx)12V7o+ vo 2 2

--2 0 - Vtx+Vt) dxdt

<- k(M)Vo,
where k depends on M, but not on e. It follows from the assumed order e behavior
of the derivatives of v in that

e D’a,I+ IDj,axl dx <- k(M)
l_<---lal=<2

holds for a constant depending on M but independent of e. Hence

exp K(s) ds <

provided to is chosen sufficiently small. This implies that 6(u)<= M2. The remaining
subsidiary conditions in follow from the fact that u is a classical solution of ()
on Q. Hence u and S" .

To show that $ is a contraction on with respect to the metric d, let v, and
u Sv, t St3. Then w u a is a classical solution of the linear initial boundary
value problem consisting of the PDE

(3.1) e2w, + wt-tr’(vx)wxx [tr’(vx)-tr’(x)]xx,

and the conditions (2.2)-(2.3) with b(x) --= O(x)=-0. The energy of w defined by

1 To’ w, + ’(vx)Wx](3.2) (t)’- [- dx

satisfies

2(t)+
(3.3)

w,[(’(v-’(oa=-"(vv=wl+ "(vv,w x s,

and so by estimates of the right-hand side similar to those in the Appendix, we obtain
via Gronwall’s lemma

_,(t) < Ctod(v, ) exp (s) ds
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with

C1 sup Itr"(0vx + (1 0)x)ffxx[ 2,
0<0<1

independent of e, and kernel given by

,{ Io’ 2 2K(s) max {1, r) supl"(o)ol+supl"(o) 1+ (,+o,x)&

The assumptions on and our results on u guarantee that the L(0, to) norm of (t)
is bounded independently of e in (0, sol. Now

d(u, a)max {1,) sup (t) Ctod2(v, ),
Ot

so by choice of to sufficiently small, the map is a contraction as asseed.e Banach
contraction mapping theorem implies that has a unique fixed point in , which is
seen to be a classical solution of (P). Moreover, there is at most one classical solution
u e C:(Q) for this to as shown by the following energy integral argument. Let u and
be classical C(Q) solutions of (P); then (3.1)-(3.3) hold with v u and . With

sup {["(Ux)Uxx[, I"(ux)uxl, I"(0Ux +(1- O)x)xx[} k,

we quickly obtain the estimate

2k2+ k o’(t) (s) ds,
o

and, by Gronwall’s lemma, E(t) 0, so that u follows immediately.

4. The reuee roblem n higher-order eorreetors. In this section we consider
the reduced problem (Po) and the problems (P), (o) and () introduced in 1. e
initial-layer corrector problems (o) and () readily yield explicit solutions given by

(4.1) V(x, ) -(x) e-,
and

(4.2) V(x, )= {g’(’(x))"(x)+f(x, 0)} e-.
In 5 our proof of uniform validity for the expansion will require that Vx and Vx
belong to L(Q). From (4.1) and (4.2) this will ceainly be the case if

gc, ’oe(0,), "e(0,1), A(x,0)e(0,1).
As indicated in (1.4)-(1.6), the reduced problem (Po) corresponding to e =0

consists of the quasilinear parabolic PDE

(4.) u,-’(ux)ux=f(x, t), (x, t) Q,

together with the single initial condition

(4.4) U(x, 0)= (x), x e [0, 1],

and the homogeneous boundary conditions

(4.5) u(0, t)= u(1, t)= 0, e [0, to].

This initial bounda value problem, of course, has been studied in depth both with
regard to weak and classical solutions. Nonetheless the kind of results that we seek
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for the regularity of the solution do not seem to be explicitly available. Consequently,
we are forced to examine this problem with hypotheses compatible with the related
hyperbolic problem (P), and, more importantly, sufficient to guarantee existence of
a classical solution of (P1). We state our result concerning the reduced problem as the
following theorem.

THEOREM 3. Let e C7(R) satisfy 0< tro-_< tr’(z) for all zeR.
Assume

(f.2)

bH7(0,1), b=b"=b’o=bo’=0 atx=0,1,

fHa(Q), DEx",-IfeHa-"(Q), cz=1,2,3,

f=fx =fxxxx =0 at x=0, 1.

Then the quasilinear parabolic problem (Po) has a unique classical solution U(x, t)e
C2’(() such that Uxxx, 0 at x 0, 1 and

(r.4) U,x, Uxxx, U, Uxxxx e C(Q),

(r.5) U,,, U,,,, U,,x, U, U,,xx, Uxxxxx, U,xxx, U,,,x, U,,xxx, U,xxxxx, Uxxxxx e L(L2),
(r.6) Umxx, U, U,xxxxxx, Uxxxxxx,, L2(Q).

Proof. In spite of the similarity of the pattern of proof here with that of Theorems
1 and 2, we will give the essential details for the convenience of the interested reader.

(i) A related linear parabolic problem. First consider a related linear parabolic
problem for which the PDE (4.3) is replaced by

(4.6) U Ut- b(x, t)Uxx =f(x, t),
but the same initial condition (4.4) and boundary conditions (4.5) are retained. We
assume for b(x, t) that

(b.1) 0< bo <- b(x, t),

(b.2) bx bxxx 0, at x 0, 1,

(b.3) bH3(Q), D2x’-lbH4-’(Q), a, 1, 2, 3.

The Faedo-Galerkin approximations

Urn(x, t)= E Bkm(t) sin kwx
k=l

for the linear problem (4.6) satisfy the orthogonality conditions

(4.7) (D’(- Us --fro), D Us) 0

for all 19 multi-indices in

{a (a,, a2)}0 -< a, + 2 max {1/2, a2} =< 7}.
We note that assumption (b.2) is needed in deriving (4.7) when al 3 and 5. From
(4.7) we derive an integral relation for each a e fl:

1/o’ fo’ fo’ID Urn[ 2 dx + b(x, s)lD Umxl 2 dx as

= ID U(x, 0)1 ax + o%o u ax as

+ DUm DabD-aUmxx-bxDUm dxds.
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To put these results together, we define

1 for’(t)’---_. Ioul=dx.

Estimates similar to the hyperbolic case appearing in the Appendix result in the
inequality

1 fo’fo 1 fog’(t)+ bo u IDSmldxds<-(O)+llfmll2,+ Ko(s) g(s) ds,

where

and

with

IIf DTm dx ds

Ko(s) C l+tl/2+ E IIDbll,<o)+ IDb + t/2 IDbl dx
llo

{O "-(O1, =)14 c, +2a2 6, a (6, 0)},

2 a (a, a2)la + 2 max {, a2} 7];

note that o[ 5, [ 9, and 121 4. By Gronwall’s lemma,

(4.8) (t)+ bo E IOUm 2 dxds (0)+ IILII exp ’Ko(s) ds.

Hypotheses (.2) and (f.2) are sufficient to guarantee that the right-hand side is bounded
by a constant independent of m. To see this, write

1 ID:,Um(x, 0)1 dx+ , IDUm(x, 0)12 dx.o)=o 2>0

In the first sum, the terms satisfy

01 IO I0[D:U,(x, 0)[ 2 dx: I,)l2 dx I()[ dx.

For the second sum, we note that

{D(LUm-fm),D"Um,}=O,
where h= {a =(a, a2)10 al +2a2 5}. Then

I(x,olaxC f(x,Ol+ 2 Ib(x,O’-x(x, Oll ax,
o

where =(a,a:-l) for as, a2>0. The norm Ilfmll* and o[Dfm(x,O)[:dx, for
a s fl, a:> 0, arc bounded independently of m as is done in (A.11) of the Appendix.
Hence each of the sequences

{D Um} is bounded in L(L:),

{D Um} is bounded in L:(Q).
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Here 4 {O (1, a2)[Ol "" 2 max {1/2, a2} 8}. Uniqueness follows from the identity and
bound for the difference, Z U- 0, of two classical C2’1(Q) solutions

1
Z dx + bZ2x dx ds b.Z,Z dx ds

2

<--- Z2 dx ds + b sup Ibxl
1 2

--2 0 - Zxdxds

by Gronwall’s lemma. The remaining portion of the proof for the linear .problem is
entirely analogous to the final part of the proof of Theorem 1.

(ii) Contraction mapping and Schauder technique. A proper setting for Banach’s
contraction mapping theorem is obtained by defining a complete metric space

with
’ ----" L(0, to; H(0, 1)),

vll vll(.’) sup v- + v] dx.
o-_t

and a closed subset X(M, to) of Z, consisting of functions V on Q with generalized
derivatives

DV L(O, to; L2(0, 1)), DV LE(Q), a fl,

satisfying

and

V(x, O) (x), V= V,x V,x,x 0 at x O, 1,

p(V) max {llD Vlloo(Lb, DVIIL=(o)} M.

For V X, let ql be the solution operator associated with the linear initial boundary
value problem

U, or’(Vx) Ux f(x, t),

U(0, t) U(1, t) 0,

U(x.O)=(x).

so that U T V.. The proof is complete if T is a contraction map on X. With b(x, t)"-
r’( V(x, t)), it can easily be checked that conditions (b.1), (b.2), and (b.3) are satisfied,
so T is well defined. That ql maps into for M sufficiently large and to sufficiently
small follows from (4.8).

Let V, V (M, to) and U ql- V, U ql V; then W U- U satisfies

ew w.-’(Vx) Wx-(’(Vx)-’(v))u=o

and completely homogeneous initial-boundary conditions. From

we can show that

W2(x, t) dxk, toek2’ollV- ,11 =
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and

x, dx to v

where

kl-" sup I"(OVx+(1-o)V)Oxxl,
oo_-I

k2 1 + tr-1 sup Itr"(Vx) V**I 2,

k3 "--o’ sup I"(ov+(1-o)’x)Oxl.
oo1

Putting these together, we have

for K < 1, provided to is sufficiently small.
We also include a sketch of the proof of existence and uniqueness for problem

(P1) in order to indicate precisely how the smoothness of U(x, t) is intimately involved
in obtaining a classical solution Ul(x, t). This is recorded in the following theorem.

THEOREM 4. Let tr, dp, andf satisfy the hypotheses of Theorem 3 and suppose

(@.2) H6(0, 1), "= O’v =0 atx=O, 1.

Then the linear parabolic problem (P1) has a unique classical solution Ul(x, t) C2’1()
such that

(r.7)

(r.8)

(r.9)

Ul,x, Ulxxx C(Q),

Ul,,, Ul,xx, Ul,,x, U1 .... U1 U1 U1 U1 U L(L2),

U, U, ...... U1 U, L2(Q)

Proof. It is convenient to consider the equation

where we assume that

LU U,-(c(x, t)Ulx)x=O,

(c.1) 0< Co <- c(x, t),

(c.2) Cx Cxxx 0 at x 0, 1,

(e.3) c H3(Q), D2’-’c n4-a’(Q), a= 1,2,3.

We find that the Faedo-Galerkin approximations

Win(x, t)= E Ckm( t) sin kcrx
k=l

satisfy

(4.9) (DL W,,, D W,,,) 0
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for a 3 {a (al, =)10 , + 2 max {1/2, a2}-<6}, where [3l 15. We note that (c.2) is
needed when a 3 and 5. From (4.9) it follows that

lfo’ oW dx + c(x, s)lO Wmxl 2 dx as

lfot fo’fo’ ()= IOWm(x, O)l ax- OWmx X O"cO-’Wmx axa,

holds for each a . Define

E*( t) ID W dx;

then, with estimates similar to those in the Appendix, we arrive at the inequality

(4.10) E*(t)+Co [DaWmx[2 dxdsE*(O)+ (s)E*(s) ds,

in which

where

and

(s)’--c X IlDcll.(o + X ID’c(x,s) dx

dl, {a (a,, a2)ll-< a1+2a2-< 3}

dl_= {a (a,, a2)14-< a, + 2a<_- 6, a # (6, 0)}.

It is impoant that the conditions imposed on the data of the problem enable us to
bound E*(0) independently of m. Note that we may write

’ fo’ 1 IotE*(0)= IO:’ Win(X, 0)12 dx+ In Wm(X 0)12 dx.
al=0

2>0

For the first sum, we obtain directly from the initial condition, by means of Bessel’s
inequality, the bound

fo’ fo’ foIDa, Wm(X, 0)] dx ]’)(x)] dx I’)(x)] dx

for a 0, 1, , 5. For the second sum, we note that the ohogonality relations

(DL Wm, D Wmt O, a

where 33 {a (a, a2)10 a +2a24}, I1 9, can be used to get

I (x, 01 x c I"(x,o,-o (x,o ,
where =(+1, -1) for el, >0, and C is a positive integer. This sees to
bound each term of the second sum by initial data. It is clear that we need the traces

Our assumption (c.3) is sucient to guarantee that these traces exist. It is also at this
point that we require 0 e H(0, 1).
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The proofnow proceeds in a familiar way by applying Gronwall’s lemma to (4.10).
Uniqueness follows since the difference oftwo C2’1(() solutions, Z U1 t, satisfies
the identity - Z(x, t) dx + c(x, )Zx(X, ) dx as o.

The regularity of U(x, t), the classical solution of (Po), provided by Theorem 3, has
been designed precisely so that e(x,t)’-tr’(Ux(x,t)) satisfies (c.1), (c.2), and
(c.3). iq

5. The main result. The analysis ofthe previous three sections permits some brevity
here. In particular, when we form the problem for the remainder, analysis of existence
and uniqueness is not needed since the remainder is a sum of functions whose regularity
properties have been established. We have also investigated the order e behavior of
the derivatives of u so that here we can proceed with certain knowledge. All that is
required at this point is the establishment of an a priori estimate for the remainder,
allowing determination of its order e behavior. Our main result then is contained in
the following theorem.

THEOREM 5. Letf, b, , and tr satisfy the same hypotheses as in Theorem 4. Denoting,
as above, by Q the rectangular region (0, 1) x (0, to), let u be the solution ofproblem (P):

e2utt+ut-o"(Ux)Uxx=f(x, t), (x, t) Q,

u(x, O; e) b(x), eut(x, O) ,(x), x [0, 1],

u(0, t; e) u(1, t; e) 0, t[0, to],

with the properties established in Theorem 2. For the same to, let U and U, respectively,
be the zeroth-order andfirst-order outer solutions given by Theorems 3 and 4. Let eV be
the lowest-order initial-layer corrector given by (4.1). Then

u(x, t; e)= U(x, t)+ EUI(X t)-[- EV(x, t/e2)+7(e2) as e -->0+

uniformly on . The interval [0, to] may be small, but it is independent of e in (0, Co].
Proof. Let r denote the remainder term defined by

r u -[ U + eU + eV+ e2V],
where e2V1 is the corrector given by (4.2). For ease of notation, let

e U+eUl+eV+e2V1.
An easy computation shows that r satisfies the nonlinear hyperbolic equation

e2rtt + rt tr’(ux) rx b(rx) h(x, t; e)

in the classical sense in Q, where

and

b(r) "--[tr’(ex + rx)- r’(e)] exx,

h(x, t; e) "--eU,,-e3U,,+[’(ex)-r’(U)]Uxx

-e-- [tr’(Ux) U]+ r’( ex)[ e Uxx + eVx + eE Vlx].
Ox

The remainder r also assumes the initial conditions

r(x, 0; e)= -e2[cr’(c’(x))d"(x)+f(x, 0)]
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and

r,(x, 0; ) -e["(’(x))4,"(x),’(x)+ ’(4,’(x)) /’(x)]

for x [0, 1 ], as well as the homogeneous boundary conditions

r(0, t; e) r(1, t; e) 0, e [0, to].

By means of energy integrals, the following pointwise estimate can be established for
such a function r

(5.1) Ir(x, t; e)[2C (0)+ dxds

where the constant C is independent of e in (0, eo] and E is the energy

t) [,+’(Ux] dx.

Assuming for the moment the validity of the bound (5.1), the theorem is completed
by showing that the ight-hand side is (e4). With the initial conditions satisfied by r,
this is obvious for E(0). e integral of the square of h over Q will also be (e4)
provided this holds for each of the terms whose sum comprises h. Thanks to the
regularity of U and U obtained in Theorems 3 and 4, this asseion clearly holds for
the first two terms in h. A little more care is required for the remaining terms, which,
by use of Taylor’s theorem, may be written as the sum

e"(Ux) Ux]Vx + Ice’( u)] Vxx + [e:"(u) Ux]E+ [e’(ex)] Vx
+e:[(Uxx + Vxx)"(Oex+(1-o)u)(u+ vx + eV)]
+e["(Oex+(1-o)Ux)Uxx(Ux + vx + eEx)].

The last two terms here contribute (84) to the estimate, due to the regularity established
in 4 for U, U, V, and V. The remaining terms are each in the form of a product of
an (e) factor and a corrector. When integration with respect to is carried out in
the integral over Q of the square of these terms, the factor exp {- t/e2} in the corrector
gives rise to an additional e, and thus, the result here is also seen to be (e4).

It thus remains only to establish the uniform bound (5.1), which is done by
estimating the right-hand side of the energy identity

2(t)+ r dxds=E(O)+ r[b(rx)+h]dxds
(5.)

0 0+ rx’(uxl-rxrt’(Ux) dxds.

We have by the arithmetic-geometric mean (A-G) inequality

io io  io ioIr,b(r)l dx ds r, dx ds

+n sup {[exxll"(oux+(1-o) ex)lt = 1 2 dxds,
0 rx

0<O<l
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and then note that the last integral is bounded by

’ :(s ds.

The integral of rh is bounded by (A-G) with 1. Letting a(x, t; e)= o"(u(x, t; e)),
we have further that

a,rx dx ds sup la, r dx ds
k0xl

<= + [a, + a] x (s) s,

where Sobolev’s inequality is used. The last term in (5.2) is treated similarly,

Io Io  Io’Io’larxr, dx ds r, dx ds + sup laxl
xox

r dx ds,

with the last term here bounded above by

2 2n (ax+axx) dx E(s) as.

Hence choosing 2 to cancel the second term on the left-hand side of (5.2) and letting

Yr(s) [ "(s (lexxll Oux+(1 O) ex)l)2
L0<0<I

+ (a+aLe+ + (a+
o

we see that

E(t)<_E(O)+I__ lh2
2

from which we obtain (5.1) by means of Gronwall’s lemma and the Sobolev inequality.
It is important to be aware that an e-independent bound of the L(0, to) norm of ’f(t)
follows from the conclusions in Theorem 2 on the order e behavior of the derivatives
of the solution of the quasilinear hyperbolic equation. This completes the proof of the
theorem.

Appendix: Energy inequality. We wish first to establish (2.9):

Iofo(A.1) E(t)+14o_ll_3 E42 Io,l= F(O)+ll/,ll3<o) exp K(s) ds

for v =- Um given by (2.4). It will be clear that analogues of (A.1) are valid for higher-order
a under appropriate conditions, but we operate under the hypotheses of Theorem 1,
in which Il-< 3.

To prove (A.1) we start by considering, for any multi-index a, 0-<In[-<3, the
"energy" E defined by

l forE(t)=- E,(t, e; v) "-- (elDv,l+ a(x, t; e)lD" vxl) dx,
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where D" D,D’{2. Then our basic energy identity is

Iotfo 12
l fo’ IoE(t)+ [O’v, dxds= E,,(0)+ a,lOvldxds

(A.2)

foSo {(a)DaD-V,,x-axDvx+D’f,,ldxds+ Dv

wherefm is the L(0, 1) projection off as defined in (2.8). The identity (A.2) is obtained
from the L(0, 1) ohogonality relation

(Da(tev-fm),Daot)=O, 113,
which follows directly from (2.5) by integration by paas. The vanishing of a(x, t) at
x 0 and x 1 is required in our hypotheses specifically so that this holds for a (3, 0).

Multiplying (A.2) by e4a2 and summing over a, 0 lal 3, yields

0113

F(0) + 2 e4a2 Dvt
(A.3)

1 e4 a,IDvdxds+
0113

where, as in (2.10),

Defining, as in (2.9),

E(t) "-- o<-11-3

F(t)’- E t42Ea (t)
o_<-11_-<3

e4+zlOv,l=+a(x,t;e) IO,vlz} dx,
eel=0

we now derive the energy estimate

folio 2111f"112 fo’1
dx as < F(O)+-(A.4) E(t)+- e ID o,I =

o-11-3
H3() + K(s)E(s) ds

from which (A.1) follows by using Gronwall’s lemma.
There are several different estimates needed in order to bound the various terms

in (A.3) to establish (A.4). Proper care must be exercised in associating powers of e
with derivatives of a and v so that only 7(1) quantities appear. The term involving
D’f,, is bounded easily via the arithmetic-geometric mean inequality

Iofo 1 Io/or,F, 4t2 IOal),Ol dxds<-- {e4lOv,lZ+lOfmlZ) dxds,

and hence the sum over a of such terms is bounded by

1 { iif =(A.5) H3(o) + E
o_ll_-<3
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where we have used, and will repeatedly use, the fact that 0 < e <- eo--< 1. Similarly, by
means of

1 1E4t2 la,[ID vxl 2 dx ds <-- sup la, ID" vx dx ds,
2 o__<xl

the sum involving the last term in (A.3) is bounded by

(A.6) / sup la,(x, s)lE(s) ds,
0_--<xl

where/x max { 1, afrO}. For the term involving axD Vx, we use

e4a2 [axD’ v,D Vx[ dx ds

(A.7)

2 ONxNl

when > 0, while for 0, we have, for any > 0,

Io’ Io’ ,axlO Ux +,- ov,l:) dx as.(A.8) laD v,D vxl dx ds

Thus the sum over a of such terms is bounded above by

(A.9) sup lax(x,)l/, sup Ix(X,)l E()d+ Io7,o, dxds.
k0xl 0xl al=0

The remaining terms involve Da and are a bit more sensitive. When fl (1, 0) the
estimates (A.7) and (A.8) apply with Dvx replaced by D-aVxx. For fl =(0, 1) we
may use (A.7) if we replace a by a, and D v by D-Vx. For IBI > 1, #= 0, we have

e4a2 D vtD aD-Vxxl dx ds

e-lDa dx

x e4’+21D v,I2e4’-"1D-" Vxxl 2 dx ds

(A.10) N

4aE+21Da 2x sup le-D-xxl
0xl

[IoZ- e4-2lOal2dx e4-)lO-Vxxxl2dx ds
2

l Io’ Iot e42+2lOa v,12 dx ds.

It should be mentioned that in (A.10) we have used the elementary Sobolev inequality

Iv(x,1 vx(e, 1 ,
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which is valid for the C4(() function v urn, in view of the fact that D’v has a zero
in [0, 1] for each t.

For Il > 1, --0, the same sort of estimation as in (A.10) yields

Io[Io ]Iot 110’Io-2----- IOx,al = dx IOx,-’,vxxl - dx as+- IO:,v,I = dx as.

There is one additional case, when/3 (2, 0), a (2, 1), for which, proceeding as in
(A.10),

g4 ID tDaD-Vxx[ 2 dx ds

2- [O" al u d e O dx ds
2 e6lO ol u dx ds.

Merely collecting these estimates for the right-hand side and choosing r appropri-
ately to obtain the coefficient for the double integral on the left-hand side, we see
that there is a constant Ko, independent of e, x, and such that (A.1) holds with K(s)
given by (2.12). In simplifying the expression for K, we have used the elementary
inequality

lax[ =< 1/2(1 + [axl E)
as well as the Sobolev inequality

[,o(x, t)[=_-< Co (Io,(, t)l=/l,ox(, t)l z) de,

where Co is an absolute constant. With this, the proof of (A.1) is complete.
We now show that the right-hand side of (A.1) is bounded independently of m

and e. Consider first obtaining a uniform bound for the norms {llfll. <o)}=, Note
thatfs H3(Q) implies DT’-f(., t) H3-a2(0, 1), a2=0, 1, 2, 3, for almost all in (0, to)
by Fubini’s theorem. We have assumed that f=fx =0 when x =0, 1, and it follows
that f =f, =0 at x=0, 1 as well. Since the family {sin krx}k__l is dense in LE(0, 1) and
each of the spaces

2[k/3]Sk { v Hk(0, 1)Iv Dx v 0 at x 0, 1 },

k 1, 2, 3, we find by means of Bessel’s inequality that, for almost all in (0, to),

(A.11) ID’fm dx <= IDII dx, I1 -<- 3.

Integrating over (0, to) and adding, we find that Ilfm () Ilfll<O). Next consider that

1
E E4a2 {e2lD"um,(X, 0)l+a(x, 0; e)lDUmx(X, 0) 2} dxF(0) " lal__<3

{elDum,(X, O)l+ a(x, 0; e)lDum.(X, 0)l} dx
2

1
e {eUlDum,(X, O) + a(x, 0; e)lDUmx(X, 0)l u} dx.
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From the initial conditions, for the first sum, we have

{eZlDu,,,(x,O)l+a(x,O; e)lD Um (x,O)lZ}dx
21=0

2 1=0

1

Also, the ohogonal relations

<O(tu-f),Du.>=O, 112,
can be used to get the bounds

fol 64a2+6lDaUm,,(X, 0)12 dx

c I((x,oll(-*l-(x,o1
0NN

+e4+2lDu,(x, O)[=+[Df(x, 0)l =} dx,

for [ala2, in which we have been careful to place the available powers of e so that
only (1) quantities appear on the right, in accordance with hypotheses (a.4) and
(a.5), the initial conditions, and the results obtained for the a2+ 1 case from the
previous cases. Projections of the initial data (2.2) are easily bounded independently
of m using Bessel’s inequality, and an argument similar to that leading to (A.11) shows
that

II(, 0l e If(, o1 ax
o

holds for 112, with the traces existing at =0 since fe H(Q). Note finally that the
exponential factor in (A.1) is if(l) from the order e behavior of the derivatives of
a(x, t; e) assumed in (a.3) and (a.6).
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SEMIDISCRETE APPROXIMATIONS OF HYPERBOLIC BOUNDARY
VALUE PROBLEMS WITH NONHOMOGENOUS DIRICHLET

BOUNDARY CONDITIONS*

I. LASIECKA" AND J. SOKOLOWSKH:

Abstract. Finite-element approximations of the wave equation with nonhomogenous and "nonsmooth"
Dirichlet boundary data are considered. These approximations are based on a special variational regulariz-
ation of the problem introduced by J. L. Lions. The convergence rates of the approximations with nonsmooth
boundary data are derived.

Key words, semidiscrete approximations, hyperbolic boundary value problems, nonhomogenous and
nonsmooth Dirichlet data

AMS(MOS) subject classification. 35L

1. Introduction. Let fl be an open bounded domain in R with smooth boundary
F. Let A(x, 0) be a second-order strongly elliptic operator of the form

A(x, O)u ai.i(x) u
i,j=l OXj

where aij aji C((I) and

i,j=l i=l

Consider the following second-order scalar hyperbolic equation:

6(x, t) A(x, O)u(x, t) in x (0, T) Q,
(1.1) u(x, 0) (x, 0) 0 in fl,

u(, t) g(, t) in F x (0, T) .
The main goal of this paper is as follows. Under minimal regularity assumptions
imposed on the boundary term g, we introduce finite-element approximation of (1.1)
and establish convergence and the rates of convergence of the algorithm in L2()
norms. Our motivation for studying approximations of second-order hyperbolic
equations with nonsmooth boundary data comes from problems arising in numerical
considerations related to a variety of boundary control problems where the solutions
are definitely nonsmooth, for example, optimization problems with boundary controls,
the time-optimal boundary control problem, and ccati equations arising from boun-
dary control problems. To construct and prove related convergence of numerical
algorithms for these problems, a preliminary step is to establish appropriate approxima-
tion of problem (1.1) with nonsmooth boundary data gsay, g eL2(E) or g e
HI[0, T; H-1/E(F)]. To the authors’ knowledge, the literature on finite-element methods
for the second-order hyperbolic equation with Dirichlet boundary conditions deals
only with nonhomogenous boundary data, which are smooth. This is not surprising,
also in view of the fact that the maximal regularity of problem (1.1) with non-
homogenous boundary data mL2() has been established only recently (see [LT1],

* Received by the editors June 16, 1986; accepted for publication (in revised form) January 27, 1989.

" Mathematics Department, University of Florida, Gainesville, Florida 32611. The research of this
author was partially supported by National Science Foundation grant DMS-8301168 and Air Force Office
of Scientific Research grant AFOSR-84-0365.

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland. This work was completed
while the author was visiting the Mathematics Department of the University of Florida, Gainesville, Florida.

1366



SEMIDISCRETE APPROXIMATIONS OF HYPERBOLIC PROBLEMS 1367

[L2], [LLT]). The presence of the nonhomogenous and nonsmooth Dirichlet boundary
data is responsible for two immediate difficulties: (i) Dirichlet problem (1.1) does not
admit a natural variational formulation that could then be taken as a basis for a
numerical approximation. (ii) Low regularity of the boundary data g (hence of the
solution) rules out the usual technique for proving stability and convergence of the
numerical scheme based on HI(-) L2(’ energy estimates. While the first difficulty
can be handled by selecting an appropriate approximation of the elliptic operator that
would take into account the nonhomogenous terms on the boundary (see, for example,
[B2], [B7], [N1], [$1]), the second difficulty becomes crucial in relation to the derivation
of stability estimates for the sought-after numerical algorithm. Let us elaborate more
on this point. A standard finite-element approximation approach in the hyperbolic (as
well as the parabolic) case is to define a semidiscrete algorithm by taking an appropriate
space-approximation of the underlined elliptic operator. The estimates on the rate of
convergencemwhich, of course, depend on the smoothness of the solutions--can be
obtained by taking the difference of the two solutions and by using results on elliptic
approximations. It is known, however [R1], that even if the elliptic approximations
yield the optimal rates of convergence, nevertheless, the rates for hyperbolic problems
are nonoptimal because they require one extra time-derivative of the solution. Since
we cannot obtain optimal convergence rates, we would at least like to obtain convergence
of the numerical algorithm in the "right topologies," i.e., where the maximal regularity
of the map g u takes place. To accomplish this we need to establish stability estimates
for numerical schemes in precisely the same topologies (in fact, for the homogenous
boundary data, this can be done by using the H(f) x L2( energy methods mentioned
earlier). This issue, however, raises another question" What is the maximal regularity
of the map g u. As we have noted, this seemingly innocent question has only recently
been answered in an optimal way (see [LT1], [L2], [LLT]). In the references above
it is shown, in particular, that the map g- u is bounded from

(1.2) L2(E) C[0, T; L2(f)],

or more generally,

(1.3) HS’S(E) Hs’S(Q)Iq C[0, T; H(f)], s>-0

where in (1.3) we must assume that for s > 1/2, g satisfies some appropriate compatibility
conditions at the origin. Results (1.2) and (1.3) improve by one-half derivative the
previous results on regularity of solutions to (1.1) given in [LM]. Equipped with
maximal regularity results for the original problem, we now wish to devise a numerical
algorithm that can provide (i) the best possible rates of convergence (here we are
resigned to "loosening" one derivative), and (ii) stability estimates reconstructing as
much as possible the regularity properties of the original solution. Since our prime
interest is to consider nonsmooth boundary data, it is precisely the second point
mentioned above that limits our choices of elliptic approximations. The reason for
this is twofold. First, the available elliptic estimates deal with more regular (in-space)
boundary datamtypically g HP(F); p>_- (see [B2], [B7], [N1], [S1]). Second, stan-
dard techniques ofproofs based on Hl-coercivity of elliptic problems are not applicable
because we consider boundary data that do not yield HI(I) solutions. Thus the
sought-after elliptic approximation should allow for the treatment of nonsmooth
boundary data g and, moreover, should be suitable for yielding hyperbolic estimates
in lower norms. What we propose here is based on the idea originally introduced by
Lions in [L1 ], where the original Dirichlet problem is "approximated" by the following
sequence of problems with natural variational boundary conditions. For every e > 0,
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parameter tending to zero, let u be the solution of

ii(x, t) A(x, O)u(x, t) in Q,

(1.4)
u(x, O)= fie(x, O)=0 in

Ou(tr, t)e+
0,/

where 0/0,1 stands for the co-normal derivative with respect to the operator A and
where is a second-order strongly elliptic self-adjoint operator defined on F (we can
take fl -At+ I, where Ar is Laplace’s Beltrami operator). is implies, in paicular,

(1.4a) (flu,
(1.4b) (flu, u>
where clco> 0 and fl-" H(F) H+E(F) exists and it is bounded.

Note that if we take fl I in (1.4), then the projection of (1.4) onto finite-
dimensional subspaces of H(fl) is a hyperbolic counterpa to the Penalty Method
introduced by Babuka [B2] for elliptic problems. However, with fl I in (1.4), the
solution u(t) is not bounded in LE(fl) (uniformly with respect to the parameter e > 0)
by [g[<). We recall that the same bound holds true for the original solution (1.1)
(see (1.21)). This shows that (1.4) with fl I is not a good "approximation" of the
original hyperbolic problem because it does not reconstruct the regularity propeies
ofthe original solutions. The presence ofthe Laplace Beltrami operator on the bounda
forces stronger convergence of the traces of u which, in turn, is necessary to obtain
the appropriate stability of the solution (see [LS1], [L1]). In fact, it is shown in [LS1]
(see also [L1]) that the following convergence result takes place.

11 -. o,
I1. 

In defining a semidiscrete approximation of the original problem (1.1), a natural
idea is to "project" the variational form of (1.4) onto the finite-dimensional subspaces.
To this end, let h be the parameter of discretization tending to zero and let Vh stand
for the approximating space of H(fl) with the usual approximation propeies (to be
specified later) and such that h Vhlr m H(F). As an approximation of u(t) (solution
to (1.4)) we take Uh,(t) Vh such that

(n,(t), )n+ a(un,(t), 4,)+[(u.(t). ,)r [ (,g. 4,)r.

h e Vh,

o
where a (u, v) is the bilinear form associated with A(x, 0), i.e.,

a(u,v)= (a#(x)0
i= Ox

a,(x) O O dx
,j= d Oxj Ox

THEOREM 1.1 [LS1].
(i) For any g LE(E)
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and fih is the orthogonal projection form L2(F) onto h. Later we will use (1.5) with
e e(h)= h for some y > 0. The corresponding solution will be denoted by Uh.

Remark 1.1. Note that the procedure described above (i) is well defined directly
on g L2(E), and (ii) gives Vh as subspaces of Hl(f) that are not required to satisfy
boundary conditions.

The main goal of this paper is to establish stability and the rates of convergence
of the approximation Uh(t) to the original solution u(t). In fact, our main results in
the case when Vh consists of piecewise linear functions (see Corollaries 3.1 and 3.2)
establish, in particular, that with e e(h)= h in (1.5) we have

(1.6) (convergence)

where p > 0 is arbitrarily small;

(1.7) (stability)

where C stands for a generic constant independent on h > 0 and g. For boundary data
that display more regularity propeies and satisfy the appropriate compatibility condi-
tions, higher-order rates of convergence are given in Corollary 3.2.

Remark 1.2. Note thatin view of the optimal convergence results for the wave
equation with homogenous boundary conditions, where an extra derivative in the
solution is necessary (see [R1] and also [B1], [D1], [B3]) and optimal regularity of
the solutions to Dirichlet problems (see 1.2)estimates (1.6) are optimal. Although
the stability results in (1.7) improve "almost" by one-half derivative the stability
estimates implied by the convergence result in (1.6), they are still nonoptimal with
respect to the sharp regularity of the solution u. In fact, g L2(E) will produce the
solution u C[0T; L2()] (see [L1], [LT2], [LLT]); thus we would expect the stability
estimate (1.7)(i) to hold for any g L2(E) (instead of L2[0, T; H-/2+(F)]).

Remark 1.3. In the analysis of the approximation error, a crucial role is played
by the very special behavior of the traces of hyperbolic solutions (see 2). In fact, the
solutions to wave equations are shown [LLT] to have better regularity on the boundary
than interior regularity and the trace theorem would imply. This fact will be used in
an essential way in the process of proving (1.6) and (1.7).

Remark 1.4. The results of numerical computations performed with linear splines
on two-dimensional domain are given in [LS2]. In fact, the results of [LS2] confirm
our theoretical findings presented in this paper.

The outline ofthe paper is as follows. In 2 we discuss the propeies and regularity
of the continuous solution u(t) as well as those of the regularized solution u(t). In

3, we define semidiscrete approximating subspaces and approximations of (1.1). The
main results of the paper, Theorems 3.1 and 3.2 and Corollaries 3.1 and 3.2, are stated
at the end of 3. The proofs of these results are relegated to 5, while 4 is devoted
to a number of technical lemmas needed for those proofs.

The following notation will be used in the paper. (.,), (respectively, I1"11) denotes
the usual L() inner product (respectively, the norm in L2(O)). (’,’) (respectively,
I" l) denotes the L2(F) inner product (respectively, the norm in L(F)). H(O), H’(Q),
for r, s > 0, are the usual Sobolev spaces defined as in [LM]; if r s we use H(Q)
H’(Q), H-=(H)’, s0, where X’ stands for the dual (pivotal) space to X.
(X Y) denotes the space of linear transformations from X to Lp[O, T; X],
lp, denotes the space of u(t)X such that Lp[0, T] norm of Ilu(t)llx is well
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defined. A", 0 <= a =< 1, stands for fractional powers of operator A (A are well defined
for positive and self-adjoint operators; see, e.g., [P1]).

2. Regularity properties of the continuous solutions and some background
material. To give a proper foundation to our approximation results, we should first
ask what is the optimal regularity of the solution u for a given boundary data g. Until
recently, the available regularity results (given in [LM]) were far from optimal. Only
a few years ago, the issue of optimal regularity was settled. Below we collect some of
these results.

THEOREM 2.1 [L2], [LLT], [LT1], [LT2]. With g L2(E), let u be the solution to
(1.1). Then

(a) u C[0, T; L2([I)],

(b) ti e C[O, T; (H(f))’],

(c) aulaT e H-"-’(E).

Ifg Hr’r(,), r> 0 and g satisfies the appropriate compatibility conditions, then

(a’) u e C[0, T; H(fl)],

(b’) ti e C[O, T; Hr-’(’)],
(c’)

Remark 2.1. Note that the boundary regularity results given in Theorem 2.1(c)
and (c’) do not follow from the interior regularity of u. Solutions behave "better" on
the boundary than should follow from the interior regularity (a), (a’) and the trace
theory.

Regularity properties of the solutions u(t) to problem (1.4) will play a crucial
role in establishing the error estimates for Uh, U. These properties have been studied
recently in ILl] and [LS]. Below we collect some of these results.

THEOREM 2.2 [L1], [LS]. Let u be the solution to (1.4). Then

(a) Ilu cto.;,.--<’ Clgl.).
Assuming additionally that g(O)= O, we have

(b)

(c)

More generally, if g satisfies the appropriate compatibility conditions guaranteeing that
u C[O, T; H(II)] for s > 1, then

(e) u IIr.’o + u to.,’. <= Clgl,-,
(f) u I,I to.;,r) -< Clgl,,.,x,

CIgl ,<)

where the constant C is uniform with respect to e > O.

From now on we assume that a generic constant C depends on neither e > 0 nor h > 0.
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Remark 2.2. Note that the regularity properties of u(t) recover, uniformly in the
parameter e > 0, the regularity properties ofthe solution u (t) to (1.1). This fact, together
with convergence results given by Theorem 2.1, shows that (1.4) is a "good" approxima-
tion of (1.1). As already mentioned, the "more natural" approach--scheme (1.4) with

fl Imdoes not have the same properties.
Later we will also use the regularity properties at the solutions to the following

"elliptic problem""

A(x,O)v=f infL

(2.1)
e+five 0 on F.

Define the operator A:L2(I)L2(f) by A,u--A(x,O)u on (A,)=
{u L2(f): A(x, O)u L2(f); e(Ou/Ov)+ flu 0 on r}.

With the definition above, (2.1) is equivalent to

(2.1’) Av =f.
It can be easily shown that A is self-adjoint on L2(II). The bilinear form a(u, v)
associated with A is given by

(2.2) a(u, v)=--(Au, v)= a(u, v)+ 1/e(u, v) for all u, v H(12); ulr,vlr

The following regularity results for (2.1) have been established in [LS].
LEMMA 2.3 [LS]. Let v A-f, the solution of (2.1). Then

1 ov [ CIIfllH-’(a ,

(2.4)

1
l<_s<__2.

Later, we will find it convenient to represent the solution u(t) of (1.1) as well as

From elliptic theory [LM] we know that

(2.7) De (H(F) HS+l/2(’)) for all real s.

the solution u(t) of (1.4) in semigroup form. To accomplish this, let us define the
operator A: L2(12)-> L2(12) given by

Au A(x, O)u, u e (A) n(12) Ci n:(12).
It is well known that A is the generator of an analytic semigroup on L2(I’) and it
generates cosine C(t) and sine $(t) operators in L_(12) (see IF1]). Next we define the
so-called "Dirichlet map""

D: L:(F) --> L:(12) by

(2.6) A(x,O)Dg=O in

Dglr g in F.
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Using the definitions above, we are in a position to represent the solution u(t) in the
semigroup form as in [LT1]:

(2.8) u(t)=A S(t-z)Dg(z) dz=(Lg)(t).

Theorem 2.1 gives

(2.9) L (L2(E) C[0, T; L2(I)]).

Similarly, we will represent the solution u(t) of (1.4) via the semigroup formula. To
accomplish this we introduce the map N L2(F) L2(I) defined by

A(x, O)Ng =0 in f,

(2.10)
e(Ng)+fl(Ng)=flg on F.

It can be shown [LS] that

(2.11) N e (LE(F)- H1/2(fl)) with the norm independent on e>0.

The following identities are simple consequences of the Green formula (see [LS]):

(2.12)

0
N*Au u Vu (A),

1
N*Au flu Vu C(I).

Since A is self-adjoint and the spectrum ofA is on the real negative axis, A generates
cosine C(t) and sine S(t) operators on L2(f). Therefore, following the same argu-
ments as in [LT1], we show that the solution u(t) of (1.4) can be written as

(2.13) u(t)=A S(t-z)Ng(z) dz=-(Lg)(t).

From Theorem 2.2(a) it follows that

(2.14) L(L2(E)C[O, T; L2(f)]) with the norm independent of e>0.

Considering L, as acting from L2(E) into L2(Q), we compute its adjoint L*’L2(Q)
L2(E):

(L*f)(t) N*A S( t)f() d by (2.8)
(2.15)

S(z- t)f(z) dz.

As a consequence of (2.14), we have

(2.16) L* e (LI[0, T; L2(f)] L2(E)) with the norm independent of e > 0.

The solution u(t) given by (2.13) (or equivalently by (1.4)) can also be represented
as the solution of the following abstract ordinary differential equation problem:

(2.17)
//(t) =Au(t)-ANg(t) on (A)’,

u(0) (0) =0.
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Equations (2.17) together with (2.8) and (2.14) lead to the following variational
formulation of problem (1.4) (see also ILl])"

(2.18) (ii(t),)+a(u(t),)+l/e(flu(t),)=l/e(flg,) for all E (A1/2) -=
(b e H’(), 4)r H’(r)}.

Note that the semidiscrete scheme (1.5) can be obtained from (2.18) by restricting the
test functions to lie in the finite-dimensional subspace V.

3. Approximating subspaces and semidiscrete approximations of (1.4) and (1.1), and
statement of main results. Let h > 0 be the parameter of discretization tending to zero.
Let Vh be a family ofthe finite-dimensional subspaces of H(fl), oforder r => 2 satisfying
local and inverse assumptions (see [B1, p. 98]) in addition to the following properties:

(3.1) (a) Vlr: H’(r);

(b) Vu e

inf [[[u ehI[ " h]]u eh I]’m)4- hl/2lu eh] + h3/2lu
ehe Vh

_-< Ch llull , < ), -} <--_ s <= r;

O<=s<-r, s-l>=O

where Ph is the orthogonal projection in L2(fl)(with respect to L2(fl) as inner product)
onto Vh.

2(d) For any h /h= Vh]r, there exists ehe Vh such that ehlr h and
-< O<s_-< 1.

It is well known that properties are standard and are satisfied by piecewise polynomials
defined on the uniform mesh. Property (3.1)(d) with s 1 has been shown to be true
in [B4] for polynomials defined on triangles. Arguments similar to those in [B4] have
been used in [LS2] to prove that the inequality in (3.1)(d) can be extended to negative
norms (i.e., 0 < s < 1).

Below we state our main results on stability and the rate of convergence of the
solution Uh, (t) to U (t) in H (tl) topology 0 =< s < 1/2.

THEOREM 3.1 (stability). Let u be the weak solution ofproblem (1.4) and let Uh,
be the approximate solution ofproblem (1.5). Then with p > 0 arbitrarily small, we have:

(i) <- Clg[’[o,r;(r)].

]

where tr >= 1 and r >= 1 + (tr 1)/2p.
(iii) If in addition we assume that V Vh, then

Here C is independent on h, e, and g.
THEOREM 3.2 (convergence). Let u (respectively, Uh,) be the solution of (1.4)

(respectively, (1.5)). Assume that g satisfies the appropriate compatibility conditions at

It is well known that ’h c Ht(F) is an approximating subspace of L2(F) of the same order r as Vh
(see [B2, Thm. 4.22]).

V stands for the subspace of H(f/) f’l Vh with approximating properties (3.1).
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the origin to guarantee that ft C[0T; HS(fl)]. Then for any p >0 arbitrarily small,
iS >= 1, s >= 1 there exists a constant C independent of h, e, and g such that:

(i) Ilu.-uh:llcto,;<.)]<-Ch-" 1+

where r >- 1 +(s- 1)(- 1)/p.4

(ii) Ilu -
where

=- h/2-’ (s- 1)(o’- 1f(h)
1+ v/-d ] if r>-_l+ 2p

If in addition we assume that Vc Vh, then for 1 <- s <= r- 1/2 we have"

Let us set in (1.5) e e(h) h for some > 1, and let us denote the corresponding
solution Uh,e(h) by Uh. After combining the results of Theorems 1.1, 3.1, and 3.2 we
obtain the following corollary.

COROLLARY 3.1 (stability).

where r >- 1 + 1 + 3")/2p.
(iii) If V Vh then

CoroLLary 3.2 (convergence). Let u (respectively, uh) be the solution ofproblem
(1.1) (respectively, (1.5) with e (h) h for some 3’ > 0). Then for any p > 0 arbitrarily
small, s >- 1 we have the following:

(i) -< C[h-’ + h’][ll.’()
where r >-_ 1 + s 1 1 + 3")/ p.

(ii) Ilu- <- C[hs-(l/2)-t’ -I"

where r>= l +(s-1)(l +3")/p if s>-.
(iii) Ifin addition we assume that Vc Vh, then (i) and (ii) holdfor any 1 <= s <= r-and p O.
Remark 3.1. Note that the rates of convergence established in part (iii) (respec-

tively, (i), (ii)) are optimal (respectively, quasi-optimal) in the following sense: they
reconstruct the optimal regularity of the solution (compare Theorem 2.1) (modulo the
usual loss of one derivative). The estimates of the error given in part (iii) under the
additional assumption that V Vh reconstruct also the best approximation properties
of the underlined approximating subspaces. If condition V Vh fails, then for s > 1
we need to use higher-order polynomials to obtain the quasi-optimal error reflecting
the optimal regularity of the solutions.

4 If S 1, then we can take p 0, 8 > arbitrary, and => 1.
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Remark 3.2. Stability estimates provided by Corollary 3.1 improve by one-half
derivative the stability results "implied" by the convergence results. Nevertheless, the
stability estimates are still nonoptimal, since we are loosening one-half derivative with
respect to the optimal regularity of the solutions (see Theorem 2.1).

Remark 3.3. We can, of course, interpolate between the results of Corollaries 3.1
and 3.2. For example, interpolation between the L2(fI)-estimates of Corollaries 3.1
and 3.2 applied with s =/= 1 yields

where p > 0 is arbitrarily small and 0-< Q <= 1.
The rest of the paper is devoted to the proofs of the main results.

4. Lemmas needed for the proofs of Theorems 3.1 and 3.2. The proofs of Theorems
3.1 and 3.2 will follow through the sequence of lemmas.

LEMMA 4.1. Let y Hl+S(fl) and ylr HI+S(F). Then there exists y Vh such that

(4.2) 3If in addition we assume that Vc Vh, then (4.1) holds for 0 <= s <-_ r -.
(4.3) Otherwise

Ily--Yllwc.) +-lY--Phl,’Cr) < C(p)hs-
h/2-1

where p >= O, 0 <- s <= r-, r >- 1; r => 1 + s(r- 1)/2p, and C does not depend on
h, e, y.

Proof Define y*= Dylr, where D" L_(F)-> L2(fl) is given by (2.6). From (2.7) it
follows that

(4.4) IlY*II,’//"<) =< ClYII,’/<) for all c R.

Let z y-y*. Then zlr=0 and from (4.4) (applied with a s-) it follows

(4.5) Ilzll,+.) c[llyll.,+..)+ lyrlW/+.<r)] for all real s.

If s <, by Theorem 4.2.2 of [B1], we can select Zh Vh such that

(4.6a) IIz-zll.,<.)fhllzll.,+<.) and Zhlr:O.
If V Vh, by the approximation propeaies of V we can take Zh V such that (4.6a)
holds for all 0 s r-1. Otherwise, by applying Theorem 4.4 of [B3], we can select
Zh Vh such that

(4.6b)

where p > 0 is arbitrary, o- -> 1, and r >- 1 + s(cr- 1)/2p.
Next define Yh =- Zh + y’ Vh, where Y*h =- PhY*. From (3.1c) applied with 1 and

for 0 _<- s =< r 1 it follows that

(4.7)

(4.8)
1 1 1
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On the other hand, by (3.1c), inverse approximation properties, and the approximating
properties of h it follows that

[y* Phy*ln(r <-

Thus, for O<-s<-r-
0< <

(4.9)

where in the last inequality we have used again (2.7).
After collecting the results given in (4.5), (4.6a), and (4.7)-(4.9) we arrive at the

desired conclusion stated in (4.1) and (4.2). As for (4.3), this follows from (4.5), (4.6b),
and (4.7)-(4.9). 13

LEMMA 4.1’. Let y Hl+S(f), ay/Orllr H-(F), and

Oy
e+fly flgh on F where gh Vh.

Then there exists h Vh such that

(4.10)

(4.11)

Oy 1
0_-<s< -.

H,-,(r 2

If in addition Vc Vh, then (4.1O) holds for 0 <- s <- r .
(4.12) Otherwise,

IlY-hll,,(.+-lY-hl,(r <- C(p)h-p 1+

wherep>O,O<s<r-=,8 >=l,andr >=l+s(tr-1)/2p.
Proof. Since gh e h, there exists 4h e V such that 4hlr =gh and

(4.13) I1,./,.-< CIgl,/,(, O<-_s<=r-1.

Let )3 be an approximation of y- bh selected according to Lemma 4.1.
Define h -=- bh. Then

(4.14)
1 ^1 1

Since (y-bh)lr -e#-(aylon), we obtain

1
(4.15)

H’+S(r)
-<_cv oy

Hs-’(F)

where in the last inequality we have used the regularity of/3 as stated in (1.4’). Now,
the assessments (4.10)-(4.12) of Lemma (4.1’) follow directly from Lemma 4.1 applied
to y-bh and from the regularity properties (4.13) and (4.15).
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Next let us introduce the operator Ph," (Ae/2) - Vh defined as the projection
onto Vh with respect to the norm generated by the bilinear form a,(u, v). More precisely,
Yh Ph,eY if and only if

(4..16) a(Yh Y, bh) 0 for all bh V,h.

The following lemma gives the estimates for the rate of convergence of Ph,Y to y.
LEMMA 4.2. Let y Hl+S(fl). Then

(4.17a)
1 [ 1

IIPh,Y--YlI’m/IPh,Y--YI’r < ChS IlylI/-/ lylrl/’r

[ 1 ] 1
(4.17b) IIPh,y- yll,,-sm <-- fh IlYll,+.m+lYlrl,+.r

(4.18a)

(4.18b)

If Vc Vh then (4.17a) remains valid for all 0 <= s <= r ,
IIPh,Y-YII <-- Ch+’ Ilyll,’+’m/lYlrlH’’r 0_--< S <_-- r--,

in the general case where r>-_ 1 + s(tr- 1)/2p,..O<= s_-< r-, tr> 1, p >=0 arbitrary, we have

(4.19a)

1

<- C(p)h- 14- IlYll,,+,<,)/ lylr+,<r)

(4.19b)

Proof. For a given y Hl+S(fl) let h be the element in Vh chosen according to
Lemma 4.1. Then with Yh Ph,eY we have

a(yh --Y"h, Vh) a(y-- y"h, vh), l)h . Vh
Setting I)h ---Yh--Y"h yields

Ilyh 11%’<.) +-113 ’/(Yh -P)I=<-- c IIP -yll’<.)+-IP -yl,’<r>

Statements (4.17a), (4.18a), and (4.19a) are now direct consequences of Lemma 4.1
and triangle inequality.

As for (4.17b), (4.18b), and (4.19b) we use the "duality argument." Indeed, let
p s L2(fl). Define v as the solution of

(4.20) Av =p.

With the notation above we have

(y Ph,Y, P) (Y Ph,Y, AV) a(y Ph,Y, v) a(y Ph,Y, V Vh,)

where in the last step we have used (4.16) with 3h--an approximation of v chosen
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according to Lemma 4.1. Hence

(4.21)
1

0_<-s<
0-<_s_-<r-1 if VCVh

(by Lemma 2.3, (2.4), and (2.5))

o-<< }if VCVh

which completes the proof of (4.17b) and (4.18b).
As for (4.19b), we use (4.3) in Lemma 4.1 to obtain

I(y- Ph,Y, p)l C(p)h(s-p) 1 + Ilyll,,/,m+
h1- 1+ ]

which completes the proof of Lemma 4.2.
LEMMA 4.2’. Let y HI+(I)) and e(Oy/Orl)+ fly=gh on F with gh rh. Denote

oy
Hs-’(F)

With the notation above we have

(4.22a)
1

IlPh,y Y II,-,’m/ IPh,Y Yl,-,’,r ChlllYlll,,

(4.22b)

If V c Vh and 0 <-_ s <-_ r -, then

(4.23a) (4.22a) holds for all 0 <- s <- r -,

(4.23b) Ph.Y Y ChS+

(4.23c) IIPh,y--Yll,_,l-,m, Ch’+lllYlll. where O s,
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Ifp>O, O<=s<--_r-, g>--_l, and r>-l+s(r-1)/2p, then

(4.24a)
1 ( h/2-1IIP , y- lP , y <- C(p)hs-p 1 + ]lllylll, ,

h/2-12

(4.24b) IIP,y- yll <- C(P)hs+l-2 1+ ] Illyllls,,

(4.24c) h,/2_1IlPh,y-ylln,-.,<a) <- C(p)hs’+- 1+ - ][[[y[[[.
where 0 <-_ s < 1/2.

The proof of Lemma 4.2’ follows the same conceptual arguments as those used
for the proof of Lemma 4.2. The only difference is that to estimate the terms in (4.21)
we use Lemma 4.1’ instead of Lemma 4.1.

The following statements are the corollaries of Lemma 4.2.
COROLLARY 4.3. Let Ah, Vh -’> Vh be defined as the Galerkin approximation ofA,

i.e.,

Ah,eUh 1)h AeUh Vh a llh Oh ), tlh I)h E Vh

For any fh Vh we have

(4.25)

h/--1<--
C(,)h-" 1/ wherer->l+ or>l, p>0.

2p

Indeed, Corollary 4.3 follows directly from Lemma 4.2 after we set

-1v =- A-lfh, Vh. Ah,fh,

noting that

a(v Vh,, bh) 0 for all h Vh,

and using the regularity of v as stated in Lemma 2.3.
From Corollary 4.3 we also obtain Lemma 4.4.
LEMMA 4.4.

--1 < C ilfh i1_1(.) O<_--s<1/2.

Proof. By using the inverse approximation property, (2.5), and (4.25), we obtain
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Remark. Note that the estimate of Lemma 4.4 is a discrete counterpart of the
regularity result stated in (2.5).

Next we prove Lemma 4.5.
LEMMA 4.5.

where p > 0 arbitrarily small,

-1Proof of Lemma 4.5. Let Oh =- Ah,efh Or, equivalently, Ah,eOti --fh. Then

(4.28)
1

(flVh, h) --(A, Oh)--a(Vh, (h) for all h Vh,

or after using the Green formula

(4.29)
1

(fl)h, h (fh’)h)+(A(x’O))ht])h) (0- Iv, , e V.

Now we will use the property (3.1d). For any h e h we take Oh Vh such that @1 J
and for 0< a _-< 1, I1@ I1,+:.) <- ClhiHO-t,12)(r). Thus we can write

(4.30)
1 (hflVh, h) =1 (flVh, h) --(fh, 4bh)--a(Vh, dph).
E E

Hence for 0 <= s < 1/2

(by Lemma 4.4 applied to the second term above)

--< CILIA II,.,.’-’,-,:,11 ,. II,-,’-s,-,:>l
(4.31)

--< cIIA II,r-’<.)l
where in the last step we used (3.1d). Since (4.31) holds for all h H(I/2)-’(F), (4.26)
follows via duality.

As for (4.27) we write

(4.32)

We will prove that

(4.33)
1
i#A:Yl.,.w) <_ cllfll.
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Indeed, let ve A-f. Then

(4.34)

1
(five, b)=-a(v., i) + (f, b)=(A(x,O)v.,

E

\Oft’
+ (f’ 4 )’ D(Aff)"

Let H-/2(F). By (2.7), 41-=D L2(I) and from (4.34) we obtain

(4.35)
+ I--n .."<r)

I1"-’’=+ Ilfll I111
Hence by virtue of (2.7) and (2.4) in Lemma 2.3,

for all H-1/2(F).

which via duality proves (4.33).
To complete the proof of (4.27), in view of (4.33), it is enough to estimate

1/ e[#hfl(a-] a-).
--1With Vh, =- Ah,,fh and v =- A-fh it is straightforward to show that

a(v,-v, 4,)+! <#(v,- v), >=o for rPh Vh.

Thus for any rPh Vh we have

(4.36)
1 (#[3(v,, v),

where bh is selected according to (3.1 d), i.e., Sh Ir h and

(4.37) I1
where 0 > 0 arbitrarily small.

From (4.36) and Corolla 4.3 we obtain

4.38 C II(A IIh/2_l,@,jf V7 = V.

where in the last inequality we have used the inverse approximation property. Combin-
ing (4.37) with (4.38) and using duality yields

(4.39)
l lh(Vh, V)l(’/’-’(r) CIIl(ll if VmVh,

<= h/2-1e 1+- ,,] IIAII otherwise.

Formulas (4.39) and (4.33) inserted into (4.32) complete the proof of (4.27), and,
hence, of the lemma. ]
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In the sequel, we will find it convenient to use semigroup representations of the
solution to (1.5), Uh,(t). To this end let Sh,,(t) (respectively, Ch.(t)): Vh V be the
sine (respectively, cosine) operators associated with A., where A, is defined in
Corollary 4.3. This means

(4.40)
Ch, (t)Xh Ah,Xh

,(O)x =o,

Using the notation above it can be easily verified that with gh -fihg, Uh.,(t), the solution
to (1.5) can be represented as

(4.41) Uh,(t)= Sh,(t-Z)PhANgh(z) dz=-(Lh,g)(t)

or in the differential form as

(4.42)
iih,, AhUh, PhA,Ngh

uh,(0) ah,,(0)=0.

Remark. Note that although AN, is unbounded (even more so (AN,) -= 0),
PhAN,gh is well defined for any gL2(5:). Indeed, by (2.17), (PhAN,gh, bh)
(gh, N*Aeqbh)= 1/e(gh, h) for all kh Vh.

The next lemma deals with the approximation properties of sine Sh,(t) and
cosine Ch, operators.

LEMMA 4.6.

(4.43)

(4.44)

Proof Define Yh =-- Sh, Vh with vh Vh. Then

h(t) Ah,,Yh (t), Yh (0) 0, ))h (0) Vh,

or equivalently,

(4.46) (fib(t), $h)+ a(yh(t), dph)+l (flyh(t), bh) O,

Setting bh )h (t) yields

d [ 1,/2yh ]d- IlP(t)ll=+lly(t)ll’<")+-Ie (t)l2 =0.

Hence

IIc(t)vll=+llS(t)vll=,.)+ 1113 ’/= =

which gives (4.43).



SEMIDISCRETE APPROXIMATIONS OF HYPERBOLIC PROBLEMS 1383

To prove (4.44) we take yh(t) =- Ch,(t)Vh. The same argument as above yields

(4.47)
llAhS (t)v ll2 + ch ,( t)v ll,<a> + 1 I’/,..h, (t) vl2

I 1 /2vh ].
Formula (4.44) follows from (4.47) after we note that

Formula (4.45) is the result of interpolation between (4.43) and (4.45). D

5. Proofs of Theorems 3.1 and 3.2.
Proof of Theorem 3.1. Using the semigroup representation of Uh,e(t) given by

(4.41) and integrating (4.41) by parts, we obtain

u,(t) (L,g)(t) -dz C(t- z)A-’, dz

(5.1) Ah-, PhANgh(t) Ch, (t)Ah--.PhANgh(0)

Ch(t z)Ah,ePhAeNgh(Z)-I dr

where we have used the properties of Sh,e(t) and Ch,(t), the operators given in (4.40).
From gh hg -n[0, T; H-/2(F)] it follows, in particular, that

Ighlcto,r,-’/+,r)<= Clgh[H’to,r;,-’/2+p(r)l -< Clgl’to,r;-’/+rH.

Thus, in view of (5.2) and (4.43) in Lemma 4.6, parts (ii) and (iii) of Theorem 3.1 will
be proved as soon as we establish the following inequality:

Ii ifVVh,
A- h’12-1 tr-1(5.3) h,PhANfihgll <- Clgln"+,()

1 + r > 1+

To verify (5.3) we define

(5.4) Th,g =- A-)PhANhg

where Th," L2(F) Vh c L2(I’). Then it is easy to verify that

T’,fh, g) (fh, Th,g),fh Vh, g L:(r)

is given by

T* f.- * -’ 1
PhNAAh.fh hflALfh

where in the last equality we used (2.8).
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Now we recall (4.27) in Lemma 4.5 to claim that

and hence by the duality

r>l-t-------=
o’-1

2p

Ii ifV=Vh,

o’/2--111Th,gll <- Clgln-’/2+p(r)
1 + ], r >--_ 1 -t

2p

which in view of (5.4) is exactly (5.3).
The proof of parts (ii) and (iii) of Theorem 3.1 is thus completed. For the proof

of part (i) we use similar arguments. Indeed, first note that

(5.5) o(aT) <

In fact,

D(A’/2) c D(A1/:).

Hence

(5.6) H(II) D(A)c D(A), a <.
On the other hand,

D(AI./2) H’();

consequently,

(5.7) O(A)c Hz([I), <1/2.

Formula (5.7) combined with (5.6) yields (5.5).
By (5.5) and (4.45) in Lemma 4.6 applied with a < 1/4, we obtain

Thus, to prove part (i) of Theorem 3.1 (recall (5.1)), it is enough to show that

(5.8) Ila;,lPhaNf’hg n’/’(. <- Clgln(r

On the other hand, (5.8) follows easily from a dual version of (4.26) in Lemma 4.5
applied with s 1/2-p. The proof of Theorem 3.1 is thus completed, l’]

Next we prove Theorem 3.2.

.Proof of Theorem 3.2. Let fi (respectively, Uh,) be the solution to (1.4) with
g=-Phg (respectively, (1.5)). Then

((a--iih,)(t), Ch)a((t)--Uh,(t), bh) 0,

Let eh,(t) Ph,.fi(t)--Uh,(t) Vh. Then

(5.9)
(,(t), )+ a,(eh,(t), h) (Ph,,fi(t)- fi(t),

eh,. (0) h,. (0) =0.
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Equations (5.9) can be equivalently rewritten as

’,(t)+ Ah,eh,(t) Pn(P, I)g(t),

eh, (0) dh. (0) 0,

or in the semigroup form as

en,(t) Sh.e(t--z)Ph(Ph.e-- I)fi,(Z) dz.

After integrating the above expression by pas and using Sh,(O)= 0, we obtain

Since ,(0)=0, (4.43) in Lemma 4.6 implies

(by the stability of oahogonal projection Ph)

Now we will apply Lemma 4.2’. In fact, (4.23b) and (4.24b) in Lemma 4.2’ give

eh.(t)ll Ch+’ h/-’ s(- 1)
0 < s < r- 1

(5.11)
h- 1+

]’
rl+-’

2p

L[O,T;H(F)]

On the other hand, if we set

z,a(t),

then

;f(t) A(x, O)z in Q,

z(0)= a(0)=0
(5.12) [:,(0) A(x, 0)a(0)=0

in Q,

ez---’A+ Bz #g in .
Theorem 2.2(e) and (g) applied to (5.12) yield, in particular (provided g satisfies the
appropriate compatibility conditions), that

Formula (5.13) together with (5.11), applied with s s- 1, gives

(5.14) [leh.(t)ll(m <_- Chlgl,..,(x)f(h, p. r. e)
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where

f(h, p, o’, e)=- hO./2-1 2 (s- 1)(or- 1)
1 < s.h -2’ 1+ r >1+

2p

Writing

(5.15) ue Uh, Ue fie + (I eh,e)ae + eh,

and applying part (a) of Theorem 2.2 together with the approximation properties for
/h to the first term in (5.15), (4.23b) and (4.24b) to the second term, and (5.14) to the
third term gives parts (i) and (iii) of Theorem 3.2. Finally, we will prove parts (ii) and
(iv) of Theorem 3.2.

Recalling (5.10) and (4.45), and applying (5.5) with a =1/2-p yields

(5.16)

From (4.22b), (4.23c), and (4.24c) applied to the right-hand side of (5.16), we obtain

Heh,,(t)ll,,=-on < Ch I/2+s k(h, p, o’, e)

where

h -p if s<1/2
m31 ifVcVh s<r

(5 17b) k(h, p, tr, e)=-

( h/2-1 $(0"- 1.._.=_.)h-:p_I+- ],
t->l+

2p

Theorem 2.2(e)-(g) applied to (5.12) (recall ze--de) gives

Combining (5.17) and (5.18) yields

<= Ch /-+’I k(h, e(5 19) Ileh,,(t)ll"’-,<,) ,l,_r+,<> p, o-,

where k(h, p, o, e) is given by (5.17b).
To complete the proof of parts (ii) and (iv) of Theorem 3.2, we apply the triangle

inequality to (5.15). To estimate the first term on the right-hand side of (5.15) we
interpolate between parts (a) and (b) of Theorem 2.2. This gives

To estimate the second term on the right-hand side of (5.15) we again use (4.22b),
(4.23c), (4.24c) together with the regularity properties of ae as stated in Theorem 2.2.
This gives

(5.21) (I- (t)

Collecting the results of (5.19), (5.20), (5.21) and (5.15) completes the proof of paas
(ii) and (iv) of Theorem 3.2.
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UNIQUENESS OF SOLUTIONS FOR THE GENERALIZED
KORTEWEG-DE VRIES EQUATION*

J. GINIBREf AND Y. TSUTSUMIt

Abstract. The uniqueness of L and H solutions of the Cauchy problem for the generalized Korteweg-
de Vries (KdV) equation

Otu + D3u + a(u)Du 0

with a (R, R) and with initial data Uo in weighted L or H spaces according to

+ x+)t/2Uo L2, + x/) V/2Duo L

is studied for some/3, y => 0. Several uniqueness classes are exhibited, and the a priori estimates are derived
for the corresponding norms of smooth solutions in terms of the initial data required to implement
compactness existence proofs of solutions in those classes. For (weighted) L solutions, the results given
here cover the case where la(p)l-<Clpl p with 0<p<}, /3=l/p-1/4 if p-<2 and /3=1/4 if p=>2. For the
ordinary KdV equation with p 1, the result/3 43- improves over previously known results by a factor of
2. For H solutions, uniqueness and a priori estimates with initial data Uo H (namely, /3 y=0) are
proved provided p > . For the ordinary KdV equation with p 1, the results given here yield uniqueness
and a priori estimates for/3+ y->1/2,/3->3y/5 (for instance,/3=1/2, y=0, or/3 (3/16), y= (5/16)).

Key words. Korteweg-de Vries (KdV) equation, Cauchy problem, uniqueness of solutions

AMS(MOS) subject classifications, primary 35Q20; secondary 35G25, 35D99

1. Introduction. In this paper we study the uniqueness of solutions of the Cauchy
problem for the generalized Korteweg-de Yries (GKdV) equation

(1.1) Otu+ Dau DV’(u)

for >- O, x R, with initial data

(1.2) u(0, x)= Uo(X) (x ).

Here D= d/dx, the prime denotes the derivative, and V c2(, ) with V(0) V’(0)
0. The function V is the potential that appears in the (formally conserved) energy for
(1.1) (see (4.1) below). In the notation of [10], (1.1) is written equivalently as

(1.1’) Otu + D u + a(u)Du 0

with a =-V". For a(p)=p, (1.1’) is the (ordinary) Korteweg-de Vries equation, and
for a(p)=p2, (1.1’) is the modified Korteweg-de Vries equation.

A large amount of work has been devoted to the existence problem for solutions
of (1.1), (1.2). It concerns either the ordinary KdV equation with a(p)=p [2]-[5],
[ 12], 16]-[ 18] or the generalized equation (1.1’) with a monomial or a smooth function
[1], [9], [10], [15], [19]-[21]. The available results include, in particular, the existence
of global weak solutions in L(, L2) for initial data u0 L2 and in L(, H1) for
initial data Uo H1. They require suitable growth restrictions on the function a at
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infinity. There also exists a wealth of results concerning more regular solutions, for
instance, solutions that are continuous fUnctions of time with values in Sobolev spaces
H for s > corresponding to initial data in H. We refer to [ 10] and [ 14] for a general
survey.

The problem of the uniqueness of the solutions of (1.1), (1.2), on the other hand,
is still largely open. There exists a well-known result according to which the solution
is unique if uoH with s>{ (see [2], [9], [16]), but that result does not cover the
case of H solutions. More recently, new uniqueness results were proved in the special
case a(p) p of the ordinary KdV equation for initial data Uo in weighted L2 spaces
with either exponential [ 10] or polynomial 12] weight. The method of proof uses the
smoothing properties of the KdV equation, and propagation in time of space decay.
It is not, however, directly applicable to cases other than a(/9)= p.

In the present paper, we study the uniqueness problem for L2 or H solutions of
(1.1), (1.2)more precisely, solutions in L([0, T), L2) or in L([0, T), H) for some
T>0 (possibly T=oo), for initial data Uo in (possibly weighted) L2 or H spaces,
more precisely, for Uo satisfying

(1.3) (1 + x+)/2Uo L2,

(1.4) 1 + x+) ’/2Duo L2,

for some/3, , _>-0, where x/ max (x, 0). In particular, we obtain several uniqueness
classes for solutions of (1.1),. (1.2) under suitable assumptions of/3, % and V (or a).
Of course, uniqueness results of this kind are of interest only insofar as the uniqueness
classes thereby obtained are suitable for proving the existence of solutions. One possible
method for proving existence consists of first constructing smooth solutions of a
regularized version of problem (1.1), (1.2), then deriving a priori estimates of the
solutions in terms of the initial data, and finally exploiting those estimates to remove
the regularization by a limiting procedure based on compactness arguments. The
limiting procedure, in general, takes a weak-star limit in a space X* that is the dual
of some Banach space X; the a priori estimates, which hold for the X* norm of the
regularized solutions, carry over to the limit, so that X* turns out to be an adequate
space for the existence of solutions.

In the present paper we do not consider the problem of existence. However, we
provide the technical material required to implement the previous type of existence
proof, by deriving a priori estimates of sufficiently smooth solutions of (1.1), (1.2), in
the norms that define the previous uniqueness classes, in terms of the available norms
of the initial data. Those estimates strongly indicate that the previous uniqueness
classes are in fact suitable for existence and uniqueness insofar as they are duals of
Banach spaces. That indication can be made into a proof with little additional work
by combining our results with many of the available existence results. However, we
refrain from making any formal statement to that effect in this paper, because the
smoothness assumptions that we make on V (or a) are weaker than the assumptions
made in the existence proofs available in the literature. In a subsequent paper, we will
prove the existence of solutions of (1.1) under weaker assumptions on V than those
of the present paper, and extend the uniqueness proofs of this paper into existence
and uniqueness proofs in the uniqueness classes obtained here.

We now give a rough outline of our results, namely, uniqueness and a priori
estimates, as just explained, concentrating on the assumptions on V (or a) and on u0.
More precise statements, in particular, the description of the uniqueness classes, will
be found in the main body of the paper, whose contents are described below.
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In the case of L2 solutions, the assumption on V (or a) reduces to

(1.5) ]a(p)l_--< Clpl p

for all p R and some p > 0, and the assumption on Uo reduces to (1.3). Our results
cover the ease 0<p---2 with/3 1/p-1/4, and, by the use of two different methods,
either 2 -< p < 3 with/3 1/2-1/(2p) with the simpler one, or 2 -< p < with/3 1/4 with
the more elaborate one. In particular, for the ordinary KdV equation with p 1, we
obtain/3 , thereby improving the corresponding result of 12] by a factor of 2. For
the modified KdV equation, we obtain the lower value/3 .

In the case of H solutions, the assumptions on V (or a) reduce to condition
(1.5), but now only for small p (say for Ipl =< 1), to the condition that a be absolutely
continuous with locally bounded derivative, and to a lower semiboundedness condition
on V (see (4.22) below). The assumptions on uo include (1.3) and (1.4). Our results
cover the cases where p_-> 1,/3 _-> y(4-p)+/(4+p) with either of the two conditions

(1.6) (p+ 1)(fl + y)_-> 1,

(1.7) (3-p)+fl /(p- 1)(2+3 min (/3, y))> 1.

In particular by (1.7) we prove uniqueness for Uo H provided p > , thereby recovering
a result previously obtained by Tsutsumi [22]. That result covers, in particular, the
case of the modified KdV equation corresponding to p- 2. For the ordinary KdV
equation with p 1, we cannot prove uniqueness for Uo H only, but we obtain
uniqueness (for instance) for fl =1/2, y=0 or for/3 3/(16), y= 5/(16), by using (1.6).

The proofs of our results rely on two sets of estimates. The first set consists of
the well-known weighted L2, HI, and HE estimates that have been widely used by
many previous authors. Those estimates can in part be viewed as weighted space, time
integrability properties associated with the free evolution group U(t)= exp (-tO3)
that solves the linear equation obtained from (1.1) when V 0. By interpolation, they
can be combined with similar weighted L estimates coming from known estimates
of the propagator of U(t), which is the classical Airy function. The second set of
estimates consists of space time integrability properties that stand in close analogy
with similar .properties of other equations, and in particular ofthe Schr6dinger equation
[7], [11], [23].

This paper is organized as follows. In 2, we derive the linear estimates of U(t)
just described. The Schr/Sdinger-like estimates are contained in Lemmas 2.1 and 2.2,
the weighted L estimates in Lemmas 2.3 and 2.4, the weighted L2 and H estimates
in Lemma 2.5, and the interpolation between the last two estimates in Lemma 2.6.

In 3 we derive our results on L2 solutions. We first obtain the basic uniqueness
classes that are suitable for p-< 2 and p _-> 2 in Propositions 3.1 and 3.2, respectively.
We then set out to derive a priori estimates for the norms that appear in their definition,

In both cases, one of those norms plays only an auxiliary role and can be estimated
in terms of the others (Propositions 3.3 and 3.4, respectively). To proceed further, we
use a well-known weighted L2 identity (I.1) to derive weighted L2 and other estimates
(Proposition 3.5), following previous authors (see especially 10] and 12]). That step
completes the proof of a priori estimates for p-< 2. For p-> 2, more work is needed
and we offer two methods. One of them is based on Sobolev inequalities and covers
the case 2-<p<3 with/3 =1/2-1/(2p), yielding as a byproduct a new uniqueness class
(Proposition 3.6). The second (more elaborate) method covers the case 2-< p < with
/3 1/4, and also yields a new uniqueness class (Proposition 3.7). We then address the
problem of deriving the basic identity (I.1) under minimal smoothness assumptions
and analyze that condition in some detail (Proposition 3.8). When combined with
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Proposition 3.5, that study makes it possible to exhibit new uniqueness classes both
for p=<2 (Proposition 3.9) and for p->2 (Proposition 3.10), but those classes are
probably not suitable for a treatment of the existence problem (see Remark 3.8).

In 4, we derive our results on H solutions. We first remark that weighted L2

estimates can be obtained from (I.1) more simply and in stronger form than for L2

solutions (Proposition 4.1). We then obtain the basic uniqueness class in Proposition
4.2, which is a mild generalization of a known result. To proceed further, we need a
second, well-known, weighted H identity (1.2). As it turns out, it is easier to derive
that identity under natural smoothness assumptions than to derive (I.1) for L2 solutions,
and we analyze it in some detail (Proposition 4.3). Following previous authors, we
derive therefrom weighted H and other estimates (Proposition 4.4). Using those
preliminaries, we turn to the derivation of a priori estimates of the norms that define
the uniqueness class of Proposition 4.2. That can be done again by two methods. The
first method leads to condition (1.6) (under assumptions (1.3), (1.4)) and yields as a
byproduct a new uniqueness class (Proposition 4.5). The second (more elaborate)
method leads to condition (1.7) and also yields a new uniqueness class (Proposition
4.6), slightly smaller than the previous one. Combining those results with Propositions
4.3 and 4.4 makes it possible to exhibit still another uniqueness class (Proposition 4.7),
which, in contrast with the previous ones, is probably not suitable for a treatment of
the existence problem if p < 2. We conclude that section with some comments on the
assumptions of Propositions 4.5 and 4.6.

We conclude this Introduction by giving some notation that will be used without
further explanation throughout this paper. We denote by I1" the norm in L =-- Lr(R),
and by (., .) the scalar product in L2. Pairs of conjugate indices are written as r, ,
with I/r+ l/f= 1. For any interval Ic R, for any Banach space X, we denote by
Cew(I, X) the space of weakly continuous functions from I to X, and by Lq(I, X)
(respectively, Lfoc(I, X)) the space of measurable functions v from I to X such that
IIv(. ); xll tq(I) (respectively, Loc(I)). We will make extensive use of the following
spaces. Let 1-<_ q, r, s _-< o. For any j ’, let Xj be the characteristic function of the
interval [j 1/2, j + 1/2]. We define (Lq (I, L)) as the space of functions v of space time
defined for (x, t) x ! for which the following quantity (taken as the norm) is finite:

We also define the local spaces lS(Lo(I, Lr)) as the spaces of functions v defined in
x I and such that for any compact interval J /, the restriction vii belongs to

IS(Lq(J, Lr)). Similarly, we define the spaces Lq(I, lS(Lr)) with norm

IIv; tq( I, l’(tr))ll at dx Ixjvl < oo

and the corresponding local spaces .Lo(I, (Lr)). Clearly Lq (I, (Lr)) =- Lq (I, L) if
s r. By the Minkowski inequality the continuous embedding (Lq(I, Lr)) c
Lq(I, lS(Lr)) holds if s _-< q and the converse embedding holds if s -> q. The H61der and
Young inequalities hold in all those spaces, as a consequence of the corresponding
inequalities applied independently in each of the three component spaces.

In all the estimates performed in this paper, we use C to denote various constants,
possibly depending on various indices (or,/3, y, p, q, r, s), but not on the functions to
be estimated, and possibly different from one line to the next. In the entire paper, we
assume without further repetition that the function V in (1.1) satisfies V c2(, ),
V(0) V’(0) 0. Additional assumptions, if any, will be stated where needed. Finally,
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we denote by X+ and X- the characteristic functions of + and -, respectively, and
for any A e , we define A+/- max (+A, 0).

2. Linear estimates. In this section, we derive a number of preliminary estimates
on the free evolution group

(2.1) U(t)=exp(-tD3)
that will be essential in the rest of this paper. The group U(. solves the Cauchy
problem for the linear equation

(2.2) Otu+D3u=f,
with initial condition u(0)= Uo through the formula

(2.3) u(t)= U(t)Uo+ drU(t-’)f(’).

Since all the estimates considered here are linear, it suffices to derive them for smooth
functions. They can then be extended by continuity to all functions for which they
make sense.

The group U(.) is unitary in L2. For each t, U(t) can be represented as the
convolution with the function

(2.4) S,(x) (3t) -1/3 Ai (x(3t) -/3)
where Ai is the classical Airy function

(2.5) Ai (x) (2zr)- I d: exp (i3/3 + ix).

It satisfies the estimates [8, p. 213]

(2.6) Imi (x)l <- C(1 + x_) -/4 exp (-cx3+/2),
(2.7) IAi’ (x)l <- C(1 + x_)1/ exp (-cx3+/2).
From (2.4) and (2.6) we obtain an estimate

(2.8) IS,(x)l <- t-/3A(x)
for some smooth bounded function A with support in [-1, m) and (faster than)
exponential decrease at +m, uniformly for in bounded intervals. Furthermore,

Similarly,

(2.10) IDS,(x)l<=t-2/3a(x)/ft-3/x_(l/lxl)/4.
From the unitarity of U and from (2.9), we can derive the following properties.

LEMA 2.1. The following estimates hold"

for all 0 and all r, 2 <- r <- o,

for all r, 2 <- r<-oo, with 2/q=]-2/(3r),

for all r, 2 <- r <- o, i= 1, 2, with 2/q ]-2/(3r) andfor any interval L
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Summaryproof. Estimates (2.11)-(2.13) are the analogues ofwell-known estimates
for the Schr/Sdinger equation, and are proved in exactly the same manner. The estimate
(2.11) follows by interpolation from the cases r 2 (unitarity of U) and r oo, where
it follows from (2.9) through the Young inequality. We refer to [7, Prop. 4.4] for (2.12)
and to [11] and [23] for (2.13).

For later reference, we state explicitly the special cases r c, q 6 of (2.12) and
rl=o% q=6, r2=2, qE=cX3 of (2.13)"

(2.14) U(" )f; L6(R, L)II _-< CIIfll=,

(2.15) II f, d’r U(.-’r)f(r); L6([, L) ]l <_-ell f; LI(/, L=)II

We also remark that the integration interval on the left-hand side of (2.13), (2.15) may
also depend on the time variable. In that case, the interval on the right-hand side must
be replaced by the union of the intervals that occur in the left-hand side.

We now turn to a similar set of estimates satisfied by the operator

(2.16) eU(t)e -exp [-t(D- 1)3].

LEMMA 2.2. Let T> O. Then the following estimates hold"

(2.17) Ilexp [-t(D-1)3]fllr<= C e’t-l/3-2/3rllfll
for all > 0 and all r, 2 <-r <=o0 (with the same C as in (2.11)),

(2.18) Ilexp [-. (D-1)33f; to(J0, T],t]ll<-fellf[[

for all r, 2<-_ r<-oo, with 2/q=1/2-2/(3r) (with the same C as in (2.12)),

(2.19) II f[ dz exp [-(.-z)(D-1)3If; Lq’([0, T], Lr’) ]l<=CeTllf; Lq2([0, T], Lr2),l

for all ri, 2<-- r,=<oo, i= 1,2, with 2/qi=-2/(3r,) (with the same C as in (2.13)),

(2.20) Il f2 d" exp [-(’-’)(D-1)3]Df; Lq([O’ T]’ L) ll
<= Cq eT/-/6llf; Z2([0, T], t=)ll

for all q, 2 <-q < 6 Cq blows up as q increases to 6).
Proof. Estimates (2.17)-(2.19) follow immediately from estimates (2.11)-(2.13) if

we expand (D-1) in the exponential and note that the operator exp (-3tD) is the
operator of translation by 3 and is therefore isometric in L for all r, while the diffusion
operator exp (3tD2) is a contraction in L for all r, 1 =< r=<oo, and all t>=0.

We now turn to the proof of (2.20). To prove that the operator K defined by

(2.21) Kf(t) dz exp [-(t- r)(D- 1)3]Df(7-)

is bounded from L2([0, T], L2) to Lq([0, T], L), it suffices to prove that the adjoint
operator in L2([0, T], L2), namely, the operator K* defined by

(2.22) K*f(t) dr exp [(z- t)(D+ 1)3]Df(-)
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is bounded from L([0, T], L) to L2([0, T], L2). For that purpose we compute

IlK*f; L=([0, T], L2)ll 2

(2.23) dt d’d" (Df(r), exp [("-r)(D+3D)

+(,+r’-(3D+ lDf(,’.

Now the operator D exp (3tD) is represented by the convolution with the function

(-x/6t)(12)-/ exp (-x/(12t))
and is therefore bounded in L for all r, 1 N r N m, by the Young inequality, with

(2.24) Ilexp (3tD2)Dfllr (3t)-/=llf llr.
Using (2.11) with r and (2.24), we estimate

IlK*f; L=([0, T3, L=)ll =

c at drdr’lr-r’l-/y2_t/ exp(r+r’-2t)[[f(r)[[[[f(r’)ll
(2.25)

0F min(,r’)

Ce dd’l-’l-’/l]f()llllf(’)ll dt
do 2-

We perform the last integral and continue (2.25) as

...Ce=r

(2.26)
c e=T=/-"III. 1-1/ log (21"

for all q, 2 q < 6, by the Young inequality and an elementary homogeneity argument.
The estimate (2.20) follows from (2.26) by duality, as explained above, and the constant

Ca can be read off from (2.26).
We now turn to the derivation of a set of weighted estimates for the operator

U(. ). The first estimates of this type are in L and rely on a direct use of (2.7).
LEMMA 2.3. Let h be a continuous nonnegative function satisfying

h(x) exp (ax) for some a > 0 and all x O,
(2.27)

Oh(y)h(x)exp[a(x-y)]h(y) for all xy.
en the following estimate holds"

C(t)t-z/(1 + y)’/ for yx+,(2.28) h’/=(x)lDS’(x-y)lh-’/=(Y)
C(t)t-3/4 exp (-ylx-yl/2) for yx+

for 0 y < a, where C(t) is un@rmly bounded in on bounded intervals and in y for
0yyo<a.
oo (C and c in this proof denote absolute constants, possibly different from

one line to the next.) From (2.4), (2.7) we obtain

(2.29) IDS,(x-y)I Ct-3/4(t’/’+(y-x)/) exp [-ct-’/2(x-y)/2].
We consider different cases. For y x 0, we use the fact that h(x) h(y) to obtain

(2.30) h ’/(x)lDE(x y)lh-’/(y) Ct-3/6( ’/2 + y 1/4).
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For y-> 0 >-x, we use the fact that h(y)>= 1, h(x) exp (ax) to obtain

h 1/2(x)lDSt(x -y)lh-1/2(y) <= Ct-3/4(t1/12 + yl/4+sup Ixl e
(2.31) Ct_3/4(tl/12+yl/4+(2ae)_l/4)
by an elementary computation. For y -< x or x -<_ y =< 0, we use the fact that h(x)h-l(y) <=
exp [a (x y)]. Combining that estimate with (2.29), we obtain for y -<_ x

h/2(x)lDS,(x- y)lh-/2(y) <= Ct-2/3 exp (-ylx- yl/2)

(2.32) .sup exp (a + y)(x y)/2 ct-1/2(x y)3/2]

Ct-2/3 exp [-ylx-yl/2+ ct(a + y)3].
Finally, for x <_- y _<- 0 and y < a,

h l/E(x)lDSt(x- y)lh-1/E(y) <- Ct-3/4 exp y(x y)/2)

(2.33) "l tl/12+ sup (y x) 1/4 exp [(a y)(x y)/2]
x_y

Ct-3/4 exp (y(x-y)/2)[tl/12+(2(a-y)e)-l/4].
Collecting (2.30)-(2.33) yields (2.28) with

(2.34) C(t) C{ 1 + 1/12 exp [ ct(a + y)3] + a y)-1/4}.
This proves the lemma.

As an immediate consequence of Lemma 2.3, we obtain the following weighted
L1- L estimates for the operator U.

LEIA 2.4. Let h be a continuous function satisfying (2.27). Then the following
estimates hold"

(2.35) Ilhl/2U(t)Dvllo<=f(t)t-3/411hl/2(l+x+)l/4vlll

(2.36) Il hl/E f2 d" U(’-r)Df(’); Lq([O’ T]’ L) ll
<-_ C(T)IIh/:(1 +x+)/"f; L([0, T], L)II,

for all q, with 0 < 1/ q 1/l 1/4 < orfor q c, > 4, and with C(.) uniformly bounded
on the compact subsets of R+.

Proof Inequalities (2.35) and (2.36) follow from (2.28) with 3,=0. Inequality
(2.36) requires in addition the use of the Hardy-Littlewood-Sobolev inequality [8,
p. 117] or of the H/51der inequality in time, depending on whether q <

We now turn to the derivation of weighted L2-estimates. The basic result is the
following.

LEMMA 2.5. Let either h c3(R,+) satisfy h’>=O and h’’<- ch or h
satisfy h’>= 0 and h"2<- c2hh ’. For allfsuch that h 1/2f L]o([0, T), L2) and all t, 0<= < T,
define

(2.37) g(t)= drexp[c(t-z)/2]llh/f(z)ll.

Then the following estimates hold for all >- O, > O"

(2.38) IIh 1/2 U(t) Uol12 -< eCt/211h  /=uoll ,

(2.39) hl/2 dz U(t z)f(z) _-< g(
2
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(2.40)

(2.41)

hl/2 I d" U(.--)f(z); L([O, T], L2) <=e*r/2llh/2f; L([O, T], L-)ll,

IIh’/2U( )Duo; t2([0, T], t2)ll =<2 -1/2 e*/21lh/2uoll2,

(2.42) II h’I/2 I dz U(’-’)Df(’); L2([O’ T]’ L2) I] <-2-1/2g(T)
_-< 2 -1/2 e*r/211h’/2f; LI([0, T], L)II

Proof. Let u be defined by (2.3) for smooth Uo and f. From the difterential equation
(2.2) and the commutation relation

(2.43) [D3, h] 3Dh’D+[D, h"] 3Dh’D+ h’,

possibly followed by the Schwarz inequality in the form

(u, [O, h"lu><-2c’/21lh’/-ull Ilh"/2Oull
<-(Du, h’Du)+ c(u, hu),

we obtain the identity

(2.44) Or(u, hu)+ 3(Du, h’Du)= (u, h’"u)+ 2(u, hf)
and from that estimate

(2.45) Or(u, hu)+ 2(Du, h’Du) <- c(u, hu)+ 2l(u hf)[.
Omitting the term with Du, we obtain

(2.46) O, Jlh/=ull= <-_ (c/2)llh’/-ull=+ llh’/=fll=
and by integration

(2.47) h 1/=u(t)I1=-<- e*’/=ll h 1/2Uoll= + (t),
from which we get (2.38) and (2.39) by taking successivelyf= 0 and Uo 0. Inequality
(2.40) follows immediately from (2.39) and the definition of g. Next we integrate (2.45)
in the interval [0, T] to obtain

Ilhl/Zu(T)ll+ 2llh’l/Zou; L2([0, T], L2)ll 2

(2.48) <-_ llh/=uoll+ dt {cllh’/2u(t)ll+211hl/2u(t)ll2llh’/2f(t)ll2}.

We omit the first term in the left-hand side of (2.48) and apply the resulting inequality
successively with f= 0 and with Uo 0. For f= 0, we estimate the right-hand side by
substituting (2.47) with g =0 and obtain

(2.49) <-Ilh’/=uoll@ 1 + c dt e c‘ eCrllh’/2Uoll2.

This proves (2.41). For Uo 0, we estimate the right-hand side of (2.48) by substituting
(2.47) with Uo =0 and obtain

(2.50) <- dt {cg(t)+2g(t)llh’/2f(t)ll}= dt 2g(t)g’(t)= g(T)2

after noting that

g’(t) Ilh/2f(t)ll=+(c/2)g(t).
Formula (2.42) then follows from (2.48) continued by (2.50). l-1

We finally obtain a set of useful estimates by interpolation between those of
Lemma 2.4 and those of Lemma 2.5.
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LEMMA 2.6. Let ho be a continuous function satisfying (2.27) and let hi satisfy the
assumptions made on h in Lemma 2.5. Then the following estimate holds"

(2.51) II h/2-/"hl/" f d’r U(’-’r)Df(’r); Lq([O’ T]’ L’)

<-- C(T)]lh/Z-1/’h[/r(1 +x+)l/4--(1/2r)f; L([0, T], t )ll
for all T> 0 and all r, 2 <= r <= oo, with

1 1 1 1 1 3 1
(2.52) -<- <----

r q 4 2r 4 2r

for r > 2, and equality everywhere for r 2.

Proof The result follows by interpolation between (2.36) written with h, q, r
replaced by ho, qo, to, and (2.42) with h replaced by hi. In particular q, l, and r are
related to qo, lo, and ro by the convexity relations

1 1-2/r 2 1 1-2/r 1

lo r’ q qo r

and condition (2.52) simply expresses the condition 0 < 1/qo- 1/1o-1/4 < from Lemma
2.4.

In the applications, we will often use smooth weighting factors that satisfy in
particular the assumptions of Lemmas 2.4 and 2.5, decreasing exponentially when x
tends to -oo and increasing as-a power when x tends to +oo. We will use a two-parameter
family {h}, a>0, /3->0, satisfying the following properties: h,, c, h(x)=
exp (ax) for x _-< 0, ht(x) Cxt when x --> +oo, 0 -<_ h’, _-< ah,, and additional estimates
for higher derivatives. For definiteness, we choose a nonnegative c function o with
compact support contained in [- 1, 1] and with o Ill 1, and we define for a > 0,/3 ->_ 0

to(x) a for x_-< 1,

o),t3(x)=(x-l+fl/a)- for x->l,

dy,,,t3(y)}.
This family of functions meets all our requirements and will be used without

further comments.

3. Uniqueness of L2 solutions. In this section we derive our results on the unique-
ness of L2 solutions of the GKdV equation (1.1), more precisely of solutions in
(LcCI Cw)([0, T], L2) for some T>0, and we discuss the uniqueness classes that
emerge naturally from them. The method is standard and consists of showing that a
suitable norm of the difference of two solutions with the same initial data satisfies a
linear inequality that compels it to be zero. Since the problem is local, it is sufficient
to consider small time intervals, and since the equation is time-translation invariant,
we can take the initial time to be zero. We first proceed formally and consider two
solutions u, u2 of (1.1) with common initial data u(0) u2(0) Uo, defined in a time
interval [0, T). The difference w Ul- u2 satisfies the equation

(3.1) 0,w+ D3w OV’(u,)- DV’(u2) D(Q"w)
where

(3.2) V"= dA V"(Au, + (1 h )u2).
o
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Since w(0)= 0, w satisfies the integral equation

(3.3) w(t)= dz U(t-z)D(t/’(r)).

Under suitable mild assumptions on V, ul, and //2, (3.1) and (3.3) make sense and are
equivalent (under the initial condition w(O)=0) in a weak (distributional) sense. We
will often assume that V satisfies the condition (1.5) or equivalently

(3.4)

for some p > 0 and all p s R. We consider successively the cases p =< 2 and p >-2. Our
basic uniqueness result in the case p =< 2 is the following proposition.

PROPOSITION 3.1. Let V satisfy (3.4) with 0<p=<2, let uoL2, and let T>0
(possibly T oo). Then 1.1 with initial data u (0) Uo has at most one solution satisfying

(3.5)

(3.6)

(3.7)

where

u (L, fq .,)([0, T), L2),
(1 + x+)t/2u Lo*([0, T), L2),
h 1/2, Lo Ld([0, T) for some t > 0

2 1 1
(3.8) --=/3

ql p 4’

(3.9)
1 1 p
r 2 4’

1 3 1 1 p
(3.10) -< = -q 4 2r 2 8"

Proof. Let ul and u2 be two solutions satisfying (3.5)-(3.7) with common initial
data u(0)= u2(0)= Uo and let h ho. By (3.7), h l/2w Lfoc([0, T), Lr). Without loss
of generality, we can assume that q < r. We estimate h/2w by Lemma 2.6 with h h,,
and ho h ho and obtain for any [0, T)

(3.11) Ilhl/w; tq([0, T], t)ll_< Cllhl/(1 +X+)I/4+I/(2r)/rnW; t’([0, t], t’)ll
with q, r, and satisfying (2.52). We next estimate the right-hand side by the H/51der
inequality as

(3.12) <-_ CIIh/=w; t([0, t], t )ll I1(1 +x+)/+/<-)/"; tm([0, t], W)ll
with 1Is 1-2/r and 1/m I/l- 1/q =1/4+ 1/(2r). The last norm is then estimated by
using (3.6) as

(3.13) ...-< c E II(1/x/)/=u,; t’(E0, t], t,)ll"
i= 1,2

with

2 1 1 1 1 1 2
(3.14) /3 -t

ql 2p rp rl ps p rp

or equivalently

2 1 1 1 1 p
(3.15) /3

q p 2rl r 2 2r
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For 0<p=<2, we can choose r1=2, so that (3.15) reduces to (3.8), (3.9), while the
second inequality in (2.52) reduces to (3.10). Recalling (3.11)-(3.13), using the assump-
tion (3.6), and taking sufficiently small, we obtain h l/2w 0 and therefore w 0 in
[0, t].

Remark 3.1. For low values of p, (3.8) yields unpleasant values q < 1. This is
seen to arise from a natural assumption on ]u] v and to create no trouble.

Remark 3.2. The values of q, r, and q ensure in particular that lu[V+ L(L)
with l> 1, -> 1, so that the equation (1.1) makes sense in ’.

Next we turn to the case p >= 2. The basic uniqueness result follows.
PROPOSITION 3.2. Let Vsatisfy (3.4) with p>-2, let Uo L, and let T>0 (possibly

T oo). Then (1.1) with initial data u(O) Uo has at most one solution satisfying (3.5) and

(3.16)+ X+(1 + x)l/4]u]" L&([0, T), L) for some ql > 4,

(3.16)_ x_lul /(L&([O, T), L)) for some q > 4,

4(3.17)+ X+u Lo([0, T), L) for some q >3,

(3.17)_ X- e’"/2u /(Lo([O, T), L)) for some q > and some a > O.

Proof Let u and u2 be two solutions satisfying (3.5), (3.16)+/-, and (3.17) with
initial data ul(0)= u2(0)= Uo. Let h ho. By (3.17)+, x+h/2w Lfo([0, T), L) and
x+hl/2we/(Lo([0 T), L)).. We estimate h/2w by inserting the estimate (2.28) of
Lemma 2.3 into the integral equation (3.3) and obtain

Ih’/2w(t, x)l<= C(t) dz lt-z[ -3/4

(3.18)

+ Ir<-o dy exp (-ylx-yl/2)lQ"(- y)llh/w(z,

=--J+(x)+J_(x).

The contribution J+(x) of the region y=>0 is estimated in Lq([0, t]) by the Hardy-
Littlewood-Sobolev inequality [8, p. 117] as

(3.19)
IIY+; L([0, t], L)ll <- C(t)]lx+hl/:w; Lq([0, t], L)[

IIX+(1 +" )l/4rtt; t4([0, t], tl)ll

and the last norm is estimated by the use of (3.4) and (3.16)+ as

(3.20) C Y tl/4-’/,llg+(l+.)l/4lu,l; Lq([0, t], L1)II.
i=1,2

The contribution J_(x) of the region y =< 0 is decomposed into the sum of the contribu-
tions of unit intervals:

J-(x)<= C(t) E exp (-ylx-j]/2)
jZ-
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For x -> 0 we omit x in the exponential and estimate the time integral as before to obtain

(3.21)

IIx+J-; Lq([0, t], L)ll < c(t) e/=llxx_h/=w; Lq([0, t], L)ll
jo

IIXsX-I7"; L4([0, t], L’)II
C(t)tl/4-1/qllx_hl/2w; l(tq([0, t], L))II

IIx_lu, I,; l(tq,([0, t], t))ll
i=1,2

by taking the sup overj of the last two norms in the middle member and using (3.16)_.
For x -< 0, we estimate similarly (with k =< 0)

IIxJ-; Lq([0, t], L)l <- C(t) E exp (-’lJ- kl/2)
j=<o

IIxx_hl/=w; Lq([0, t], t)ll Ilxsx- "; t([0, t], tl)ll
so that by the Young inequality in l’ spaces and (3.16)_ again

(3.22) IIx-/-; l(Lq([O, t], t))ll _-< C(t)tl/4-1/qtllx_hl/2w; l(Lq([O, t], t))ll

E IIx-lu,l; l(Lq’([O, t], L))II.
i=1,2

Collecting the estimates (3.19)-(3.22) and defining

(3.23) IIIwlll Ilx+h/=w; L"([O, t], t)ll / IIx_ha/=w;/(t([0, t], L))II,
we obtain a linear inequality

(3.24) IIIwlll <= C(t)tl/4-1/q,Mlliwlll
with

(3.25) M= E {llx+(1 +’)’/4lu,[P; Lq’([0, t],L1)ll+llx-yu,[; l(Lq’([O, t], L’))II}.
i= 1,2

It follows from (3.24) by taking sufficiently small that IIIwlll=0 and therefore that
w 0 in [0, t].

Remark 3.3. We could have stated (3.16)+/- in a slightly weaker form by taking
ql 4 and assuming in addition that for any fixed s [0, T)

lim IIx_lul,; l(L4([s, t], L))[I =0.

However, the only practical way to enforce that condition is through (3.16)_ as stated
with q1>4. The condition q1>4 is not really needed in (3.16)/, where ql =4 would
be sufficient, and has been imposed for consistency.

We now turn to analyzing (3.5)-(3.7) and (3.5), (3.16)+/-, (3.17)+/- that appear in
Propositions 3.1 and 3.2, respectively, and in particular to deriving a priori estimates
of the corresponding norms in terms of the initial data for smooth solutions of the
equation (1.1). The degree ofsmoothness required in the following arguments is actually
rather low. Aside from the decay at +oo in space that occurs, for instance, in (3.6) and
(3.16)+ and will have to be assumed explicitly in some form, it will be sufficient that
the solutions satisfy u (Lle ["l Cw)([0, T), H1) for all the other conditions to be satisfied
and all subsequent calculations to make sense (see in particular Remark 3.7 below).

The first task is to dispose of the harmless assumptions (3.7) in Proposition 3.1
and (3.17)+/- in Proposition 3.2. This is done in Propositions 3.3 and 3.4 below.

PROPOSITION 3.3. Let V satisfy

(3.26) V’(p)] <-- CI Pl P+’
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with 0 < p <-2, let Uo L2, let T> 0 (possibly T ), and let u be a solution of (1.1)
with initial data u(O)= Uo satisfying (3.5)-(3.7) with (3.9), (3.10), and

2 1 1
(3.27) --</3

ql p 4’

(1) (11 r) 11 p
--max <-.(3.28) max

2 4’ r’6 q
1/2, Lq LThen, for any [0, T) the norm ofho in ([0, t] is estimated a priori in terms

of t, of the norm of u in L([0, t], L2) and of the norm of (1 + x+)a/2u in Lq([0, t], L2).
Proof. The proof is a slight variant of that of Proposition 3.1. We prove the result

in successive intervals [s;, s;+] covering the interval [0, t], with So=0. In each such
interval, u satisfies the integral equation

(3.29) u(t)= U(t-s)u(s)+ d" U(t-z)DV’(u(z))

with s s. The free term in (3.29) is estimated by the use of (2.12) and the H/51der
inequality as

(3.30) Lq( I, z’)il < ClIl’/"-’/6+<’/’)llu(s)ll2
with I [ss, ss+t]. The integral in (3.29) is estimated in Lq(I, L’) by the same method
as in the proof of Proposition 3.1 as

(3.31) cll ’1/2 ;t,,oU (I,L)llll(l/x+)/u L"I(I,L’)II’III
with e =1/2-p/8-p/ql > 0. Now the right-hand side of (3.30) is obviously estimated
in terms of the norm of u in L( L2), while the coefficient of the first norm in (3.31)
can be made less than or equal to 1/2 (for instance) by taking I sufficiently small,
depending only on the norm of (1 + x+)/2u in Lq,(., Lq), thereby providing an a priori
estimate of the norm of htxo,1/2, in Lq(I, U) in terms of the relevant quantities.

PROPOSITION 3.4. Let V satisfy (3.26) with p>-_2, let Uo L2, let T>0 (possibly
T oo), and let u be a solution of 1.1 with initial data u (0) Uo satisfying (3.5), (3.16) +/-,

and (3.17) with < q < 6.
1/2,Then, for any t[0, T), the norms of X+U in Lq([0, t], L) and of x-h,,o- in

l(Lq([o, t], L)) are estimated apriori in terms oft and ofthe norms ofu in L([0, t], L2),
ofX+(1 + x)I/4lu[P in Lq’([0, t], L), and ofx_lul in I(Lq([0, t], L1)).

Proof The proof proceeds along the same lines as that of Proposition 3.3 by using
the estimates ofthe proof of Proposition 3.2 instead of those of the proof of Proposition
3.1. We again prove the result in successive intervals [ss, Ss/l] covering [0, t], with

So 0. In each such interval/, u satisfies the integral equation (3.29) with s ss. The
free term is now estimated by the use of (2.14) and with h ho as

(3.32) Ilhl/2U( s)u(s); tq(I, t)ll _<- C[II/-v611u(s)ll2.
The integral in (3.29) is estimated by the use of (2.28) and (3.26) as

h 1/2 d- U(t-z)DV’(u(r)) <- C(llI) dr It-l

{ fr>-o dy (l + y)l/4hl/21u(z’ Y)lP+l
(3.33)

+ Ir<=o dy exp (-/Ix- yl/2)hl/21u(r’ Y’l+l)
=--J+(x)+J_(x).
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We estimate J/ and J_ as in the proof of Proposition 3.2 and obtain

(3.34)

(3.35)

From (3.32), (3.33), and (3.35), we obtain an inequality of the form

(3.36) Illulll -< ClIl’/ - / llu: t (I, t -)ll / C(III)III /’-’/ ,MIIlulII
where Illulll is defined as in (3.23) and M as in (3.25), but with one single function u.
The coefficient of Illulll in the right-hand side of (3.36) can be made less than or equal
to 21- (for instance) by taking I sufficiently small, depending only on the norms of u
contained in M that correspond to (3.16)+/-, thereby providing an a priori estimate of
Illulll in terms of the latter norms, l-I

We now turn to the analysis of the main conditions (3.5), (3.6) of Proposition 3.1
and (3.5), (3.16)+/- of Proposition 3.2. An essential tool will be the following identity
10], 12] satisfied by the solutions of (1.1), a preliminary version of which has already
been used in 2:

(3.37) O,(u, hu)+3(Du, h’Du)=(u, h"u)-2 f h’(uV’(u)- V(u))

or in integral form

(I.1)
(u, hu)(t)+3 dz (Du, h’Du)(z)

=(u0, huo)+ a (u, h’"u)()- h’(uV’(u)- V(u))()

We will henceforth refer to this identity as (I.1). Clearly it makes sense, for all [0, T),
for h 3(R, R) with compactly supported h’, provided

(3.38) u (Llc fq w)([0, T), L2) fq Loc([0, T), Ho),
(3.39) uV’(u)- V(u) Lo([0, T), Lo).
It is known that under suitable assumptions, (I.1) for positive increasing h implies
that hl/2u LI(L2) as soon as hl/2Uo L2 [10], [12]. Since we will make repeated use
of that fact in various contexts, we prove it under assumptions that seem reasonably
optimal. For that purpose we need some auxiliary estimates, which will arise as part
of Lemma 3.2 below. We state that lemma here for convenience, although we will not
need it in its full generality until the proof of Proposition 4.4 below. We begin with
an elementary inequality that we give without proof.

LEMMA 3.1. Let 0 <-- < 1. Then for any e > 0 and any x, y +, the following
estimate holds:

(3.40) xy- <- ex + bey

where

b (1 8)(/$)8/(1--$),
LEMMA 3.2. Let W c(, +) satisfy

0<= W(p)<=ep6+alpl p+z
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for some p, 0 <-- p < 4 and all p R. Let h 1(R, II+), h > O. Then for any e’ > O, the
following estimate holds:

h W(u)lll _-< 5{(e ull/ e’a ull)<Du, hDu>+ e u <u, h-1
(3.41)

+ ae(u, hVu)l+p/4(u, h-lh’2u)p/4+ aebe,(u,

with v=(4-p)/(4+p), for all u L2 Ho for which all norms in the right-hand side
are finite.

oof Clearly

(3.42) Ilh W(u)ll 814+ aIe
where

I, --Ilhlul’/=ll <u, hu>llh-lul’llo

Now by an elementary computation

Ih<l+"S/UuU <-[(1 + w)/E](u, h<"-S/Ulh’lu)+ 211h"/Uullullh/UOullu
(3.43)

<__5/2(u, h"u)/2{(u, h-h’2u)+(Du, hDu)} 1/2

by the Schwarz inequality, so that

(3.44) Ip _-<5(u, h"u) +v/4{(u, h-l h’Eu)p/4 + (Du, hDu)V/4}.
We use (3.44) directly with p replaced by 4 to estimate /4. On the other hand, we
estimate the term containing Du in Ip by applying Lemma 3.1 with 8=p/4 and
x=(Du, hDu>llull, and obtain

(3.45) (u, hVu)l+p/4(Dtl, hDu)p/4<= e’llull(Du, hDu)+ b,(u, hu)/llull+-/.

Substituting (3.45) into (3.44) and then into (3.42) yields (3.41). l-1
We now prove the basic set of estimates that can be derived from the identity (I.1).
PROPOSITION 3.5. Let V satisfy the condition

lim ]p-6((3.46)
pl-o

pV’(p)- V(p))_ 0.

Let T> 0, let Uo L, and let u be a solution of the equation (1.1) with initial data
u(0) Uo, satisfying (3.38) and (3.39), and such that (I.1) holds for all h cg3 with
compactly supported h’. Then"

(1) Dul(Loc([O,T),L2)) and for all t[0, T), Du is estimated in
/(L([0, t], L)) in terms oft and of

(2) Let h 3(, +) satisfy 0<= h ’<- Cl(1 + h), h"2<- c2h’(1 + h), h"=< c3(1 + h), and
let h I/2Uo L2. Then h/2u Llc([0, T), L2), h’/2Du
[0, T), h lieu is estimated in L([0, t], L) and h’l/2Du is estimated in L2([0, t], L2) in
terms oft and of [1(1 + h)1/2Uo[12. In addition, (I.1) holds for that specific h.

Remark 3.4. Condition (3.46) is satisfied, in particular, if V satisfies either (3.4)
or (3.26) for some p, 0-<_p < 4. Furthermore, in that case the integrability condition
(3.39) follows from (3.38).

ProofofProposition 3.5. We first note that (I.1) with h = 1 implies the conservation
of the L2 norm, namely, [[u(t)[[2"-Iluoll= for all [0, T). Condition (3.46) is not needed
for that remark.
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Next we consider h 3(R, R+) with compactly supported h’. From (3.46) and
the conditions V 2, V(0) V’(0) 0, it follows that for any e > 0, there exists a -> 0
such that

(3.47) (pV’(p)- V(p))_<= ep6+ ap2

for all p R. We now estimate the last integral in the right-hand side of (I.1) by using
(3.47), estimating the contribution of the term e,o6 in the same way as in the proof of
Lemma 3.2, with h replaced by h’ (see especially (3.44) with p =4, v =0). We obtain

(3.48) f h’(uV’(u)- V(u))<-_5ellull(Du, h’Du)+(Sec2llull4+ a,cl)(U, (1 + h)u).

Taking e sufficiently small, depending only on Iluoll=, for instance,

we obtain from (I.1)

(3.49) (u, hu}(t)+2 d’{Du, h’Du}(’)<-{uo, huo}+C dz(u,(l+h)u}(z)

where C depends on uoll and on h through c, c, and c only.
We now prove pa 1. For that purpose, we choose a function 0oe with

0N 0oN 1, o(x)= 1 (respectively, 0) for Ixl (respectively, Ixl 1), we define by
O(x) Oo(x-j) for all j e , and we apply (3.49) with h h defined by

hj(x) f (y) dy,

thereby obtaining

211 vDu; t=([0, t], L=)II= (1 + Ct)(l+  o11 )11 nolle.
This proves pa 1.

To prove pa 2 under the relevant assumptions on h, we approximate h by a
sequence hu with compactly supposed h such that hu(x) h(x) for Ixl N, h (x)
const, for x N+ 1 and for x -(N+ 1), and such that hu satisfies the same assump-
tions as h with constants c, cz, c3 uniform in N. We then apply (3.49) with h replaced
by hu and obtain from it estimates for (u, huu) and for (Du, hDu) in terms of
(Uo, (1 + h)uo), uniformly in N, by the Gronwall inequality. Taking the limit N
yields the required estimates with the given h. Finally, (I.1) for that h follows from
the estimates and from the Dominated Convergence Theorem.

We now return to the analysis of conditions (3.5), (3.6) of Proposition 3.1 and
(3.16), (3.17) of Proposition 3.2. In both cases, the conservation of the L2-norm for
(smooth) solutions satisfying (I.1) yields an a priori estimate in L([0, T), L), thereby
disposing of (3.5).

Next we consider condition (3.6) of Proposition 3.1 corresponding to p 2in
(3.4). In that case, it follows from Proposition 3.5 applied with h ho that smooth
solutions of the equation (1.1) satisfy an a priori estimate in the space defined by (3.6),
actually with q , in terms of I1(1 + That result, together with Proposition
3.3 and L-norm conservation indicates that for p 2, (3.5)-(3.7) with (3.9), (3.10),
(3.27), (3.28) define a suitable class for existence and uniqueness, with Uo satisfying
only the assumption (1 +x+)/Uo L2 with 1/p-.
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We now turn to the analysis ofthe main condition (3.16)+/- that occurs in Proposition
3.2 corresponding to the more difficult case p->_ 2. We first give sufficient conditions
for the corresponding norms of smooth solutions to satisfy a priori estimates. That
can be done in either of two ways, the first of which is based on Proposition 3.5. We
will need two auxiliary results. The first is the following elementary Sobolev estimate,
which we give without proof.

LEMMA 3.3. Let I be a bounded interval, let X be its characteristic function, and let
u Hi(I). Then the following estimate holds"

(3.50) IIx. L -<- II1-’ II. + 21Ix,, II=llxD. I1=.
The second auxiliary result that we need is the following lemma.
LEMMA 3.4. Let h (R, +) satisfy 0<-_ h ’<- clh and Jh"] <- c2(hh’) 1/2. Let > O,

and let u be such that h/2u L([0, t], L2) and h’l/2Du L2([0, t], L2). Let 2<- r<oo,
and let hi (, +) satisfy h21 <-_ h "/2+ h ’/2-1. Then h]u]2 Lq,([0, t], L) and thefollow-
ing estimate holds:

IIh,lul; Lq’([O, t], L’)I
(3.51) <= C{t’/q, llh’/=u; L([0, t], L=)II" + Ilh’/u; L([0, t], L)II "/=+’

IIh’W=Du; t2([0, t], t)ll "/-’}
with 1/ql r/4-1/2.

Proof We estimate pointwise for z [0, t]
(3.52) h,lulll, _-< Ilh’/=ullllh=u=ll=-’
with h2 (hh’) w2. Then by derivation and integration

h_u=ll <_- 1/2(u, Ihlu)/ Ilhl/=ull=llh"/=Oull=.(3.53)
Now

Ihl 1/2(hh’)-l/21h’2 + hh"l <= 1/2(c3/2 + c2)h
so that

(3.54) h

from which the result follows by taking the Lq, norm and applying the H61der inequality
in time.

We can now derive a first set of a priori estimates of the norms that correspond
to (3.16)+/- for sufficiently smooth solutions of (1.1) with V satisfying (3.4), 2<=p <3,
and exhibit a new uniqueness class in that case.

PROPOSITION 3.6. (1) Let 2=<p<3 and fl =1/2-1/(2p). Let T>0, and let us satisfy

(3.55) (1 + x+)’/2u L,c([0, T), L2),
(3.56)+ X+(1 + x)(a-)/2Du Loc([0, T), L2),
(3.56)_ x_Du F(Loc([0, T), L2)).
Then (3.16)+/- is satisfied and the following estimates hoM"

IIx+(1 + x)/4lulP; tq’([O, t], t’)ll
,/2.. LOO([O, t], L=)II p/2+l(3.57)+ <

n# uu; L2([0, t], L=)II p/2--l},
IIx-lul’;/’(tq’([O, t],

(3.57)_ <=
IIx-Du; l(tZ([O, t],

for all ts[O, T), with a>O and 1/q,=p/4-1/2 (<1/4).
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(2) Let V satisfy (3.4) with 2 <- p < 3. Let T> 0, and let Uo L2 be such that
(1 + x+)’/2Uo L2, with/3 =1/2-1/(2p). Then (1.1) with initial data u(O)= Uo has at most
one solution satisfying (3.5), (3.55), (3.56)+/-, and (3.17)+/-. Any such solution satisfies
(3.16)+/- with 1/q p/4-1/2.

Proof. Part 1. It follows from (3.56)+/- that the last norm in (3.57)+ is finite. The
"+" part of the statement and (3.57)+ follow immediately from Lemma 3.4 with r p,
h=h,,a and with hl=CX+(l+x)1/4 for x->0, the value of/3 being adjusted for that
purpose. The "-" part and (3.57)_ follow similarly from Lemma 3.3 and the H61der
inequality in time.

Part 2. Part 2 follows immediately from part 1 and Proposition 3.2.
It follows from Proposition 3.4, from Proposition 3.6, part 1, and from Proposition

3.5, parts 1 and 2, the latter applied with h h,, that for V satisfying (3.4) with
2<=p < 3, the norms of smooth solutions of (1.1) corresponding to (3.55), (3.56)+/-,
(3.17)+/- and therefore also the norms corresponding to (3.16)+/- satisfy a priori estimates
in terms of the initial data, and more precisely of I1(1 +x+)O/ZUoll= with/3 =1/2-1/(2p).
That result indicates that for 2=<p <3, (3.5), (3.16)+/-, (3.17)+/- with 1/ql =p/4-1/2 and
]< q<6 define a suitable class for existence and uniqueness provided only (1+
x+)O/2uoL2. Similarly, (3.5), (3.55), (3.56)+/-, (3.17)+/- with 1/ql=p/4-1/2 and <q<6
define another (smaller) suitable class.

The value of p in Proposition 3.6 is restricted to p < 3. This limitation comes from
(actually expresses) the condition ql > 4 in (3.16)+. Furthermore, the value of/3 that
appears in the condition on Uo increases with p. We will obtain better results in both
respects by the second method, described below, of ensuring condition (3.16)+/-.

PROPOSITION 3.7. Let T> 0 (possibly T o). Let p >- 2.
(1) Let u satisfy (3.5) and the conditions

(3.58) (1 +x+)/8u L,([0, T), L2),

(3.59)+ X+u Loc([0, T), L),
q(3.59)_ X-u (Lo([0, T), L)),

with q> max (, 4(p-2)). Then (3.16)+/- is satisfied with ql q/(p-2)> 4, and for all
[0, T), the following estimates hold"

Ilx+(1 + x)/4lulP; tql([0, T], tl)ll
(3.60)+

--< IIx+(1 / x)’/8u; t([0, t], t=)ll=llx+u; tq([0, t], t)ll -z,
IIx_lul;/(t,([0, t], t))ll

(3.60)_
--< IIx-u; t([0, t], t=)ll=llx_u; l(tq([o, t], t))l] p-2.

Furthermore (3.17)+/- hold with the same q and obvious estimates.
(2) Let Vsatisfy (3.26) with 2_-<p<27-. Let T>0, let Uo L2, and let u be a solution

of (1.1) with initial data u(O) Uo satisfying (3.58), (3.59)+/- with

(3.61 max (, 4(p 2) < q < 6,

and in addition Du /(Lo([0, T), L2)). Then, for all [0, T), the norms of x+u in
Lq([0, t], L) and of x_u in l(Lq([o, t], L)) are estimated in terms oft and of the
norms of (l+x+)/8u in L([0, t], L2), and of Du in l(L2, ([0, t], L2)).

(3) Let Vsatisfy (3.4) with 2_-<p <, let T>0, and let Uo L2 satisfy (1 +x+)l/8uo
L2. Then (1.1) with initial data u(0) Uo has at most one solution satisfying (3.5), (3.58),
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and (3.59)+/- with q satisfying (3.61). Any such solution satisfies (3.16)+/- with ql q/ (P 2)
and (3.17)+/-.

Proof Part 1. Part 1 and (3.60)5 follow immediately from the H/Slder inequality.
Part 2. We prove the result in successive intervals [sj, sj+l] covering the interval

[0, t], with So-0. In each such interval/, u satisfies the integral equation (3.29) with
s s. We proceed in two steps. The first step consists of estimating u in l(Lq(I, L)).
For that purpose, we take a (3 function $ with compact support, to be chosen more
precisely later. Let X be the characteristic function of the support of $. If u is a solution
of (1.1), then Su satisfies

(3.62) Ot($u)+D3($u)=3D($’Du)+d/"u+D($V’(u))-d/’V’(u)
and therefore also the integral equation

$u( t) xU( s)d/u(s) + X dz U( ’)

(3.63) {3D($’Du(z))+ $’"u(’r) + D(VV’(u(z)))-x’V’(u(z))}

=xU(t-s)u(s)+ Ji(t)
1i4

where we have used the support properties of and where the quantities Ji(t),
i- 1,..-, 4 are the contributions of the four terms in the last bracket.

We now estimate all terms in Lq(I, L). The free term is estimated as before by
(2.14) and the H/Sider inequality as

(3.64) U( s)Ou(s); L(I, L)II <- cIII1/-/llu(s)ll.
To estimate J, we rewrite it as

(3.65) J(t)=3Xe- ft dzexp[-(t-r)(D-1)3](D-1)e"d/’Du(’)
Furthermore,

(3.66) (D 1 )e’O’Du D(eXO’Du eXO’u) + eX( d/’ + O")u.
The contributions to J(t) of the first and second terms in the right-hand side of (3.66)
are estimated by Lemma 2.2 (see especially (2.20) and (2.19), respectively) and the
H6lder inequality as

II1; Lo( I, L)II-<- Cel’lllxe-ll{llq" eXll(lll/-/6llxDu; L2( I, L2)II
+lll/+l/311Xu; t(I, t2)ll)

(3.67)
/ II(q,’/ q/’) eXlll.II/+/611xu; t(l, t=)ll

<= C(lII)lIl/q-/6(llxDu; L2(I, L2)II + Ilxu; L(I, L=)II)
where C(llI) depends on q in a translation-invariant manner. In particular, the
exponentials in the various norms cancel up to a constant factor because of the support
properties of q.

We estimate J2 by (2.15) and the H61der inequality as

(3.68)

We estimate J3 and J4 simply by using (2.10) and (2.9) so that

(3.69) IIJ3( t) / Ja( t)llo<= C(lII)



1408 J. GINIBRE AND V. TSUTSUMI

where we have taken advantage of the support properties of X and q,’, and C(lI[)
depends on t/, in a translation invariant manner. Taking the norm in Lq(I) and using
the Young and H61der inequalities, we obtain

(3.70) IlJ3+J4; La(I, L)ll--< C(llI)lll’/--=)llxu; L(I, L=)ll=llxu; La(I, L)ll -’.
Recalling the estimates (3.64), (3.67), (3.68), and (3.70), we obtain

IIku; Lq(I, L)II <- C(llI){lIl/q-’/6(llxDu; L2(I, L=)II + Ilu; L(I,
(3.71)

/lll/4-<’-=)/llu; L(I, L=)II=Xu; Lq(I,

We now choose a function tPo c3 with 0-<qo -< 1, q,o(X) 1 for [xl_-<1/2 and o(X) =0
for Ix[ _-> 1, and for all j 7/, we defin 0j by qj(x)= qo(x-j) so that for all j Z,

Xj j ,j Xj_ - Xj - Xj+

where is the characteristic function of the support [j 1, j + 1 of 0. We now apply
(3.71) with 0 0j and take the supremum over j to obtain

(3.72)

Ilu; I(L(I, L))II =< C(]I[){llJ/q-/6(j]Uu; I(L2(I, L))II / Ilu; L(I,

+lii1/4-(p-2)/qlltl; L(I, L)llllu; l(Lq(I, L))ll p-1}.

Now let

(3.73) y(t) Ilu;/(t(Es, t], t))ll.
It follows from (3.72) that y(. is a continuous (actually H61der continuous with
exponent e=min(1/q-,1/4-(p-2)/q)) function of and tends to zero when
decreases to s. Furthermore, (3.72) with I Is, t] yields an inequality of the form

(3.74) y( t) <-_ a( t) + b( t)y( t) p-1

where a(t) and b(t) tend to zero as It-s[ when decreases to s. By an elementary
and standard argument, this inequality implies that y(t) is estimated a priori for It-sl
sufficiently small, depending only on the norms of u in L( ., L2) and of Du in
I(L2( ., Lg-)). Applying that argument in successive intervals [s, sj+l] yields the
required a priori estimate of u in l(Lq( L)).

The second step of the proof consists of estimating X+u in Lq( ", L), taking
advantage of the estimate already obtained in the first step. For that purpose, we take
h ho for some a >0 and estimate hl/Etl by inserting (2.28) of Lemma 2.3 into the
integral equation (3.29) to obtain for I

]h 1/2u(t, x)l =< Ih 1/2 g(t- s)u(s)l / C(llI) dz It- z1-3/4

"{fy dy(l+y)l/4hl/21u(z,y)lp+l
(3.75) _->o

+ ly<-_o dy exp (-/Ix-yl/E)hl/2lgl("l", y)l p+I )
=-Ih ’/" V( s)u(s)l / J+(x) / J_(x)

(cf. (3.33)). By the same method as in the proof of Proposition 3.4, we estimate

II1/; t(I,
(3.76)

<-_ C(llI)lIl’/4-<’-z)/llx+(1 +. )’/Su; L(I, t-)llZllx+u; t(I, t=)ll "-’,
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(3.77)
IIx/ L(I, L)II-<- C(lII)lIl’/4-(p-2/qllX-u; L(I, L)II

Z exp (-)ll/j,-’/; Lq(l,L)llP-1,
j_-<o

so that by collecting (3.64), (3.76), and (3.77)

(3.78)

Therefore we again obtain an inequality of the type (3.74), for the quantity

y+(t) IIx+u; Lq([ s, t], L)II.
The end of the proof is then identical with that in the first step.

Part 3. This part follows immediately from part 1 and Proposition 3.2. I-]

It follows from Proposition 3.7, part 2 and from Proposition 3.5, part 1, and part
2 applied with h hal/4, that for smooth solutions of (1.1) with V satisfying (3.4) and
2-<p<-, the norms corresponding to (3.58), (3.59)+/-, and therefore, by Proposition
3.7, part 1, the norms corresponding to (3.16)+ and (3.17)+/- with (3.61) and ql

q/(p-2), satisfy a priori estimates in terms of the initial data, and more precisely in
terms of II(l/x/)’/Suoll=. That result indicates that for 2=<p<, (3.5), (3.16)+/-, and
(3.17)+/- with (3.61) and ql q/(p-2) define a suitable class for existence and unique-
ness, provided only (l+x+)I/8uoLu. Similarly (3.5), (3.58), (3.59)+/-, (3.61) define
another (smaller) suitable class. Note also that Proposition 3.7 improves over Proposi-
tion 3.6 as regards both the range of p and the value of/3.

An interesting question left open at this stage is to determine sufficient smoothness
conditions under which (I.1) and the a priori estimates of Proposition 3.5 hold true.
Such conditions could be used, in particular, to exhibit uniqueness classes other than
those defined in Propositions 3.1, 3.2, 3.6, and 3.7. Now the use of (I.1) requires that
u satisfy (3.38). Although we are not able to derive (I.1) under that smoothness
condition alone, we can go some way in that direction. For that purpose, we need a
family of mollifiers o e (N, N+) with o even and I111-- 1. We will eventually let o
tend to in the sense that we will let/z tend to infinity in the one-parameter family
{o,,} defined by o,(x)= tzo(/zx) for some fixed Ol.

We can then prove the following result.
PROPOSITION 3.8. Let Vsatisfy (3.4) with 0-<p=<4. Let T>0, let uoe L, and let

u be a solution of (1.1) with initial data u(O)= Uo satisfying (3.38). Then:
(1) For any h (3 with compact support, for all [0, T), thefollowing limit exists:

=1 lim2 d’(hDu,, V’(u,)-q, V’(u))(r)

(3.79) =(u, hu>(t)-(Uo, huo)+3 dr (Du, h’Du)(r)

dr<u,h’"u>(r)+2 dr h’(uV’(u)- V(u))(r)

where q is a mollifier, u, =q * u, and all terms in the right-hand side are defined by
absolutely convergent integrals.

(2) Ifp <= 2, the identity (I. 1) holds for all h c3 with compact support.
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(3) Assume that p < 4 and that the identity (I. 1) holds for all h (3 with compact
2support. Then Du (Loc([O, T), L2)). Furthermore, for all qg2 with compact support,

for all [0, T), the following limit exists:

(3.80) :1 lim 3 d,r (Du, paDu)(z)= [[[[ll:(t)

where is defined by Pa(X)= tp(X--a). The functions l(t) are nondecreasing in and
satisfy

(3.81) l-(t)-l-((t)- Ilu(t)ll -Iluoll 

for all [0, T). The identity (I.1) holds for all h c3 with compactly supported h’ if
and only if lT(t)= 0 for all [0, T).

Proof. Part 1. We first remark that under the assumptions made here, V’(u)
Lo([0, T); L2o). In fact, let X be the characteristic function of a bounded interval.
Then by Lemma 3.3,

p+l 19_+p/2(3.82) IlxV’(u)ll=-- Ilxlul +111== c{llxull: / llxull IIxDullf/ },
which belongs to Lloo([0, T)) for p-<4.

We now turn to the proof of (3.79). The function u satisfies the equation

(3.83) Otu + D3u D(g, V’(u)).

Furthermore, u L([0, T), Hk) and D(o * V’(u)) Lo([0, T), Hko) for any non-
negative integer k. By the same computation as in the proof of Lemma 2.5 (see (2.44)),
we obtain for any [0, T)

(u, hu,)(t)-(o * uo, h(o * Uo))+3 dz (Du, h’Du)(z)- dz (u, h’"uq)(z)

2 dr (u, hD(o * V’(u)))
(3.84)

2 dz (u, hDV’(u,)}+ 2 dz {u,, hD(q * V’(u)- V’(u))}

=-2 dr h’(uV’(u)- V(u))+2 dz(h’u+hDu,(V’(u)-o* V’(u))).

We then let o tend to l wherever possible in (3.84), using the fact that the convolution
with o tends to l strongly in Hk for any k->_ 0 and in L for any r, 1 <_-r < c. Under
the assumptions made, all terms in the first member of (3.84) converge to the obvious
limits. Next we consider the first term in the last member. From the identity

(3.85) uV’(u)- V(u)-(uV’(u)- V(u)) (u, u) dh

with ff hu + (1 h )u, we obtain, with g being the characteristic function of Support
h’ and $ that of Support h’+ Support 0,

(3.86) IIx("

which converges to zero in Lo([0, T)) by (3.82) and the Dominated Convergence
Theorem.
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The same argument shows that the contribution of h’u in the last integral in
(3.84) tends to zero as p tends to 4, so that the only term left uncontrolled at this stage
in (3.84) is the contribution of hDu to that same integral. This proves (3.79).

Part 2. In the same way as in part 1, we prove that V’(u)-p, V’(u) now
converges to zero in Ll2oc([0, T), Loc). In fact,

V’(u)- V’(u)= (u u) d; V"()

so that by Lemma 3.3 (see (3.82)), with X the characteristic function of a bounded
interval I, and , that of I + Support 0,

IIx(V’(u)- V’(u))ll Cllu u Ildllu I1 + IIull/llDull/},
which tends to zero in Lo([0, T)) for p 2. Consequently, the integral in the left-hand
side of (3.79) tends to zero for compactly supposed h. This completes the proof of
pa 2.

Part 3. Let 2 have compact suppo I-R, R]. Without loss of generality we
can assume that (0)@’2 C and that ][]]1 1. We define h by

h(x) dyO,(y)

so that h(x) 1 for xaR and h(x) 0 for xa R. We apply the identity (I.1)
with h hh and b a 2R to obtain

(u(t),hu(t))-(uo, huo)+3 d(Du;(,-Ob)DU)()

(3.8) d (u, (- g)u)()

=- (.-l(uv’(u- v(u(.

By the same computation as in the proof of Lemma 3.2, applied with h replaced by
and W(u) ug’(u) V(u) (see especially (3.43)) and by using the suppo propeies

of , we can estimate the contribution of to the right-hand side of (3.87) as

2 d, b(UV’(u)-- V(u))()

p+2c d {llxull IIxull’/<Du, Du>’/}()
(3.)

c d IIxull++ Ct-/ d (Du,

Ixu; g([0, t], L)II
where Xb is the characteristic function of [b-R, b+ R]. From (3.87), (3.88), it follows
that for fixed a, the integral

y(t) d" (Du, d/bDU)(a’)
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satisfies an inequality of the type

y(t) <= A(t) + B( t)y( t) p/4

with A(t) and B(t) uniformly bounded with respect to b and therefore, for p < 4, y(t)
is uniformly bounded with respect to b. By the same argument with a and b inter-
changed, this proves that Du /(Loc([0, T), L2)). We next let b tend to infinity for
fixed a in (3.87). From the previous fact, from (3.88), from the fact that II  ull= tends
to zero pointwise in as b o, and from the Dominated Convergence Theorem, it
follows that the contribution of p to the left-hand side of (3.87) and that of fib to the
right-hand side tend to zero as b c. We then obtain the existence of the limit:

::1 lim 3 dr (Du, Du)(r)=(u, h+u)(t)-(uo,

(3.89) + 3 dr (Du, aDu)(r)- dr (u, P"aU)(’)

+2 a q,o(uV’(u)- V(u))().

The same argument applies to the limit a -c for fixed b. The fact that the limit in
(3.80) depends on ff only through II ,ll is easily seen by defining h with two different
functions +, ff at a and b, the only constraint being that IIg,/ll = IIg,-II in order
that h have compact support. The right-hand side of (3.89) then depends only on a+
and is therefore independent of the specific choice of - satisfying that constraint.

Relation (3.81) follows by taking successively the limits b + and a- in
(3.87), or a -c in (3.89).

The last statement follows in one direction by applying the identity (I.1) for the
(compactly supported) function h+h with h+ h defined as before, and letting b
and a -c, and in the opposite direction by applying (I.1) with h ha and letting a
tend to +oo. [3

Remark 3.5. In the proof of part 3, we could have replaced the assumption that
V satisfies (3.4) with p < 4 by the weaker semiboundedness condition (3.46) of Proposi-
tion 3.5, at the expense of using again the estimates of Lemma 3.2. We have refrained
from doing so because we are interested in part 3 of Proposition 3.8 only in the more
restricted context considered here.

Remark 3.6. Relation (3.81) suggests that under the weak assumptions made on
the smoothness of solutions, the local H norm may act as a source at +o and/or a
sink at -o for the L2 norm of the solutions, and some kind of boundary condition at
+o must be imposed to exclude that effect. Note also that if we are interested only
in the estimates of the kind provided by Proposition 3.5, only the condition on l-(t)
is important, since then for the relevant h, (I.1) is replaced by an inequality in the
right direction.

Remark 3.7. If u (Llc 1") w)([0, T), H1), then (I.1) holds for any he (3 with
compactly supported h’ and condition (3.4) with p _-<4 is not needed for that purpose.
(See Proposition 4.1 below.)

Using Propositions 3.5 and possibly 3.8, we finally exhibit different uniqueness
classes for (1.1) than those described in Proposition 3.1 for p _-< 2 and in Propositions
3.2, 3.6, and 3.7 for p _-> 2. We consider first the case p _-< 2.
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PROPOSITION 3.9. Let V satisfy (3.4) with 0<p<_-2, let (1-FX+)13/2tloEL2 with

fl 1/p 1/4, and let T> 0 (possibly T oo). Then (1.1) with initial data u (0) Uo has
at most one solution satisfying (3.38), that is, condition

(3.90) lim inf IIx D ; L=([0, t], L=)II 0
j+oo

for all T, and condition (3.7) with (3.9), (3.10). Any such solution satisfies

(1 + x+)t/Eu Lc([0, T), L2).

Proof The result follows immediately from Propositions 3.1, 3.5, and 3.8 and from
Remark 3.6.

We next turn to the case p-> 2.
PROPOSITION 3.10. Let V satisfy (3.4) with p>-2, let Uo L2, and let T>0. Then

(1.1) with initial data u(O)= Uo has at most one solution u satisfying (3.38), (I.1) for all
h c3 with compactly supported h’, and either of the two sets of conditions:

(1) 2-<_p<3, (l+x+)/2uoL2 for=1/2-1/(2p), and u satisfies (3.17)+/-.
(2) 2<_-p<-, (1 +x+)l/8uo L2, and u satisfies (3.59)+/- with q satisfying (3.61).
Proof. The result follows immediately from Propositions 3.2, 3.5, and 3.6 under

conditions 1, and from Propositions 3.2, 3.5, and 3.7 under conditions 2.
Remark 3.8. We had to keep (3.90) in Proposition 3.9 and (I.1) in Proposition

3.10 as independent assumptions, since we are unable to derive (I.1) for solutions of
(1.1) satisfying only (3.38). An unpleasant consequence is that it is unclear whether
the uniqueness classes defined in Propositions 3.9 and 3.10 are suitable for existence
proofs. In fact, all the relevant norms (including that of Du in I(L2( ", L2))) are
estimated a priori in terms of the initial data for smooth solutions, but conditions such
as (3.90) are not preserved when taking weak-star limits.

4. Uniqueness of H solutions. In this section, we derive our results on the
uniqueness of H solutions of the GKdV equation (1.1), more precisely of solutions
in (Llcfq Cw)([0, T), HI) for some T>0. Such solutions can also be called finite
energy solutions: for such a solution, the energy

(4.1) E(u)-1/211Dull/ f dx V(u)

is well defined for each t[0, T) and formally conserved, i.e., E(u(t))=const. Con-
versely, energy conservation and a semiboundedness property of V imply an a priori
estimate of the solution in L([0, T), H) (see Proposition 4.4 below for more precise
statements). H solutions satisfy Propositions 3.5 and 3.8 with stronger conclusions
and weaker assumptions on V. We state that and a related result immediately for later
reference.

PROPOSITION 4.1. Let Uo H, let T>0, and let u (Lo Cw)([0, T), H1) be a
solution of (1.1) with initial data u (0) Uo. Then"

(1) The identity (I.1) holdsfor all h 3 with compactly supported h’. The L-norm
of u is conserved, namely, Ilu(t)ll= Iluoll= for all [0, T).

(2) Let h 3(, +) satisfy 0 <-_ h’ <-_ c(1 + h), h" <= c3(1 + h) and let h 1/Uo L2.
Then hl/2u L([0, T), L2), h’l/2Du Lo([0, T), L2) and for all [0, T), hl/u is

estimated in L([0, t], L2) and h’l/Du is estimated in L2([0, t], L2) in terms of t, of
I1(1 + h)/2Uol12 and of liOn; t), t=)ll. In addition (I.1) holds for that specific h.

2(3) u (Lion(J0, T), L2)) andfor all [0, T), u is estimated in/(L([0, t], L2))
in terms of and of u; t ], n
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Proof. Part 1. By a Sobolev inequality and elementary arguments, u
L:c([0, T), L) and the map u--> V’(u) is continuous from H to L2. Part 1 is then
proved in the same way as Proposition 3.8. In particular, the left-hand side of (3.79)
tends to zero when q tends to 1.

Part 2. Part 2 is proved in the same way as Proposition 3.5, with the last term in
(I.1) now simply estimated as

(4.2) 2 1 h’(uV’(u)- V(u)) <- M(llull)(u, h’u>

for some locally bounded function M. Note also that the statement on h’l/2Du adds
new information only if h’ is unbounded.

Part 3. Let g, g3 have compact support, and let X be the characteristic function
of the support of . From (I.1) with h we obtain by direct estimation

(u, gu)(t)<-_(Uo, g,Uo)+3cl dz(Du, xDu)(z)
(4.3)

/ d- Ilxu(’)ll(c/NclM(llu(,)lloo))

where Cl @’ll, c--II @’"lloo, and M(p)= suplp,l<___p v"(p’)l, We now choose a function
i]/o (3 with 0=< @o-< 1, g,o(X) 1 for Ixl_-<1/2 and @o(X) =0 for Ixl->_ 1, and for all jeZ,
we define pj by g,j(x)=g,o(x-j). We apply (4.3) with ,=,, take the norms in
L([0, t]), and take the sum over j to obtain

Ilu; 12(t([0, t],t=))ll=<-211u011g+6c IlOu(,)ll 

+2(C3+2clM(IIu; L([0, t], d, Ilu(,)ll 
(4.4) 21lullS{1 + t(c3 + 2ClM(llu; Z([0, t], t)ll))}

/6cllOu; t=([0, t],

where the last equality follows from the conservation of the L2-norm. Part 3 then
follows from (4.4).

We now turn to our basic uniqueness result. As in 3, it is based on a linear
inequality for a suitable norm of the difference of two solutions. That inequality now
arises from a variant of (I.1). In this section we will often assume (in addition to the
general assumptions V (2, V(0) V’(0) 0) that V" is absolutely continuous (=AC)
with V"(O) 0 and with locally bounded (Radon-Nikodym or distributional) derivative
V’". We will, however, refrain from assuming V ,3, since we do not want to exclude
such cases as V"(u)= lul,

PROPOSITION 4.2. Let V" be AC with V"(O)= O, and let V’" be locally bounded. Let
uoH1, and let T>0 (possibly T=o). Then (1.1) with initial data u(0)=Uo has at
most one solution such that

(4.5)

(4.6)

u (L,c fq Cw)([O, T), H’),

x+Du Lo([O, T), L).

Proofi Let Ul and u2 be two solutions satisfying (4.5), (4.6) with common initial
data ul(0)= u2(0)= Uo, let w= u-u2, and let h ho for some a > 0. The proof is
based on a variant of (I.1) satisfied by w. For clarity, we give only the algebraic part
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of the proof of that identity in differential form. Under the smoothness assumption
(4.5), the functional analytic details can be easily filled in by the mollifier method of
Propositions 3.8 and 4.1. From (3.1) and the same computation as in the proof of
Lemma 2.5 (see (2.44)), we obtain

(4.7) Or(w, hw)+ 3(Dw, h’Dw)-(w, h’"w)= 2(w, hD( "w)).

For x _-> 0, we use the identity

2wD(IT’"w) D(w2 I7") + w2(DI7’’’)

to obtain

(4.8) 2 dxhwD("w)=(w, hx+(DQ")w)-(w,h’x+Q"w)-(hw2"’)(O).

For x-< 0, we use the identity

2wD( Q"w) 2D(wZ,’)-2w(Dw) ’"
to obtain

(4.9)
0

2 dxhwO(Q"w)=-2(Dw, hx_Q"w)-2(w,h’x_Q"w)+2(hw2Q")(O).

Adding (4.8) and (4.9), we obtain

(4.10)
2(w, hD(Q"w)) (w, hx+(DQ)w)-(w, h’x+ ’"w)- 2(w, h’x-Q"w)

-2(Ow, hx_g/"w)+ Q"(0)((w, h’x_w)+ 2(Dw, hx_w))

(the argument denoted as zero in (4.8)-(4.10) is the space variable x). Using the
properties of h, namely, x-h’ tx_h and 0 _-< x+h’<-_ ax+h, and an elementary quadratic
inequality, from (4.10) we obtain

(4.11)
2(w, hD(Q"w)) <--_ (IIx+D "II + 3a + IIx-  "11

x (w, hw)+ 2(Dw, h’x_Dw).

The result now follows from (4.7) and (4.11) by Gronwall’s inequality, insofar as
I7" L2oc([0, T), L) and x+D" Loc([0, T), L). The former property follows from
(4.5), actually with L instead of L2 in time, while the latter follows from (4.6) and
the additional assumption on V".

Remark 4.1. Condition (4.6) of Proposition 4.2 may seem inadequate for a later
treatment of the existence problem along the lines sketched in the Introduction, since
L is not the dual of a Banach space. However, we can replace L by Lq with any
q _-> 1 in (4.6) and the subsequent a priori estimates will actually hold with q 6.

The remaining part of this section is devoted to the analysis of conditions (4.6)
for H solutions. As will become clear in the subsequent discussion, the fact that no
difficulty arises from the lack of local regularity, namely, for high values of p in (3.4),
is in contrast to the case of L2 solutions considered in the previous section. On the
other hand, there remains a difficulty, caused by the lack of decrease at infinity in
space, giving rise in particular to the lower bound p > if no further assumption is
made on Uo than u0 H. An important tool in overcoming that difficulty is a second



1416 J. GINIBRE AND Y. TSUTSUMI

well-known identity [10], satisfied by the solutions of (1.1), which we will henceforth
refer to as (1.2) and which we formulate in the following integral form:

f(Du, hDu)(t)+2 hV(u(t))+3 d(Du,h’D2u)(r)+ dr h’V’(u(z))2

(I.2) (Duo, hDuo) + 2 f hV(uo)

+I/dz{(Du, h’"Du)(r)+2 I h’"V(u(r))-4(Du, h’DV’(u))(r)}.
Clearly (1.2) makes sense for h (3 with compactly supported h’ provided

(4.12) u (L, fq Cw)([0, T), H’) fq Lo([0, T), Ho).

Identity (1.2) can be used to derive weighted H estimates for solutions of (1.1) in the
same way as (I.1) was used to derive weighted L2 estimates for those solutions. We
could therefore proceed immediately to the derivation of those estimates, in close
analogy with Proposition 3.5, by assuming (I.2), and leave its derivation for a later
stage, in analogy with our treatment of (I.1) in 3. However, the situation for (1.2) is
better than that for (I.1), and we are almost able to derive (1.2) for solutions of (1.1)
satisfying (4.12). We will therefore reverse the order and begin with the derivation of
(1.2).

PROPOSiTiON 4.3. Let T>0, let Uo H1, and let u be a solution of (1.1) with initial
data u (0) Uo satisfying (4.12). Then:

(1) For any h c3 with compact support, for any [0, T), u satisfies (I.2). Further-
more, u /(Lo([0, T), H2)) andfor all q, c2 with compact support, for all [0, T),
the following limits exist:

(4.13) :1 al!moo 3 dr (D2u, d/aD2u)(’r) 211q, ll/g:(t)

where is defined by #/(x)= #/(x-a). The functions l(t) are nondecreasing in and
satisfy

(4.14) l-(t)-l(t)= E(u(t))-E(Uo)

for all [0, T). Identity (1.2) holds for all h c3 with compactly supported h’ if and
only if l(t) 0 for all [0, T).

(2) Assume in addition either that

(4.15) lim inf IIxDu; U([0, t], t-)II =0

for all t[0, T), or that V satisfies (3.4) for some p>-2 and for all p[-1, 1]. Then
(I.2) holds for all h c3 with compactly supported h’.

Proof Part 1. We first remark that the map u V’(u) is continuous from H to
H1. In fact, since DV’(u)= V"(u)Du, it suffices to prove that the map u V"(u) is
continuous from H to L. This follows from the continuous embedding H c L and
from the fact that V" is uniformly continuous on bounded intervals.

We now turn to the proof of (I.2). We use the same mollifier method as in the
proof of Proposition 3.6. From (3.83), we obtain by the same computation as in the
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proof of Lemma 2.5 (see (2.44))

(Du, hDu)(t)-( . Duo, h( . Duo))+3 d’(D2u, h’D2u)(r)
(4.16)

dr (Du, h"’Du)(z) 2 dr (Du, hD2(o V’(u)))(z).

The integrand on the right-hand side of (4.16) can be rewritten as

(Duq, hD2(q * V’(u)))=(D2u, hD(V’(u)-q * V’(u)))

(4.17) -(Du, h’D(q * V’(u)))

+(D2uo, h’V’(u))+ D3u, hV’(u)).

Again using (3.83) to re-express the last term, we obtain by an elementary computation

O, I hV(u)-1/2(tp . V’(u), h’(q V’(u)))+ f h’"V(u)

(4.18) -(Du, h’D(p V’(u)+ V’(u)))
+(D(q * V’(u)), h(V’(u)-p * V’(u)))

+(D2u, hD(V’(u)-o * V’(u))).

We substitute (4.18) into the right-hand side of (4.16) and take the limit o ]

wherever possible. By using only the assumptions that u Lc([0, T), H1) and h 3
with compactly supported h’, we obtain from the fact that u tends to u, and that. V’(u) and V’(u) tend to V’(u) in H1, that all terms tend to the obvious limits.
Possible exceptions are the first integral on the left-hand side of (4.16) and the
contribution of the last term in (4.18). If in addition u Loc([0, T), Hl2o), the former
integral also tends to the obvious limit, so that

::! lim 2 dz (D2u, hD( V’(u)- * V’(u)))(’)

=(Du, hDu)(t)+2 hV(u(t))+3 dT"(D2u, h’D2u)(7")

(4.19)
+ dr h’V’(u(r))2-(Duo, hDuo}-2 hV(uo)

dz {Du, h’"Du}(z)+2 h’"V(u(’))-4{Du, h’DV’(u)}(’).

Furthermore, the integral on the left-hand side of (4.19) tends to zero when o 11
if in addition h has compact support, thereby proving (I.2) in that special case. The
remaining statements in part 1 of the proposition are proved by the same method as
part 3 of Proposition 3.8, using, in particular, (I.2) with h= h+h- and letting a
(respectively, b) vary and/or tend to -oe (respectively, +oe) for fixed b (respectively,
a). We omit the details.

Part 2. Under assumption (4.15), we obtain from (4.13) that /:(t) =0 and (I.2)
for h e 3 with compactly supported h’ follow from the last statement of part 1. To
prove (I.2) under the additional assumption on V we start from (4.19) and prove
directly that the left-hand side is zero. Since Du e/(L([0, t], L)) by part 1, it suflSces
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to prove that D(V’(u,)-. V’(u)) tends to zero in /1(L2([0, t], L2)). Since V’(u,)
and V’(u) tend to V’(u) in H for each t, that fact will follow from the Dominated
Convergence Theorem and from an estimate of DV’(u) and DV’(u,) uniformly in .
We concentrate on DV’(u). The same estimate will hold for DV’(u,). By the additional
assumption on V, it is sufficient to estimate lulPDu. Now from Lemma 3.3, we obtain

(4.20) IlxlulDullz <- C(llxDullzllxull / IIxDull//llxull/)
so that by the H61der inequality

lulDu; l(Z2([0, t],

(4.21) <= C{llOu’, t-([0, t], t=)ll Ilu;/=(t([0, t], t=))ll
/ IlOu; Ip+2(Lp+2([O, t], t=))ll+’/=llu; IP(Z([O, t],

The result now follows from the fact that Du L([0, t], L2) c lq(Lq([o, t], L2)) for all
q, 2-<_ q-<, and that u /2(L([0, t], L2))c/q(L([0, t], L2)) for all q_->2 by Proposi-
tion 4.1, part 3. l-1

We now turn to the derivation of weighted L(H1) estimates for solutions of
(1.1), in close analogy with Proposition 3.5.

PROPOSITION 4.4. Let V satisfy the conditions

(4.22) lim p 1-6 V_(p) 0,

(4.23) V_() Cl] p/2 for all p[-1, 1],

for some p, 0 --<_ p < 4, and some C >- O. Let T> 0, let Uo H, and let u be a solution of
(1.1) with initial data u(O) Uo, satisfying (4.12), and such that (1.2) holdsfor all h qg3
with compactly supported h’. Then"

1 The energy is conserved, namely, E (u (t)) E (Uo) for all T, and u is estimated
in L([0, T), H) in terms of Iluo; Hill.

(2) Dul(Loc([O,T),L)), and for all t[0, T), DUu is estimated in
/(L([0, t], L2)) in terms oft and Ilu0; HII.

(3) Let h 3(!, R+) satisfy 0<-_ h ’<- c(1 + h) and Ih’l <-- C3(1 + h). Let hl/Duo
L, hV+(uo)L, and let h"/u, (l+h)-I/h’uLoc([0, T),L2), where v=
(4-p)/(4+p). Then h/2Du L([O, T), L), hV+(u) L([O, T), L), h’/Du
L2o([0, T); L2), h’/:V’(u)Lo([O, T); Lu), and for all t[0, T), the corresponding
norms in the interval [0, t] are estimated in terms oft, of I1(1 / h)/=Duoll=, of IIhV+(uo)ll,,
and of the norms of (1 + h)"/2u and (1 + h)-/h’u in L([0, t], L). In addition, (1.2)
holds for that specific choice of h.

Proof. Part 1. Part 1 follows from (1.2) with h and from Lemma 3.2 applied
with h-= 1 and W V_.

Next we consider an h with compactly supported h’. From (1.2) with h replaced
by (1 + h) we obtain

(Du,(l+h)Du)(t)+2 (l+h)V(u(t))+3 dr(Du,h’Du)(z)

+ ,It h’V’(u(’r))2<-_(Duo,(l+h)Duo)+2 (l+h)V(uo)
(4.24)

+ dT" (c3+4ClllV"(u);L([O,t],L)ll)(Ou,(l+h)Du)(z)

+2c3f (l+h)lV(u(z))l).
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From Lemma 3.2 (see especially (3.41)) applied with W- V_ and h replaced by (1 + h),
it follows that the quantity

(4.25) F(u)=(Du, (l+h)Du)+ I (l+h)V(u)+C

is positive in the interval [0, t] for some constant C _-> 0 depending only on the norms
of (1 / h) /2u and (1 + h)-l/2h’u in L([0, t], L2). Furthermore, F satisfies an inequality
of the type

(4.26)

F(u(t))+3 d-(D2u, h’D2u)(-)+ dr h’V’(u(7"))2

<-F(uo)+A+B drF(u(’))

by Lemma 3.2 again and by part 1, with A and B depending only on IlUo; HII and
on the norms of (1 + h)/2u and (1 + h)-l/2h’ in L([0, t], L2).

Part 2. Part 2 now follows from (4.26) applied with the same h as in the proof
of Proposition 3.5, part 1. (Note, in particular, that for that choice, A and B in (4.26)
and C in (4.25) are estimated in terms of IlUo; nll and that F(u(t)) is estimated in
terms of Iluo;/4’11 uniformly in t.)

Part 3. Part 3 follows from (4.25) and (4.26) by approximating h by a sequence
of functions hv with compactly supported h as in the proof of Proposition 3.5, part
2, estimating the corresponding FN uniformly in N by (4.26) and the Gronwall
inequality, taking the limit N-->az, and again applying Lemma 3.2. We omit the
details, l-]

Remark 4.2. In the applications, the fact that h/2u and (1 + h)-I/2h’u belong to
Llc([0, T), L2) will follow from the obvious assumptions on Uo through Proposition
4.1. We have kept these properties as assumptions in Proposition 4.4 to avoid additional
assumptions on h that would be irrelevant for the main estimate (4.24).

We now come back to the analysis of condition (4.6). We first give an elementary
treatment thereof that is inspired by the estimates of 3 and makes it possible to
exhibit a different uniqueness class.

PROPOSITION 4.5. Let V satisfy (3.4) for some p >- 1 and all p [-1, 1]. Let T> O,
and let Uo H be such that (1 /X+)13/2Uo L and (1 +x+)V/Duo LE forsome fl, y>-O
satisfying

(4.27) (p + 1)(fl + y) => 1.

(1) Let u be a solution of (1.1) with initial data u(O)= Uo, satisfying (4.5) and in
addition

(4.28) (1 + x+) v/Ou Lc([0, T), L2).

Then u also satisfies

(4.29) x+Du Lo([0, T), L)

andfor all [0, T), x+Du is estimated in L6([0, t], L) in terms oft, of 11(1 + x+)/
and of the norm of (1 + x+) V/2Du in L([0, t], L).
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(2) In addition let V" be AC with V"(O)=0 and V" locally bounded. Then (1.1)
with initial data u(O)= Uo has at most one solution satisfying (4.5) and (4.28). Any such
solution satisfies (4.29).

Proof. Part 1. Let u be a solution of (1.1) with u(0)= Uo, satisfying (4.5) and
(4.28). Du satisfies

(4.30)
Du(t)= U(t)Duo+ dr U(t-r)D(V"(u)Du)(r)

U(t)Duo/J(t).

We estimate the free term by (2.14) as

(4.31) U(. )Duo; L6(R+, t)ll-< CIIOuoll=.
Using the fact that X+=< ho=< C and the estimate (2.35) we obtain for X/J

Ilx+/; t([0, t], t(R))ll <- c(t)tl/4[[(1 + x+)1/4V"(Ig)Du; t([0, t], t)ll
By (3.4) for pl--< 1, the last norm is estimated as

M(Ilu; t([0, t], t)ll)ll(1 / x/)l/alulPDu; t([0, t],

Next we estimate for each

I[(1 + x+)a/4lulpDull, II(1 + x+)/Zull2[[(1-4- x+) /=Dull=ll(1
with (p- 1)e =1/2-/3- y. For e =<0, the last norm is estimated by (211ull211Dul[=) /2. For
e > O, we obtain by derivation and integration

[l(1 + x+)u211 -<- c(ll(1 + x+)/ull+ I1( +
provided e- 1 <-/3 and e =< (/3 + y)/2. The latter condition is identical to (4.27) while
the former reduces to

(p+ 1)(/3 + y) + (p- 1)(/ y+2) > 1

and follows from (4.27) provided y =< 2, a condition that we can impose without loss
of generality. Collecting the previous estimates, we obtain

]IX+J; L([0, t], Z)ll
<- C(t)tl/4M(llu; L([0, t], L)ll)

(4.32)
{11(1 + x+)’/:u; L([O, t], L2)IIPIi(1 + x+)V/2Du; Z([O, t], Z:)ll

+ II(1 + x+)O/zu; L([O, t], L=)[[
x I1(1 + x+)/=Ou; L([0, t3,

The last two norms in (4.32) are controlled, respectively, by Proposition 4.1, pa 2
applied with h ho,, and by (4.28).

Pan 1 then follows from (4.31) and (4.32).
Part 2. Pa 2 follows immediately from pa 1 and Proposition 4.2.
Proposition 4.5 enables us to cover the case of the ordinary KdV equation

corresponding to p 1. In that case, (4.27) reduces to + y . On the other hand, it
does not yield uniqueness under the assumption that Uo H only, even for higher
values of p. We now turn to a more elaborate method for ensuring (4.6), which will
remedy that defect. The general result stated in Proposition 4.6 below contains as a
special case a result obtained previously by Tsutsumi [22], according to which unique-
ness holds for H data provided p> in (3.4). Since that result has special interest
and since its proof is simpler than that of the more general one, we state it separately.



UNIQUENESS OF SOLUTIONS 1421

PROPOSITION 4.6. Let V" be AC with V"(O)= 0 and V’" locally bounded, and let V
satisfy (3.4) for some p>-_ 1 and all p 6 [-1, 1]. Let T>0 and let Uo H1. Then"

(1) Let p > . Let u be a solution of (1.1) with initial data u(0)= Uo, satisfying
(4.12). Then u also satisfies
(4.33) Du Lo([0, T), L)

and for all [0, T), Du is estimated in L6([0, t], L) in terms of t, of the norms of u
in L([0, t], H1) and of DEu in/(L2([0, t], L2)).

(2) Letp > . Then (1.1) with initial data u (0) Uo has at most one solution satisfying
(4.12). Any such solution satisfies (4.33).

In addition let Uo satisfy (1 + x+)mEuo L2 and (1 + x+) V/EDuo L2 for some fl,
y >- 0 satisfying

(4.34) (3-p)+/3 +(p- 1)(2+3 min (/3, y))> 1.

The/’/"

(3) Let u be a solution of (1.1) with initial data u (0) Uo, satisfying (4.12) and
(4.28). Then u also satisfies (4.29), and for all t[0, T),x+Du is estimated in
L6([0, t], L) in terms of t, of I1(1 +x+)’/=uoll and of the norms of (1 +x+)V/EDu in
L([0, t], L2) and of D2u in/(L2([0, t], L2)).

(4) Equation (1.1) with initial data u(O)= Uo has at most one solution satisfying
(4.12) and (4.28). Any such solution satisfies (4.29).

Proof Part 1. Let u be a solution of (1.1) with u(0)= Uo satisfying (4.12). By
Proposition 4.1, part 3, u /(L([0, T), L2)). We estimate Du by using (4.30) and
estimating the free term by (4.31). We then split J as follows:

(4.35) J(t)=J(t)+J2(t)= drU(t-’){V"’(u)(Du)2+ V"(u)D2u}(r)

where J and J2 are the contributions of the terms in the last bracket. We estimate J
by the use of (2.9) as

[IJ,; L([O, t], L)l[ <= ct=/ ll V"(u)(Du)2; L([O, t], L’)I
(4.36)

<= Ct2/M,(llu; L([0, t], L)ll)llPu; L([0, t], Lz)II
where M(p)=suplo,l=o V’"(p’). The last member of (4.36) is estimated in terms of
the norm of u in L*([0, t], H). We now turn to Jz. Using the estimate (2.8), we can
estimate J2 as follows"

IJ2(t,x)l d,]t-,1-1/3 dyA(x-y)(V"(u)D2u)(r,y)

(4.37) +C d, lt-,I -’/ dy(l+y-x)-l/*(V"(u)D2u)(r,y)
x

=;(,x)+;(t,x)
where A is a bounded function with exponential decrease. Using the H/51der inequality
in spaces l’(L’(., L’)), we estimate J as

(4.38)
[IJ; L([0, t], L)l <= Ct’/6l]A;/l(L2)]] V"(u); L([0, t], L)ll

x IID2u;/(L2([O, t], LZ))ll.
The norm of V"(u) is estimated in terms of that of u in the same space, and therefore
of the norm of u in L([0, t], H1). The last norm in (4.38) is finite by Proposition 4.3,
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part 1. This takes care of J. We now turn to the (more delicate) estimate of J-. The
function [tl-1/4(1 /lx]) -1/4 belongs to lr(Lq(I, L)) for any bounded interval I and
q < 4 < r. Using that fact together with 1/q + 1/r 1/2, r > 4, by the H61der inequality
we obtain

(4.39)
IIJ; L([0, t], L)II

-< Ct/a-/rll V"(u)D2u; /(L’([0, t], L))II
-< Ct/4-/rll V"(u); l’(Zr([O, t3, t))ll llD2u; l(Z2([0, t3, Z))ll.

The last norm is finite by Proposition 4.3, part 1, while the norm of V" is estimated by

(4.40) I1" II--< M(Ilu; t([0, t], t)ll)ll lull;/(t([0, t], t=))ll
by the use of (3.4) for I,1_-< 1. Now by Proposition 4.1, part 3, u l"(L( ., L2)) for
all m, 2 -< m -<. Furthermore, it follows from the fact that u L( H1) that u
lS(LS(.,H1)) for all s, 2-< s-<, with

(4.41) Ilu;/s(t([0, t], n))ll _-< t/llu; t([0, t], n)ll.
We use Lemma 3.3, the H61der inequality in time and in the discrete I’ variable and
the previous remarks to estimate the last norm in (4.40) as

lull; l(Z’([O, t],
(4.42) -< Cllu; lm(L([O, t], L=))II<’+)/=Ilu IS(L([O, t], H))ll<’-)/t/’-<E-)/<s)

-< CIlu; 12(L([0, t], L2))II(p+I)/2IIu; L([0, t], H)II(P-)/2t/r

provided we can choose m => 2, s => 2 such that

(4.43)
p 1 2

(4.44)
p- l+p+ 1 2

s m f

It is convenient to choose m and s by imposing the additional condition

p+l p-1
m s

so that (p+ 1)/m =- I/r, (p- 1)/s =1/2-1/r. In that case, conditions rn ->2, s =>2 both
become equivalent to p-> 2/, which can be ensured with r > 4 provided p > while
condition (4.43) reduces to r-< 6 that can be imposed separately. The required estimate
of J- now follows from (4.39), (4.40), and (4.42), from Proposition 4.1, part 3 and
Proposition 4.3, part 1. Part 1 of this proposition follows from that estimate and from
(4.31), (4.36), and (4.38).

Part 2. Part 2 follows immediately from part 1 and from Proposition 4.2.
Part 3. Because of part 1, we can assume that p -<3 without loss of generality.

We again estimate x/Du by using (4.30), and estimate the free term J and J as in
the proof of part 1. To estimate X+J-, we start from (4.37), decompose the contribution
of the y integral as the sum of the contributions of unit intervals, and apply Lemma
3.3 in each interval, thereby obtaining for each k-> 0

(4.45) [[XkJ(t)ll-<M d’lt-zl-1/4 y" (l/j-k)-l/4llxjD2u(’)ll2
j_k

where M depends on Ilu; L([0, t], L)II according to (4.40). We now factorize and
estimate the integrand in (4.45) by using the fact that (1 +j-k)<= 1 +j since 0-< k-<j,
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and we continue (4.45):

"<-M dz Z
j>-k

(4.46)
{It- ’[-/4(11X(1 + x)/2ull2 + IIx(1 + x) /=Oull=)}-/

((1 +j-k)-"/=llx(1 + x)*/=ull-}
with 6 min (/3, 3’) and

(4.47) 2/x (3 -p)fl + 3(p 1)t + 1.

We estimate the last member of (4.46) by using the H61der inequality in time and in
the discrete variablej, with the four successive brackets taken in l(L2),/2(L2) (= L2(12)),
/2(L2), and/2(L), respectively, thereby continuing (4.46)"

<- MIIx+D2u;/(t2([0, t], L2))llt/4llx+(1 + x)t/2u; L([0, t], t2)ll -p)/2

x (llx+(1 + x)/=u; L([O, t], t))ll
(4.48) + IIx+(1 + x)V/2Du; L([0, t], L )II)

x X (1 +j-/)-"llx(1 +x)/2u; e([0, t], L2)II 2p-1)
jk

The last factor in (4.48) is then estimated by

(4.49) IIx/(a +x)/2u;/2(L([0, t],

either in an obvious way if p => 2 since/z is positive, or by the H61der inequality in
the discrete variable provided

/z+p-l> 1,

which coincides with (4.34). Now the norms appearing in (4.48), except for the last
one, are controlled by Proposition 4.3, part 1, by Proposition 4.1, part 2 applied with
h hot and by (4.28), while the norm in (4.49) is controlled in terms of the previous
one by a straightforward extension of Proposition 4.1, part 3. The required estimate
of X+J- now follows from (4.45), (4.46), (4.48), and (4.49). Part (3) of this proposition
follows from that estimate and from (4.31), (4.36), and (4.38).

Part 4. Part 4 follows immediately from part 3 and Proposition 4.2. [-!

Remark 4.3. All the solutions of (1.1) considered in Proposition 4.5 and in parts
(3) and (4) of Proposition 4.6 satisfy automatically the condition (l+x+)/2u
Llc([0, T), L2) by Proposition 4.1, part 2. Furthermore, it follows from the proofs of
Propositions 4.5 and 4.6 that (4.29) and (4.33) can be supplemented with the statements
that

(4.50) x+Du-x+ U(" )Duo L,c([O, T), L),
(4.51) Du U( Duo L,([0, T), L)
with the same estimates as those given in connection with (4.29), (4.33).

Using Proposition 4.4, we can obtain sufficient conditions for the various norms
appearing in the uniqueness classes, namely, the norms associated with (4.6), (4.12),
and (4.28) to be a priori estimated in terms of the initial data, and we can exhibit a
new uniqueness class.

PROPOSITION 4.7. Let Vsatisfy the condition (4.22) and the condition (3.4) for some
p, 1-<p<4, and for all p6[-1, 1]. Let T>0, and let uoGH satisfy (l+x+)/2uoGL2

and (1 +x+)’/ZOuo L2 for some , y>=O satisfying fl>- v% where v=(4-p)/(4+p),
and y<=/3 +2.
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(1) Let u be a solution of (1.1) with initial data u(O)= Uo, satisfying (4.12) and in
2addition (4.15) ifp<2. Then u satisfies DEul (Loc([0, T), L2)) and (4.28), and for

all [0, T), u is estimated in L([0, t], H1), DEu is estimated in/(L2([0, t], L2)) and
(1 +x+)V/2Du is estimated in L([0, t], L2) in terms oft of I1(1 and of

(2) In addition let V" be AC with V"(O)=0 and V’" locally bounded, and let p,
satisfy either (4.27) or (4.34). Then the equation (1.1) with initial data u (0) Uo has

at most one solution satisfying (4.12) and in addition (4.15) ifp < 2. Any such solution

satisfies (4.28) and (4.29).
Proof. Part 1. Part I follows from Proposition 4.4. Assumption (3.4) implies (4.23)

with the same p by integration. The statements and estimates on u in L( ., H1) and
Du in l(L( L2)) are a repetition of parts 1 and 2 of Proposition 4.4. The statements
and estimates on (1 + x+)V/EDu in L( L) follow from part 3 of Proposition 4.4
applied with h-h for some a > 0. The additional assumptions required on h’/Eu
and (1 + h)l/h’u follow from Proposition 4.1, part 2, applied with h, for some a >0,
under the conditions/3 _-> uy and 3/_-</3 + 2. Finally, the assumption hV+(uo) L follows
from Lemma 3.2 applied with W V.

Part 2. Part 2 follows from part 1 and from Proposition 4.5, part 2 and Proposition
4.6, parts 2 and 4.

Proposition 4.7 indicates that under the additional assumptions (4.23),/3 -> uy and
y =>/3 + 2, the uniqueness classes defined in Proposition 4.5, part 2 and Proposition
4.6, parts 2 and 4 are actually suitable for existence and uniqueness provided only
(1 q-X+)/2uoL2 and (1 +x+)v/2OuoL2, with the appropriate assumptions on V,/3,
and 3’ made in those propositions. That need not be the case, however, for the
uniqueness class defined in Proposition 4.7 for p < 2, since the condition (4.15) is not
preserved when taking weak-star limits (cf. Remark 3.8).

We conclude this section with some comments on the assumptions of Propositions
4.5-4.7. In view of parts 1 and 2 of Proposition 4.6, parts (3) and (4) of that proposition
and to a large extent Proposition 4.5 are interesting only for I _-< p _-< , and, in particular,
for the ordinary KdV equation corresponding to p 1. In that case, the interaction
V"(u) does not decrease sufficiently fast as x tends to +o for H data, and an additional
decrease must be assumed on the data, either on u or on Du. Which of Propositions
4.5 and 4.6 is better depends on the values of/3 and 3’. For 3" 0, condition (4.34) is
always weaker than (4.27), except in the limiting case p= 1,/3 =1/2, which is allowed
by (4.27) but not by (4.34). On the other hand, for low values of p and fl, (4.27) yields
better results through a better use of 3’. For instance, for p 1, (4.27) together with
/3 >_-u3’ allows for/3 =1, 3’ 6, which is not covered by (4.34). This may be due in
part to the fact that in Proposition 4.6, parts 3 and 4, we have not used the property
X+(1 + x+)<v-1)/ED2u Loc([0, T), L2), which follows from Proposition 4.4, part 3, but
we will not elaborate on that point.
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at the Laboratoire de Physique Th6orique et Hautes Energies at Orsay.
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ON A KIND OF PREDATOR-PREY SYSTEM*
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Abstract. In this paper a kind of predator-prey system given in [SIAM J. Appl. Math., 35 (1978),
pp. 617-625] is considered. Utilizing the theory of ordinary differential equations, two theorems for a general
predator-prey system are proved, completing the investigation of the predator-prey system.

Key words, predator-prey system, limit cycle, Poincar6-Bendixon theorem
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A predator-prey system is a simple and typical mathematical model of the ecologi-
cal system. Recently, many ecologists and mathematicians have been paying attention
to establishing many mathematical models for the predator-prey system, have been
investigating these mathematical models, and have been interpreting these ecological
systems from a scientific viewpoint [2], [5], [7], [8]. Unfortunately, it is not easy to
investigate the predator-prey system completely. In this paper we give two theorems
on the existence of unique periodic solutions and the nonexistence of periodic solutions
for a kind of predator-prey system. Applying these two theorems, we complete the
investigation of the predator-prey system, that has been done in [3], in the global
parameter space.

The mathematical model of the predator-prey system given in [3] is

Y= yX(1-X/K)- YX"/(a+X"),
(1) = Y(ttX/(a+X)-D), n= 1,2

where X and Y are functions of t, dX/dt, " dY/dt, and y, a, it, K, and D are
positive parameters.

We consider a general form of (1)"

(2) q(X) g( Y)d/(X),

where

(H1)

(H2)

(H3)

= h( Y)(tt(X)- D)

((X) cl(0, +(30), ((0)---0,

if(X) C1(0, +oo), (0)=0 and ’(X)> 0;

h(Y) C(0, +oo), h(0) 0 and h’(Y) > 0,

g(Y) C(0, +oo), g(0) 0 and g’(Y) > 0;

tt and D are positive parameters.

Let F(X)= o(X)/J(X). In the domain

II={(X, Y)[X>0, Y>0},

(2) is equivalent to

(3)
(X)(F(X) g(Y)) G(X, Y),

,= h( Y)(ttfJ(X)- D) H(X, Y).

* Received by the editors November 11, 1987" accepted for publication (in revised form) June 9, 1988.
f Institute of Mathematical Sciences, Chengdu Branch, Academia Sinica, Chengdu, People’s Republic

of China.
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According to the ecological meaning, we investigate (1)-(3) in the domain f only..
Since O’(X) > 0 as X > 0, the equation/zO(X) D 0 has at most one positive solution
A; hence (2) or (3) has at most one singular point P(A,g-I(F(A))) in the domain f.
Theorem 1 is on the existence of a unique periodic solution for (2) or (3).

THEOREM 1. Let P(A, g-I(F(A))) be a unique singular point of (3) in the domain
I1, let conditions (H1)-(H3) be satisfied, let F’(A # 0, and let F’(X)O(X)/(tzO(X)- D)
be nonincreasing in the intervals (0, A) and (A, +oo). Then (3) has at most one stable
limit cycle in the domain f.

Proof. Define a function

V(X, Y)
tz() D

,()
Then

: g(n)-F(A) an.
-,)) h(n)

dV) (F(X)- F(A))(/z(X)- D)(4)
(3)

where (dV/dt)o) denotes the total derivative of the function V(X, Y) along a path of
(3) corresponding to a solution (X(t), Y(t)). Since F’(X)O(X)/(I(X)-D) is non-
increasing in the intervals (0, A) and (A, +oo) and F’(A)#0, then F’(A)>0. On
the contrary, assume F’(A)<0; then limx_.a+oF’(X)@(X)/(tz@(X)-D)=-oo.
Because F’(X)@(X)/(tz@(X)-D) is nonincreasing in the interval (X,+oo),
F’(X)@(X)/(Izk(X)-D) <-oo as X > A, a contradiction. Then there exists a neigh-
borhood of A, denoted by U, such that

(dV) =(F(X)-F(A))(tz(X)-D)>O,(5)
)

as X e U\{h}. P(h,g-I(F(h))) is an unstable singular point of (3). If (3) has limit
cycles in the domain I, one of them is closest to the singular point P, which is inside
stable and is denoted by F.

Let F be any closed orbit of (3); then

(G, H) r d/’(X)(F(X)-g(Y)) atdt

+I" b(X)F’(X) dt +r g’( Y)(Id/(X)- D)) dt.

Since

r
@’(X)(F(X) g( Y) dt r d/’(X)/ d/(X) dX=0,

g’( r)(Izd/(X)- D) dt= r (g’( Y)/g( g)) dY=O,

then

(6) diV (G, H) dt r b(X)F’(X) dt.

The X-coordinates of leftmost point M and rightmost point N at the orbit F are
denoted by X4 min(x,Y)r, X, Xv max(x,Y)r, X, respectively (see Fig. 1). Define

f(X)=F’(X)-
F’(Xu)(X)(tz(X)- D)

(I.(XM D)k(X)
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FIG. FIG. 2

f(Xm)=0, f(X)$(X)/(la,$(X)-D) is nonincreasing in the intervals (0, h) and
(, +oo), the same as for F’(X)q,(X)/(I(X)- D), thereforef(X) < 0 as X (0, X)
and f(X) > 0 as X (XM, h). For any closed orbit F of (3) we have

(7) rdiv (G, H) dt =r d/(X)fl(X) dt

where fl(A) F’(A) > 0. Iffl(X) is not less than zero in the interval (A, Xv) also, then

div (G, H) dt>O.

On the contrary, the closed orbit F is inside stable. Hence there must exist an
XA, A<XA<XN, such that fl(X)>0 as X(XM, XA), fl(X)0 as X
(0, x,) U (x, +oo).

There exists another limit cycle that is outside and closest to the limit cycle F,
denoted by r2. The vertical line through the point M intersects the orbit r2 at the
point M’ and M" (see Fig. 1). The horizontal line X Xa intersects the orbit F2 at
the point A’ and B’. The horizontal line through the point A intersects the orbit r2 at
the point A"; the horizontal line through the point B intersects the orbit [’2 at the point
B" (see Fig. 1). We have

(8) r,(X)f,(X)dt=(J
(9) r: @(X)f(X) dt= (I+ j

...g) e, X f X dt,

Let Y= Y(X) and Y- Y2(X) denote the functions of curves AM and A’M’, respec-
tively; then

X)f(X) at- I’x-" @(x)f(x) at

(lO) _{:- fl(x) dx

, F(X) g( Y,(X))
’ f,(x)
F(X)- g( 2(X))
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f(X)(g(g:(x))- g(gl(x)))
(F(X) g( YI(X)))(F(X) g( YE(X)))

Similarly, we can prove

(10’) @(X)f(X) dt- I"-d/(X)f(X) at < o.

then

(14)

Since

(13)

(12)
@(X)f(X) at- f’fix d/(X)fl(X) at

Y" (X2( Y))fl(X2( Y)) dY I g" (X,( Y))f(X,( Y)) dY
ya h( Y)(/x@(X2( YI)- D) ys h( Y)(/x@(XI( Y))- D)

< 0.

Combining (8)-(12), we have

div G, H) dt r div G, H) dt < O.

div (G, H) dt<=O,

(16)
where

f
(15) (p div G, H) dt < O.

dF

If F is a stable limit cycle, then F and 1-’2 are both stable limit cycles, a contradiction.
Now assume F is a semistable limit cycle. Define

(/xg(:) D) d:H(X)=
@()

asX>O

and consider a new equation:

[ g/(X)((X) g(Y)), "= h(Y)(tzg(X) D)

P(X) { F(X) as 0 < X < X,
F(X)-aH(X) ash <X, 0-<a<< 1.

As a varies, (16) is a rotated vector field and it is the equation (3) when a 0. According
to the theory of the rotated vector field 1], as 0 < a << 1 the semistable limit cycle F1

Since f(X) > 0 as X (X, Xa), f(X) < 0 as X (0, X) U (XA, +o0), we have

I I v’ p(X)f’(X)dy
(11)

,--’,,
@(X)f(X) dt

Y,,, h(Y)(d/(X) D)
< O,

f,_., Ix:" f’(X) dx
(11’) ,@(X)fl(X) dt=

, F(X)_g(y)<O,
(11") _1-.,,’;., @(X)f(X) dt <0

where (X, Y) in every integral are the coordinates of the points at corresponding
curves; YM, and YM,, are Y-coordinates of the points M’ and M", respectively; and
Xa, and Xa,, are X-coordinates of the points B’ and B". Let X X(Y) and X X2(Y)
denote the functions of the curves ff" and B"A’, respectively; then



1430 DING SUNHONG

is broken down to two limit cycles F and F’, F is on the inside of F’, F is a stable
limit cycle, and F’ is an unstable limit cycle. From (13) we have

r div G, H) dt r div G, H) dt < O,

a contradiction. After the discussion above we conclude that (3) has at most one stable
limit cycle in the domain 12. The proof is complete.

Remark 1. If (A, g-(F(A))) is an unstable singular point in the domain 12, i.e.,
equation (X)-D- 0 has a positive solution A, K is the smallest positive solution
of the equation o(X) 0, K> A and o(X) > 0 as X (0, K), then (3) has at least one
limit cycle in the domain 12. The point K (K, 0) is a saddle-type singular point in the
domain 1)- {(X, Y)]X _-> 0, Y_-> 0}. If the orbit of (3) from the saddle point in the
domain 1) does not approach infinity, there exists the highest point M at this orbit
(see Fig. 2). The horizontal line from the point M intersects the X-axis at the point
N. Then if the closed curve surrounds a Poinear6-Bendixon region, by the
Poincar6-Bendixon theorem, equation (3) has at least one stable limit cycle in the
domain 12. Adding the conditions K > A and 0(X)>0 as X (0, K) in Theorem 1,
we have that (3) has exactly one stable limit cycle in the domain ft.

Remark 2. If F’(X)(X)/(I(X)-D) is nonincreasing in the intervals (0, A)
and (A, K), K is mentioned in Remark 1, and K > A, the conclusion of Theorem 1
also holds.

THEOREM 2. If all the positive solutions X, Y of the system of equations

(17) H(X) H(Y), F(X) F(Y)

satisfy X Y, then equation (3) does not have a periodic solution in the domain .
Proof Since g(0) 0 and ’(X) > 0, then g(X) > 0 as X > 0. Assume A is the

unique positive solution of the equation/g(X)- D 0 in the interval (0, +). H(X)
is monotone decreasing in the interval (0, A) and monotone increasing in the interval
(A, +oo). H(X) has inverse functions in the intervals (0, A) and (A, +oo), denoted by
X2(H) and X(H), respectively. Suppose (3) has a periodic solution, i.e., (3) has a
closed orbit surrounding the singular point P, denoted by F. Let the equations of the
curve F be

X=F(Y) ash

Y I2(Y) as 0 < X A.

There exist Ymin and Ymax, a Y-coordinate of the lowest point and a Y-coordinate of
the highest point at the orbit F, respectively, and from (3) there hold

(18)

(18’)

dH(F,(Y)) F(X,(H(F,(Y))))-g(Y)
dY h(Y)

dH(FE(Y)) F(X2(H(FE(Y))))-g(Y)
dY h(Y)

where Ymin Y-< Ymax From (18) and (18’), the curves F(Y) and F2(Y) are the
solutions of the boundary value problems

dH F(X(H)) g(Y)
I(Ymin) =/(Ymax) 0(19) dr- h(Y)
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and

dH F(XE(H))- g( Y) /(Ymin) =/(Ymax) 0,(19’) dY- h(Y)

respectively. We will prove that F(XI(H)) F(X2(H)) as H>0. Without loss of
generality, assume F(X(H)) < F(XE(H)) as H > 0; then

(20)
F(XI(H))-g(Y) F(XE(H))-g(Y)

< as H>O.
h(Y) h(Y)

If (19) and (19’) both have solutions denoted by H(Y) and HE(Y), respectively, then
there exists 0 < e << 1, such that H(Y) < HE(Y) when Ymin Y< Ymin -I- e and HI(Y) >
HE(Y) when Ymax- e < Y< Ymax. Then there exists Yo, Ymin+ e Yo Ymax- e, such
that H(Yo) HE(Yo) and dH( Yo)/dY >- dH2( Yo)/dY, a contradiction. Now we prove
F(XI(H)) F(X2(H)) as H>0. If there is an Ho>0 such that F(XI(Ho))
F(XE(Ho)), and if we let Xo HI(Ho) and Yo X2(Ho), then F(Xo) F(Yo), H(Xo)
H(Yo) and Xo> Yo > 0, which contradicts the condition ofthe theorem. So F(XI(H))
F(XE(H)) as H > 0. The theorem is proved.

Now we use Theorems 1 and 2 to investigate the predator-prey system (1).
THEOREM 3. There are three types of global structure of the predator-prey system

(1), in which (1)
(a) Has an unique stable limit cycle in the domain f, and all the trajectories of (1)

in the domain f approach this limit cycle;
(b) Has a stable singular point P(A,g-(F(A))) in the domain f, and all the

trajectories of (1) in the domain f terminate at the singular point;
(c) Does not have any singular point in the domain I, and all trajectories of (1)

in the domain f terminate at the point K(K, 0).
The types of global structure of (1) under the various conditions of the parameters

y, a, I, K, and D are"

when n 1

Distribution
of parameters

Types of structure

/x>D>0

K > (p + D)a/(tx D)

type (a)

K <-(tz + D)a/(tx-D)

type (b)

D_>-/x>0

type (c)

when n 2

Distribution
of parameters

Types of structure

/z->2D>0

type (b)

2D>>D>0

K>K*

type (a)

K<__K *

type (b)

D>-/x>0

type (c)

where K*= 2D/aD/(tx D)/(2D- tz).
Before we prove Theorem 3 we give the following lemma.
LEMMA 4. If 0 < Y -<_ X, then

X-Y 1
-<-(In X-In Y).(21)

X+Y-2

The equality holds if and only ifX- Y.
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Proof. Assume S -> 1; then (S 1)2 0, and moreover (S + 1)2 4S. Therefore
2/(S + 1)2 _< 1 /2S, and integrating, we have

(22) fr 2dS Ilr l dS 2 1
< 1-<--ln r.

(S+1)2= 2 S’ r+1-2

Let r=X Y; from (22) we obtain (21). If X- Y, then the equality in (21) holds.
Inversely, if the equality in (22) holds, then r 1, i.e., X Y. The lemma is proved.

Proof of Theorem 3.
(i) When n= I, F(X)= y(1-X/K)(a/X). As K > a+2A =a(IX + D)/(IX-D),

0 < D < IX, then

Let

then

KF’(A y(-2A + K a) > 0.

A(X) F’(X)O(X)/(IXq(X)- D)

y(-2X2+(K-a)X)/K((IX-D)X-Da);

zv(x)
-2(IX D)X +4DaX K a)Da

K((IX-D)-Da)
The determinant of -2(IX-D)X2+4DaX-(K-a)Da is 8Da(ix-d)x

(2A + a K) < 0. Hence A’(X) < 0 as X (0, +c)\{A }, i.e., A(X) is nonincreasing in
the intervals (0, A) and (A, +o). Using Theorem 1 and Remark 1, when n-1 and
K > a + 2A, we have that (1) has exactly one stable limit cycle in the domain f. The
global structure in this case is of type (a).

(ii) When n 1, Ix > D > 0, K <_- a + 2A a(ix + D)/(Ix D), then

Now (17) is

H(X) (IX D)(X- A )- Da(ln X-In A).

(23)
(IX-D)(X- Y)-Da(ln X-In Y)=0,

(K-a)(X- Y)-(X2- Y2) 0.

If the system of equations has positive solutions X*, Y*, satisfying X* Y*, without
loss of generality, assume 0 < X*< Y*, then we have

(24)
(ix D)(X*- Y*)- Da(ln X*-ln Y*)=0,

(K-a)(X*- Y*)-(X*+ Y*)(X*- Y*) =0.

Since K <- (IX + D)a/(IX D), from (23) there is

Y* X* Da
(In Y* In X*)Y*+X* (IX-D)(K-a)

1
->- (ln Y* In X*),

2

a contradiction. Hence the system of equations (23) has no such positive solutions
X*, Y*, satisfying X*# Y*. Therefore by Theorem 2, (1) has no closed trajectory in
the domain 1. The singular point P(A, g-I(F(A))) in this case is stable, and all the
trajectories of (1) terminate at this singular point. The global structure of (1) in this
case is of type (b).
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(iii) When n 1, /z D, there is no singular point in the domain f for (1). In
the domain f, K(K, 0) is a stable node-type singular point and O(0, 0) is a saddle-type
singular point, and all the trajectories of (1) in the domain f terminate at the point
K(K, 0). The global structure in this case is of type (c).

(iv) When n 2, 0 < D </x < 2D, K > K* 2DA/(2D -/x),

F(X)= y(1-X/K)(a+X2)/X,

A2F’(A) y(-a+A2-3A3/K)

ya(la,-D)(2D-1-2DA/K)>O,

A(X) F’(X)d/(X)/(la,tp(X)- D)

y(-a+X2-3X3/K)/((la,-D)X2-Da),

a’(x)
2y((( D)a Da) + 3DaX/K -(la, D)X3/K)X

((tz D)X2- Da)2

Since

A2K (((/x D)a Da)+ 3DaX/K -(I. D)X3/K) < -Da(X A )2(X -I-- 2A < 0,

as X e (0, A U (A, +), then A’(X) < 0, as X (0, +o)\{A }, i.e., A(X) is nonincreasing
in the intervals (0, A) and (A, +). According to Theorem 1 and Remark 1, (1) has
exactly one stable limit cycle in the domain l as n 2 and K > K*. The global structure
of (1) in this case is of type (a).

(v) When n 2, 0 < D </z < 2D, K =< K*, the system (17) is

(25)

(1-X/K)(a+X2)/X=(1 Y/K)(a+ yZ)/ y,

(/.- D)(X- A)+ Da(---)=(tz-D)( Y-A)+ Da(--).
The system of equations has no such positive solutions X*, Y*, X* Y*. On the
contrary, if (25) has such solutions, we have

(26)
-a+X*Y*-(X*+ Y*)X*Y*/K=O,

X* Y* A 2,

X*+ Y*=(AE-a)K/A:z=(2D-Iz)K/D

(27) -<_ 2/ 2D

_D
-2A,

2A 2/X* Y* < (X* + Y*) <_- 2A,

a contradiction. By Theorem 2, (1) has no closed trajectory in the domain f, and all
the trajectories of (1) in the domain f terminate at the stable singular point
P(A, g-I(F(A))). The global structure of (1) in this case is of type (b).
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(vi) When n 2, /z _>-2D> 0, similar to case (v), we have systems of equations
(25) and (26). From (26), we have

0<X*+ Y*=(2D-tz)K/D<-O,
a contradiction, and the same result as in case (v) holds.

(vii) When n 2, 0->_/z > D, similar to case (iii), the same result holds.
Combining (i)-(vii) completes the proof.
We give Figs. 3-5 to illustrate the types ofthe structure (a), (b), and (c), respectively.
In Fig. 3, type (a), the system (1) finally approaches a closed orbit. The numbers

of predator and prey both vary periodically.
In Fig. 4, type (b), the system (1) finally terminates at a unique stable equilibrium,

i.e., terminates at the stable singular point P(A, g-l(F(h))). The numbers of predator
and prey limit to nonzero constants.

In Fig. 5, type (c), the birth rate of the predator is less than its death rate, i.e.,

’= Y(I.,Xn/(a +X) D) < O.

FIG. 3 FIG. 4

FIG. 5
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The number of predators is monotonic decreasing, and finally terminates at zero. The
number of prey will be constant, -X(1-X/K)-O as X- K. The predator-prey
system (1) will be exterminated.

Acknowledgment. We thank a referee who pointed out a recent paper of Kuang
and Kreedman who obtained similar results using a different method.
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THE UNIQUENESS AND STABILITY OF THE REST STATE FOR
STRONGLY COUPLED OSCILLATORS*
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Abstract. In this paper it is shown that an unstable steady state can be stabilized in the presence of
sufficient inhomogeneity and strong diffusion for a continuum and discrete model. These results are applied
to a pair of coupled oscillators and to an oscillatory reaction-diffusion system. It is also shown that for the
reaction-diffusion system, the trivial rest state is the unique phase-locked solution. Some additional numerical
results are presented that illustrate the nature of this bifurcation for a realistic model oscillator.

Key words, oscillation, stability, reaction-diffusion equations
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1. Introduction. This paper is a continuation of an analysis of an oscillatory
reaction-diffusion system in the presence of a gradient in natural frequencies. In our
previous article 1], we have shown the existence of a periodic (phase-locked) solution
and shown some of its behavior via numerical methods. In this paper, we are interested
in the stabilization and uniqueness of the rest state (which is unstable in the absence
of the diffusion). This phenomenon of restabilization has been explored numerically
for the Brusselator by Bar-Eli [2] and has been shown for a simple A-w model in [3].
In both of the latter cases, two discrete oscillators are coupled diffusively and it is
shown that if the two uncoupled frequencies are different enough, then there is a stable
equilibrium for coupling strengths in some intermediate range. More recently, a different
mechanism for the stabilization of a rest state (and thus, the death of the oscillation)
was discussed in [4] for identical oscillators coupled directly rather than diffusively.
In a sense, this is the inverse of Smale’s mechanism by which two coupled "dead"
cells could spontaneously begin to oscillate if allowed to interact through diffusion.
In the Smale article [5], though, the two cells are identical and the mechanism is more
akin to a Turing instability of the Hopf type (see, e.g., [6]).

In this paper, we are mainly interested in a continuum of cells with a linear
gradient of frequencies that are coupled by ordinary diffusion. We prove the stability
and uniqueness of the stationary trivial solution for sufficiently strong diffusion and a
large enough gradient in frequencies. We will also consider a general pair of coupled
oscillators in R" and show how the trivial state can be restabilized if the two are
different enough and the coupling is sufficiently strong. In 2, we describe the discrete
model and prove the stability result. Section 3 introduces the continuum model and
the stability theorem is stated and proved. Section 4 is devoted to a proof of the
uniqueness of the trivial solution as a phase-locked state.

2. Two coupled oscillators. Consider the following pair of coupled nonlinear
differential equations"

du
(2.1)

dt
F(u)+ fl(v-u),

dv
(2.2) d-- o’F( v) +(u v)
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where/3 is a scalar representing the strength of coupling and tr is a parameter that
distinguishes the rates of the two systems. In particular, when/3 0 we may suppose
that each system oscillates about some rest point which we may assume to be zero
with no loss in generality. Then the ratio of the frequencies of the two oscillators is
tr. We assume that in the absence of coupling, the equilibrium point u v =0 is
unstable. It will remain so for sufficiently small strengths of coupling. We now show
how the nature of this instability determines whether it is always unstable for all choices
of (/3, tr). In fact, we will show that if the eigenvalues of the linearized uncoupled
system are complex and the imaginary part is large enough, there are ranges of
parameters/3 and tr such that the coupled system is linearly stable.

Let A be the Jacobian of F evaluated at u 0. Consider the following linear system:

du
(2.3) --=Au+(v-u),

dt

dv
(2.4) rAv+ fl(u-v).

dt

LEMMA 2.1. If V, qb is an eigenvalue-eigenvector pairfor the matrix A, then y, )
is an eigenvalue-eigenvector pair for the matrix

M
BI rA-BI

where rk, srk , , satisfies
(2.5) ),2+ (2/- u(tr+ 1))3/+ v(o’u-fl(tr+ 1))=0

and (1, s) r is the eigenvector corresponding to "y for the 2 x 2 matrix

Proof. Substitute the vector : into the eigenvalue equation for M and use the fact
that Ab vb. [3

LEMMA 2.2. Let v A + ito denote an eigenvalue of A.
(i) If to 0 and A > O, then (0, O) is unstable as a solution to (2.3).
(ii) If A < O, then the corresponding pair of eigenvalues for the linear system

(2.3)-(2.4). have negative real parts.
Proof. We need only analyze the roots of (2.5).
(i) If v is real and positive, then for stability, we must have the coefficients of

(2.5) both positive, i.e.,

>-> tr+l.
r+l v

Since the first expression is less than 1 and the last is greater, this is an obvious
impossibility.

(ii) If" v is real and negative, then the coefficients of" (2.5) are both positive so
that all the roots have negative real parts.. Suppose that v is complex with a negative
real part. We will prove that it is impossible for eigenvalues of (2.5) to cross the
imaginary axis. When 0, the eigenvalues are v and o-v, both having negative real
parts. We follow these eigenvalues as increases. There are two ways in which
instability could occur; one of the two eigenvalues of (2.5) could become real and
cross through zero, or it could cross into the right halfplane through the imaginary
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axis. Since u is complex, the former is impossible; there will be a zero eigenvalue if
and only if/3 try/(tr + 1), which is complex. Thus, if instabilities are to occur, they
must be through the imaginary axis. We differentiate (2.5) with respect to/3 and find
that

d3’(2.6) ao
-I(-)- 2rl: +2[(+

I-v(r+ 1)+23,+2/31
Suppose that for some /3, y iK (i.e., Re (3’)=0). Then, the real part of dy/d is
strictly negative since Re (u) A < 0. Thus, it is impossible to cross the imaginary axis,
and the roots to (2.5) lie in the left-half complex plane. [1

Lemma 2.2 takes care of the case of real eigenvalues and complex eigenvalues
with negative real parts. The only remaining case is the most interesting from our point
of view: the case of complex eigenvalues with positive real parts. The proof of (ii)
depended crucially on the fact that Re (v)< 0; the proof cannot be pushed through
to show that eigenvalues remain on the right halfplane for all /3. In fact, it is clear
from (2.6) that for small fl, d3,/d < 0 so that the eigenvalues move toward the left.
But, as/3 gets larger, (2.6) may become positive again. As/3 +, one of the roots to
(2.5) tends to 1/2v(tr+ 1), which has a positive real part. Thus, it is not obvious that
eigenvalues can be pushed to the left halfplane.

LEMMA 2.3. Let q A/to, where v A + ito. If q is sufficiently small, then there are
regimes of fl and tr such that the roots of (2.5) have negative real parts.

Proof The solutions to (2.5) are

(2.7) y -fl + v(e + 1) d"42 -- 82V2

where e =(tr-1)/2. Choose *=letol.,/i-q2 and substitute into (2.7). Using the
fact that v2= to2(q2+2iq-1), we see that the maximal real part (corresponding to
the +) is approximately

(2.8) Re 3,=oo[-e.,/1-q2+q(e+l)+e,,U4].
For q sufficiently small and e > 0 (corresponding to o- > 1, which may be assumed with
no loss of generality), it is clear that Re 3’ < 0 as required. For fl near/3", the real part
of the eigenvalue stays negative.

Remark. It is clearly necessary that tr 1 to obtain restabilization for any value
of/3. Indeed, setting e =0 (tr= 1) in (2.8) yields an eigenvalue v that has a positive
real part. The asymmetry in the problem is absolutely necessary for the coupling to
change the signature of the eigenvalues. Furthermore, the greater the asymmetry, the
larger q may be. The largest allowable q is roughly 0.35; for q greater than this, (2.8)
is always positive for all e => 0. We also note that this is an intermediate value of
coupling strength,/3, neither very large, nor very small.

The following proposition follows from the previous lemmas.
PROPOSITION 2.1. Suppose that zero is an unstable equilibrium point for (2.3) or

(2.4) when fl =0. Assume the instability is due to a single pair of complex conjugate
eigenvalues A + ito. Then, if A/to is small enough, these are values of tr and fl for which
the origin is an asymptotically stable equilibrium point.

Remarks. The hypothesis on the signs and relative sizes of the eigenvalues is
satisfied, for example, after a Hopf bifurcation.

In [3], we study a pair of symmetrically coupled oscillators and show that if the
frequency difference between them is sufficiently large, then as the coupling increases,
the amplitude of the phase-locked solution decreases and eventually goes to zero in
a manner analogous to the continuum model considered in [1].
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O. 50 t. 50

FIG. 1. The difference between the maximum and minimum value of u(t) as a function of the strength of
diffusion for the Wilson-Cowan equations with o" 2.

Before continuing with the stability of the equilibrium for a continuous model,
we describe some numerical results for a coupled oscillator model of the form
(2.1)-(2.2). We consider a two-dimensional system, specifically the Wilson-Cowan
equations [7]"

(2.9)
du

-u +f(16.0u 20.0v 0.5),
dt

dv
(2.10) -v +f(18.0u 3.0)

dt

where f(u) .5(1 + tanh (u)). With these parameter values, the Wilson-Cowan
equations oscillate about an unstable equilibrium point, (u, v)= (0.110065, 0.115304).
The eigenvalues of the Jacobian are 0.58045+ 3.77018, so that q 0.15396. We have
chosen tr 2, so that the value/3*= 1.862. In Fig. 1, we have sketched the amplitude
of u(t) (i.e., the difference between the maximum and minimum values of u(t)) as a
function of the parameter/3 for/3 [0.5, 1.5]. In this regime, the two oscillators are
phase-locked in a 1" 1 ratio. The amplitude gradually decreases until at a critical value
of/3 1.3, the steady state is restabilized. This phenomenon is identical to that proved
in [3] for a special solvable oscillator model. We have applied these results to a variety
of other oscillator models and find similar behavior; if the difference in natural
frequencies is too great, then for certain strengths of coupling, the rest state is
restabilized as the amplitude of coupling decreases.

3. The continuum model. In [1], we have analyzed the phase-locked behavior of
a simple reaction-diffusion equation with a linear frequency gradient:

(3.1)
Ou 02

A g)u to( g, x.)v + d---u
at OX2’

av a2v
(3.2) A(g)v + to(R, x)u +d

at OX2’

(3.3)
aU

(o, t)
au ov av

Ox =xx (1, t)=-x(O t)=xx (1 t)=O
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where R u2 + v2, to(R, x) too-x+ q(1 R), and h (R) A(1 R). In absence of
diffusion, (3.1)-(3.2) admit stable periodic solutions with frequency too+ tx. In [1],
we have shown that for d large enough and q =0, there are periodic (phase-locked)
solutions to (3.1)-(3.3). We have also shown numerically that for fixed d
increases, the maximum amplitude decreases to zero. We also conjectured that for

large enough, the rest state stabilized. In the next section, we prove that for sufficiently
large t the solution u v 0 is the unique periodic solution to (3.1)-(3.3). In this
section, we prove that u(x, t)= v(x, t)=0 is a linearly stable solution to (3.1)-(3.3).

It is convenient to introduce the complex variable w(x, t)= u(x, t)+ iv(x, t). The
linear stability problem is then

(3.4) 0__w_
Ot

[A + i(too-X)]W+ d
OX2

(3.5) O____w (0, t)
Ow

Ox =x (1’ t) =0"

We seek solutions to (3.4)-(3.5) of the form w(x, t)=exp (-[+itoo]t)z(x). z(x)
satisfies the ordinary differential equation

(3.6) dz"+(A-ix)z=-z,

(3.7) z’(0) z’(1) 0.

Divide through by d and let c A/d, cr /d, h ,/d. Equation (3.6) becomes

(3.8) z"+(c- io’x)z -Az.

Finally, we let A a + i6, z r e i, 0’, s r’/r, so that (3.7), (3.8) become

(3.9) s’=O2-s2-(a+c),
(3.10) ’= trx 6 2sO,

(3.11) s(0) q,(0) 0,

(3.12) s(1) (1) 0.

The origin is stable if and only if solutions to (3.6)-(3.7) have solutions with Re () > 0,
for then w(x, t) decays exponentially in time. Since a Re ()/d, to prove the equili-
brium is stable we must show that (3.9)-(3.12) has a solution if and only if a > 0. It
is clear from (3.8) that when tr 0, (3.7)-(3.8) has a solution, z-= C, a constant, and
A =-c < 0, so that the origin is unstable. Thus, it is crucial that tr 0. We can assume
with no loss of generality that tr > 0; if tr < 0, then let x 1-x in (3.4)-(3.5) and let
too too + tr. We will prove the following theorem.

THEOREM 3.1. Let 0 <-- c <-- 1. There is atr* > 0 such that if (3.9)-(3.12) has a solution
for some cr > tr* then a > O.

Since the proof is somewhat technical in nature, we give a short outline of the
proof. Our goal is to show that if tr is large and (3.9)-(3.12) has a solution, then
must be positive. Thus, for the sake of contradiction, we assume that for every large
tr there is an a--a(tr)_<-0 for which (3.9)-(3.12) does indeed have a solution. The
first step in our analysis is to prove that any solution to (3.9)-(3.12) must satisfy
Is(x)] _-< tan (1) for all x (0, 1). Next, we determine that if (3.9)-(3.12) holds then 6,
a, and tr must lie in the parameter range a _->-c and tr_-> 6 > 0. We then define a
independent of a, c, and 6, and assume that a solution exists for some tr > tr*, a [-c, 0]
and 6 [0, tr]. We break the remaining analysis into two subcases, 0_-<6 tr/2 and



STABILITY OF STRONGLY COUPLED OSCILLATORS 1441

0./2 =< 8 =< 0.. For the first case, we consider the x-intervals 11 [-, -] and I [, ]. We
need to show that IS(Xo)[ tan (1) at some Xo I (.J I2 to arrive at a contradiction. The
key to this is to analyze (3.10) and obtain a lower bound estimate on the function
We first show that there is an M > 0 (independent of 0.) such that if I@1 >-- M at some
point in /1, then Iql-> M for all x I2. This lower bound on Iql is then used in (3.9)
to show that ]sl must exceed tan (1). The remainder of this subcase is therefore devoted
to proving that for all large values of 0., q] _-> M at some value in I1. The second case,
0./2-< 8 _-< 0. is handled in the same fashion. Here, we analyze the behavior of q on
J1 [-, 1/4] and J2 [1/4, ].

LEMMA 3.1. If (1)-(4) has a solution then Is[ <-_ tan (1) for all x [0, 1 ].
Proof. From (3.9) we have s’>--(s2+ 1) on [0, 1]. Thus, ds/(s2/ 1)>-_-dx and so

tan-1 (s(x)) _>- tan-1 (S(Xo))-(X-Xo) for Xo [0, 1) and Xo<-X <- 1. From this, we con-
clude that tan-1 (s(1))->tan-1 (S(Xo))- 1. If S(Xo)>tan (1) for some Xo [0, 1), then
s(1) > 0. This contradicts (3.12).

Proof of Theorem 3.1. Suppose that a solution of (3.9)-(3.12) exists for some
0. > 0, 8 , and a =< 0. If 0 < 0. < 8, then ’(0) < 0 and ’(1) < 0. There must be a first

(0, 1) such that @(:) 0 and @’() >- 0. However, from (3.10), ’(;) 0. 8 =< 0.-
a contradiction. Therefore, 8 <= 0.. If 8 < 0, then ’(0) > 0 and @’(1) > 0. At the first
positive zero : of we would have @’() -< 0. However, @’(:) 0.: 8 > 0, a contradic-
tion. Therefore, it must be the case that 0 =< 8 <-0..

Next, suppose that c <-c. Then, s’(0)> 0 and s’(1)> 0. At the next zero of s
we would have s(:)_->0 and s’(:)-< 0. However, from (3.9) s’()=tp2()-(a+c)>O,
a contradiction. Therefore, a => -c. We assume for the sake of contradiction that there
is an unbounded, increasing sequence {o}___o such that for each there is an a I-c, 0]
and 8 [0, o-] for which (3.9)-(3.12) has a solution. For notational simplicity, we omit
the subscripts.

Let L -= tan (1) and define M 2(L2 + 32L+ 1) 1/2 and

0.*=max{256" M+16" M" L’l12 M M. L}.
We assume that o- > 0.* and that there is an c I-c, 0], 8 [0, 0.] such that (3.9)-(3.12)
has a solution. There are two subcases to consider.

Case (i). 0_-< 8 _<- 0./2. Consider the intervals I [, 43-] and 12 [-], ]. Suppose
that q()<-M. If q _-<-M on all of I then q2__> ME, and hence s’_-> ME- L2-1 on
I1. Thus, s(x) >- (M2- L2-1)(x-)- L and it follows that s (-34) ->_ (M2- L2-1)/8- L>
L, a contradiction. Therefore, q()>-M at some [-, ]. If q(Y)=-M at some
first Y(x,] then q’(Y) _-< 0. However, q’(Y)>=0.(Y-1/2)+2sM>-2LM+0./8>O, a
contradiction. Therefore, q _->-M on all of I2. Next, suppose that q()> M. Then it
follows as above that q> M on all of I2. But then s’_-> M2-L2-1 on 12 and an
integration of this inequality leads to s(x) >- (M2- L2-1)(x-)- L. Hence, s() > L,
a contradiction. Therefore, q()< M. Suppose that q()= M at some first (
Then q’() > 0. It then follows as above that q > M for all x (, ). Again, from (3.9)
it follows that s’->_ME-L2-1 on (,-). Integrating, we obtain s(x)>=
(ME L2 1)(x 13-)-L. Therefore, s()>-(ME-L2 1)/16-L>L, a contradiction.
We conclude that $ < M for all x ( 13 i/t__)--= I3. On I3, > 0./4-2LM, so that $(x) >
(0./4-2LM)(x -) M. Thus, $() => (0./4-2LM)/16-M> M, a contradiction. We
have shown that if 0=< 8 =< 0-/2, there can be no solution to (3.9)-(3.12).

Case (ii). 0./2 =< 8 -< 0.. Consider the intervals, J1 [-,-] and J2 [1/4, -]. Suppose
that ,(:) < -M at some : [, 1/4]. If () M at some first (, -], then ,’() -> 0.
However, $’() o-(-1/2) + 2sM, so that $’() < -0./8 + 2LM < 0, a contradiction.
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Therefore, ,<-M on J2. Thus, s’>- M2-L2-1 on J2 and it follows that s(x) >-

-L+(M2- L2-1)(x-) on J2 with s(-)> L, a contradiction. Thus, it must be the case
that >-M on all of J1 =[,]. If (:)< M at some s[1/4,], then it follows as
above that < M on all of J1 - [, ]. That is, Il < M for _-< x _-< . However, it follows
from (3.10) that d/’<--tr/4+2LM for all xJ1, hence tk(x)<-(2LM-cr/4)/8+M<
-M, a contradiction. Therefore, it must be the case that > M for all x s J2. Thus,
s’>-ME-L2-1 and s>--L+(M2-LE-1)(x-1/4) on J2. But, then, u()_>
(M2- L2-1)/8-L> L, a contradiction. This eliminates the possibility of solutions to
(3.9)-(3.12) for or/2 -_< 6 =< or.

These two cases show that if tr is sufficiently large, there can be no solutions to
(3.9)-(3.12) with c_-< 1.

Remark. The theorem requires that c_-< 1. The reason for this is that we must
bound u(x) and this bound depends on tan (c). Thus, we could improve this bound
slightly, by requiring that c < r/2. As we noted in our previous paper 1], if the size
of the attraction to the limit cycle A is large compared to the diffusion d (i.e., c is
large), then this phenomenon will not occur. Instead, as the gradient in frequency
increases, the phase-locked periodic solutions to (3.1)-(3.3) will break up into complex
high-dimensional tori. In fact, we can obtain bounds on the largest allowable frequency
gradient cr as a function of the ratio d/A, before phase-locking is lost (in preparation).
Our results here and in the previous paper show that if the diffusivity is large,
phase-locking persists as cr increases until the amplitude of the solution goes to zero.
The rest state remains stable for all higher values of or.

The results of this theorem are essentially the continuum analogue of the results
in [4] for a pair of coupled A-to oscillators. This may lead us to generalize the stability
results of 2 to an analogous continuum model

O__u_ (1 + o’x)F(u)+ d(3.13)
0t 0x2

subject to the boundary conditions

(3.14)
Ou Ou

Ox
(1, t)=-’x (O, t)=O

where d and r are scalars. We have numerically solved (3.13)-(3.14) using the
Wilson-Cowan equations as described in 2. We find that as o- increases the amplitude
of the oscillation tends to zero and for a large enough value of or, the rest state appears
to become stable. If we linearize (3.13) about the equilibrium state and let A denote
the Jacobian of F at this equilibrium, we obtain

Ou
l + crx)Au +d(3.15)

Ot Ox2

along with the boundary conditions (3.14). As in 2, we let u and b be an eigenvalue-
eigenvector pair for the matrix A, i.e., Ab vb. We suppose that u(x, t)- qbz(x) eAt,
where z(x) is a complex scalar function of x, and A is a complex parameter. It is seen
that z satisfies

(3.16) hz (1 + crx)uz + dz",

(3.17) z’(0) z’(1) 0.

This is similar to the problem solved by Theorem 3.1. Based on this, we conjecture
that if Re (v)/Im (v) is sufficiently small (as was required in 2), then for d and
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large enough, the eigenvalues h of (3.16)-(3.17) have negative real parts. The proof
of this is not as simple as that of Theorem 3.1, and it is hoped that we can eventually
sharpen the statement and prove it.

For two-dimensional problems, we can intuitively understand what is going on
from a geometric point of view as follows. Think of the equal strength diffusion as
trying to pull points on each of the spatially distributed limit cycles together. For
strong frequency gradients, the points (if uncoupled) would not be close to each other
as time increases. Thus, nearby spatial points that are far away in phase will be pulled
toward each other by the strong diffusion. Since they are at distant phases, the "easiest"
way to pull them closer in state is through the equilibrium point about which they
oscillate. Thus, the limit cycles will be shrunken to a single point by the strong diffusive
forces (see Fig. 2).

4. Uniqueness of the trivial solution. We turn now to the question of uniqueness
of the zero rest state (u, v)= (0, O) as a solution to (3.1)-(3.3). We consider the case
q=O, the "no twist" situation for which the uncoupled limit cycle of (3.1)-(3.3) has
"radial isochrons" (see [3] for a discussion of this assumption and its consequences
for two coupled oscillators). We look for periodic solutions of (3.1)-(3.3) that are of
the form:

(4.1)

(4.2)

(u(x, t), v(x, t))=(r(x) cos (O(x, t)), r(x) sin (O(x, t))),

O(x, t) dp(s) ds + 12+ t.

We see that if a solution of this form exists, then it is t-periodic with period
27r/(fl+o’/2). As in 3, we introduce the new variable s(x)= r’(x)/r(x), so that in
these variables, (3.1)-(3.3) become:

(a) r’= rs,

(b) s’=a(r2-1)+b2-s2,
(4.3) (c) b’= a2r(x-1/2)-2sc/),

(d) s(0) b(0) 0, 0-<_ r(0) _-< 1,

(e) s(1) =0
where a2= lid. In [1], we have shown that for each r(0) e [0, 1] and a2<l, there was
a tr such that (4.3) has a solution. We will now show that for o- sufficiently large, the
only solution to (4.3) is r=0, corresponding to (u, v)= (0, 0).

FIG. 2. Two points that initially are close in phase are pulled apart by differences in frequency and the
resultant limit cycle is "pinched" together by strong diffusive forces.
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THEOREM 4.1. Let 0<a -< 1 and q=0. Then there is a tr* tr*(a)> 0 such that if
tr > r* then there is no value of r(O)>-0 for which (4.3) has a solution.

As the proof is again rather technical, we will sketch an outline. The first step is
to set L-a tan (a), 0< a < 1 and prove that if S(Xo)= L for some Xo (0, 1), then
s(1) 0. Thus, a solution to (4.3) must satisfy s(x)< L for all x (0, 1). We assume,
for the sake of contradiction, that a solution of the boundary value problem does
indeed exist, for some a (0, 1) and some r(0) [0, 1). To obtain a contradiction, we
need to analyze the equation for u. Since , appears in the equation, we must first
obtain lower bound estimates on q2 by analyzing (4.3)(c). Thus, the next step of the
proof is to prove that there are values 6 (0, 1/4) and C > 0 independent of tr such that
1/2 Co"2 for all x [6/2, 6]. With this estimate in hand we then turn to the s equation.
First we obtain a lower bound on s, namely, -tan (tr) <s< L for x [6/2, 6]. It then
follows that s2 <-_ Q on 6/2, 6 ], where Q max {L, tan (6)}. These estimates on s2

and 0: are then substituted into (4.3)(b), and we obtain s’>--(a+Q2)+Co" for
x [6/2, 6]. This last inequality is used to show that for large or, s must reach L at
some Xo [6/2, 6]. As shown earlier, this implies that s(1) 0, and we have the needed
contradiction.

Proof of Theorem 4.1. We first derive a criterion which guarantees that (4.3)(e)
cannot hold. From (4.3)(b) it is seen that

s’ _-> -(a + s).
Integrating this inequality leads to

1 1
--tan-1 (s(x)/a)>---tan- (S(Xo)/a)-(X-Xo) for all Xo.

Letting xo e (0, 1) and x 1, we find

1 1
--tan-1 (s(1)/a) _>--- tan-1 (S(Xo)/a)-I +Xo.

Thus, if the right-hand side is positive, i.e.,

1
--tan-1 (S(Xo)/a)> 1-Xo,

then the left-hand side is also positive and s(1)# 0. It suffices to prove that there is a
tr*>0 such that if tr>r*, there is an Xo(tr)e(0,1) and a S(Xo)>0 with
tan-1 (S(Xo)/a)= a, i.e.,

S(Xo) a tan (a)-- L.

If 0 < a < 7r/2, L is finite and positive; furthermore, L is independent of tr. We will
show that as tr increases, s rises to L at some Xoe (0, 1). For technical reasons, we
require that Xo lies in (0, 1/2).

Suppose that for some r(0)e [0, 1) and all large tr that s(x)< L for all x e (0, ).
We note that b(x)<0 for all xe (0,1/4]. For otherwise, since b(0)=0 and b’(0)=
-acr/2 < 0, there must be some first e (0,-14] for which th()-0 and b’() _>- 0. But,
from (4.3)(c) b’()) a-cr()-1/2) < 0, a contradiction. Thus if s(x)< L for all x (0, 1/4),
then from (4.3)(c),

ch’ < ao-(x-1/2)-2Ld.
Integrating this inequality leads to

a2r 1 1
t- + --=6(x)<- x

2L 2 2Lg(x)
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The function g(x) satisfies the following:

g(0) 0, g’(0) < 0, g"(0) > 0 for all x > 0.

Thus, g(x)<0 for x small and positive, but for x sufficiently large, g(x)>0, since
g">0. Let ;=ln(I+L)/2L denote the value of x at which g’ vanishes and let
6 =min {1/4, 5/2}. Note that 6 is independent of tr. Now consider the interval [0, 8].
g’(x) < g’(6) < 0 for all x [0, 8]. Let -M g’(6), so that g’(x) < -M for x [0, 8].
Thus, g(x)<-Mx and d(x)<-a2trMx/2L for x[0, 8]. In particular, over the
interval I--[8/2, 6], we have dp(x)<-a2trM6/4L. So,
(4.4) b2(x) -> tr2C, x I

where C a4MZ62/16L2 is independent of r.
We turn to the s equation. We have assumed that s <-L in L We compute a lower

bound on s. Since a_-< 1, s’_>--(1 +s2) from (4.3)(b) for all x=>0 as long as a solution
exists. Integrating this over [0, x), we find that s(x)>=-tan (x) for all x [0, 1/2]. This
implies that s(x) >- -tan (8) for x I and therefore

(4.5) -tan (8) -< s(x) <= L for x L

Let Q= max {L, tan (8)}. Then s2< Q2 in I and Q depends only on a. Equations
(4.3)(b), (4.4), and (4.5) imply that

s’ _-> -(a + Q2) + Cr2 for x L

We integrate this from 8/2 to 6 and obtain

s(x) >- s(6/2)+[ Co’-(a2 + Q)](x 6/2).
Since s(6/2)_>--tan (6), we find

s(6)>= -tan (3) + [Cr2- (a+ Q2)]6/2.
C and Q are independent of r, so there is a tr*= r*(a), independent of r(0) such
that for r> tr*, s(6)> L. This implies that S(Xo)= L for some Xoe (0, 6), contradicting
our assumption that s(x)< L for all x (0, 1). Thus, s(1)

Remarks. (1) We emphasize that this theorem and the previous theorem depend
on the fact that the diffusion d was sufficiently large. In fact, if d is too small, this
phenomenon does not happen; rather, desynchronized solutions appear. Thus, the loss
ofthe periodic solution to a stable equilibrium depends on several criteria: the frequency
gradient must be large, the diffusion must be sufficiently strong, and finally, the diffusion
must be close to scalar. The last condition seems to be needed through the heuristic
argument given at the end of 3 and Fig. 2. In another paper (in preparation) the case
of very weak diffusion along with O(1) frequency gradients is explored for the special
system (3.1)-(3.3) as well as for general reaction-diffusion equations.

(2) Numerical integration of (3.1)-(3.3) indicates that with strong diffusion, the
periodic solution shrinks to zero even in the presence of the twist term q. This term,
of course, has no effect on the stability of the rest state, so we believe the uniqueness
also holds for q 0.
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Abstract. The long-time evolution of a physical system may be dominated by a small number of modes.
An invariant manifold description of the asymptotic evolution, briefly discussed here in two simple examples,
can give a powerful and useful view of the physical system. The relationship between invariant manifolds
and centre manifolds is also discussed, as is the relationship between invariant manifolds and modal
numerical approximations. Many classical approximations in fluid mechanics can be viewed as approximating
the evolution on an approximate invariant manifold.
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1. Introduction. Centre manifold theory can provide a powerful asymptotic
description of the long-time evolution of a physical system. For some simple examples
see Carr [5] or Guckenheimer and Holmes [8]; for more sophisticated applications
see Roberts [15]-[18], Bernhoff [3], Arneodo, Coullet, and Spiegel [1], Arneodo and
Thoul [2], Coullet and Spiegel [7], and Mercer and Roberts [9]. In essence, centre
manifold theory describes the evolution of a system in terms of the evolution of a
relatively small number of dominant modes. These modes are those that have marginal
stability (the linear growth rates are essentially zero) and are therefore long-lived.
However, in some practical applications the requirement that the retained modes are
marginal is unduly restrictive. Here we investigate two simple dynamical systems and
derive a method to describe their long-time asymptotic behavior when the decay rates
of their dominant modes are not "essentially zero."

That this sort of analysis will be of relevance can be seen by considering some
examples; the theory of quasistationary probability distributions (see Parson and Pollett
[12] or Pollett and Roberts [13]) furnishes one. A system with a given number of states
and given probabilistic transition rates typically has an absorbing state, corresponding
to a zero eigenvalue, to which the system eventually evolves. However, it is sometimes
the case that a long-lived transient state (i.e., quasistationary), corresponding to a small
negative eigenvalue, is of vital importance. To be effective, the asymptotic description
of the system’s evolution must include both the absorbing state and the nonmarginal
quasistationary state. As another example, consider any infinite-dimensional system
with a continuous spectrum (see Bernhott [3] for an example in convection, or Roberts
[16] for a model system). Somewhere in such a continuous spectrum, centre manifold
theory requires a dividing line to be drawn between those modes whose linear growth
and decay rates are essentially zero and those modes whose decay rates are definitely
nonzero. Such a dividing line in a continuum is clearly more or less arbitrary and is
an uncomfortable thing to draw. Some rationale for including or excluding modes
corresponding to a continuous spectrum is needed. As a last example, Taylor [25]
showed that longitudinal dispersion in channels and rivers may be greatly enhanced
by the effects of shear in the current. However, the asymptotic equation he derived
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" Department of Applied Mathematics, University of Adelaide, G.P.O. Box 498, Adelaide, South
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appears to be of limited practical value, as it takes too long for the system to evolve
onto the centre manifold implicit in his asymptotic equations. If, instead of just one
dominant marginal mode, one or two additional nonmarginal modes are retained (see
Chikwendu and Ojiakor [6], Smith [24], or Roberts [21]), then the resultant asymptotic
description promises to be much more useful in its application.

The task of this paper is to describe the modifications, and their implications, of
the formal centre manifold procedure described by Coullet and Spiegel [7] and Roberts
15]-[ 18], when the dominant modes do not necessarily have an essentially zero growth

rate. The result is the description of an invariant manifold of the system (rather than
a centre manifold characterised by eigenvalues having precisely zero growth rate). This
is introduced in 2, where a simple dynamical system and its evolution are discussed.
The occurence of zero divisors in the resultant asymptotic formula has implications
for both the range of validity of this invariant manifold description, discussed in 3,
and for the typically divergent character of the centre manifold description of a
bifurcation problem, discussed in 4.

A general, formal procedure for deriving such descriptions is then introduced in
the context of a particular problem, that of finding a quasistationary probability
distribution. The central approximation, which involves only elementary algebraic
concepts, is discussed in 5. Then in 6 the method of Coullet and Spiegel [7],
appropriate when the system is subject to small nonlinearities or other perturbations,
is modified to give a description ofan invariant manifold (rather than a centre manifold).
It is this formal procedure that is expected to be of immense practical utility.

Furthermore, this invariant manifold viewpoint provides a rational basis for the
derivation of appropriate initial conditions for such low-dimensional descriptions of
the evolution ofthe dynamical system. This is developed in a subsequent paper (Roberts
[20]).

In 7, it is argued that truncated-modal numerical solutions of a set of equations
can be viewed as a particularly simple approximation of an invariant manifold. This
view then indicates how such numerical models may be improved without increasing
the number of retained modes. It also suggests how to economically solve stiff sets of
ordinary differential equations (see Roberts [19]).

Last, 8 discusses how the concept of an invariant manifold, as a state which
the system will ultimately approach, may be generalised. The concept is useful in
physical situations where the invariant manifold is not necessarily approached at
large times, but is in some sense central to the behaviour of the physical system. Some
applications of this are to the irrotational approximation and vortex dynamics, pole
solutions of solitons, quasigeostrophy, incompressibility, and the continuum theory of
monatomic gases.

2. A formal invariant manifold description. Here a formal procedure to calculate
an invariant manifold of a simple example system is given. The results are then used
to illustrate what appear to be general features of such an invariant manifold description.
Consider the nonlinear autonomous pair of different equations:

(2.1a) : Ax xy,

(2.1b) =-y+x2,
where (’) denotes d/dt and A is some parameter. This is a system that is often used
to illustrate the pitchfork bifurcation as it has fixed points at (0, 0) and (+x/, A). The
trajectories are illustrated in Fig. 1 of Roberts [14], and a centre manifold analysis,
based on A being small (i.e., essentially zero) is given in 3 of Roberts [15]. The
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problem we now address is" what is the long-time behaviour of (2.1) if we consider
to be small but not necessarily near zero?

Suppose IAI is significantly smaller than 1 but is not so small that Xx can be
considered a "nonlinear" term (see Carr [5]). Linearly, (2.1) has trajectories

(2.2) y alx1-1/;’ as Ix[ 0,

which, for small A, are quite "flat." Hence, to an error that decreases exponentially
with time (as e-’ since the other eigenvalue of the linearised system is -1) and to an
error of order Ix] -1/, we could describe the long-time evolution of the linearised
version of (2.1) as

(2.3) Ax on y 0.

This is just an elementary description of the stability of the fixed point at the origin.
To produce an improved asymptotic description of (2.1) we need to include the effects
of the nonlinearity. Suppose that y h(x; A) is an invariant manifold of (2.1) on which
the system evolves, according to : Ax-xh(x; A) by (2.1a). Then

= h’= h’(Ax-xh) and ))=-h+x2,
where a prime sign denotes O/Ox keeping A constant, and so the manifold y h(x; A)
must satisfy the differential equation

(2.4) h + Axh’= x2 + xhh’.

By virtue of the linear result (2.3) we recognise that we should find a manifold
y h(x; A) that is "fiat" near the origin; that is, (2.4) should be solved such that

(2.5) h O(x2) as Ixl-, 0.

Typically, equations such as (2.4) are solved via an asymptotic expansion (for an
exception see 2 in Roberts [15]), which is what we now do. Suppose h may be
expanded in the formal power series

(2.6) h h,x" as x 0
n=2

(actually a finite truncation of this sum may be all that is valid; see the discussion in
the next section). Upon substituting this into (2.4) and grouping all terms of the same
power of x, we find

(2.7) (l+nA)h,,={ l’n-2 n=2,
ff’ m=2 mh,,,h,,_,,,, n 3, 4,. ..

Solving these equations in succession, we easily deduce

1 2 12
(2.8) h2=(l+2A-------, h4=(l+2A)2(l+4A), h6=(l+2A)3(l+4A)(l+6A),
and so on (h, =0 for odd n by the symmetry of (2.1)). Thus the invariant manifold
description we obtain is that system (2.1) settles exponentially quickly onto a manifold
given by

X
2 2X4 12X6

(2.9) y
(1 +2A-----+ (1 + 2A)2(1 +4A) + (1 + 2A)3(1 + 4A)(1 + 6A),

on which its evolution is governed by

(2.10) :Ax
X

(l+2A)
2x 12x7

(1 +2A)2(1 +4A) (1 +2A)3(1 +4A)(1 +6A)
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3. Range of validity. The new features in the asymptotic description above arise
from the form of the left-hand side of (2.4). In a centre manifold analysis A is assumed
to be asymptotically zero and the term Axh’ would appear on the right-hand side as
a perturbation term. However, here this term is of the same order as h itself and must
appear on the left. Its effect is to cause divisors of the form (1 + nA ), and higher powers,
to appear in the asymptotic description (see (2.8)-(2.10)). For negative A, in particular
for -1_-< A <0, this gives rise to the embarrassing possibility of dividing by zero.
Furthermore, even if a division by precisely zero is avoided, a division by nearly zero,
especially when compounded at higher order, is nearly as bad. Fortunately, this problem
of zero divisors serves as a useful and informative warning.

Suppose that we have described an invariant manifold by a particular solution of
(2.4), y hp(x; A). Other invariant manifolds are given by neighbouring solutions of
(2.4), namely, y hp + h(x; A), where h is small and satisfies the linearised equation

(3.1) + Ax xh’p + xhp’.
For small x the right-hand side of (3.1) is negligible, and so (as in (2.2)),/-- Alxl -/"
as x-* 0 for arbitrary A. Hence, the invariant manifold described is unique only up to
order Ix[ -1/’, but this is precisely the order at which a zero divisor occurs. Thus the
zero divisor is indicative of the nonuniqueness of the invariant manifold. Consequently
the invariant manifold is blurred by an amount O(Ixl-’/), and we conclude that there
is little point in calculating terms of higher order than Ix] -1/’x (it is at this order that
the initial conditions determine which particular manifold to choose).

Indeed, the conclusion above is related to the property (Shub [22, p. 61]) that for
-I=<A <0 the invariant manifold is only guaranteed to be C where r>-l/A. That
is, the invariant manifold is typically not analytic, but it is differentiable to a finite
order; thus the assumed asymptotic series (2.6) must be truncated before this order.
(For A <-1 no zero divisors appear, and this particular invariant manifold is Coo.
However, it is then of little interest to the long-term evolution of the dynamical system,
as the decay on this invariant manifold is much quicker than the decay elsewhere.)

The above argument only applies for negative A. For positive A the invariant
manifold is Coo and no small divisors appear. However, it is only C sufficiently close
to the origin. At the finite amplitude fixed point (+x/-, A) the decay rates of the
linearised equations are the slow -v/-X and the rapid -1; consequently we expect the
invariant manifold that passes through the origin to be C at the finite-amplitude fixed
point where r< 1/v/-. As discussed above, the invariant manifold relevant to the
long-term evolution is thus "blurred" by an amount O(A(x+v/-)I/), but such
blurring of the invariant manifold is not readily apparent in the asymptotic description
(2.8)-(2.10). Nonetheless, for such positive A it may be appropriate to calculate terms
of higher order than Ixl /’/x, This is not so much to fix the whole of the invariant
manifold, as to refine predictions about the location and nature of the finite-amplitude
fixed points (or attractors).

4. Relation to the centre manifold analysis. A centre manifold analysis of system
(2.1) has been described in 3 of Roberts [15], and is based on the assumption that
A, x, and y are all asymptotically small. The results obtained in equation (3.49) of [15]
are precisely the same as the small A asymptotic expansion of the invariant manifold
result obtained here in (2.9) and (2.10). For example, if the manifold h(x; A) is
expanded in powers of A, we find

y=h(x;A)’-(1-2A+4A2)x2+2(1-8A+44A2)x4 as x, A --> 0,
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which is precisely equation (3.49c) of Roberts [15]. The first consequence of this
observation is that this invariant manifold approach gives equivalent results, to any
power in A, as the centre manifold approach to this same problem.

The second consequence is that the comments on the range of validity of the
invariant manifold results given in the previous section also apply to the centre manifold
analysis. Thus, for A too far from its critical value of zero, there is little use in
endeavouring to be too precise about the centre manifold and the evolution on it.

Last, as noted by Sijbrand [23], we can observe that a centre manifold description
of bifurcation will typically be asymptotic; only rarely will the resulting series converge.
Expressions (2.8) for the coefficients h, of the invariant manifold contain the divisors
(1 + mA). In fact, the coefficient h2n will typically be of the form

hEn H, I-I (1 + 2mA )-t-/,,,l,

where H, is some number independent of A, and where denotes the integer part
function. Thus the centre manifold results, which are equivalent to expanding h, in
powers of A, will involve the expansions in )t of (1 + mA)-P for arbitrarily large m and
will therefore have a zero radius of convergence. That is, a centre manifold expansion
of bifurcation problems is typically divergent (asymptotic descriptions of invariant
manifolds in bifurcation problems may often converge to some extent; see Roberts
[19]). However, for problems that do not involve a bifurcation, a centre manifold
description can converge. Three examples of this are described by Mercer and Roberts
[9] for shear dispersion in a channel, Roberts 17] for slowly varying waves, and Pollett
and Roberts [13] for quasistationary probability distributions.

5. A quasistationary probability distribution. Given that the concept ofan invariant
manifold is useful in the description of the long-time evolution of a system, we need
to find a general method for deriving such an asymptotic description. The method will
be a modification of that given by Coullet and Spiegel [7] (also explained and extended
in Roberts [15]-[19]) to systems where the retained modes do not necessarily have an
essentially zero growth rate. This section introduces the example problem of finding
a quasistationary probability distribution, modified in the next section, where the
general method of finding an invariant manifold and the evolution on it is discussed.

Consider a Markov process consisting of three states, labelled I, 2, 3, where the
probability vector p of the system evolves according to

(5.1) dp_Qp,
dt

in which the rate matrix Q is

0 A

0= o --0 2

where A is a positive parameter. Observe that since total probability must be conserved,
the column sums of 0 are all zero. The problem is then to determine an appropriate
description of the long-time behaviour of (5.1).

Probabilists, please note that Q and p are the transpose of what you are used to. This is because the
example is meant to be illustrative and almost everyone else is accustomed to this form for ordinary
differential equations.
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Since (5.1) is a linear system, its analysis is particularly simple and is essentially
just an elementary change of basis problem. However, it is the viewpoint developed
here (rather than the analytical details) that is very valuable and that provides the
basis for the powerful formal procedure discussed in the next section.
We start by finding that the eigenvalues and eigenvectors of the matrix Q are

Eigenvalue Eigenvector Left eigenvector

Ill0 el 0 .1=[1 1 1]
0

--A e2 1 2--[0 1 1]
1

Il-(I+A) e3 1 .3-’[0 1 -1]
-1

Clearly, state 1 is an absorbing state and so the probability vector p ultimately evolves
to be el. However, if A isa number significantly smaller than (1+ A), then the time
until absorption is relatively long and the system has time to evolve into a quasi-
stationary state (involving the eigenvector corresponding to A, namely, e2) and only
then does it slowly evolve into the absorbing state. Thus a significant asymptotic
description of (5.1) involves not only the absorbing state corresponding to the eigen-
value zero, but also involves the quasistationary state corresponding to the small (but
nonzero) eigenvalue. Thus we need an invariant manifold analysis rather than a centre
manifold analysis.

The analysis proceeds by posing the ansatz

dx
(5.3) p(t)=v(x) such that--77=g(x),

at

where x-[x, X2] T are the probabilities Xl of being in the absorbing state, and x2 the
quasistationary state, thus x evolves slowly. Substituting this into the governing equation
(5.1), using the chain rule, and letting Vx denote the 3 x 2 matrix [Ovi/Oxj] we find that
v and g must satisfy

(5.4) Qv Vxg.

As this is linear we can solve it exactly by supposing

(5.5) v=Vx and g=Gx,

where V is a 3 x 2 matrix and G is a 2 x 2 matrix. Thus, since (5.4) must be true for
all x, we deduce that V and G must satisfy

(5.6) QV= VG.

This is a type of eigenproblem. Normally we would choose V to diagonalise Q
(remember that we are interested only in the small eigenvalues of Q); that is, the
columns of V are eigenvectors of Q, and G is the diagonal matrix of the corresponding
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eigenvalues (the small ones only). In a centre manifold analysis these significant
eigenvalues would be all zero; here they are 0 and -A. This fails if Q is nondiagonalis-
able, in which case G may be chosen in Jordan form and (5.6) is then solved. However,
the conventional practice of choosing G to be either diagonal or in Jordan form need
not be followed. The choice of how to solve (5.6) is arbitrary (as long as the eigenvalues
of G are the significant small ones); it all depends upon what the "amplitudes" x will
represent in the asymptotic description. Here it is desirable (but not essential) for the
evolution equation dx/dt Gx itself to represent a Markov process, thus describing
the evolution between two distinct states. Hence each row of V is chosen to have at
most one nonzero element and the column sums of V are all 1 (that the column sums
of G are zero then follows immediately).

Next, the invariant manifold of interest is the one spanned by the eigenvectors el
and e2, these being the long-lived modes as they correspond to the small eigenvalues
zero and -A. Imposing the above discussed constraints, we change the basis of this
subspace to

and deduce the solution

(5.8 v= Iq ]

and q2 e +1/2e2 Il
and correspondingly

That is, the invariant manifold description of the evolution of (5.1) is that

(5.9) p qlxl d-q2x2 such that - -h

Thus, to an error that decreases as does exp [-(1 + A t], we conclude that the long-time
evolution of (5.1) is from the quasistationary state q2 to the absorbing state q at the
rate

6. The formal invariant manifold procedure. Problems of the type discussed in the
previous section are elementary, but, being linear, they are fundamental to a perturba-
tive analysis of nonlinear systems or of a family of similar systems. In this section a
formal method is outlined for deriving the invariant manifold description of a system
when the description is in the typically necessary form of an asymptotic series (as in
{} 2). This method is a modification of that given by Coullet and Spiegel [7], and to
be more or less definite, the method is described in the context of a particular problem.

Suppose that (5.1) is modified in some manner by the inclusion of some asymptoti-
cally small linear or nonlinear terms r(p) to

(6.1) d__p_p_
dt

Qp+ r(i)"

The procedure to find an asymptotic description of the corresponding invariant mani-
fold (possibly curved) and the evolution on it is to assume that the unknowns v and
g may be expanded in an asymptotic series. That is, we pose

(6.2) p(t) v(x) E vk(x) such that -d- g(x) y, gk(x),
k=0 k=0
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where all terms of "order" k are grouped into yk and gk (the precise definition of
order depends upon the form of the perturbing terms r(p) and need not concern us
here). Upon substituting the ansatz (6.2) into (6.1), using the chain rule, and grouping
all terms of the same order together (see Roberts [15], [16] for similar details), we
find the sequence of equations

k

(6.3) Qvk- Vtxgk-’--rk
i=0

to be solved, where rk is a function of o,..., vk-1 that depends upon the form of the
perturbation r(p), and where r- 0.

The k=0 equation is just the linear pseudo-eigenproblem (5.4) solved in the
previous section. The relevant solution is v- Vx and gO= Gx, where V and G are
given by (5.8).

The real interest of this section is in calculating the higher-order correction terms
vk and gk. At order k, (6.3) has the form

k(6.4) Qvk -vxGx Vgk +sk,
where sk is known, as it depends only upon lower-order quantities that have already
been calculated. This equation is to be solved for vk and gk (for clarity the superscript
k will be omitted henceforth). It has to be solved independently of whatever values
x [Xl, x2] " may take, and so we consider xl and x2 to be independent indeterminants
(see Coullet and Spiegel [7]); that is, we consider (6.4) to be an equation that is a
multinomial in xl and x2. Thus we try for a solution in the form

(6.5) v= g= gm,,xl x2mnxl X2, supposing $ ’ Smnxl X2,
m m m,

where the sums may go from zero to some limit.
Upon substituting (6.5) into (6.4), equating like powers of x?x, and using the

particular form of G given in (5.8) we obtain

(6.6) (Q + nAI)vm, { Vgmn + Stun, n 0,
Vgmn +Stun +(m + 1)AVm+l,n-1, n>l.

Note that for a different form of G the coupling terms in (6.6), here Vm+l,,-1, between
distinct equations would be different. In particular, if G is diagonal then there are no
coupling terms (and the solution is easier).

For whatever range of rn and n is appropriate, (6.6) is solved such that the
equations rn + n constant are solved in the sequence n 0, 1, 2, (because of the
particular nature of the coupling term). The n 0 equation is

(6.7) Qvmo Vgmo +Sin0.

Now Q has a zero eigenvalue and is therefore singular. To solve this equation the
right-hand side has to be in the range of Q, that is, orthogonal to the left eigenvector
1. This gives one linear equation to determine the two unknowns of gin0; the other
necessary equations come from the precise definition of what the "amplitudes" xl and
x2 represent. Typically we want vm, to have no component of the tangent space to the
invariant manifold (that space spanned by el and e2); that is, we want Vm, to be
orthogonal to 1 and 2. (More generally, we would want Vm, to have definite com-
ponents of el and 2, depending upon what xl and x2 are defined to be.) Premultiplying
(6.7) by 92 we then find

--/ (2m0) 2Vgo+2Smo,
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which, since the left-hand side is known (and is typically zero), forms the other linear
equation to determine gin0- Once gmo is found, (6.7) may be solved to determine V,,o
up to an arbitrary multiple of the homogeneous solution el. The precise multiple is
determined by requiring that lV,.o be in accord with the definitions of xl and x2
(usually requiring it to be zero).

Equation (6.6) with n 1, and its solution, are the same as those discussed above
except that v,,+l,O appears as an additional known term of the right-hand side, and
except that the roles of 1 and ’2 are interchanged.

Equation (6.6) with n->_2 is of the form

(6.8) (Q+ nAI)v,,,. ggmn’FSmn-F(m-F 1)Avm+l,n-,
where s,.. and v,.+,._ are known forcing terms. The difference here is that Q+ nAI
is, in general, not singular. In this case the two linear equations to determine g.,. come
from requiring that v,.. have specific components (typically zero) ofe and e2. Multiply-
ing on the left by the two corresponding eigenvectors, we obtain

n/ (lYmn) 1 ggmn -lt’’l(Smn + (m + 1 )AVm+l..-1),
(n-1)A(zV,..)=,zVgm.+z(Sm.+(m+ 1)Avm+,._).

Upon determining g,.. we can then (almost always) solve (6.8) for v,... This whole
formal procedure for calculating the invariant manifold, given by v, and the evolution
on it, governed by g, can be carried out to as high an order as is desired or practical.

However, if by some mischance the matrix Q+ nAI appearing in (6.8) is singular
(for n _-> 2), then the asymptotic calculation can proceed no further. This is no cause
for alarm, as it is equivalent to the divisions by (1 + nA) seen and discussed in 2-4.
Indeed, such an occurrence (or near occurrence) warns us not to proceed, as the details
at this and higher orders are then irrelevant to the invariant manifold analysis.

In summary, the procedure calculates terms in the low-dimensional asymptotic
description (6.2) ofthe dynamical system (6.1). Typical limitations of such a description
are illustrated in the discussions of the simple problem (2.1) in 2-4. A remaining
problem is to find the initial condition x(0) for the low-dimensional asymptotic
description (6.2) that best matches an initial condition p(0) of the full system (6.1);
this is discussed in Roberts [20].

7. Relation to numerical models. Many numerical solutions of a set of differential
equations involve finding the behaviour of some limited number of an infinite number
of complete modes. A well-known example is the set of Lorenz equations (see 2.3
of Guckenheimer and Holmes [8]) that form an elementary numerical model of
convection. The usual procedure is to decide upon a complete set of modes (typically
Fourier modes), select a finite number of these with which the solution is expressed,
and then substitute this into the governing equations. Identities (typically trigonometric)
are used to simplify products of modes (the generation of unrepresented harmonies
being ignored), and the coefficients of each mode then give equations governing the
amplitude of that particular mode in the solution.

This whole conventional process can now be viewed as approximating an invariant
manifold and the evolution on it. First, the subspace spanned by the retained modes
(say there are N modes) is a tangent space to a corresponding N-dimensional invariant
manifold, and is thus an approximation of it. Second, the evolution on this "fiat"
approximation to the invariant manifold is given by the equations obtained in the
numerical approximation. All this leads to the possibility that such modal numerical
models may be improved through this viewpoint. Instead of looking for a solution in
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some "flat" N-dimensional vector space, the procedure introduced in earlier sections
may be used to calculate the curving nature of the corresponding N-dimensional
invariant manifold. Then the equations describing the evolution on this invariant
manifold would form an improved numerical model.

Such modal numerical models obtained via this formal invariant manifold pro-
cedure would be improved in the sense that they take into account some ofthe dynamics
of the otherwise ignored modes without explicitly including these modes in the final
equations. As an example, the Lorenz equations could be modified through this
approach to provide a more accurate model of convection, not by increasing the number
of retained modes, but by making the three ordinary differential equations more
appropriate at larger amplitudes. Thus this invariant manifold procedure is likely to
be a very powerful and useful hybrid between numerical models and asymptotic
expansions. How well it performs in application to the Kuramoto-Sivashinsky
equations is discussed in Roberts [19].

8. Generalised applications of invariant manifolds. In almost all of the literature,
the concept of an invariant manifold is applied only to dynamical systems that are
dissipative, and consequently the manifold is typically stable and typically contains
the large-time behaviour of the system under consideration. However, many invariant
manifolds are not strictly stable but are nevertheless of immense practical importance.
In this section we point out some examples that we have come across.

The simplest example of an invariant manifold that is not strictly stable occurs
in any system with an (integral) invariant. Often it will be a result of conservation of
mass, energy, or momentum. Such an invariant of the flow of the system restricts it to
some manifold embedded in the solution space. Typically such invariants do not reduce
the dimensionality of the problem significantly, but by only a few degrees of freedom.
Thus there is little to be achieved by explicitly restricting the system to the corresponding
invariant manifold.

An important invariant manifold in fluid mechanics is invoked by the irrotational
assumption. One of the basic theorems relevant to Newtonian fluids is that if the
vorticity of the fluid flow to V x u is initially zero, then it is zero for all time. This
justifies restricting attention to that class of flows that lie on the "flat" invariant manifold
to- 0, that is, irrotational flow. One interesting aspect is that this approximation is
usually invoked only for inviscid fluids where there is no dissipative mechanism. Thus
the irrotational invariant manifold is usually not strictly stable.

An interesting class of invariant manifolds are associated with solitons. We give
two examples. Burgers’ equation

Ou Ou O2u
(8.1) --+u--=v

Ot Ox Ox2

has the 2N-dimensional invariant manifold

N

(8.2) u -2t, [x- z.(t)]-’,
n--1

which is written in terms of N complex parameters z, that evolve in time according to

(8.3) , =-2u (z,-z,,)-m#n

(see Bullough and Caudrey [4]). The interesting point here is that the expressions for
the invariant manifold of (8.1) and the evolution on it are exact. Furthermore, Burgers’
equation is dissipative and so an invariant manifold of the above form is likely to be
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stable. An invariant manifold with a similar form can be found for the Korteweg-
de Vries equation that models the behaviour of long waves in many physical systems.
The governing differential equation is

0u 0u 1 03u
--+3urn+ =0.(8.4)
Ot Ox 20x

This has the invariant manifold

N

(8.5) u 2 Ix- z,(t)] -2
n=l

(see Bullough and Caudrey [4]), on which the complex parameters evolve according to

(8.6) , 6 ] (z, z,,) -2,

provided that the initial conditions for the complex parameters satisfy

(8.7)

(The dimensionality ofthe invariant manifold is a little obscure because ofthe constraint
that (8.7) imposes on the complex parameters z,.) Interestingly, this invariant manifold
can be used to describe the interaction of solitary waves; the conservation of the
individuality of solitary waves is thus seen as a consequence of the conservation of
the double poles in (8.5) as they evolve in the complex plane according to (8.6).

A similar sort of invariant manifold occurs in the two-dimensional flow of an
inviscid, irrotational, and incompressible fluid. There a very important class of flows
can be built up with point vortices. A 2N-dimensional invariant manifold is described
by the (scalar) vorticity field

N

(8.8) o= Z .(x-x.)(y-y.),
n=l

where the locations of the vortices evolve according to

(8.9) i,*
27ri ,,= z z,,’

in which z, x, + iy,. One aspect of this invariant manifold is that it has real physical
singularities. Despite this and the fact that there is no dissipation to make this an
attracting manifold, it is of immense practical utility.

Other useful invariant manifolds involve neglecting oscillatory components in the
full dynamical system. Thus the invariant manifold only acts as some sort of centre
for the flow of the system and may best be viewed as a subcentre manifold (see Sijbrand
[23, 7] for definition and properties). Some examples are the incompressible approxi-
mation in fluid mechanics, which neglects sound waves; the quasigeostrophic approxi-
mation in atmospheric dynamics, which neglects the relatively fast gravity waves in
the atmosphere (see Lorenz [10], Vautard and Legras [26], Roberts [20, 4]); the
derivation of continuum mechanics from the kinetic theory of gases, which neglects
the oscillatory components in the solutions of Liouville’s equations (see Muncaster
11 ]); and the derivation of shallow water wave equations, which neglects the oscillation
of short water waves.
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I imagine that all of these last four examples could be rederived and extended
using the formal procedure outlined in this paper. Such derivations would provide
valuable new insight into the physical nature of the approximations.
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Abstract. A stability criterion is given for periodic solutions of an equation describing thermostat
control. The proof is based on a perturbation result for discrete functional equations.
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1. Introduction and statement of results. The purpose of this paper is to establish
a criterion for the local stability of periodic solutions of the equation

1 y(t) f a( s)u(s) ds, R,

where u R {0, 1 ) is determined by the requirement that if u(t) 1 and y reaches an
upper level 0high at time t, then u(t/) =0, and conversely, if u(t) =0 and y reaches a
lower level 0o at time t, then u (t/) 1.

This equation can be used to describe systems controlled by a thermostat. For
example, consider a situation where a heater is turned ON if the temperature at some
fixed point drops to a level 0ow and is turned OFF if the temperature rises to a level
0high, where 0low < 0high. It is convenient to normalize the equation in such a way that
without heating the temperature is zero and with continuous heating it is 1. The function
a is determined by the requirement that if the heating is turned on at time zero for
the first time, then the temperature should be o a(s) ds at time >0. Without going
into further details about how the heating process affects the temperature (e.g., through
diffusion), we see that (1) can be used as a reasonable model if no external influences
are involved.

In [2] and [3], where temperature regulation by thermostats is also considered,
the main emphasis is on questions regarding existence of solutions and on a precise
description of the heating process involving diffusion. In [5] this work is continued
and some sufficient conditions for the existence of periodic solutions are given. In 1]
thermostat control in a diffusion model is considered as well, and the existence, and
in some cases, uniqueness, of periodic solutions is established.

In [6]-[8] a class of switching systems is considered where the state equation is of
the form y’(t) =f(y(t)) and where the index j, and hence the state equation, is changed
when the solution reaches a "switching surface." In [8] sufficient conditions for periodic
solutions are given for this kind of system. Note that a linear system x’(t)=
Ax(t)+u(t)z, y(t)= Cx(t), can be written in the form of (1), but the analysis of (1)
is not dependent on any underlying structure of this form.

In [4] the existence of periodic solutions of (1) is established, but there the
dependence of u on y is in general a slightly weaker form of thermostat control
(although the difference appears only in the case where y has a local maximum equal
to 0high or a local minimum equal to 0ow). Here we will use the following notion of
thermostat control.

* Received by the editors January 25, 1988; accepted for publication (in revised form) November 22,1988.
f Department of Mathematics, University of Helsinki, Regeringsgatan 15, Helsingfors, Finland.
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DEFINITION. If I R is an interval and y" I - R is a continuous function, then a
function u:I {0, 1} is (strictly) thermostat controlled by y with respect to the higher
limit lghigh and the lower limit 0ow on the interval I provided that u is left-continuous
with right-hand limits on I, and the following conditions hold for all I:

(i) u(t) 1 if y(t) < 0low;
(ii) u(t) 0 if y(t) > 0high;
(iii) If y(t) 0high and u(t) 1, then u(t+) 0, and if u(t)- u(t+) 1, then

y(t) 0high;
(iv) If y(t)--Olow and u(t)-0, then u(t+)-l, and if u(t)-u(t+)--1, then

y(t)- 0ow.
Note that by this definition, the function u is constant on those intervals where

y(t) (0ow, 0high).
In order to study the stability of periodic solutions we allow small perturbations

and therefore we consider the equation

(2) y(t)= [t a(t-s)u(s)ds+e(t), t->0,
J-

where u is given on (-, 0] and u is strictly thermostat controlled by y on (0, o).
Since the function u can take only two values, it is completely determined by the

switching times at which it jumps from zero to 1 or from 1 to zero. We will use the
notation that u is 1 on the intervals (Vn(U), Wn(U)] and zero on the intervals
(wn (u), vn+ (u) ]. No generality is lost if we assume that Vo(U) 0. It turns out, however,
that it is advantageous to use the interswitching intervals Tn (u) wn (u) vn (u) and
Sn (u) vn+ (u) wn (u) instead of the switching times. Then local stability means that
if e is small, Tn(u) is close to some T and Sn(u) is close to some S for all negative
indices n; then Tn (u) and Sn (u) will remain close to T and S for all future (provided
the system is thermostat controlled). A precise statement of what is meant by local
stability is given in (o o) below. Next, we give a formal definition of Tn (u) and Sn (u).

DEFINITION. If U :R {0, 1} is left-continuous with right-hand limits, u(0) 0 and
u(0+) 1, then the numbers {T,(u)} and {S,(u)} are defined by

1, te Z ((u)+Si(u)),- Z ((u)+(u))+T n(O,
j=n j=n

1, te ((u)+S(u)), Z ((u)+(u))+ Tn neO,
Xj=o j=ou(t) _ _

]o, t/- Z ((u)+(u))+ T+,- Z ((u)+S(u))j, n<O,
j=n j=n+l

O, te ((u)+N(u))+ L, ((u)+N(u))
Xj=o j=o

It is easy to see that if u is strictly thermostat controlled by y on (0, ), (2) holds,
supole(t)l<min{O,ow, l-Ohigh}, and if o a(t) dt=l, then T,(u) and S,(u) are
defined for all n 0.

Since the history of the function u is determined by the values of T, (u) and S,(u)
for n < 0, it turns out that it is possible to show that the problem of stability is reduced
to a study of the stability of a discrete functional equation of the form

(3) =-
,i= ki, i<0.
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It is well known that the z-transform is useful when we study linear difference equations.
The criterion for stability of the linear part of (3) is det [Y,=o z"a,] 0 when [zl-<- 1.
We will see that f(z)/(1- z), where f is the function appearing in (o), is exactly of
this form, and that we get local stability for the nonlinear equation. (The factor 1-z
is due to the translation invariance of the problem.)

Next we give a precise formulation of our result on the stability of periodic
solutions.

THEOREM. Assume that
(i) 0 < 0tow < (ghigh < 1;
(ii) a LI(R+; R) f’) aC,oc((O, o); R), o a( t) dt , and o t2la’(t)l dt <
(iii) e C(R/; R);
(iv) u :R {0, 1} is left-continuous with right-hand limits, u(0) 0, u(0+) 1, and

u is strictly thermostat controlled by the solution y of (2) on (0, );
(v) There are positive numbers T and S such that there exists a periodic solution

(y,, u,) of (1) with u, 1 on intervals oflength T, u, 0 on intervals oflength
S, u,(0) =0, u,(0+)= 1, and u, is strictly thermostat controlled by y, on R;

(vi) yg(0-) < 0 and y,( T-) > O.
Then the following two conditions () and () are equivalent:

The function
defoo

f(z) E (a(j(T+S))-a(j(T+S)-T)) (a(j(T+S)-S)-a(j(T+S)))
j-----1 j=l

+ E (2a(j( T+ S)) a(j( T+ S) T)
j=l

-a(j(r+$)-S)) 2 a(J(r+S))- a(j(r+s))
j=l j=l

+- a(j( T+ $) S) . a(j( T+ S) T)
Zj=I j=l

has a simple zero at z 1 and no other zeros in {z CI zl -< 1};
( ) There exist numbers > 0 and C < oo such that the inequalities

IT(u)-TI<-, IS,(u)-Sl<-, i<0,

le(t)l_-< , t=>0

imply that for every n >= 0

(4) IT’(u)-Tl+lS"(u)-Sl<=C(sup{IT"(u)-Tl’lS’(u)-$l}+suple(t)l)’\,<o ,-o

and in the case where lim,_, e(t)= 0 it follows that

T,(u) T and S,(u)S as

It is easy to see that y(0-) Y,= (a(j(T+ S))-a(j(T+ S)- T)) and y,(T-)
j= (a(j(T+$)-S)-a(j(T+S))). The assumption that u, is strictly thermostat
controlled by y, implies that y(0-)-< 0 and y(T-)_>-0. It is not really necessary to
assume that a is locally absolutely continuous, but this assumption makes the formula-
tion of the appropriate hypotheses on the kernel a much simpler. Note also that the
condition (ii) is satisfied for the kernels given in the examples in [3] and [5].
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In [4, Thm. 5], it is shown that if m _-> 1 is an integer and a(t)=(1/m!)t e-t, then
there exist positive numbers s so that there are [(m-1)/4J + 1 different periodic
solutions (y., u.) of (1) and u. is strictly thermostat controlled by y. on R with respect
to 1/2+s and 1/2-s. (Note that there is an error in [4, Thm. 5] at this point since
[(m- 1)/4J + 1 has been replaced there by [m/4J + 1.) If the theorem above is applied
in the case where m- 5, so that there are two periodic solutions, then numerical
calculations indicate that the stability condition (o), and hence also (o ), is satisfied
for the solution with the longer period only.

For completeness we state and prove the result concerning (3) that we need. Let
us denote the set of integers by Z, the set of positive integers by Z+, the set of negative
integers by Z_, and the set of natural numbers, i.e., the nonnegative integers, by N.
By ]we denote some norm in Rm, and also the corresponding matrix norm.

If ’:Z+ - R and x R then we let [x, ’] denote the sequence given by Ix,
if j > 0 and [x, ’]o x.

PROPOSITION. Assume that:
(a) s /I(N; R"m) and det [So] 0;
(b) q /(N; Rm);
(c) For each j-O the mapping l(N;Rm)-c()R is continuous and

I](’)]]rO(N)=O(sup_>olr/srl) as ]]’]]/(N)-->0, where q is some element in
/’(N; R);

(d) 6 e/(Z_; Rm);
(e) There exist a constant y > 0 and a continuousfunction F :R+ - R+ with F(0) 0

such that ifqb /(Z+; Rm) andfe R" with < Ill=< % then there
exists for each n N a unique solution ofx of

,oX=.([x, ]) +f,

and Ixl-<r(Ifl+ IIll,(z/)).
Then the following two conditions (.) and (**) are equivalent:
(.) det [En=o zns.] 0 for Izl-<- 1;

(**) There exist numbers > 0 and C < o such that

imply that there is a unique solution of (3), for every n >-O,

(6) 1.[-< C \(sup,<o [b,[ + o_-<k_-<.sup [qk[),
and, in the case where limn_ tp. 0, it follows that

4 0 as n - oo.

We see from the proof of this proposition that the continuity assumption in (c)
is needed only when we establish the necessity of (.). Observe that no assumptions
about Lipschitz continuity are made and note also that the assumption det [So] 0 in
(a) actually follows from (e) (without this assumption there is clearly no hope of
finding a unique solution).

If we are interested only in the stability of the solutions and do not care about
the asymptotic stability, then we can take r/-= 1 in (c).
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2. Proof of the theorem. First we introduce some notation. We write T, T, (u),
S, S,(u), and

as=s.-s,
aT.=T-T,

"’ (r, + S), n>0,
j=O

On

’ (T+S), n=<0,
j=n

w v + T
V.=n(T+S),

W.=V.+T.
This definition says that u takes the value 1 on the intervals (v., w.] and zero on the
intervals (w., v.+l]. Similarly, u. 1 on V., W.] and u. =0on the intervals W., V.+I].
Below we will need the following relations for n >j:

n--1

v.+ T-vj-(V.+ T- V)= Z (ATiJc-ASi),
i=j

n--1

v.+ T-wj-(V.+ T- W)= Y (AT+AS,)+AS,
(7) i=]+

rl--1

w.+S-v-(W.+S- V)=AT.+ E (ATe+AS,),
i=j

w.+S-w;-(W.+S- W)=AT.+ Y (AT+AS,)+ASj.
i=j+l

Since we want to obtain an equation that gives T. as a function of T and S, j < n,
it is advantageous to have a function that is otherwise equal to u but does not jump
from 1 to zero at v. + T.. Therefore we define

u,(t)={u(t), t<----’,
u(’r+), > ’;’.

As the number r we will use both v. and w.. When we replace u by u we must replace
y by the function

(8) y.(t)= [ a(t-s)u(s) as.
d-

Note that the reason for introducing these new functions is purely technical.
It is clear that T. is determined as the smallest positive number for which

y. (v. + T.) + e(v. + T.) Ohigh and S. as the smallest positive number for which
yw.(w.+S.)+e(w.+S.)=Oow.

Now a straightforward calculation, where we use (7) and the facts that V.- V
(n -j)( T+ S) and V. W (n -j)( T+ S) T, shows that for all n _-> 0 we have

yv.(v. + T)-y.( V. + T)

a(v.+ T-s)uv.(s) ds- a(V. + T-s)u.(s) ds
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(9)

=- . v+T-w . V+T-W
a(s) ds- a(s) ds

j=-- dVn+T-- dV.+T--
n-1

a((n -j)(T+ S) + T) ( +
j=- =j- a((n-j)(r+s)) (+S)+

ov.+r-

(a(s)-a(g+r-))ds.

We rewrite the terms on the right-hand side in (9) that are linear in and
n--1 n-1

a((n-j)(r+s)+ T) 2 (+S,)
j =j

a((n-j)(r+S)) (+S,)+.

(10) a(j(T+ S)+ T) (+

2 a(j(T+S))
i=-- j= --i+1

2 a((n-i)(T+S))AS.

A similar calculation shows that

yw.(w.+S)-y,(W.+S)

a( + S- s)u(s) s a(W + S- s)u,(s) s

a(s) s- a(s) s
j= O wn+S--w OWn+S--

a(s) ds- a(s) ds
(11) )=- w.+s- w.+s-

i a((n-j+l)(T+S))(?’ )j =j

2 a((n-j)(T+S)+S) (+S,)+T.+S

+ i -["+s-o’ (a(s)- a(W. + S- )) ds
j=- W.+S-V

[ w,+S-E (a(s)- a(W. + s- )) ds.
j=- dw,+s-
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Here the linear terms are

(A Ti’" ASi)’- A T,"
=j

Y a((n-j)(T+S)+S) (AT+ASi)+AT,’+AS
j-=--oo i=j+l

(12) _, a(j(T+S)) (AT+AS)+ E a(j(T+S))AT,"
i=-oo j= -i+1 j=l

_, a(j( T+ S) + S) (A T + AS,)
i=--oo j=n--i+l

Y’. a(j(T+S)+S)AT.- , a((n-i)(T+S)+S)AS,.
j=l i=--oo

Since y.(V. + T)= Ohigh--’yv,,(l)n nu T.)+e(v.+ T.)=yv.(w.)+e(w.) we see that

(13)

yv.(v. + T)- y,(V," + T)+ y’,(W,’-) AT,,

(y’.(w," s)-y’,(W,’-)) ds e(w.).

A similar argument gives

(14)

Yw. (w," + S) y.( W," + S) + y’.( V.+I-)AS.

(y’w.(v.+l-s)-y’,(V.+l-)) ds-e(v.+l).

From now on we assume that e(w.) and e(v,’) are some given numbers, although
we otherwise treat A T. and AS. as unknown in the equations we study.

If we combine (9) and (11) with (10) and (12), and finally also with (13) and
(14), then we can rewrite the resulting two equations in vector form as

(15) J=- a._j ASj]=. \AS._j] j=o e(Dn+ 1) n>--O’

where for each n => 0, a. is a 2 x 2 real-valued matrix, and ," is a nonlinear function
defined on sequences.

Now we want to apply our proposition and must verify all the assumptions.
A rather lengthy but quite straightforward calculation shows that we have

det z"a. fl z---0

where f is the function defined in (o).
Next we consider assumption (c). Let b be a continuous nondecreasing function

on R+ such that b(O)= 1, limt_oob(t)=cG and o t2b(t)]a’(t)l dt<o. Define the
sequence {rb}=o by r/j 1/b(j min {S, T}).
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From (7) we conclude that
n--1

(16)
1

<--_ (n -j) sup {r/,,_,([A T,[ + [AS, I)}
n--j i-<-n

since the sequence r/ is nondecreasing and therefore Y.,- l/r/._, _-< (n-j)/._j.
Assume that supi. (IATl+lASil)--<--min {S, T}/2. By (16) we have the following

estimate:

j=- a V.+T-%

<--_ a’(s)(v.+ T-vj-s) ds
j=-o a v.+r-v

-< sup { n.-,(lA1 + las, I)}
in

j=--oo s_(V.+T_V)I<_Ef=(IATiI+IASil)
(n -j) la’(s)l ds.

’q._j

It is clear that every term in the sum on the right-hand side in the inequality above
converges to zero as supi__< ([A TI + IAS,I) 0. To show that the sum itself goes to zero
we use the dominated convergence theorem. This can be done, as we have the
dominating sum

1 I (n-j)1 la’(s)l ds
j=-cx s_(V.+T_Vj)l(n_j)rnin{T,S}/2 ’ln_

<- sb(s)la’(s) ds dt <.
min {S, T}=

We conclude that., f.+r- (a(s)-a(V. + T- V)) ds
j=--oO aV.+T- V

o (sup,__<,, {r/._,([AT + [AS,[)}) as sup,__<. ([A T/[ + [AS, I)--> 0.

In the same way we show that this conclusion holds for all the other nonlinear terms
in (9) and (11) as well.

From (8) we get the following expressions for derivatives:
n--1

y’.(w.+t)= , (a(w.+t-vj)-a(w.+t-w))+a(w.+t-v.),
j=-o

y’.(V.+l+t)= (a(vn++t-vj)-a(v.+,+t-w)).

Thus we have

ly’o.(w. + t)-y( W,,-)I
n--1

<-- E la(w,, + t- vj) a( W,, V)
j"-

n-1

+ , la(w.+t-w)-a(W.-W)l+la(w.+t-v.)-a(W-V.)l.
j-



THERMOSTAT CONTROL 1467

Let us consider, for example, the first of these sums:

sup Y la(w. + t- v)- a( W. V)I
Itl_lA T.I j=--oo

n--1

--< Y la’(s)l as.
j=-o s--( W.-- V)I--21A T.I+E’

It is clear that every term in this sum converges to zero as sup. ([A1 + Is,I) 0,
and we can again use the dominated convergence theorem and the fact that
o tla’(t)l dt < to prove that the whole sum converges toward zero. All other terms
can be treated in a similar manner; this gives the desired result that

(y.(w.-s)-y(W.-)) ds=o sup{n._,(lal+laS,I))
in

(y.(On+l--S)--y(Vn+l--)) ds=o
0 in

as sup,. (la1 + las, I) 0.
We conclude that assumption (c) is satisfied.
Assumption (vi) implies that det [ao]0 and from (13), (14), and the argument

given above we can see that the existence assumption (e) is satisfied as well. (Here we
use the fact that u.(t) < 0high on (V., W.), and u.(t)> Oo on (W., V.+).)

Now an application of the proposition completes the proof.

3. Proof of the proposition. We use the following notation: If n e Z and if {} is
a sequence of elements in R defined at least for all indices j n, then the sequence
H.:N R is defined by (H.)g ._g, i.e., H. consists of the paa of "before" n.

It is well known that condition (.) implies that there exists a resolvent kernel
p /I(N; R) such that

j =o =o

(Here 0 I if i=j and zero otherwise.)
Choose

to be so small that

(17) If IIll,mzmax {F(e +llll,,<z+>) ) then II()llr>

Take

(8) c 2( + II,’z+>)ll I1,’.
E

(9) 2C"

Let g and satisfy
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Assume that n _-> 0 is such that (3) has a unique solution for all j < n and (6) holds
with n replaced by j < n.

Since C-> 1, this assumption holds when n- 0.
Note that [[-<_ e for all j < n. It follows that

n--1

and since (3) can be rewritten as

we conclude from assumption (e) that there exists a unique solution :, such that
Il =< r((2/ II ,,z+))). If Il =< C(sup,o I@,l / SUpo_ Il), then the induction step
is completed. Otherwise ]]/-/sClllOO(r)<_-I:, when j<-n, so we get from (17) that

(20) <]s"] 0=<J --< n.

(21)

With the aid of the resolvent kernel p we can write , as

.= p,_j(@j(/-/:)+j- aj_,,).
=0

It follows from (20) and (21) that

and we conclude that (6) holds. This completes the induction argument.
Assume next that lim,_. o,-0 but that lim sup,+ [so, l> 0. It is clear from (6)

and from our choice of 6 that [:,[_-< e for all n. Hence we get from (17) that

lim sup._,oo
lim sup [@,(H,)[ _-<

(Only at this point do we need the assumption that r/j--> 0; otherwise we could take

n-- 1.)
On the other hand, it follows from (21) that

lim sup I1 <- lip I1,’ lim sup I.(H)1

and combining these two inequalities we get the desired contradiction.
Next, let us show that if (,) does not hold, then (**) fails too. First we consider,

the case where there exists a point Zo such that [Zo] < 1 and Zo is a simple zero of the
function det [,=o z"a,] and there are no other zeros of this function in the set
{zllz[--<[Zo[} except . Clearly, we may assume that Zo 0 and from now on we also
assume that Zo is not real. Otherwise, some small changes in the proof would be
necessary.

Since Zo is a simple zero, it follows that in a neighborhood of this point we have

(22) z"a. --A+B(z),
,,=o 2 Zo-Z

where A C’’\0 and B is a matrix-valued function that is analytic at Zo. From (22)
we immediately see that .,,=oZa,,A=O. Since all the other zeros (except ) of
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det [Y,=o z"a,] have absolute value larger than [Zo[, there exist a number r (Izo[, 1]
and a sequence O such that

(23) y rlel < c,
j=0

(24) pj=[zJA]+oj, j>-O.

(Observe that here {RM is the matrix with each element equal to the real part of the
corresponding element in M.)

Let e be a positive number such that if 1l’ll,(-<_4e, then

{ 1 r:o{1(25) [[(’)[I/(N)=<II’III(N) min_=r10[ [AI J"
Assume that (**) holds and let 8 and C be the numbers given there. Pick a positive
number q such that 4erq+l < min {8, e/C}. Let v C be such that Ivl 1 and I[Av]l
lal.

Define the set by

{{oU=ol R% I1 4erq-,J =0, 1, 2, , q}

X weCm Iwl r

Next we consider a mapping .( O, w)(G(O, w),g(0, w)) defined as follows:
3e q

(,w)=[z-"Av] E [z"+A]%()
Il j=n+l

(26)

where

q

+ O,_jI(/-/:), n=0, 1,2,..., q, g(O, w)= Y zI)(/q:),
j=o j=o

O,, n =0, 1, 2,..., q.

It is clear that the mapping (O, w)(G(O, w), g(0, w)) is continuous (in the topology
of Rmx(q+l) Cm), and we must show that it maps II into itself. First we observe that
if (O, w) fl, then supj__<.q 1[-<4e and IIH:ll<)-<_4er-, when Oj<=q. Therefore it
follows from our choice of e and the fact that zol < r-<_ 1 that

j=,+l

y 91[zff"+Ja]J(/-/:)=<4e 81Al
[al =.+,Y Izol-"+r-<-- rq-",

j=O

q

j=O

E1
io._14er_ < rq_

8 j=O rJloJl j=O
rq84e(r-IZo[) iZolJrO_ _<

81Al j=O -Ial"
Furthermore,

3E

-1 91[za-"Avl <= 3erq-",

and so we see that the range of the mapping in question is contained in
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Since fl is convex, we can apply Schauder’s fixed-point theorem and find (9", w*)
II such that G(tg*, w*) tg* and g(O*, w*)= w*. Define :* by

O,*, n=0, 1,2,. .,q.

We can now rewrite the definition of G to get

But in view of (24) this implies that :* satisfies the equation

a._1 =dp,,(H.), 0 <- n <- q,
j=O

i<0.

Finally, note that

and we get the desired contradiction since (**) implies that IsCq*l <-C4erq+l< e.
If our assumption on the zero Zo is not satisfied, but det [Y’.--o z"a,] has some

zero with absolute value less than or equal to 1, then we proceed as follows" Assume
that (**) holds and let 8 and C be the positive numbers given there. Next choose a
sequence fle/I(N; R") such that

16C

and such that det [=o z’fl,] has a simple zero in some point Zo with [Zo[ < 1 and no
other zeros except, with absolute value less than or equal to Izol, It is not too difficult
to see that this can always be done.

As we have seen in the above, we can find a sequence , /(Z_; R’) and an
integer q > 0 such that supi<o I ,,I is arbitrarily small and the solution s* of the equation

fl,,_j=(rp,,(H,,), O<=n<=q,
j=O

satisfies 16C sup,<o I,,I, O<--j<-q, and I:q*l->4C supi<o I,l. But then :* is also a
solution of the equation

a._ (I),, (H.) + q., O<=n<=q,
j=O

5 bi, i<0,

where p,=Ej=o(a,_j-,_j). But now 11=<16c sup,<o 1,,I/(16C), O<--j<=q, and
since 4c sup,<o we get a contradiction.
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FAR-FIELD PATTERNS FOR ACOUSTIC WAVES IN
AN INHOMOGENEOUS MEDIUM*

DAVID COLTONt, ANDREAS KIRSCH:[:, AND LASSI P,IV,RINTA

Abstract. This paper is concerned with the class of far-field patterns corresponding to the scattering of
time-harmonic acoustic plane waves by an inhomogeneous medium of compact support. This class is shown
to be complete in L2(0[I) (where 0ll is the unit sphere) for any positive value of the wave number, with the
possible exception of a discrete set of wave numbers called transmission eigenvalues. The existence of a
unique weak solution to the interior transmission problem (which plays a basic role in a new method for
solving the inverse scattering problem) is also established for any positive value of the wave number provided
the wave number is not a transmission eigenvalue.

Key words, far-field patterns, acoustic waves, inverse scattering
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1. Introduction. In this paper, as in a previous paper by Colton [1], we are
concerned with the class of far-field patterns corresponding to the scattering of time-
harmonic acoustic plane waves by an inhomogeneous medium of compact support.
In [1] it is shown that this class of far-field patterns is complete in L2(Ogl), where 0gl

is the unit sphere provided that the wave number is sufficiently small. The purpose of
this paper is to remove this restriction on the wave number and show that the class
of far-field patterns is complete in L2(Ogl) for any positive value of the wave number
with the possible exception of a discrete set of wave numbers called transmission
eigenvalues. (In the case of a spherically symmetric medium it is shown in [3] that
these transmission eigenvalues actually exist and can be numerically determined from
the far-field data.) We will also consider a recently introduced boundary value problem
for the reduced wave equation called the interior transmission problem, which plays a
basic role in a new method for solving the inverse scattering problem introduced by
Colton and Monk in [3]. In [3] it is shown that there exists a unique weak solution
to the interior transmission problem provided the wave number is sufficiently small.
Here we will establish the existence of a unique weak solution to the interior trans-
mission problem for any positive value of the wave number provided the wave number
is not a transmission eigenvalue.

In passing, we would like to note the recent paper of Kirsch [6], which also studies
the relationship between far-field patterns and the interior transmission problem for
acoustic waves, as well as the work of Colton and P/iiv/irinta [4], which considers the
case of electromagnetic wave propagation in an inhomogeneous medium.

2. Wave propagation in an inhomogeneous medium and far-field patterns. Consider
the scattering due to a nonabsorbing inhomogeneous medium of compact support of
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the incident plane wave

(2.1) ui(x, t)-= exp [ikx. -itot]

where k > 0 is the wave number, to is the frequency, and c, 1, is the direction of
propagation. Let c(x), x R3, denote the local speed of sound and assume that
c(x)=co>0 for r=lxl>a where Co is a constant. Then, if k=to/co>O, n(x)=
(Co/C(X))2, and we factor out the term e under appropriate assumptions (cf. [8])
the mathematical problem we are faced with is to determine the velocity potential u(x)
of the total field such that

(2.2)

(2.3)

(2.4)

A3u + k2n(x)u 0 in R3,
u(x) -= exp [ikx. c]+ uS(x),

irn r\ Or
ikuS =0

where uS(x) denotes the scattered field, and the Sommerfeld radiation condition (2.4)
is assumed to hold uniformly for =x/Ixl on the unit sphere 0f. As in [1] and [3],
we will make the assumption that n(x) is positive and continuously ditterentiable and
that

(2.5) B (X R3: n(x) 1}

is simply connected (with C2 boundary OB) and contains the origin. In particular, this
implies that for x B, either c(x) > Co or 0 < c(x) < Co.

The scattering problem (2.2)-(2.4) is easily seen to be equivalent to the integral
equation

(2.6) u(x)=exp[ikx, k]--kE IB f (x, y)m(y)u(y)dy

where u(x)= u(x; k, t),

(2.7)

and

m(x) 1 n(x)

(2.8) (x, y)
exp iklx

4rlx-yl

From (2.3) and (2.6) it is seen that uS(x) has the asymptotic behavior

(2.9) uS(x) F(; k, c)+ O
1

r

where

(2.10) F(; k, t)=--- exp [-ik,. y]m(y)u(y) dy.

The function F(; k, t) is known as the far-field pattern corresponding to the incident
plane wave (2.1). Noting that for x B, m(x) is either always positive or always negative,
we assume without loss of generality that m(x) is positive for x B and define the
Hilbert space L2m(B) by

(2.11) L2m(B)={u" u measurable, IB f mlul2 dx<}
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with the inner product given by

(2.12) (f,g)=ffmfax.
(If m(x) is negative for x e B, then m(x) must be replaced by -m(x) in the definition
above.) We now define the compact operator Tk" LE,,(B) L(B) by

(2.13) Tu=f,,Ia(x,y)m(y)u(y)d,
and write (2.6) in the short form

(2.14) u =exp [ikx ]- kETku.
The existence of a unique solution to (2.6) (or 12.14) is established in [8] and [3].

Let {c,} be a countable dense set of vectors on the unit sphere 0f and for each
fixed k > 0 define the class F of far-field patterns by

(2.15) F= {F(R; k, ,)" n 1, 2, 3,... }.

Our aim is to show that, except possibly for a discrete set of values of k > 0, the set
F is complete in L2(Ofl). To do this we will need four lemmas. The first of these is the
following reciprocity principle.

LEMMA 1. Let F(; k, be the far-field pattern corresponding to the incident plane
wave (2.1). en

F(R; k, a) F(-a; k, -R).

Proo Using the representation theorem for the scattered field u [2] and the
asymptotic behavior of the fundamental solution (x, y), we have

u,(y, k, a 0
F(; k, ) ov eXp [-ik Y]

-exp[-ik.]u(;k,) ds()

u*(y; k, a)
O

(u(y; k,-R)-u*(y; k,-R))
4

u*(y; k, ) ds(y)-(u(y k, -R)- u"(y; k, -R))
Ov

(2.16) 1
(u(; k, )-exp [iky. ]) u(y; k, -)

4

-u(y; k,-) (u(y; k, )-exp [iky. ]) ds(y)
Op

exp [iky. ], u(y; k,-)
4

u(y; k, -) exp like. ] ds(y)

F(-; ,-)
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where , is the unit outward normal to 0B and we use the identities

uS(y; k, t)
0

uS(y; k,-)-uS(y; k,-) --u(y; k, ) ds(y)=0,

(2.17)

fo {u(y;k,d) 0 0 }--u(y; k. k) as(y)=0.. 0
u(y; k.-)- u(y; k. -)

which follow from Green’s theorem.
LEPTA 2. e orthogonal complement of F in L(O) consists of those functions

g L(O) for which there exists w C2(B) cl(g) and v defined by

(2.18) v(x) f g() exp [ikx. ] ds()

such that {v, w} is a solution to

A3w+k2n(x)w=0 inB,

A3v + k2v 0 in B,

(2.19) w v on 0B,

Ow Ov
on OB.

0, -0,

Remark. Functions v of the form (2.18) are called Herglotz wave functions with
Herglotz kernel g (cf. [5]). The boundary value problem (2.19) is the (homogeneous)
interior transmission problem first studied in [3].

Proof Let F- denote the orthogonal complement to F. We will show that if g F+/-

then g satisfies the assumptions stated in the lemma. The fact that, if g satisfies the
assumptions of the lemma, then g F+/-, follows from a simple application of Green’s
formula.

Suppose g F+/-, i.e.,

(2.20) F(; k, n)g--( ds()= 0

for n 1, 2,.... From Lemma 1 and the continuity of F as a function of we have
that

(2.21)

for all 0fl, i.e.,

F(-; k,-)g()) ds()=0

(2.22) F(; k, t)g(-c) ds(c) 0

for all Oil. By superposition we note that the left-hand side of (2.22) is the far-field
pattern of the scattered field w corresponding to the incident field

wi(x)-- f g(--C) exp [ikx. ] ds(t)
(2.23)

/ g(c) exp [ikx. ] ds().
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But from (2.22) we have that the far-field pattern of w vanishes and hence w vanishes
in Ra\B, i.e., if w w + w i, then w- w on 0B and Ow/Ou owi/Ou on OB. Taking the
conjugate of w now implies the lemma.

To show that F is complete in L2(0’) except for possibly a discrete set of k values,
it now suffices by Lemma 2 and the theory of Herglotz wave functions [5] to show
that the eigenvalues of (2.19) form a discrete set, i.e., except for possibly a discrete
set of k values the only solution of (2.19) is (v, w} identically zero. To this end we
define the discrete set I by

I {k: k2 is a Dirichlet eigenvalue of--A in B}
and define the vector space W by

W= ueC2(B)Cl(j)’u=--=OonOB, --(lul=/lA ulov m

We make W a Hilbert space W by defining on W the inner product

(2.24) (u, v) fB f (uO+A3uA3O)m dx, u, v W

and completing W with respect to the norm lul x/(u, u).
We first want to define an isomorphism S(k) on W that depends analytically on

k for k in a complex neighborhood of ko R/. To do this, we let G(x, y) be the
Dirichlet Green’s function for A3 + k2 in B, k R/\I, and make the assumption that
there exists a positive constant 3’ 3’(k) such that for all y, z B we have

I’ fx/m(y)m(z)G(x,y)G(x,z)dx <=(k)(2.25)
B m(x)

where the integral in (2.25) is uniformly convergent. Roughly speaking, condition
(2.25) says that, if m(x) is continuously differentiable, then for yOB, m(x)-
O(Ix- yl), 1 _<- a < 3, as x-> y. We can now prove the following two lemmas.

LEMMA 3. Assume that (2.25) is valid. Then for all ko6 R+ there exists a positive
constant c c( ko) such that

lul2<--c(k) f. f llA3u+ku[2
foru W.

Proof We first choose ko R+\I. Then for u if" we have the representation

(2.26) U(X)----f (A3q" k20)u(y)G(x,y)dy, x B

and hence we have

(2.27)
f’f f’fLf1

lul= dx (a + k3o) u (y)(A3 + k)u(z)
a m /

n re(x)
G(x, y)G(x, y)G(x, z) dx dy dz.

We now see that

(2.28)

1
lul y(ko)

m

1

mm (A3 + k)u dx

<= Y(k)vl B f, f l l(A3+k2)ul2
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In addition,

(2.29) IB I l ’A3u’2 dx<--2 fB f 1
’A3u+k2u’2 dx+2k I f l

’u’2--m --m
and (2.28), (2.29) imply the lemma is true for ko R+\I.

Now assume ko I and let kl R+\I. From the analysis above, we see that
A3 + k2 lye’--> L/m(B) is injective and has closed range, i.e., A3 + k2 is a semi-Fredholm
operator. But A3 + kg A3 / kl2 / (kg- k2) is also semi-Fredholm since from (2.25) and
Rellich’s lemma I" l L21/m(B) is easily seen to be compact (a bit more effort shows
that this can also be established without assuming that (2.25) is uniformly convergent).
Since A3 + k2o is injective (represent u as in (2.26) with G(x, y) replaced by (x, y) and
note that the norm in L/m(B) dominates the norm in L2(B)) we can now conclude
that the lemma is true for k ko since the range of a semi-Fredholm operator is closed.

The lemma is now proved.
Now fix ko R+ and define for u, v the inner product

fB f l
(A3U / ko2u)(A3+ koEff dx(2.30) (u, V)ko --with norm ]UJko x/(U, V)ko- By Lemma 3 the norm ]. Iko is equivalent to ]" for any ko R+.

LEMMA 4. For arbitrary complex k define the sesquilinear form B on W by

B(u’ v; k) fa f l (A3 + k2)u(A3 + k2)

where it is assumed that (2.25) is valid. Then for every ko R+ there exists e > 0 such
that if lk- ko[ < e then

IB(u, v; k)-B(u, v; ko)!--< Clulolvlo
where C is a constant satisfying 0 < C < 1.

Proof. B is well defined by Lemma 3. We have

B(u’ v; k)-B(u’ v; k)=(k2-k) IB I l (uAa+Aau)
(2.31)

+ k4- k’) In I l u
and hence by Schwarz’s inequality

(fB f )I/2(IB f 1 )1/2[B(u, v; k)-B(u, v; ko)l<-IkE-k2ol llul dx IAl: dx
m m

(2.32, +]k2-k2’(Iel 1-]vJ2dx)l/2(IeI1]A3tl]2dx)l/2m m

+’k4-kl(fB f Zlul2dx)l/2(fB f m
From Lemma 3 we now have that

(2.33) IB u, v; k)-B(u, v; ko)l<-(EIk2-kl+lk-ko])c(ko)lulolvl.
Hence if Ik-kol is sufficiently small, then (21k2- kl + Ik- kl)c(ko) is less than 1 and
the lemma follows.
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Since B(u, v; ko)= (u, V)ko, we see from Lemma 4 that for each v W, B(u, v; k)
is a bounded linear functional on W. Hence, by the Riez representation theorem, there
exists Vk W such that

(2.34) B(u, v; k)= (u, Vk)ko.
Since V--Vk is linear, there exists a linear operator T=T(k) such that

(2.35) B(u, v; k)= (u, T(k)V)ko
for all u, v W. Since from Lemma 4 we have that

(2.36) IB(u, v; k)l--< (1 + C)lulo,
we see that T(k) is a bounded operator. Now let S(k) be the adjoint ofT(k) in W, i.e.,

(2.37) B(u, v; k)= (S(k)u, V)ko.
We claim that S(k) is an isomorphism on W that depends analytically on k. The
analyticity follows from the theory of operator-valued analytic functions [7] since from
(2.37), S(k) is weakly analytic and hence strongly analytic. S(k) is injective, since if
S(k)u=0, then B(u, v; k)=0 for every v W, and hence from Lemma 4 we have
B(u, u; ko)= 0, which implies that u 0. The range of S(k) is dense in W, since if
(S(k)u, V)ko 0 for every u W, then by (2.37), B(u, v; k) =0 for every u W and from
Lemma 4 we can conclude that v 0. Hence, to show that S(k) is an isomorphism,
we now only need to show that the range of S(k) is closed. It suffices to show that
there exists 8 > 0 such that for every u W,

(2.38) IS(k)ulo >-- 81Ulo
and we need only consider u such that lUlo 1. For such a u we have

IS(k)ulo- sup I(v, S(k)u)ol
Ivlk0-----1

(2.39) sup IB(u, v; k)l
IVlkol

>= {B(u, u; k)l,

IB(u, u; k)l->_a(u, u; ko)-IB(u, u; k)-B(u, u; ko)l

(2.40) >=lulo-Clulo

Inequality (2.38) now follows from (2.39) and (2.40), recalling that lUlo 1.
We are now in a position to prove the main result of this section.
TI-IEOREM 1. Assume that (2.25) is valid. Then, except possibly for a discrete set of

values of k > O, the set F is complete in L2(Ofi).
Proof. We began by defining a projection operator Pk in L2(B) depending on

k R/. Let f L(B) and for fixed ko R/ define the linear functional/y by

(2.41) l()= f I f(A3+k)S-(k)dx
where b W and k is such that Ik-kol < e, where e is defined as in Lemma 4. Then
ly is bounded on if’ by Lemma 3 and the fact that S-(k) is bounded. By the Riesz
representation theorem, there exists py W such that for all b W

(2.42) /f(tb) (tb, PS)ko
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where p: depends on k and the mapping f--py is bounded from L2(B) into if’. Then

(2.43) (Pc, b)ko f(A3 + k2)S-l(k)b dx
B

and s-l(k) is analytic since the isomorphism S(k) is also. Hence we have that S-l(k)b
can be analytically continued off the real axis and from (2.43) the mapping f-py is
weakly analytic. Hence, the mapping is strongly analytic, i.e., py pf(k) is an analytic
function of k in a neighborhood of every point in R/. We now define the analytic
operator P" L(B)--> L(B) by

(2.44) Pkf=1 (A + k2)pf.
m

Note that Pkf L2,,(B) since

(2.45)

for some constant c.

f fm,Pkf[:dx=f f 1--,Azpf+k2pflEdx
Ipsl

--< cllSll  < >

We now want to show that Pk is a projection operator for k R/. To this end,
let H be the vector space

H span {j,(klx)l r?(): l= 0, 1, 2,..., -l_<- m l}

where jt(klxI) is a spherical Bessel function and Y() is a spherical harmonic, and
let/-) denote the closure of H in LE(B) and H- the orthogonal complement of H in
L2,, (B). Then for f H we have

for all b W, and by a limiting process, (2.46) is also valid forf H. Hence, since S
is an isomorphism, py 0 for f/. For f H we have

(2.47)
m(x)f(x) -(A3 + k2) f I m(y)f(y)(x, y) dy

-(A + k2)Tkf
and, by the addition formula for Bessel functions and the unique continuation property
of solutions to the Helmholtz equation, Tkf is in W. Hence from the definition of p:
we have

(2.48)

i.e., from (2.41) and (2.47),

(2.49)

/y(S(k)b) (S(k)b, P:)ko
B(b, p:; k),

1_.. (A3+ k2-y)(A3b + k2b) dx
m

-IB I L (A3Tkf+ k2)(A3b + k2) dx
m
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for all b if" and k R+. Hence

(2.50) p+TC= 0

for f H+/-. Hence Pkf=f for f H, i.e., for k R+, Pk is a projection operator
(depending analytically on the parameter k).

We have shown above that Pkh 0 for h H. In particular, if {, w} is a solution
of (2.19) then PkV =0. Furthermore, we see that (1/k2)(w-) r and for kR+

lw(S(k))=f (A3+k2)dx
B

(.5 Z(+I
m k

(a3+ k2) dx

1

k (S(k)6, w- v),

i.e., p=(1/k2)(w-v) and PkW=(1/m)(Aa+kE)((w-v)/k2)=w. If we now use
Green’s formula to rewrite (2.19) in the form

-((
and apply the operator P to both sides of (2.52), we arrive at the operator equation

(2.53) w + kPTw 0.

Since P is bounded, PT is compact, and since PT is an analytic function of
k, we can conclude from the theory of analytic Fredholm operators that (I + kPT)-is a meromorphic function of k (cf. [7]). Hence, from (2.53) w=0, except possibly
for a discrete set of values of k From (2.19) this implies v=0 and the theorem
follows.

The discrete set of values of k > 0 such that the set F is possibly not complete
consists of those numbers k > 0 such that I+kPT is not inveible. But I + kPT
not being inveible is equivalent to I+kPTP not being inveible, i.e., by the
Fredholm alternative and the self-adjointness of P, I+kPTP is not inveible.
This is equivalent to saying that I+ kPT is not inveible. Note that in L(B) we
have that

(2.54) Tv= f f (x, y)m(y)v(y)dy

where (x, y) denotes the compex conjugate of O(x, y).
DEFINITION 1. Values of k > 0 such that I+ kPkT is not inveible are called

transmission eigenvalues.
As noted in the Introduction, transmission eigenvalues in general exist (cf. [3] for

the special case of a spherically stratified medium). The above discussion shows that
the transmission eigenvalues form a discrete set if (2.25) is valid.

3. Transmission eigenvalues and the interior transmission problem. In this section
of our paper we will show how the transmission eigenvalues are related to the existence
of nontrivial solutions to what we will call the homogeneous interior transmission
problem. If k is not a transmission eigenvalue we will show that there exists a unique
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solution to the interior transmission problem first discussed in [3]. The interior trans-
mission problem we are about to consider arises in a natural way in connection with
the inverse gcattering problem of determining the index of refraction n(x) from the
far-field pattern F(; k, t) for fixed k, t e012, e012. This was first discussed in [3]
and here we will merely outline the basic ideas. The "direct approach" for solving the
inverse scattering problem is to determine n(x) from (2.10) (recalling that m(x)= 1-
n(x)) and the scattering problem (2.2)-(2.4). The "dual approach" introduced by
Colton and Monk in [3] is to first determine g L2(0f) such that

(3.1) [ F(; k, )g() ds()= 1

for fixed k and c 012. Then, if we define the Herglotz wave function v by (2.18) it
can be shown as in Lemma 2 (see also [6]) that (3.1) is satisfied if and only if {v, w}
satisfies the interior transmission problem

(3.2) A3w+ kn(x)w =0 in lib,

(3.3) h3v+ k2v =0 in fib,
ikre

(3.4) w(x)- v(x) on Ofb,

(3.5)
Ow Ov 0 e-ikr

on OfbOr(X) rr(X) Or r

where lb {X: IX[ < b}, b > a (note that by unique continuation v(x)= w(x) for x
12b\B). The "dual approach" for solving the inverse scattering problem is to now
determine n(x) from (3.1) and the interior transmission problem (3.2)-(3.5) [3]. From
the point of view of applications, it suffices to consider only weak solutions of the
interior transmission problem, since Theorem 3.3 of [3] shows that every weak solution,
if it exists, can be approximated by a classical solution { Vo, Wo} such that Vo is a Herglotz
wave function.

DEFINITION 2. The pair {v, w} is said to be a weak solution of the interior
transmission problem if

(a) v H (where H is defined in Theorem 1),
(b) w e L(B) satisfies v w / kTk* w,
(c) For x 012b, kET*k W --e-ik/ r.
As remarked after Lemma 2, the homogeneous interior transmission problem is to

find a solution {v, w} of (3.2), (3.3) such that

(3.4’) w(x) v(x) 0 on Ofb,

(3.5’)
Ow Ov

a- (x)-r (x) 0 on aD,b.

The corresponding weak formulation is to find a pair {v, w} such that (a) and (b) of
Definition 2 are satisfied and for x Ofb,

(3.6) k2Tk*w 0.

From (3.6) and the addition formula for Bessel functions we see that since k>0,
w H-, and hence if {v, w} is a weak solution ofthe homogeneous interior transmission
problem then

(3.7) O=w+k2pkTW,
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i.e., for a nontrivial weak solution of the homogeneous interior transmission problem
to exist for k > 0, k must be a transmission eigenvalue. Conversely, if k is a transmission
eigenvalue then there exists we L(B), wO, such that (3.7) is valid. Then we H-and hence (3.6) is true by the addition formula for Bessel functions. Furthermore,
setting T*k W h + PkT*k W, h e I, we see that v w + kET* w, where v k2h e I, i.e.,
{v, w} is a weak nontrivial solution of the homogeneous interior transmission problem.

In [3], the existence of a unique weak solution to the interior transmission problem
is proved only for values of k sufficiently small. We can now do much better.

THEOREM 2. Suppose k > O. Then if k is not a transmission eigenvalue there exists
a unique weak solution to the interior transmission problem.

Proof. If two weak solutions of the interior transmission problem exist then their
difference satisfies the homogeneous interior transmission problem, and, since k > 0
is not a transmission eigenvalue, from the discussion preceding this theorem the
difference must be identically zero. Hence we have established uniqueness.

To prove existence, we introduce the vector space Ho defined by

(3.8) Ho span {jl(klx]) YT(): 1, 2, , -l -_< m _-< l}

and let P" Lm(B)H be the projection operator from L(B) onto the orthogonal
complement H of Ho. Suppose for k> 0 we can find a constant c and function
w e L(B) such that

(3.9) CPkjo W + k’PkT*k w,

(3.10) -k2(A, w)= 1

where jo(klx[) is the spherical Bessel function of order zero. (We note that Pjo 0.)
Then w e H- and setting jo ho+ Pjo, hoe o, Tk*W hi + PkT*kW, hi e/_it, we see that

(3.11) v w + k:ZT*k W
where v c(jo-ho)+ k2hl e I. From (3.10) and the fact that .w e H we see from the
addition formula for Bessel functions that part (c) of Definition 2 is satisfied, i.e.,
{ v, w} is a weak solution of the interior transmission problem. Hence to show existence
it suffices to show the existence of a solution to (3.9), (3.10).

To solve (3.9), (3.10), it suffices to find a solution Wo of

(3.12) Pjo Wo + k2pkT*k Wo

such that (jo, Wo) 0, since setting 3’ (jo, Wo), c 1/k2y, w Wo/k2y gives a
solution of (3.9), (3.10). But since k is not a transmission eigenvalue we know that
there exists a unique solution of (3.12). Hence to complete the proof of the theorem
it suffices to show that (jo, Wo) # 0, where Wo is the solution of (3.12). Suppose, on the
contrary, that (jo, Wo)=0. Then, since from (3.12) we have that Woe H-, we can
conclude that in fact Woe H+/-. Then, since PkPjo Pkjo 0, we have from (3.12) that
Wo+ k2PkT*kWo- 0, which implies that Wo 0 since k is not a transmission eigenvalue.
But from (3.12) this is a contradiction since Pkjo O. Hence (jo, Wo) 0 and the theorem
is proved. I-]

In conclusion, we mention two possible topics for future research that we feel are
particularly interesting. The first is to see if Theorems 1 and 2 are true when n(x) can
assume the value 1, i.e., the sound speed in the inhomogeneous medium can be both
greater than and less than the sound speed of the host medium. (Note that if n(x) is
identically equal to 1 then, by the unique continuation principle for the Helmholtz
equation, no solution exists to the interior transmission problem for any value of k.)
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The second problem of interest to consider is the inverse spectral problem of determin-
ing the index of refraction n(x) from the transmission eigenvalues. This is of particular
interest for the inverse scattering problem since, as mentioned in the Introduction, the
transmission eigenvalues can be numerically determined from the far-field data.
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H6LDER’S INEQUALITY
FOR FUNCTIONS OF LINEARLY DEPENDENT ARGUMENTS*

FLORIN AVRAM AND MURAD S. TAQQU:I:

Abstract. Functions with values in Lp on a torus, in Lp(-, +), or in lp, <= p <= are considered.
These functions are allowed to have linearly dependent arguments. A generalized H61der inequality for
products of such functions is established. The proofs involve the use of convex polytypes associated with
polymatroids and the Riesz-Thorin interpolation theorem.

Key words, polymatroid, convexity, Lp spaces, power counting, Riesz-Thorin
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1. The generalized Hiilder inequality.
A. Here we present the generalized H61der inequality for products of functions

of linearly dependent arguments obtained in [AB] for Lp functions, 1 =< p __<c, on the
torus. Corresponding results for other spaces such as Lp(-, +o) and lp are also
presented. These generalized H/51der inequalities can be used to obtain central and
noncentral limit theorems for dependent random variables, e.g., time series with
long-range dependence (see IT] and [A]). Long-range dependence is often encountered
in nature, for example, in geophysical time series and in the context of critical
phenomena in physics.

B. Let M be an m x n matrix, x (Xl, , Xm), and let ll(x)," ., I, (x) be n linear
transformations such that

(/l(x), ,/, (x)) (Xl,’’’, xm)M.

Let f, j 1,. ., n be functions on Lpj(dtx), 1 <= pj <- o.
We want to find conditions on zj= 1/p, j= 1,..., n, so that the generalized

H/51der inequality

(GH) f;(/(x)) II -< g IIf ll, 
j=l i----1 j=l

holds.
The key observation is that it is enough to find those points z (z,. , z,) with

coordinates zi equal to zero or one, for which (GH) holds; then by the Riesz-Thorin
interpolation theorem, (GH) will hold for the smallest convex set generated by these
points.

C. We consider the following three cases:

(Ca) /z is Lebesgue measure, normalized to unity, on the torus and the matrix M
has only integer elements.

(Cb) /z is a counting measure (i.e., f(x)dt.t(x) means +___f(x)). Moreover,
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the matrix M has only integer elements and all its nonsingular m x m minors
have determinant + 1.

(Cc) /x is Lebesgue measure and all the nonsingular rn x m minors of M have
determinants bounded below in absolute value by 1/K.

D. Let A denote both a subset of columns ofM and also the set of indices labeling
the columns. Let r(A) be the rank of the matrix with columns A. The subsets of M
include A whose rank is zero.

THEOREM. Suppose, respectively, that conditions (Ca), (Cb), or (Cc) hold. Then
the generalized Hiilder inequality (GH) holdsfor any z (zl," , z,) [0, 1]" satisfying,
respectively,

(al) jA Zj <-- r(A), for all A;
(bl) SA zs+ r(AC)>-- r(M), fr aliA and r(M)= m;
(cl) s=l zs= r(M)-m, and either condition (al) or (bl).

The constant K in (GH) equals 1 in cases (Ca) and (Cb).
Remarks. (1) We can have n < m in case (Ca) but not in cases (Cb) and (Cc). In

fact, neither conditions (bl) or (cl) nor the generalized Hflder inequality (GH) are
satisfied when n < m. (To verify that condition (bl) fails when n < m, take A to be all
the columns of M. Then (b 1) becomes Yj= z _-> m, having no solution z (Zl,. , z,)
[0, 1]n when n < m.)

(2) The additional condition s= zs r(M) in (cl) says that (al) (and (bl)) must
be equalities when A M.

In practice, it is not necessary to check that (al) or (bl) hold for all A. It is enough
to focus on flat and padded sets, which we now define.

Let s(A) denote the span of A, i.e., the set of all linear combinations of columns
in A that are contained in M. Flats are maximal dependent subsets, i.e., subsets of M
that coincide with their span (A s(A)). The set A is padded if any column a in A is
also in s(A\{a}), i.e., if it is a linear combination of other columns of A. Note that a
flat set is not necessarily a padded set (singletons are flats but not padded), nor is a
padded set necessarily a flat set. For example, if M corresponds to the complete graph
with 4 vertices, i.e.,

1 0 0 1 1 0

1 1 0 0 0 1

0 1 1 0 1 0

0 0 1 1 0 1

and if A is the subset consisting of the first four columns, then A is padded but not flat.
Because zi _-> 0, condition (al) holds if it holds for all sets A that are flats. Condition

(b l) holds if it holds for all sets A that are flats. In fact, because 0 -< zi _-< 1, we have
the following proposition.

PROPOSITION. Conditions (al) and (bl) in the theorem are, respectively, equivalent
to

(al’) r(A) --gA Zj >-- 0, for all A fiat and padded.
(bl’) r(M)- r(A)--,gAC zg <--0, for all A fiat and padded and r(M) m.
Remarks. (1) The sets and M are flat and 3 is padded. The set A- always

satisfies (al’) and the set A- M always satisfies the inequality in (bl’).
(2) A is independent if r(A)= [A]. Any flat can be expressed as s(A) where A is

independent and, for such A, r(s(A)) r(A) IAI. Condition (al’) is then equivalent to

IAI- Y z_->o VA independent.
jas(A)
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Such relations, known as power counting conditions in mathematical physics, ensure
the convergence of the left-hand side of (GH) when the integrands are regularly varying
functions (see, for example, [FT] and [TT]).

2. Examples.
(1) As an example of (al’), consider the integral

J=flf(xl)f(x2)f3(x+x2)f4(x-x2)dxdx2T T

where T denotes the torus [0, 1], sof(x + 1) =f(x),j 1,. ., 4. Here m 2, n =4, and

M=
0 1 1

has rank r(M)= 2. The flats consist of , the single columns, and M. Only and M
are fiat and padded. Since (al’) always holds for , it is sufficient to apply it to M.
The theorem yields

IJI =< IIIIII,/=,IIAII llzllfllll=llf<,ll,l=
for any z (Zl, z2, z3, z4) [0, 1 ]4 satisfying Zl + z2 + z3 + z4 -<-- 2, e.g., ifz (0, 1, 1/4, 1/2), then

(o
(2) To illustrate (bl’), consider

E E A(x,)f(x)f(x, + x)A(x,-
X2.--.

Since m, n, and M are as in Example (1), we have r(M)= m and the only flat and
padded sets are and M. Since it is sufficient to apply (bl’) to , the theorem yields
]SI <= IIfll/]]f2]]l/]]f3][/][f4]],/, for any z= (z, z2, z3, z4) [0, 1] 4 satisfying Zl + z2 +
z3+z4>=2, e.g.,I < 4 + 2 /2SI=I-[s=, (Ex:-fs(x))

(3) An application of (el) yields

-" x2)f4(x1--X4) dx d2 - If(x)l’/ dx
j..=l

for any z (zl, z2, z3, z4) [0, 1 ]4 satisfying zl + Z2 + Z + Z4 2.
(4) The usual H/51der inequality provides an extreme example of (cl), where

M =(1,..., 1), r(M)= m 1, and r(A)= 1, for all A. Then condition (cl) becomes

j= zj= 1.
(5) The other extreme occurs when there are n= m functions. If the linear

transformations are of full rank (r(M)= m), then (cl) or a direct change of variable
yields the trivial condition zj 1, j 1,. , m.

3. Proofs. Throughout, we consider the cases (a), (b), (c), characterized by the
conditions (Ca), (Cb), (Cc), respectively.

LEMMA 1. Let z (Zl,. zn) have all coordinates equal to zero or one, and let A..
denote the set of columns of the matrix M corresponding to those j’s for which z 1.
Then (GH) holds if, respectively,

(a2) r(A,.) IA.I (i. e., A, is an "independent" set);
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(b2) r(Az)= r(M)= m (i.e., Az is a "generating" set);
(c2) r(Az)= IA,.I r(M)= m(i.e., A,. is a "basis").

The constant K in (GH) equals 1 in cases (a) and (b).
Proof. We replace xl,’",x, by a linear combination of new variables

Ul,’", u,,, as follows. In case (a), we have r(A,)=lA..l<=rn. We let the ui=xi,

i= 1,. ., rn- IA,.I and set the remaining ui’s equal to the/.(x),j Az. In case (b) we
let the u’s be any independent subset of the/(x), j Az. In case (c), we set u =/(x),
iAz.

In each of the cases, after switching to the new variables and bounding f by If l,
we can move the sup norms [Ifll/0,J A,. outside the integrals. The conditions of the
lemma ensure that what remains, namely HjA I l, is integrable.

Note that in case (a), no constant K appears because the multiplicity of the linear
map over the torus exactly cancels the Jacobian of the transformation. Note also that
in the case (b), there may be more functions [fl with zj 1 than variables uj. But the
multiple sum only increases if the arguments of these are changed to new arguments
independent of u, 1,. ., m, and if these new arguments are summed.

LEMMA 2. The conditions (a2), (b2), (c2) and (al), (bl), (cl) are, respectively,
equivalent for points z (zl, ", z,) whose coordinates are all equal to zero or one.

Proof. (a) r(A,)= IA,.I is equivalent to: for all A c Az, r(A)= [AI=YA z. For
general A, write A A’t_J A", where A’ c A, A"c A. Then ja Zj jea’ Zj r(A’)
r(A’t_J A")= r(A).

(b) One direction follows from

z / r(Ac) [A fq A,.I + r(A)
jA

>- r(A f’) A,.) + r(Ac)

=> r(A CI Az) + r(A f’l Az)

_-> r(A.)

=r(M)=m.

To get the other direction, set A= A,..
(c) Suppose Yi--1 zi r(M)= m. Then (al) and (bl) are equivalent because when

either one holds,

z= zj+ z<= z+r(AC).
j-----1 jA jaA jA

So (cl)=>(c2) by parts (a) and (b). To get (c2)(cl) note that IA..I- m:>=l zj m,
and use parts (a) and (b).

Proof of the theorem. Consider the convex domain in [0, 1]" generated by z=
(zl,’’ ", z,) satisfying condition (al), (bl), (cl), respectively. The extreme points of
the domain have coordinates all equal to zero or one.

Indeed, in case (a), condition (al) characterizes the independent polytope of a
polymatroid with the rank r(. as submodular function [W, Thm. 18.3.1]. Edmonds’
formula [W, Thm. 18.4.1 applies. The formula relates coordinates ofthe extreme points
of the independence polytope to rank differences. Since all coordinates lie in [0, 1]
and since the rank function is integer-valued, the coordinates of the extreme points
can only be zero or one.
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In case (b), let r* be the rank function of the dual matroid [W, Thm. 2.1.2], i.e.,
r*(A)=lAI-r(M)+r(AC). Condition (bl) can be rewritten jA (1-- Zj) <

IAI- r(M) + r(A), i.e.,

E (1-zj)<--r*(A)
jA

Edmonds’ formula then applies to 1- zj.
Finally, in case (c), the extreme points for (cl) are a subset of the extreme points

for (a1) and (b 1).
Thus, by Lemmas 2 and 1, the generalized H61der inequality (GH) holds for all

z=(z,..., z,) that are extreme points of the convex domain characterized by (al),
(bl), (cl), respectively. To show that it holds for all z belonging to the convex domain
use the Riesz-Thorin interpolation theorem [BL, Exercise 1.6.13, p. 18] with z 1/p
and T Lp x x

Proof of the proposition. To prove (al’)=>(al), we must show that d(A)=-
r(A)-,A z>-O for all A. If A is padded and flat, then d(A)>-_O by (al’). If A is
padded and not flat, then

(1) d(A)>-r(A) , zj=r(s(A))- , z=d(s(A))>-O
js(A) js(A)

by (al’) since s(A) is padded and flat. If A is not padded, there exists a column ai A
such that ai s(A\{a}) are hence

(2) d(A) d (A\{a,})+ 1 z, >_- d (A\{a,}).

If d(A\{ai})>-_0, we are done. If it is not, keep repeating the argument and use the
fact that d() _-> 0.

To prove (bl’)(bl), we must show that d’(A)=-r(M)-r(A)-Y.AC z>-O for
all A. An argument similar to the preceding one applies. Merely replace (1) by

d’(A) <-_ r(M)- r(A) z r(M)- r(s(A))- z d’(s(A)) <-O
j(s(A)) ja (s(A))

and (2) by

d’(A) d (A\{a,})- 1 + z, <_- d(A\{a,}).

We have d()<= 0 since is padded and flat. I-1

4. Extension. It is natural to expect that a generalized H61der inequality holds
for functions of several variables f(x,..., Xk) belonging to a tensor product space
Lp,(R) (R) Lp. There are many such tensor product spaces [LC]. The smallest one
(corresponding to the greatest cross norm) is defined as follows: iff is a finite sum of
products, then

f(u.,,)(
u:l

where the infimum is taken over all decompositions of f(x,..., Xk) in the form

E Hk v)v=lf(u" (x,). The corresponding tensor space is obtained by completing the
set of finite sums of products under this norm. A natural analogue of the theorem
holds for such a space (e.g., see lAB, Thm. 1’]). It would be interesting to find out
whether (GH) holds over larger L tensor product spaces (corresponding to smaller
cross norms).
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FUCHSIAN SYSTEMS ASSOCIATED WITH THE P2ff2)-ARRANGEMENT*
KOUICHI SAKURAI" AND MASAAKI YOSHIDA:

Abstract. A family of Fuchsian systems of differential equations in two variables that interpolate Appell’s
F and F4 are constructed. Their geometric properties are also studied.

Key words. Fuchsian system, Appell’s hypergeometric equations, orbifold, uniformization, Weyl group

AMS(MOS) subject classification. 33A35

O. Introduction. In this paper, we construct a family E (s) of Fuchsian differential
equations, depending on the two-dimensional parameter s, defined on the complex
projective plane M CP2 with regular singularities along

H" xyz(x-y)(y-z)(z-x){(x+y-z)2-4xy}:O
where [x, y, z] is a system of homogeneous coordinates on M.

We call this arrangement H, of six lines and one conic, the P20=2)-arrangement,
because the set of lines in the projective plane p2(=2) over the finite field = {0, 1}
consists of seven lines corresponding to the seven components of H. The arrangement
H relates the Weyl group W(F4) of type F4 as follows. The 24 mirrors of the reflections
in the Coxeter group F4 defines a hyperplane arrangement in C4. Passing to C p3, this

arrangement defines a plane arrangement in CP called the W(F4)-arrangement. The
restriction H of the W(F4)-arrangement to any projective plane N in the arrangement
consists of 13 lines in CP that can be given by the equation

i?t XYZ(X2 y2)( y2 zE)(z xE)(x + y+ Z)(-X + Y+ Z)(X Y+ Z)
.(X+Y-Z)=O

where IX, Y, Z] is a system of homogeneous coordinates on N. The arrangement H
is the image of H under the map r" N M given by

r’[X, Y,Z]-[x,y,z]=[X, Y2, Z)].
The map r is the quotient map by the group K(-7]: 4-Z) generated by [X, Y, Z]-
I-X, Y, Z] and IX, Y, Z]- IX, -Y, Z] (see Fig. 1).

The two subarrangements
H’: xyz(x-y)(y-z)(z-x)=O, H": xyz{(x+ y-z)2-4xy}=O

of the arrangement H are well known as the singular loci of Appell’s hypergeometric
differential equations F and F4, respectively (see Fig. 2). Our equation interpolates
the equation F and the modified equation F (see 2) of F4. More precisely, for some
special values of the parameter s, our equation E (s) turns out to be the equation F
and for some other special values of s, it turns out to be the equation F. Moreover,
the principal parts of the equations E (s), after some normalization, are linear combina-
tions of those of the equations F and F. We must say that it is a surprising result if
we recall the nonlinearity of the integrability condition (see 1). This mysterious
phenomenon is also reported in [Yos2].

For some special values of the parameter s, the equation E(s) happens to give
the uniformizing equations (see 3) of the hyperbolic orbifolds found by Hunt and

* Received by the editors March 7, 1988; accepted for publication February 8, 1989.

" Information Systems and Electronic Development Laboratory, Mitsubishi Electric Corporation, 5-1-1
Ofuna, Kamakura 247, Japan.

Department of Mathematics, Faculty of Science, Kyushu University 33, Fukuoka 812, Jhpan.
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H

FIG.

H6fer [Hun], [H6f], where a hyperbolic orbifold is an orbifold whose universal
uniformization is the complex unit ball B2= {(zl, 2) llzl/lzl< 1).

1. The main theorem. We consider a system in the form
2 Ow

(E)
02w , P(x)+P(x)w, i,j 1, 2

OXiOXj k=l OXk
defined on M--CP2, where w is the unknown and x=(xl, x2) is a system of
inhomogeneous coordinates on M.
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H

FG. 2

DEFINITION. System (E) is said to be in normal form if

2

(N) Pj(x) O fori=l,2.
j=l

DEFINITION. System (E) is said to be completely integrable if (E) has three linearly
independent solutions.

Any completely integrable system in the form (E) can be transformed into the
uniquely determined system in normal form by replacing the unknown w by its product
with a nonzero function of x. The consequent system is called the normalform of (E)
[Yosl].

It is known [Yos3] that (E) in normal form is completely integrable if and only
if the coefficients {P} satisfy the following equations"

P(x) P(x), i,,j 1, 2, k 0, 1, 2,

PI(X) _OP(x)_OP(x..___) + 2{Pl(x)}E_EpEE2(x)pE(x)
Ox Ox2
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oP:(x) oPi,(x)+
OX OX2

+ pl2(x)p21,(x)- P,(x)P2(x),

P2(x)
Op222(x) OP2(x)
0X2 0X

+ 2{P2(x)}2- 2P,(x)P22(x),

(IC) := -2-’-----’--
02pI(X)
axlax2 ax
-3p22(x)

02p2,(x) OP,(x)t-6P,(x) -3P,(x)--------
Ox2

Op21,(x) Op222(x) 02p2(x)
+3PI,(x)

Ox2 Oxl Ox2

Op22(x)

OPI(X) Op211(x)
-2P,(x)-P2(x)=O,

OX (X

(IC)2 :=-202P2(x) 02p2(x) Op222(x)
Ox2Ox----- 8x- ’6P2(x)-3P2(x)ox,

OPl(X)

OP2(x) OPl,(x) O2Pl,(x)
3Pl,(x)+3p22(x)

(X1. 0X2

-2P2(x) OP2’(x’-----)-P2,(x) OP2(x)=O.
OX2 OX2

LEMMA 1 [Yos3]. Let Q() (i,j, k= 1,2) be the coefficients of the normalform of
the transformed system of (E) by the coordinate change = (x). Then we have

t)2l OXk 1 ( o_+ o) (Q(s) 8k 8’ log det

2

+ X Pq(x) OPOqOXk
p,,,,= Oxi Oxj Os,

where is the Kronecker symbol.
If Q(x) P(x) (i, j, k 1, 2), then the system (E) is said to be invariant under

the transform x :.
DEFINITION. A projective solution of a completely integrable system (E) is the

pair z=(zl, z2) of ratios zi wffWo (i= 1,2) of three linearly independent solutions
Wo, wl, and w2 of (E).

DEFINITION. A projective solution of (E) is said to be ramifying at 0 (0, O)
along x 0 with exponent a if there exists a projective solution z (z, z2), which is
expressed as follows:

z,(x) xr v,, z=(x) =X g

for some a e C, where v, /32, and u are holomorphic at O, not divisible by Xl.
LEMMA 2 [Yos2]. If a projective solution of (E) in normalform is ramifying along

x 0 with exponent a, then the coefficients P of (E) have the following properties"

(R) p222(x), x,P,(x), (l/x,) P2(x), and Pl,(x)-(a-1/3Xl) are holomorphic.

DEFINITION. System (E) in the normal form is said to have ramifying singularities
along x 0 with exponent c if the condition (R) holds.
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To state the theorem we prepare some notation. Let [x, y, z] be a system of
homogeneous coordinates on M related to (Xl,X2) by xl =x/z and xa=y/z. Let
Hi(i= 1,..., 7) denote the following curves:

Hl:{x=0}, Ha:{y=0}, H3:{z=0}, H4:{x=y},

Hs:{y=z}, H6:{z=x}, H7:{(x+y-z)2-4xy=0},
so we have H=U 7

i=1 Hi. Let G be the transformation group on M generated by
Ix, y, z] [z, x, y] and Ix, y, z]-* [y, x, z]. Note that G is isomorphic to the symmetric
group in three letters.

THEOREM. For given complex numbers si # 1 (i 1,. , 7), there is a completely
integrable differential equation E (s), in normal form, with ramifying singularities along
Hi with exponent si if and only if

S $2"- S3, S4-- S5-- S6, 6sl--3s4--2S7+2=O.
(In particular, E (s) is G-invariant.) The four coefficients of (E (s)) are explicitly given
as follows:

S S4(Xl 2x2 + 1) 4S7x2Pll(Xl, x_):--+ +
Xl 2(Xl- 1)(Xl--Xa) (X + X2-- 1)2-- 4XlX2
-3S4x2(x2-1)p121(Xl x2)

2x1(x1- 1)(Xl- xa)
4S7x2(x2 1)

Xl{(X -[- 22 1 )2 4X1X2}

p212(Xl, x2)-- P121(x2, Xl), P_(xl, x2) PII(X2, Xl),

where S 1/2( si 1).
Remark. Other coefficients P of (E) are uniquely determined by the equalities

(N) and by the assumption that (E) is completely integrable. Therefore, in the sequel,
to describe the system (E) in normal form we give only the four coefficients Pll, PI,
P2, and P22 of (E).

2. Relation between E(s) and Appell’s hypergeometric differential equations.
Appell’s hypergeometric equation Fl(a, b, b’, c) is a differential equation with regular
singularities on [J6i= Hi, while it is nonsingular along H7. The normal form of
Fl(a, b, b’, c) is given by

Pll(a, b, b’, c; Xl,

1 xa(x2- 1)
3 f

{ c b’)x2 + (2b c)xl + b’- a + b + 1 ))xlx2 + (a b + 1 )x2},

p211(a, b, b’, c; Xl, X2)=
(x(x- 1)):

P2(a, b, b’, c; Xl, X2)-- Pl(a, b’, b, c; x_, Xl),

P2(a, b, b’, c; xl, x2) P2l(a, b’, b, c; x2, xl),

where fl x1xa(x 1)(x2 1)(Xl x2).
PROPOSITION 1. Equation E(s) with s7 1 coincides with the normalform ofAppell’s

F1 which is G-invariant. Precise correspondence between E(s) E(sl, s2, s3) and
Fl(a, b, b’, c) is given by

E(Sl, s4, 1)= FI(-S -s4 + 1,--1/2(S4 1),--(S4 1),--1/2(2S + S4-- 3)).

This identity is valid for all Sl, S4 C.
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Appell’s hypergeometric equation F4(a, b, c, c’) is a differential equation with four
linearly independent solutions and has regular singularities on LJ i=l Hi LJ H7, while it
is nonsingular along LJ 6

i=4 Hi. The solution space of F(a, b, c, c’) has three-dimensional
invariant subspace if b c/ c’/ 1 [Kat]. The corresponding equation is called the
modified F and denoted by F(a, b, c, c’). The four coefficients of the normal form of
F(a, b, c, c’) are given by

1 1
P]l(a, b, c, c’; Xl, XE) -- -/44 {c(x2-1)E / a b / c / 2c’- l ))Xl

+(a + 5b- c-2c’+ 1)XlX2+(a -(b+ 2c’- 1))x12},

Pl(a,b,c,c,xl,x2) {(a-b-c’+l)x+(a+b-c’+l)(1-x2)},

P(a, b, c, c’; xl, x)= Pll(a, b, c’, c; x, x),

P(a, b, c, c’; xl, x2) Pl(a, b, c’, c; x2,

where f4= xlx2{(xl + x- 1)- 4xlx2}.
PROPOSITION 2. Equation E (s) with s4 1 coincides wich the normalform ofAppell’s

modified F4, which is G-invariant. Precise correspondence between E s and F’4( a, b, c, c’)
is given by

(sl, 1, 3s1-1/2) F’(-3s + 1, 2sl + 1, -sl + 1, -sl + 1).

3. Uniformizing equations of some hyperbolic orbifolds. We briefly recall the
definitions of orbifolds and their uniformizations. Let X be a complex manifold, let
S be a hypersurface of X, let S J S be its decomposition into irreducible components,
and let b be either infinity or an integer called the weight attached to the corresponding

S. The triple (X, S, b) is called an orbifold if for every point in X U {S]b o} there
is an open neighborhood U and a covering manifold that ramifies along U f S with
the given indices b. It is called uniformizable if there is a global covering manifold
(called a uniformization) of X with the given ramification datum (S, b). If X is
uniformizable, there exists a uniformization X that is simply connected, called the
universal uniformization. Let X be an orbifold and be its universal uniformization.
The multivalued inverse map X- . of the projection .-X is called the developing
map.

Ifthe universal uniformization of an orbifold (X, S, b) is isomorphic to the complex
ball (we call such an orbifold hyperbolic), there exists a unique Fuchsian differential
equation in normal form such that its projective solution gives the developing map.
The equation is called the uniformizing equation of the orbifold (X, S, b). For more
details see [Yos2].

In his thesis, Hunt [Hun] has studied N-dimensional hyperbolic orbifolds. He
has discovered a three-dimensional hyperbolic orbifold attached to the W(:4)-
arrangement. Restricting to a plane in the W(:4)-arrangement, we have a two-
dimensional hyperbolic orbifold attached to a line arrangement in CP2--the P2(:2)-
arrangement. Furthermore, H6fer [H6f] has shown that there are only four hyperbolic
orbifolds over this arrangement. These orbifolds are given as follows. Consider the
arrangement H in N. Define the weight function b on N as in Table 1 (see Fig. 3).

COROLLARY. Uniformizing differential equations of the above orbifolds are obtained
by pulling back E s) under the map r, where the values of the parameter s are given as
in Table 2.



1496 K. SAKURAI AND M. YOSHIDA

TABLE

Case (u ,=1/,, u ’,=,, ,, /7, p,

(oo, 2, 4, -4, 2, 2)
2 (6, 2, 2, -4, 6, 3)
3 (-6, 6, 2, 4, 2, 1)
4 (-3, 3, oo, oo, 1, 1)

7H ui=lH

FIG. 3

TABLE 2

(0, 1/2, 1/4)
-, 1/4)
,- 1/4)3 (-h, 6,

O)4 (-,

Case (s,, s,,, $7)
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Remark. In the case where S7 1, E(s) reduces to Appell’s F1, which has been
studied by Terada [Ter] and Deligne and Mostow [DM].

4. Proof of the results. Let the projective planes M, N, arrangem.ents H, H, the
group K, and the projection r" N M be as above. The arrangement H in N consists
of 13 lines"

/’rl (X 0}, ={Y=0}, 3={Z=0},
4 {X2- y2 0}, 5 { y2_Z2 0}, /6 {Z2-X2 0},
/-7 {(X + Y+Z)(-X+ Y+Z)(X- Y+Z)(X+ Y-Z)=O}.

Note that r() H (i= 1,..., 7) and r()= H.
We construct a K-invariant differential equation (/) defined on N with ramifying

singularities along H with exponent t (i 1, , 7). We follow the method established
in [Yos3].

LEMMA 3 [Yos3]. If (E) has ramifying singularities along the line at infinity, then
the total degree of the rational function P(x) is negative for i, j, k 1, 2.

By Lemma 3, we can put, X2(X2 1)A/ F, 211 X2(X 1)2B/ F,
/522= X,(X- 1)C/F, /52= X21(X21-1)2D/F,

where

A= 2 a(i,j)X1X2, B= 2 b(i,j)X1X2,
i+j_8 i+j--5

C= E c(i,j)X’ jx:, D= E d(i,j)XX:,
i+j<-8 i+j<=5

F X,X2(X21 1)(X 1)(X21 X2)(X, + X2+ 1)(-Xl + X2+ 1)(Xl X2 + 1)

(X1 + X2-1).
The assumption that the system (E) is K-invariant says that

a(i,j)=c(i,j)=O unless i-=j-=0mod2,

b(i,j)=O unlessi+l--j-=0mod2,

d(i,j)=O unless i-=j+ 1-- 0 mod 2.

Applying Lemma 2, along every component of H, we obtain finitely many linear
equations with unknowns a(i,j),. , d(i,j). By solving these, all the coefficients
a(i,j),..., d(i,j) are expressed in terms of ti (i- 1,..., 7)"

A(X1, X2) TI(x21 1)(X- XEE){(X2 +X- 1)2- 4xEx}
4 2 2T X(X-2X/ 1){(X2+ X22-1)2-4X12X22}

8T7X2 21X2(X21-1)(X21- X22)
B(X1, X2) 3 T4XI{(X21 / X29.- 1)Z-4XX22} 8 T7X,(X21-1)(X12- X22),
C(X1, X2)= -A(X2, X1), D(X1, X2) -B(X2, X1),

where Ti= 1/2(ti- 1); moreover, these linear equations require that t’s satisfy T1= T2=
T3, T4=T5=T6,3T-3T4-2T7=0.

Now we study the integrability condition. The integrability condition of E(t) is
given by

(IC), -64r7(3T 3T4 2 7 2 2 )3T )XXE(X1-1)2(X 1 (xE1-x)E/F2,
(IC)2 -64T7(3T 3T4 2 7 2 2__T )X1XE(X1 1)3(X22-1)2(XE1-X)E/F2.
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Since the parameter has the relation such that 3T-3T4-2T7=O, we have (IC)1
(IC) O.

Finally, we project E(t) by the quotient map or" M M/K N, where r is given
by (X,, X2) (x, x2)= (X, X). By Lemma 1, coefficients P of the normal form of
((t)) are given as follows"

1 1 1 1
Pll(X) -+-- fi,(X), P2(x) ---+-- fi2(X),

6x 2x 6x

Pl(X) 2x PI(X), P2(x) 2xl
2(X).

Since is branching along only the three lines U 3
=1 H with indices 2, there are the

relations among the exponents such that t 2sa, t s, and tv ST. Thus we obtain
the differential equations we want. Easy calculations show the remaining claims of the
theorem.

Propositions 1 and 2 are proved by straightforward computation, so we omit the
detail. If s7 1, the equations (IC)I =(IC)2=0 are satisfied. This proves the last
statement of Proposition 1.

5. Linear structure of the set of solutions of the aanliaeur differential euutioa
(IC). The integrability condition

c (ic),=(ic):=o

of (E) with (N) is a system of nonlinear differential equations with unknowns {P}
{P =-P:, PI, P2, P2 -P2}. There is a one-to-one correspondence between the
set of solutions of IC and the set of completely integrable systems (E) in normal form.
We have a great interest in rational solutions of IC of which corresponding systems
(E) have transcendental solutions. The method used in 4 is a practical one for finding
such solutions.

Since the system IC is by no means linear, we cannot expect that linear combina-
tions {tiRe+ t2Q}(tl, t2C) of two solutions {R} and {Q} of IC are also solutions
of IC; indeed, it is not true in general. But sometimes miracles occur. Propositions 1
and 2 say that the coefficients {P} ofthe principal pas ofE(s) are linear combinations
of the coefficients of the principal pas of the normal form of Appell’s F1 (with a
special parameter) and those of the system F (with a special parameter). In [Yos2],
it is shown that linear combinations {tiRe+ t2Q} of two solutions {R} and {Q} of
IC are solutions of IC:

RI(x, y) 3/x + 81x:y(2 x-y)/w,

{R} R(x, y)=81xy(l+x-y-xy)/w,
R:(x, y)= R(y, x), R:(y, x)= RI(y, x),

Q(x, y) 3x2(y3-1 )(1 + x-2y3)/2h,
{Q} Q(x, y)= -9xy(y- 1):/2h,

Qi:(x, y)= QI(y, x), Q:(x, y)= Q(y, x),

where
2

W= I-I (toax+toby +I)=(X3+y3+l)3-27x3y3,
a,b=O

h (x3 1)(y3 1)(x3 y3).
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These two examples suggest the existence of some linear structure of the set of
solutions of IC that is as yet veiled in mystery.

kWe conclude this paper by giving a useful system to test whether tlRij+ t2Q
(t, t2 C) are solutions of IC.

PROPOSITION 3. Let {R} and {Q} be solutions of IC. Then"
(1) For all t C, { tRy} are solutions of 1C if and only if {R} satisfy the following

conditions:

02R c3:R1 02R22 + + =0,
OxOx ox Ox

2
02R2 +@+o  oX, ox, ="

(2) {R k+ Q} is a solution of IC if and onlyif ((R}, {Q}) satisfy the following
equations:

6 RI x Ox

3 (RI oQ2+ Q, OR_R2 OR;l- Q2 ORal+ RI10q+Q10R
Ox2 Ox2 Ox2 Ox2 OXl 10Xl J

--2 {RI 0’02 + Q,.0R-[R2 0Q..I + Q2RI =0,
OXl Ox j Ox Ox j

6{RQ2+Q20R2Ox OXl J

3{ROQI,+QORI, RI, oQ2 QI, oR2 oQI ORI,+ +
OXl OXl OXl OXl

OX2 OX2 J OX2 10X2 J

Acknowledgment. The authors are grateful to Professor Mitsuo Kato who kindly
informed us of the system F and the usefulness of the system Reduce 3.2, which we
used to carry out our complicated computation.
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ON AN INTEGRAL TRANSFORM INVOLVING A CLASS OF
MATHIEU FUNCTIONS*

D. NAYLORf

Abstract This paper constructs a formula of inversion for an integral transform whose kernel involves
a type of Mathieu function of the third kind. The particular Mathieu function involved, g, M)(x +1/2ir),
satisfies the equation ’xx u2+ 2h2 cosh 2x)O together with the condition that ,(x, u)->0 as x--} co. The
transform in question can be used to generate solutions of the damped wave equation in infinite regions
bounded by elliptic cylinders when a complex boundary condition is applied on the internal boundary.

Key words integral transforms, Mathieu functions

AMS(MOS) subject classifications. 44A15, 33A55

1. Introduction. In a previous paper [2] the author considered the problem of
determining the behavior for large values of u of a certain basic solution of the
differential equation

(1.1) yx,, (u: + 2h: cosh 2x)y.
The solutions of this equation are related to the modified Mathieu functions M)(z),
j 1, 2, 3, 4, that satisfy

(1.2) Yzz (u:’-2h: cosh 2z)y.
Equation (1.1) transforms into (1.2) by means of the change of variable z x +1/2ir so
that the functions M)(x +1/2i.tr) satisfy (1.1). The quantity u, the characteristic exponent,
used in the standard notation of the Mathieu functions is connected with the parameter
u: by a complicated equation that [1] for large values of u assumes the form

1.3) u2 /2 .. O(h4/-2).
It is known [1] that

(1.4)
M)(z) nl)(2h cosh z)[1 + O(sech z)],

M)(z) H<2)(2h cosh z)[1 + O(sech z)],
as Re (z)->az in any strip [Im (z)l =< constant, the parameter u being held fixed. The
functions H<1), H denote the Hankel functions, the notation being that of Watson
[8]. Since cosh (x +1/2ir) sinh x and

H)(ix)= 2iexp( 1 )"tr - i,r K,. x

H(ix) 2iexp ( 1 ) ( )=’ -’ iu K,,(x) + 2 exp i,’tr I,,(x),

it follows that

M x+ i" ---r exp -- iur K(2h sinh x)[1 + O(cosech x)],

M( x+ ir exp -- i,r K(2h sinh x) + 2 exp iur L(2h sinh x)

1 + O(cosech x)],

* Received by the editors July 6, 1987; accepted for publication (in revised form) January 20, 1989.
f Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada

N6A 5B9.
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as x . Finally, since [8, p. 202]

I,:(x) (lx)/-xe I,,(x) (27rx) -1/2xe

as x oo, we find that

(1.5)
M(,,3)(x +1/2iTr) -i( rh sinh x) -/2 exp (-2h sinh x -1/2ivTr),

M<4)(x +1/2iTr) (Trh sinh x) -1/z exp (2h sinh x +1/2ivTr)

as x oo, for fixed u. It follows from these formulas that there is essentially only one
solution of (1.1) that remains bounded as x +oo. This solution is the function
M)(x +1/2i’rr), which for brevity we denote as O(x, u). In [2] attention was concentrated
on this solution, the object being to obtain sufficient information to investigate an
integral transform having this function as kernel. Let e-’Xf(x) L2(a, c); then the
integral transform in question is defined by means of

(1.6) F(u) f(x)d/(x, u) dx.

This transform is of use when it is required to construct solutions of the damped
wave equation in regions exterior to cylinders of an elliptic cross section, in which
case the radial eigenfunctions satisfy an equation such as (1.1), the quantity u2 being
an eigenvalue parameter, and it is the aim of the present paper to construct a formula
ofinversion for (1.6). The underlying expansion problem is that posed by the differential
equation (1.1) on the interval a-< x < oo together with the condition that

(1.7) ky(a)+y’(a) =0

where k k + ik2 denotes a complex constant.
In the remainder of this section the asymptotic formulas derived in [2], giving

the behavior of @(x, u) as u .oo, are stated. In all of these formulas, x is supposed
to be positive and fixed.

exp -- iu" +- iu- i
(1.8)

-ux-iu-i +O(u

as u in the sector )w e arg u , and

exp -i-iu+ i

-ux+iu+i +O(u

as u m in the sector -N arg uN-+ e. A simpler formula is valid as u m in
the sector larg u N-e where it can be shown that

exp ulog -ux-i [l+O(u-’)].

In fact, it will be shown in the next section of the paper that (1.10) also holds as u .oo
in the domain Re (u)>= c where c denotes a positive constant.
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Formulas (1.8)-(1.10) were developed in [2] by applying formulas obtained by
Pitts [4], who has also shown [5] that asymptotic formulas for the derivative ,x(X, u)
can be obtained from the corresponding formulas (1.8)-(1.10) by formal differentiation
with respect to x so that, for example,

O(x, u)=-2 exp -- i,w+- iuw-- ir

sinh ulog e -ux--iu’--ir +O(u-)

as u-oo in 1/2w-e-<_arg u<--w.
2. The integral theorem. To construct a formula of inversion to be associated with

the integral transform defined by (1.6), it is necessary to introduce a second basic
solution b(x, u) of (1.1). This solution will be defined as that generated by the initial
values b(a, u)= 1, x(a, u)=-k and so satisfies a condition like (1.7). The function
b(x, u) is necessarily a linear combination ofM andM), and it is easily verified that

(2.1) b(x, u)= -1/4iTr[g(u)M)(x +1/2iTr)-gl(U)M)(x +1/2iTr)]
where

g(u) kM)(a +1/2iTr) + M)’(a +1/2iTr),
gl(u) kM)(a +1/2iTr)+ M)’(a +1/2iTr).

In this paper it is assumed that the constant k appearing in the boundary condition
(1.7) is independent of u and in this case it can be shown [7], by writing the appropriate
integral equation satisfied by &(x, u), that this function is an entire function of the
complex variable u and that for fixed values of x and large values of u in the halfplane
Re (u)_->0,

(2.4) b(x, u) cosh u(x-a)-ku-1 sinh u(x-a)+O[u- eU("-")].
Before formulating the integral theorem, it is necessary to state certain results

concerning the eigenvalues of the problem being investigated. These eigenvalues are
the zeros p, of the function g(u) and it is assumed that they are arranged in ascending
order of magnitude so that Ip]--< Ipel--< Ip3] It is shown in the Appendix that if k
is complex there are no real zeros and no purely imaginary zeros. If Im (k)> 0 the
zeros are located in the first and third quadrants of the complex u-plane, while if
Im (k)< 0 they are located in the second and fourth quadrants. Henceforth we will
assume for definiteness that Im (k)> 0. In this case, although no zero p, can actually
lie on the imaginary axis, it can be shown that those zeros of sufficiently large magnitude
lie close to, and approach, that axis as their magnitudes tend to infinity, in the sense
that Re (p,)-->0 and IIm (p,)]--> as n-->o. It follows that all of the zeros can be
positioned in a strip of finite width parallel to the imaginary axis ofthe complex u-plane.

THEOREM. Letf(x) be continuousfor x >= a > 0 and suppose thatf(x) is ofbounded
variation in the neighborhood ofx and that e-aXf(x) L2(a, c) where A _-> 0; then (1.6)
implies

_1 f uqb(x, u)F(u) du
(.5) f(x)

vrr J g(u)

where L denotes a line Re u)= c parallel to the imaginary axis of the complex u-plane,
c > max (A, 1/2), and L is positioned so that all of the zeros of the function g(u) lie to the
left of it.
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The method adopted to establish the above theorem will follow that used in [3],
where an integral transform involving Bessel functions is discussed. This method stems
from an inspection of equations (1.8)-(1.10) and (2.4), which show that when u is
large the functions (x, u) and b(x, u) behave for varying x like suitable combinations
ofthe exponentials e and e-ux. By relating the Mathieu functions to the corresponding
exponential or hyperbolic functions, the proof of the inversion formula (2.5) can be
reduced to that of the Mellin inversion formula.

To verify (2.5), we let L(R) denote the straight line in the complex u-plane drawn
from c- iR to c + iR, where c is the constant introduced in the theorem, and then form
the equation

(2.6)
u (x, u)F(u) au= u (x, u) du fo) g(u) ) g(u)

f(t)O(t, u) dt.

This equation follows after inserting the expression (1.6) for F(u). The order of
integration of the repeated integral present on the right-hand side of (2.6) is now
reversed. To justify this step it will be proved that, for finite values of R, the repeated
integral in question exists when the integrand appearing therein is replaced by its
modulus. With this purpose in mind we first apply the Schwarz inequality, revealing that

(2.7) f(t)k(t, u) dt <-Ile-’f(t)ll lien’S(t, u)ll

where II" denotes the L2(a, oo) norm so that

(2.8) Ile’,ll e="’l,(t, u)l2 dt

A suitable bound on the value of this integral is obtained in the Appendix, where it
is shown that

(2.9)
1 e2aa )2(u- X=)(u+ A) e’lO(t, u)l2 dt<-- ul luO(a)l+lO’(a)l

where u ul + iU2 and ul > A. It follows from (2.7) and (2.9) that the integral obtained
from that on the right-hand side of (2.6), after taking the absolute values of all the
terms in the integrand, does not exceed the quantity

v/-d e"lle-’fll f u4,(x, u) (lu0(a, u)l+lC,x(a, u)l) du
2(c2 A 2)1/2 J_R g(u) (u2 + A 2)1/2

since ul c on the path L(R). This quantity is finite since the integrand is continuous
on the path of integration and the latter is of finite extent. This permits the interchange
of the order of integration in the integral on the right-hand side of (2.6) and leads to

(2"l)f’u ’(x’u)F(u)dufof g(u)
f(t) dt

R) g(u)

The next step is to determine the behavior of the integrand appearing on the right-hand
side of (2.10) when the variable u is large and located in the halfplane Re (u) ->_ c. First
we note that, for large values of u in the stated halfplane, (1.8) and (1.9) both reduce
to the simpler formula (1.10). That is to say, (1.10) holds as u--> in the halfplane
Re (u)_>-c. To see this we write u r ei and note that

(2.11) u log (2.) 1 1
ux -- iu" -- izr A+ iB
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where

A=rcos0 log -x + r-0 rsin0,
(2.12)

B=rsin/9 log -x 7r-/9 rcos0

Both terms on the right-hand side of (2.12) are nonnegative for r large and 0 -< 0-<1/27r.
If u lies in the stated halfplane then r cos 0->_ c, which is positive, and therefore A is
not less than c[log (2r/ he)- x], which is large and positive for sufficiently large r.
Therefore cosh (A+ iB)=1/2 eA+n+ O(U-) where c_->1/2, and on making this change in
(1.8) we find that the latter formula reduces to

(2.13) / i(uu)
1/2 [ (2U) 1

exp u log e -ux-ivr [l+O(u-1)].

Similarly, it can be shown that the real part of the argument appearing inside the
hyperbolic function in (1.9) is also large and positive in the relevant part of the complex
u-plane so that this function can be replaced by an exponential function. When this
change is carried out we again obtain (2.13), which therefore holds as u -> oo throughout
the region Re (u)>_-c. The asymptotic form of the function g(u)-k,(a, u)+,x(a, u)
that also occurs in (2.10) can be deduced at once from the above formulas for , from
which it follows that

(2.14) g(u) exp u log e ua-- ivr [1 + O(u-1)]

as u + oo in Re (u) _-> c. The asymptotic behavior of the function 4 (x, u) also present
in (2.10) is given by (2.4), and on combining this formula with (2.13) and (2.14) we
find that

u6(x, u)$(t, u)__ _1 eUO,_,_l eu(2a_x_t) + h(u, x, t)(2.15)
g(u) 2 2

where h(u,x, t)=O[u- eu{x-’}] as u-+oo in Re (u)_->c, uniformly on finite x and
intervals. Since 4(x, u), (t, u), g(u) are analytic functions of u, the function h(u, x, t)
is also analytic except for simple poles at the zeros p, of g(u).

On inserting (2.15) into the integral on the right-hand side of (2.10) we obtain

(2.16)

UCb(X, u)F(u) du

R} g(u)
e du e- t) dt

2 )

1 u(.-xe du e-"’f( t) dt

+ f(t) dt h(u, x, t) du
(g)

after inverting the order of integration in the first and second repeated integrals on
the right-hand side of (2.16). This process is again justified for finite values of R by
absolute convergence since on writing e-C’f e-c-a)t e-atf, it is found after using the
Schwarz inequality that e-af LE(a, oo) implies e-af L(a, oo).

Now by the Mellin inversion theorem [6], since x > a we find that

(2.17) lim
||"

c+iR

R-o J c-iR
e du e-tf(t) dt 2icrf(x)
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while by the same theorem, the second term on the right-hand side of (2.16) tends to
zero as R o since 2a x < a therein. Hence, on proceeding to the limit as R - oo in
(2.16), we obtain

lim
ub(x, u)F(u) du_-icrf(x)+ lim f(t) dt h(u, x, t) du.(2.18)

R-oo (R) g(u) R-oo (R)

To complete the proof of (2.5) of the theorem it is necessary to verify that

lim f(t) dt h u, x, t) du O.(2.19)
R-oo LCR)

To obtain this result it will first be shown that

[h(u, x, t)- h(u, t, x)] du O(R-1)
(R)

as R-, uniformly for any bounded interval of values of t. This result will be
established with the aid of Cauchy’s theorem and for this purpose we need some
properties of the function h(u, x, t)-h(u, t, x), which by (2.15) is given by

(2.21) h(u, x, t)-h(u, t, x)= sinh u(x-t)+uj(u,x, t)

where

j(u,x, t) [b(x, u)p(t, u)-qb(t, u)d/(x, u)]/g(u).

It is shown in the argument that follows that the function on the left-hand side of
(2.21) is an odd function of u that is O(u-1 eulx-tl) as u--> throughout the complex
u-plane. The function j(u, x, t), regarded as a function of x, satisfies the basic equation
(1.1) and automatically vanishes at the value x t. Furthermore, the derivative of this
function with respect to x, also evaluated at x= t, equals -W(b, tp)/g(u), where
W(b, 6) denotes the Wronskian. Since this Wronskian equals k,(a, u) + ’x (a, u), its
value at x a, and this by (2.2) equals g(u), it follows that j(u, x, t) is the solution of
(1.1) defined by the initial values j(u, t, t)=0, jx(u, t, t)=-1. Therefore j(u, x, t) is an
entire function of u2, that is, an even entire function of u and, in addition [7, p. 10],

j(u, x, t)=-u-1 sinh u(x-t)+ O(u -2 e "lx-tl)

as u--> oo throughout the u-plane, uniformly for any bounded intervals of values of x
and t. It follows from (2.21) that the function h(u, x, t)-h(u, t, x) is, as stated, an odd
function of u that is entire and that is O(u- e’lx-tl) as u ---> o uniformly on any bounded
interval of values of t.

Equation (2.20) may now be obtained by integrating the function h(u,x, t)-
h (u, t, x) around the boundary of the rectangle 0 =< Re (u) -< c, -R =< Im (u) -< R. Since
this function is odd in u the contribution from the line joining the points + iR vanishes
while the stated asymptotic bound on this function shows that the contributions from
the top and bottom sides of the rectangle are each O(R-). This leaves the contribution
from the remaining side L(R) as O(R-), as stated in (2.20), since by Cauchy’s theorem
the sum of the integrals around all four sides is zero.

We may now return to the proof of (2.19). The integral present in the latter
equation will be expressed as the sum of two integrals, obtained by dividing the
t-interval into the parts (a, x) and (x, ), and it will be shown that both of these
integrals tend to zero as R--> .
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We consider first the integral

(2.22) f(t) dt
(R)

h(u, x, t) du.

According to the relation (2.20) the expression (2.22) may be rewritten as the integral

(2.23) f(t) dt h(u, t,x) du+O(R-1).
L(R)

An estimate of the inner integral, the one along the path L(R), occurring in this
expression can be obtained by deforming the path onto the semicircle drawn to the
right of L(R) and having this line as diameter. On this semicircle

h(u, t, x)= O[R-1 e-(x-t)Rcs]
so that

h(u, t, x) du
(R)

r/2

e-(x-t)RcsO dO
d -’tr/2

(2.24) <= 7rR-l(x- t)-l’ a -< < x,
7r, a<= t<-_x.

In view of the fact that the first of the two bounds on the right-hand side of (2.24) is
not suitable in the vicinity of the value =x, we subdivide the t-integration in (2.23)
into the parts (a, x-R-/2) and (x-R -1/2, x), applying the first bound to the first
subinterval and the second bound to the second subinterval. It is then found that the
modulus of (2.23) is not greater than the quantity

(2.25) 7re-’ If(t)l(x-t)-1 dt+r If(t)l dt+O(R-1).
_R-I

Both integrals here are O(R-1/2) since (x-t)-l<=R 1/2 in the first integral and the
domain of integration in the second integral is of length R-/2. Therefore all three
terms appearing in (2.25) tend to zero as R

We consider next the integral

(2.26) f(t) dt h(u,x, t) du.
(R)

To treat this integral, the interval (x, ) is decomposed into the parts (x, Xo) and
(Xo, c), where Xo is chosen greater than x and large enough to ensure that

(2.27) e-’lf(t)l de < e

where e is arbitrarily small and positive.
The contribution of the interval (x, Xo) to the value of the integral (2.26) is the

integral

fxf(t) dtIL(u,x,(2.28) h t) du.
(R)

Since h(u,x, t)= O[u- eU(X-’)], where now t>=x, and this tends to zero as u--> in
the region on the right-hand side of Re (u) c, it can be seen on following an argument
similar to that used to discuss the integral (2.22) that the integral (2.28) also tends to
zero as R -.
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To complete the analysis of (2.26) it will now be proved that

(2.29) f(t) dt h(u, x, t) du <-_ Me
(R)

where M is a constant, and R large enough. In view of the definition (2.15) of the
function h(u, x, t), the integral present in (2.29) is equal to the sum

1
f(t) dt eu()a-o’-t) du21 f( t) dt

CR)
eux-t) du +- g)

(2.30)
+ f(t) dt

uctb(x, u)d/(t, u) du

R) g(u)

The first two repeated integrals appearing in (2.30) are similar to those on the right-hand
side of (2.16) and vanish as R-oo, as is seen on reversing the order of integration
and applying the Mellin inversion theorem, since x and 2a-x both lie outside the
interval of integration (Xo, oo) in (2.30).

The third double integral present in (2.30) may be shown to be O(e) by deforming
the path L(R) onto the rays W(R) and the circular arcs C(R) depicted in Fig. 1. The
rays are defined by u c + s e+i where s varies from zero to R and 0o is an acute
angle, and the arcs connecting the extremities of L(R) and W(R) are of radius R. On
replacing L(R) by W(R) and C(R), the double integral in question is replaced by

(2.31) f u (x’ u) dU fx f u (x’ u) du

WR) g(u)
f(t)d/(t, U) dt+ f(t)6(t, u) dt

C(R) g(u)

after reversing the orders of integration in both repeated integrals, a process that is
permissible since it will be apparent in the course of the argument that follows that
both integrals are absolutely convergent. The inner integrals present in (2.31) are
estimated by means of the Schwarz inequality, which, by analogy with (2.7), shows in
view of (A9) with ,X replaced by 2, therein that

f (u)/ e;’luC,(Xo, u) ,(Xo, u)l
]f(t)b(t, u)] dt <-

4(U12_A2)l/2(t/+a2)l/2

C(R)

FIG. 1. Complex u-plane.
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On using this result together with (2.4), (2.13), and (2.14) to estimate the values of b,, g(u) for large values of u, it is found that

u6(x, u) Ixg(u)
If(t)(t, u)l dt

(2.32) =<

since u2 A 2 (Ul A )(/’/1 "-/ ->" (C --/ )/21

e exp (Aa-(xo-x)R cos 0)
2(c A 1/2 sin 0

The expression (2.32) is integrable along the path W(R) so that the first repeated
integral in (2.31) exists as R oo and is clearly O(e). The use of the bound (2.32) on
the arcs C(R) shows that the second repeated integral in (2.31) does not exceed the
quantity

eRexa f 7r/2

e-(x-x)RcsO dO.
2(c A 1/2 sin 0o |Joo

It is readily shown that the integral appearing in this expression is O(R-1) so that the
whole expression is O(e) for arbitrarily large values of R. It follows that both of the
repeated integrals in (2.31) are O(e) and so the same is true of the third such integral
in (2.30). Since the other two integrals in (2.30) tend to zero as R - c, the result (2.29)
follows for large enough values of R. Since (2.22) and (2.28) tend to zero as R-,
the result (2.19) follows on adding all three integrals (2.22), (2.28), and (2.29). Finally,
as a consequence of (2.19), (2.18) reduces to the inversion formula stated in the theorem.

3. The eigenfunction expansion. An explicit expansion in eigenfunctions can be
deduced from (2.5) by deforming the path of integration onto the imaginary axis and
taking the residues at the poles traversed. Since the functions b(x, u), (x, u), and
therefore F(u), g(u), are even functions of u, the integral taken along the entire
imaginary axis vanishes, leaving the contributions from the residues at the zeros of
g(u). Since at such a zero the function qb(x,u) defined by (2.1) reduces to
iTrgl(u)(x, u), we find on calculating the residues the expansion

(3.1)
1 (p,)d/(x,p,)F(p,)

f(x)=-- iTr
Pngl

’(n=l g p)

where the summation extends over all of the zeros p, of g(u) that lie in the first
quadrant of the complex u-plane.

To justify the procedure it will be assumed that f L2(a, oo) and we revert to (2.5)
rewritten in the form

uclJ(x, u)F(u) du
(3.2) f(x)= _1 lim

l,rr R->oo . e g u

We now apply Cauchy’s theorem to the rectangle 0 -< Re (u) =< c, -R -< Im (u) R,
where R is chosen so that the top side of the rectangle passes between consecutive
poles of the integrand. To achieve this the quantity R will be allowed to tend to infinity
through the sequence of values R, defined by Rn log (2Rn/he)-aR, n, where n is
an integer that tends to infinity. With this choice the sides of the rectangle will, by
(A15), avoid the poles. In addition, we note that the quantity B, introduced in (2.11)
with x set equal to a therein, will be such that B- (n +1/4)Tr as n- oo. We now verify
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that the integrals along the top and bottom sides vanish in the limit as R-. The
integral along the top side is equal to

(3.3) J=
U4’(x’ u) dul fog(u)

f(t)q(t, u) dt.

We again divide the integration with respect to into the parts (a, Xo), (Xo, ) where
Xo is chosen to satisfy (2.27) with A set equal to zero therein, and write J J + J: where

fo Iaf(t)b(t’ u) dt’(3.4) J1-
uc(x, u) dUl

g(u)

(3.5) J2= fo: U6(X’ u) dUl fxg(u)
f(t)O(t, u) dr.

First we consider J2. On applying the Schwarz inequality to the t-integral in J2, we
find that

]f( t)( t, u)l dt e Il2 dx

where I111 denotes the norm based on the interval (a, ) and is obtainable from (A12).
On estimating the values of 6(a, u), 6(a, u) appearing in (A12) with the aid of (1.8)
and (1.11) we find since B(n+) that

exp i(u-)
(3.6)

]f(t)@(t, u)] dt < e
RUl

[1 +sinh2A+O(u- eA)] /2.
Similarly, we find that

(3.7) ]g(u)] 2
u / (exp i(u-z,)cr

It follows from (3.6) and (3.7) that

[cosh 2A + O(u -1 eA)] 1/.

lfx 1 -1/2 ( )--1/2g(u)
f(t)q(t, u) dt <=e - Ruu =e Ru (R:+u) -/4.

On taking the modulus of (3.5) and using the above result and the fact that b(x, u)
is, by (2.4), bounded in the strip 0<_-Re (u)=< c, it follows that

() 1/2 fo: -1/2(R2 1/4(3.8) I/l =< Me u + U) an1

where M is a constant. On taking u/R as new variable of integration in (3.8), it is
seen that the integral appearing in the latter equation is O(R /2) as R oo so that
]J2[ <= M’e, where M’ is a further constant, independent of R.

We now turn our attention to the quantity J defined by (3.4) and which, by (2.15),
may be written as

1 e(__l e(a__ du.(3.9) J= f(t) dt h(u,x, t)-- -Since h O(u- e(x-) and this is simply O(R-) uniformly in t, since u u + iR on
the path of integration, the contribution of the function h(u, x, t) to the value of the
repeated integral on the right-hand side of (3.9) is O(R-1). In regard to the first
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exponential term on the right-hand side of (3.9), we find on carrying out the integration
with respect to Ul, that the contribution of this term equals the integral

’ 1 ](x t)- t)eC(X-t) eiR(x-t)f( dr.

This integral tends to zero as R-, oo by the Riemann-Lebesgue lemma. A similar
argument reveals that the contribution of the second exponential term present on the
right-hand side of (3.9) vanishes in the limit as R- o. Thus as R- o, J-0 and
J- J, which is arbitrarily small so that J 0 as R- oo. Therefore the integral along
the top side vanishes in the limit as this side recedes to infinity. A similar result holds
for the integral along the bottom side of the rectangle, and this justifies the derivation
of the expansion (3.1).

Appendix. In this Appendix the bounds on e’O(t, u)[] utilized in 2 are derived.
In addition some properties of the zeros of the function g(u) are established. The
required bounds may be obtained from the differential equation (1.1) by multiplying
the latter by eX, where 3 denotes the complex conjugate ofy and h >- 0, and integrating
by parts, this leads to

eXX(tl2 + cosh 2x)ly[22h2 dx

(A1)
=-eX"fi(a)y,(a)-A e"X.yxdx eXlyxl dx.

Further relations may be obtained by noting that 2 Re (Yxx)= Yxfix, 4-fixYxx so that

(A2) 2 Re e"’y,.xx dx -e’aly,(a)l-- A e’Xlyxl2 dx.

Similarly, we find that

(A3) 2 Re e"Xfiyx dx -e""ly(a)l2- A eXXlyl2 dx,

2 Re e" cosh 2x.fy dx

(A4)
-ex" cosh 2aly(a)l:- e’X(A cosh 2x + 2 sinh 2x)lyl 2 dx.

Setting )Txx (t2 + 2h2 cosh 2x)37 in (A2), we obtain

(A5) 2 Re eX(2+ 2h2 cosh 2x)fiy, dx -e;’aly,(a)]2- A eXXlyxl2 dx.

Eliminating the integral involving the term ea’ cosh 2xyy, between (A4) and (A5) yields

2(u2 u2) Re eXy) dx + 4u//2 Im e")’.yx dx

(A6) =-e;’"lyx(a)12+2h2 e" cosh2aly(a)i2-A elyxl2 dx

+ 2h e"(A cosh 2x + 2 sinh 2x)lyl dx.
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On extracting the imaginary parts, it follows from (A1) that

(A7) A Im e’"yy,,dx -e"xa Im fi(a)yx(a)-2ulu2 e"lyl dx.

On taking the real part of equation (A1) and then eliminating the integrals involving
the terms Re )Tyx, Im fiYx, and lyxl that occur in (A1), (A3), (A6), and (A7), after some
reduction we find

u-x u+x e"XlYl dx+Ah2 e"X(A cosh2x+sinh2x)lyl2 dx

(A8) = I u-u+-2h cosh 2a ly(a)l+ly(a)l- Re y(a)(a)

1
exa+2 uu2 Imy(a)x(a).

The function y present in this equation is now taken to be the basic solution if(x, u)
introduced in 1. To obtain a simple expression for the desired bound on the quantity
IleX(x, u)ll, first we consider large values of u. For such values we may employ (1.8)
to show that

Re (x, u)x(x, u) - le’<-o)l[cos 0 sinh 2A-sin 0 sin 2B + O(u-1 ea)].

The expression on the right-hand side of this equation is negative for (large) values
of u in the domain Re (u) c > 0 since, by (2.12), A is large and positive there. Suppose
now that we confine attention to the halfplane u A; then, replacing A by 2u in all
of the terms appearing in the expression on the right-hand side of (A8) except the
exponential ones, we show that the magnitude of this expression does not exceed that
of the quantity

u ea[(u+u)l(a)12+lx(a)l-2u Re (a)(a)+2u2 Im (a)x(a)]

=u elu(a)-x(a)[
where (a), ff(a) denote (a, u), (a, u), respectively. Equation (A8) now gives the
inequality

1 1
i

1 e(m9) u-X= u+Xz e"Xl dxu, lu(a)-x(a)l.
This bound holds whenever u is large and Re (u)> A. If u is not large, the bound
(A9) still holds, by the method of derivation, at those paas of the halfplane Re (u)>A
where the quantity Re O(a, U)x(a, u) is negative. If this quantity is positive a slightly
different bound applies, for then it is clear that the expression on the right-hand side
of (A8) does not exceed the quantity

ku e"[(u+u)l(a)l+l(a)l+2u Re (a)x(a)+2u2 Im (a)x(a)]

=ku earlaP(a) + x(a)l2

so that, in this case,

( 1 )( 1 ). e,,dxN(AIO) u-A u+ A
1 e. 2
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It follows from (A9) and (A10) that

(All) u2-- u+- X eXl4,l dx=- Ul eXa(luO(a)l+lx(a)[)2.

This inequality holds throughout the halfplane Re (u)> h, and on replacing h by 2A
we obtain the result (2.9) used earlier.

The propeies of the zeros of the function g(u) may be deduced in the following
manner, staing with (A7). This equation holds for all real values of A, and on setting
h 0 it reduces, when y is replaced by , to

(A12) 2ulu [l2 dx =-Im (a, u)(a, u).

If u is a zero of the function g(u) k(a, u)+ (a, u), (A12) takes the form

2uu I1 dx= m l(a, u)l.
It follows at once from this equation that the product uu has the same sign as Im (k)
and cannot vanish unless k is real. Thus if Im (k) 0 there can be no real and no
purely imaginary zeros. If Im (k) is positive, so is UlU, and the zeros are confined to
the first and third quadrants of the u-plane. However, if Im (k) is negative, the zeros
must be positioned in the second and fouh quadrants.

We now consider the location of the large zeros and for this purpose suppose, as
in the paper, that Im (k)> 0 in which case the zeros lie in the first and third quadrants
of the complex u-plane. Those zeros of large magnitude that are located in the first
quadrant may be obtained by substituting the asymptotic formulas (1.8) and (1.10)
into g(u) kO(a, u)+ (a, u) and equating the result to zero. This leads to the equation

-ua 2iu i=in+O(u-1)

where n is a large enough positive integer. On setting u r e- and separating real
and imaginary pas, we find

(A13) r cos 0 log he]-a + -0 r sin 0= O(r),

(A14) r. sin 0. log khe]-a -0. r. cos O. n+ +O(r).

Since there are no real and no purely imaginary zeros, the values 0. 0, /2 are ruled
out. Therefore both terms on the left-hand side of (A13) are positive and each must
tend to zero as r. . Thus r. cos 0.[log (2r./he)- a] 0 as r. , implying that
r. cos 0. 0, that is, the zeros of successively larger and larger magnitudes approach
the imaginary axis. It also follows that 0. /2 as n , and on using these results
in (A13) and (A14) we obtain the approximate equations

(A15)
r. lOg\he/-a n+- 7r+O(rl),

1 ( r2O. ’- Tr+ O \iOg r. ].



ON AN INTEGRAL TRANSFORM 1513

Acknowledgment. The author thanks the referee for corrections and comments
that led to the extension of the validity of (2.5) to functions of exponential growth.

REFERENCES

[1] J. MEIXNER AND F. W. SCHAFKE, Mathieuschefunktionen und Spharoidfunktionen, Springer-Verlag,
Berlin, 1954.

[2] O. NAYLOR, On simplified asymptotic formulas for a class of Mathieu functions, SIAM J. Math. Anal.,
15 (1984), pp. 1205-1213.

[3] O. NAYLORAND P. H. CHANG, On aformula ofinversion, SIAM J. Math. Anal., 13 (1982), pp. 1053-1071.
[4] C. G. C. PITTS, Asymptotic approximations to solutions of a second order differential equation, Quart. J.

Math. Oxford Ser. (2), 17 (1966), pp. 307-320.
[5] ., Simplified asymptotic approximations to solutions of a second order differential equation, Quart.

J. Math. Oxford Set. (2), 21 (1970), pp. 223-242.
[6] E. C. TITCHMARSH, Introduction to the Theory of Fourier Integrals, Oxford University Press, London,

1950.
[7] Eigenfunction Expansions Associated with Second Order Differential Equations, Vol. 1, Second

edition, Oxford University Press, London, 1962.
[8] G. N. WATSON, Theory of Bessel Functions, Cambridge University Press, London, 1958.



SIAM J. MATH. ANAL.
Vol 20, No. 6, pp. 1514-1528, November 1989

(C) 1989 Society for Industrial and Applied Mathematics
016

TRANSFORMATIONS OF THE JACOBIAN AMPLITUDE FUNCTION
AND ITS CALCULATION VIA THE ARITHMETIC-GEOMETRIC MEAN*

KENNETH L. SALAd"

Abstract. With the aid of the Poisson summation formula, expressions for the Jacobian amplitude
function, am (z; m), along with the complete set of Jacobian elliptic functions are given that, aside from
their branchpoints and poles, respectively, are convergent throughout the complex plane for arbitrary
parameter m. By utilizing the expression for am (z; m), its periodicity properties are determined in each of
the regions m < 0, 0 < m < 1, and m > 1. Novel yet fundamental identities are presented describing various
linear and quadratic transformations of the Jacobian amplitude function. Finally, that method based on the
arithmetic-geometric mean and most widely employed for calculating the Jacobian elliptic functions is shown
to be, when interpreted explicitly in terms of am (z; m) and its transformation properties, a method first
and foremost for the calculation of the Jacobian amplitude and co-amplitude functions from which the
elliptic functions themselves are subsequently evaluated by means of simple, trigonometric identities.

Key words. Jacobian amplitude function transformations, Jacobian elliptic functions, arithmetic-
geometric mean

AMS(MOS) subject classifications. 33A25, 30D99, 41A58

1. Introduction. The most familiar ofthe twelve-member family ofJacobian elliptic
functions (JEF) is the copolar trio

sn(z; m)=sin [am (z; m)]- 03 (R),(z/(R)3a; q)
02 04(z/O; q)’

04 02(Z/032; q)
(1.1) cn(z; m)-cos [am (z; m)]-

02 04(Z/032; q)’

d O4 l)3(z/); q)
dn(z; m)=z am (z; m) (R)--- O4(Z/O32; q),

where am (z; m) is the Jacobian amplitude function, m is the Jacobian parameter
(k=+m1/2 is the modulus), q=exp[-TrK’(m)/K(m)] is the nome with K(m) and
K’(m)=K(1-m) the Jacobian quarter periods, and Oi(z; q), i= 1,... ,4, are the
theta functions with Oi denoting (R)i(z=0; q). The remaining members of the JEF
family can be defined directly either as reciprocals or ratios of these three functions
or by adding to the argument z one or both of the quarter periods, e.g., cd(z; m)=
cn(z; m)/dn(z; m) sn(z+ K; m). In what follows we will assume that the parameter
m is real but otherwise arbitrary while the variable z x + iy is, in general, arbitrary
and complex. Comprehensive descriptions of elliptic functions and JEF in particular
may be found in [8], 10], [20], and [23], while extensive compendia of the properties
of JEF are given in [5], [13], [15], and [17]. In general, well-known identities involving
JEF will be cited without specific reference since they may be found in any of the
aforementioned works.

The canonical definitions of the JEF given by (1.1) represent two characteristically
distinct approaches to the description of these functions. Historically, the JEF were
first defined as inverses of elliptic integrals with the basis of this approach summarized
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12, 1988.
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by the fundamental identity am (z; m)= F-l(z; m)where F(z; m)is the elliptic integral
of the first kind (a historical account of the development of elliptic function theory is
given by Ailing 1]). However, the study of the JEF via the amplitude function is not
and has never been the favored approach principally for the reason that, since am (z; rn)
is not itself an elliptic function, this approach could not effectively exploit the many
general and powerful theorems for elliptic functions but would instead be forced to
rely almost exclusively on "brute force" algebraic methods. With origins traceable to
Jacobi’s seminal work Fundamenta Nova [12], the preferred approach to the study of
the JEF has been through the theta functions, which, of course, are entire functions
with simple zeros. In modern texts on elliptic function theory (e.g., Chandrasekharan
[8]), the function am (z; m) is ignored altogether.

To describe the amplitude function thus as one of the more obscure higher
transcendental functions would be an understatement. The extent of its inconspicuous-
ness is best illustrated with the example ofthe classical problem ofthe simple pendulum.
The angular displacement 19 of a point mass/z constrained to swing in a vertical plane
by a massless, rigid rod of length R is described by the nonlinear equation (Whittaker
[221)

(1.2)
d219 g
dt---W+ sin O 0,

or, equivalently,

(1.3) - txR
2 - + txgR(1 -cos 19)= Eo

where the total energy Eo is a constant. Note that (1.2) is also identical in form to the
traveling wave, sine-Gordon equation. With the most general possible initial conditions
of O 0 and dO/dt [2Eo/tzR2]/ for 0 (this choice places no restrictions on the
value of Eo), the exact general solution to (1.2) and (1.3) is simply

(1.4) 19(t)2 am [(R) /2 ] 2/xgR
t;m m-

Eo
a result that follows immediately from the identities (d/dx)am(x; m)= dn (x; m) and
(d/dx) dn (x; m) -(m/2) sin [2am (x; m)]. Despite the simplicity of this result, the
explicit solution (1.4) has heretofore never been published even though dozens of texts
and papers have treated the simple pendulum problem "exactly." Invariably, these
"exact" treatments solve not explicitly for 19(t) but rather for the variable sin (19/2)
(see, e.g., Whittaker [22] and Ailing [1]) and, furthermore, choose to either ignore
entirely the rotating (rn < 1) pendulum by adopting initial conditions that restrict the
value of m to m > 1, or to treat the cases of rn < 1 and m > 1 as distinct problems (the
special case of rn is also often treated separately). The distinction, however, between
O(t) and sin (19/2) is not a trivial one; the latter is a true doubly periodic function for
all values of the parameter m # whereas the amplitude function possesses a real
period if and only if m > 1, i.e., only the am (z; m) solution as given in (1.4) explicitly
and unequivocally distinguishes between the oscillating (m > 1) and rotating (m < 1)
pendulum solutions. In addition, it is important to note that (1.4) is a solution to the
pendulum equation (1.2) for arbitrary values of m, i.e., it is solely the initial conditions
that determine the specific value of the parameter m. Thus we have, from (1.4), that
sin (19/2)= sn[(g/mR)l/2t; m]= k-sn[(g/R)/2t; 1/m], revealing that both cases of
a parameter greater than 1 and less than 1 (as well as rn 1) are succinctly and
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completely delineated by the result in (1.4) and that, in contrast, the "traditional"
division of this problem into two (or three) distinct cases is unnecessarily redundant.

In the following, utilizing a completely novel representation for am (z; m) that is
convergent throughout the complex plane excepting only the logarithmic branchpoints
of the function (hereafter the term "unrestricted representation" will be used to denote
any representation of a function that is valid throughout the complex plane except at
any isolated, singular points and/or branchpoints of the function), we examine its
periodicity for all real values of m. We also present various linear and quadratic
transformations of the amplitude function corresponding to, e.g., the complementary
parameter transformation, the Landen and Gauss transformations, etc. Although the
expression of these transformations in terms of the JEF are well known, the results
presented here for am (z; m) are, with one exception, new results. As will be evident,
the transformations for am (z; m) offer concise, straightforward representations for
these transformations and, in certain cases, offer a simple representation for which the
corresponding JEF transformation is considerably more complicated. An example of
the latter is the ascending Landen transformation that takes a simple form for am (z; m)
whereas the identities involving the JEF are algebraic. In addition, the formulae
presented here offer further insight into the nature of these basic transformations
beyond that associated strictly with the JEF formulae.

Principally for reasons of computational efficiency, the most widely used method
for calculating the JEF (and elliptic integrals) is that based on the arithmetic-geometric
mean along with various supplemental relations normally involving specific transforma-
tions directly related to the function to be evaluated (see the general articles by King
[14], Carlson [6], and Milne-Thomson [17]). The term "arithmetic-geometric mean"
will henceforth be understood to include whatever supplemental relations are used in
conjunction with the arithmetic-geometric mean itself in the overall calculation of the
specific function in question. The final section of this paper describes the method of
the arithmetic-geometric mean explicitly in terms of the amplitude function and its
transformation properties and will demonstrate that the method of the arithmetic-
geometric mean is first and foremost a technique for the calculation NOT of the JEF
but rather of am (z; m) directly (along with the "coam" function am (K-z; m)). It
is emphasized that the intent of this section is not to define or present algorithms for
the arithmetic-geometric mean as applied to the calculation of the JEF; there exist
several excellent, comprehensive descriptions of this technique [1], [6], [7], [9], [14],
[16], including strictly algebraic versions [6], [21], computer algorithms [4], [11], as
well as versions permitting complex parameters [9]. Rather, we wish to show that the
actual basis for this technique is best and most clearly described in terms of the
transformation formulae for am (z; m) presented in the first parts of this paper.

2. Unrestricted representations for the Jacobian functions. The Fourier series for
the functions dn(z; m) and am (z; m) may be written in the following form:

(2.1)
dn(z; m)=

2K +-- 1 + q2n COS

2K n=-oo
sech nTr e in,n-z/K

and

(2.2) am (z" m) dn(z; m) dz +2"rrz 1 q"
2K ,,=1 n l+q
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However, as a consequence of the fact that the variable z and the summation index
n are cofactors in the Fourier series representations, these expressions are only valid
throughout the restricted domain IIm (z/K)I Im (iK’/K). For example, for 0 < m < 1
where both K and K’ are real, these expressions are valid only in the infinite strip
IIm (z)l< K’(m). In addition, or rather as a result of this limitation, the Fourier series
such as that given by (2.1) for dn(z; m) account explicitly only for the periodicity
properties with respect to the quarter-period K(m) and completely fail to describe the
behavior with respect to the quarter-period iK’(m). To arrive at an unrestricted
representation for dn(z; m), we apply the Poisson summation formula (see Bellman
[2] for a discussion and examples of the applicability of this formula)

(2.3) Y f(n)= f(u) e’ du

to the second of (2.1) withf(n) sech n-K’/K] exp {in,zK}. Replacing the variable
"n" with ’u" and evaluating the integral given in (2.3) leads directly to the result

(2.4) dn(z; m)==- sech n +

This expression for the function dn(z; m) is superior to the Fourier series representation
(2.1) in that, (a) equation (2.4) is convergent throughout the entire complex plane,
poles excepted, and, (b) paly as a consequence of this, it describes equally explicitly
the periodicity of dn(z; m) with respect to both K(m) and K’(m) (the actual periods
are 2K(m) and 4iK’(m)). Indeed, since the variable z and the summation index n
appear as additive terms in (2.4) in contrast to the Fourier series, (2.1), where they
are multiplicative factors, the only condition required to ensure convergence of the
expression (2.4) is Re (K/K’)O which, for real m, is equivalent to m 0.

The analogous Poisson-sum-transformed expressions for sn(z; m) and cn(z; m),
from which the remaining members of the JEF family are derived as noted previously,
are found by following exactly similar procedures as for the case of dn(z; m) above,
i.e., the Fourier series for these functions are first conveed to a summation over an
index "n" running from - to +, the summation term is substituted into (2.3), and,
following a substitution of the variable "n," the integration is performed. The final
results may be compactly expressed in the following form, with A /2K’:

dn(z;m)=A 2 sech n

(2.5) k cn(z; m) A 2 1)"sech
K

n+

k.sn(;m)=A 2 (-1) tanh n+

k’.nd(;m)=A 2 sech n+-+
2

(2.6) -kk’. sd(;m)=A 2 (_l)sech
K n+-+l z

=_ 2

k cd(;m) A 2 (-1) tanh
K 1

n+-+
=_ 2 2K
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cs(z; m)= A , csch

(2.7) ds(z;m)=A (-1)"csch n

ns(z;m) A . (-1)ncoth
7rK +

z

-k’. sc(z; m)=A n+2+
(2.8) k" nc(z; m) A (-1)" csch n+2+

dc(z; m)= A ,
2 2K/

The symmetry of these expressions is striking; with the exception of certain factors of
+i, the right-hand sides of (2.5)-(2.8) are, interestingly, exactly the set of (symmetrical)
primitive elliptic functions originally defined by Neville [18], [19]. All twelve of these
expressions are valid throughout the complex plane for arbitrary m 0, their respective
poles excepted. Each of the numbered equations represents a copolar trio of the JEF
while the three quartets formed from the respective members of each of these trios are
coperiodic. The expressions for sn, cn, and dn recently have been presented and
discussed by Boyd [3]. However, to the best of the author’s knowledge, (2.5)-(2.8) for
the complete JEF family have not been published previously.

Integration of (2.4) results in an expression for the amplitude function in the form

(2.9) am(z;m)= Y gd n+

(2.10)

where gd (z) is the Gudermannian function. Equations (2.9) and (2.10) converge
throughout the complex plane except at the logarithmic branchpoints z=
2sK + (2t + 1)iK’ where s and are arbitrary integers. Equation (2.9) will serve as the
basis for the derivation of the various identities in the following work so that the results
obtained will be valid without restrictions on the range of z; those results obtained by
direct reference to the analogous JEF relations, i.e., by "inversion," are generally
accompanied by restrictions on the range of the real and/or imaginary parts of the
variable z.

It is worthwhile noting that although the unrestricted representations given above
for the JEF and for am (z; m) are much more attractive for analytical purposes than
their limited Fourier series counterparts, neither set of expressions, for purposes of
numerical calculation, is as computationally efficient as those methods based either
on the arithmetic-geometric mean or on the use of the theta functions (cf. [4], [6],
[11], [14]). High precision, numerical evaluation of the JEF or am (z; m) using the
Fourier series is truly practical only when m 0 or, using the expressions above, when
ml.

Since the characteristics of the function am (z; m) in the complex plane are so
intimately connected with the nature ofthe Gudermannian function, a brief accounting



JACOBIAN AMPLITUDE FUNCTION TRANSFORMATIONS 1519

of gd (z) is in order at this point. Because the function sech (z) is a singly periodic,
meromorphic function with simple poles at the points (2t+ 1)i7r/2 with residues of
(-1)t/li where t=0, +1, +2,. ., the Gudermannian function defined as the definite
integral (Jahnke and Emde [13])

Io" ir
gd (z) a + i/3 sech (z) dz, z (2n + 1) --,

where a and/3 are strictly real, is a single-valued, analytic function provided that the
complex plane is cut along the branchlines lying on the imaginary axis from (4t + 1) ir/2
to (4t+3)iTr/2 (logarithmic branchpoints for gd (z)) where is an arbitrary integer.
Relations such as sinh (z) =tan [gd (z)] and cosh (z) sec [gd (z)] follow directly from
the definition above. The real and imaginary parts ofgd (z) for x 0 are given explicitly
and uniquely by the relations

a =gd (x) +tan-1 [csch (x)]-tan-1 [cos (y) csch (x)],
(2.11)

/3 tanh-1 sin (y) sech (x)

with gd (x)= 2 tan-1 [tanh (x/2)] and where I 1< and I 1- 0 as Ixl-  
for all y. For x=0 and y (2t+ 1)ir/2, we have a =0 and/3 =tanh-1 [sin (y)]. Note
that gd (z) is singly periodic with period 2ri and that gd (-z)=-gd (z) and gd (z*)=
gd* (z). Expanding sech (z) in terms ofexp (+z) and integrating leads to an unrestricted
representation for the Gudermannian function in the form

(-1"
(2.12) gd (z) sgn (x) -- 2 [sgn (x) cosh [(2n 4-1)z] -sinh [(2n 4-1)z]],

,=o2n/1

which is convergent throughout the complex plane, the logarithmic branchpoints
z (2t 4-1)ir/2 excepted, and where sgn (x) 4-1, O, or -1 according to x O, x O,
Or x (0, respectively (the real part of gd (z) vanishes along the imaginary axis). It
follows directly from (2.12) that

1 (-1)"
(2.13) gd (x + iy+ in,r)=sgn (x) 7r + (-1)" gd (x + iy)

2

revealing a finite discontinuity (of 2r) in the real part of gd (z) across each of the
branchcuts (x 0, cos (y) < 0).

Before proceeding to examine the specific properties of the Jacobian amplitude
function, it is appropriate at this point to discuss briefly its general characteristics in
the complex plane given the basic results immediately above. Neville [18, pp. 18-20]
has shown that the integral of an elliptic function having zero residues defines a doubly
(additive) pseudoperiodic, meromorphic function. The function am (z; m), in contrast,
as the integral of the elliptic function dn(z; m) having nonzero residues (specifically,
dn(z; m) has simple poles with residues of-i at the points 2sK +(4t+ 1)iK’ and +i
at the poles 2sK +(4t- 1)iK’, where s, are arbitrary integers), is, in general, a doubly
pseudoperiodic function with logarithmic branchpoints. Thus am (z; m), were it defined
solely by (1.1) and (2.2), would be an infinitely multiple-valued function of z with
branches differing by integral multiples of 2r corresponding to the infinite number of
possible paths of integration from zero to z encircling the poles of dn (z; m) in different
ways. However, by cutting the complex plane along the line segments joining these
logarithmic branchpoints, specifically from 2sK+(4t+ 1)iK’ to 2sK +(4t+3)iK’,
where s, are integers, the function am (z; m) is made single-valued and analytic
throughout the cut, complex plane. Finally, a principal branch is selected from among
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these single-valued branches by the requirement am (z 0; m)= 0. The real part of
am (z; m) will be discontinuous (by 27r) across each of the branchlines. In nearly all
respects, as the form of (2.9) intimates, the Jacobian amplitude function am (z; m)
may be effectively considered as a doubly pseudoperiodic generalization of the singly
periodic Gudermannian function gd (z), noting in particular the degeneracy am (z;
m- 1)=gd (z).

3. The leriodicity lrolerties of am (z; m) for real m. Exactly as with the JEF, the
behavior of the function am (z; m) is characteristically different in the three distinct
regions: -o< m < 0, 0 m 1, and 1 m o. From (2.9), which is valid for all
parameter values, it follows that the amplitude function is always at least singly periodic
when m 0, with a period of 4iK’(m). Exploiting the fact that the amplitude function
for real m, like the JEF, is strictly real whenever z is real, expressions for am are given
in the regions m < 0 and m > 1 that reflect this characteristic. Unless specifically noted,
the degenerate cases of am (z; m 0) z and am (z; m 1) gd (z) are generally
excluded from the relations below. Finally, it should be noted that, in all of the work
to follow, the numerical value of the parameter m will generally be restricted to
0 m 1 and parameters that are less than zero or greater than 1 will then be expressed
explicitly in terms of m, e.g., a parameter greater than 1 will be represented by 1/m
where 0 m < 1.

3.1. am (z; m) for 0< m < 1. An arbitrary point in the complex plane may be
represented as

(3.1) z+2sK+2itK’=x+iy/2sK/2itK’, Ix/2Kll and

where s and are integers and where, for 0 m 1, both K and K’ are real. Only the
lines y=(2t/ 1)K’, which include the logarithmic branchpoints of am (z; m), are
excluded from the representation (3.1). When we use (2.12) and the expression for
am (z; m) given by (2.10), it is a straightforward task to derive the result:

1 -(-1)
(3.2) am(z/2sK/2itK’;m)=sTr/sgn(x)Tr/(-1)t am(z;m).

2

Thus we have am (z+2sK+2itK’; m)=am (z; m) if and only if s=0 and is even
and so, for 0 m_-< 1, the function am (z; m) is a singly periodic function with the
strictly imaginary period 4iK’. Equation (3.2) corresponds exactly with the relief figures
for am (z; m) given by Jahnke and Emde [13]. Note that the branchlines so clearly
illustrated in those figures are also explicitly accounted for by (3.2). For example,
taking s 2, 1, and z x > 0, we have am (4K + 2iK’ + x; m) 3’-am (x; m),
whereas am (4K +2iK’-x; m)= 7r+am (x; m).

3.2. am (z; m) for m < 0. Denoting a negative parameter (imaginary modulus) by
the expression -m/m’ where m’= 1 m and 0 < m < 1, we have the identities [5], 10],
[15], [23]

(3.3) K(-m/m’) k’K(m), K’(-m/m’) k’K’(m)+ ik’K(m).

Note that the sign used in this identity for K’(-m/m’) is ambiguous for real m; either
a + or may be used (consistently) without affecting the validity of the final results
[19, pp. 103-107]. The expression (2.9) for the amplitude function with negative para-
meter then takes the following form:

(3.4) am z;- 2 gd
K’+ig n+2k,
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This expression is cumbersome in that the individual terms in the summation are
complex when z is strictly real even though the function am (z;-m/m’) itself is real
in such a case. To overcome this shortcoming, consider the expression

G()= (l+ia) sech ar z+n+ -sech ;+ia(+n)
where a K/K’. This function G(z) is a doubly periodic function since G( + 1)=
G(+ 2i/a) G(z) with possible poles at the isolated points (s +1/2) + (2t + 1)i/2a,
i.e., G() is an elliptic function. It is, however, straightforward to prove that the limit
(-,). G()=0 as so that the function G(z) is indeed without poles. As a
consequence of Liouville’s theorem, an elliptic function without poles must be a
constant and, in fact, we have that G(z) 0. By integration we arrive at the desired result

(3.5) am z’- gd n+2+.=_ kr 2

for which the only complex dependence is implicitly through z. Representing an
arbitrary point in the complex plane as above with [x/2k’K and ly/k’K’l<l and
using the representation (2.12) in (3.5) leads to the result

am[zk’K+2sK( +2itK’

1-(-1)’
(3.6) (s- t)+ (1 sgn (x))

2

am

The left-hand side of (3.6) will equal am (z k’K;-m/m’) if and only if s 2L
so that am(;-m/m’) is singly periodic with the strictly imaginary period
4K(-m/ m’) + 4iK’(-m/ m’) 4ik’K’.

3.3. (z; m) fr m > 1. Denoting a parameter greater than 1 by 1/m where
0< m < 1, we have [5], [10], [15], [23]

(3.7) K(1/m) kK(m)+ ikK’(m), K’(1/m)= kK’(m)

noting that, exactly as for (3.3), the sign on the right-hand side of this equation is
arbitrary (Neville [19, pp. 103-107]). The expression for am(z; 1/m) from (2.9)
becomes

]am z; gd n+2kK +in

(3.8)
(-1)gd n+

Then, with Ix/2kgl and ly/kg’l< 1, we nnd, using (2.13),

am(z+2sK()+2itK’();)
(3.9)

=(-1)’sgn(/)l-(-1)+’ ()2
+(-1)am z;
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Thus we find that am (z; 1/m) is a doubly periodic function, i.e., am (z+2sK(1/m)+
2itK’(1/m); 1/m)= am (z; 1/m) if both s and are, independently, even integers. One
of the periods, 4ikK’, is strictly imaginary, while the other, 4kK, is strictly real.

4. Linear and quadratic transformations of the amplitude function. This section
will present the (linear) negative parameter, reciprocal parameter, and complementary
parameter transformations as well as the (quadratic) Landen and Gauss transformations
of the Jacobian amplitude function. Although only two linear transformations plus
the Landen transformation are strictly necessary since the remaining linear and quad-
ratic transformations can then be derived from these [8], [10], [20], all of the above-
mentioned transformations are included here since they are the most familiar and
widely used of the JEF transformations. The convention followed here for the nomen-
clature of the quadratic transformations is that defined by Carlson [6] for which the
variable changes in the same/opposite manner as the parameter for the Gauss/Landen
transformations. Concise yet general discussions ofthe transformation theory of elliptic
functions may be found in the texts by Erd61yi et al. [10], Chandrasekharan [8], and
Rauch and Lebowitz [20].

4.1. The negative parameter (imaginary modulus) transformation. The relationship
between am (z; m) and am (z;-m/m’) follows immediately from the identity given
in (3.5), i.e.,

(4.1) am(k’z; ,) 7r=-- am (K z; m), -oo< m < 1

from which follow directly the JEF transformations dn(k’z;-m/m’) nd(z; m), and
so on. This transformation was first given by Jacobi in Fundamenta Nova [12, p. 90]
and, apparently, subsequently forgotten. The amplitude function in the region m < 0
is characteristically very similar to am (z; m) with 0 < m < 1. In each case, the function
is singly periodic with an imaginary period =4i. Re [K’(m)] while, for z strictly real,
both am (x; m) and am (x;-m/m’) are unbounded, monotonically increasing func-
tions and so are invertible over the entire real axis. Finally, we note that limit
am (z; m)=0 as m--o.

4.2. The complementary parameter (imaginary argument) transformation. Re-
placing m with m’ in (2.9) gives immediately

(4.2) am(z;m’)= 2 gd n+

However, to relate am (z; m) directly to am (z; m’), the familiar transformation for
dn(z; m’) is rewritten as [5], [10], [23]

d dn(iz; m) -i d@ d
(4.3) an(z; m’)= ’)zam (z; rn

cn(iz; m) cosh (i) dz dzgd (-i)

where b am (iz; rn). Integrating from zero to z yields the result

(4.4) am (z; m’) gd [-i. am (iz; m)], 0 -< rn =< 1

where IRe(z)l<K’(m) and IIm(z)l<K(m). Equations (3.1) and (3.2) may be used
to extend the applicability of this result for arbitrary values of z. In certain respects,
this transformation could be aptly subtitled the "circular-hyperbolic transformation"
since it relates the "nearly circular" JEF to their "nearly hyperbolic" counterparts,
i.e., the amplitude and elliptic functions with rn 0 to those with rn 1. In the extreme
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limit of rn =0, (4.4) gives am (z; 1)=gd (z). Finally, note that the parameters rn and
m’ are interchangeable in (4.4) so that am (z; m) gd [-i. am (iz; m’)].

4.3. The descending Landen transformation. Dealing for the moment with general,
iterative subscripts, we define, for 0-< mi <= 1, the transformations mi+l m as

(4.5) mi+l f-(mi) [ll k: mi f+(mi+l)
(1 +4ki+lki+a)

such that 0 _-< m+ -< rn _-< 1 and f_[f+(m) f+[f_(m) m. The quarter periods for the
two parameters connected by f_ and f+ are related as

(4.6) Ki+l
1 + kl K, and K’i+=(l+k)Ki
2

so that

(4.7) K+l-2 K
Ki+l

and qi+l q2i

Setting 0 and using the notation mo m, we can write the identities

(4.8) am (z; m)= ,=_ooE gdL K 2n+(l+k’)
z

and

(4.9) am (K z; m)
,=_oo gd[. K 2n+l-(l+k’)

z

Combining these equations gives the descending Landen transformation for the ampli-
tude function

(4.10) am[(l+k’)z;m]=am(z;m)-am(K-z;m)+-, 0-<m<l.

4.4. The reciprocal parameter transformation. Using the relations for the quarter
periods, (3.7), along with (4.8) and (4.9) above, we have directly

(4.11) am[(1 k’)z’-ll] 2r=am(z;m)+am(K-z;m)--, 0<m<l.

Up to this point, all of the transformations given for am (z; m) involve precisely those
parameters that characterize the analogous JEF transformations. Although (4.11) is
the correct, general form of the transformation relating the amplitude functions in the
regions 0 < m < 1 and m > 1, it does not directly relate rn to 1/m as its name suggests.
To resolve this point, reference is made to (3.9) and the fact that, when and only when
m > 1, is am (z; m) a strictly oscillatory function with respect to both K and K’. Hence,
except at its branchpoints, the function am (z; m > 1) is bounded throughout the entire
complex plane, and we may properly represent it as an inverse of some combination
of JEF. From the familiar identity for dn(u+v; m) it follows that, for IRe (u)/KI,
IRe(v)/gl<l and IIm (u)/K’l, IIm (v)/g’l<l,
(4.12) am (u + v; m) tan-l[sc(u;m) dn(v; m)] +tan-l[dn(u;m)sc(v;m)].
In particular, setting u kx and v iky leads to

am (kx+ iky; m) =tan -1 [sc(kx; m)dc(ky; m’)]
(4.13)

+ i. tanh- [dn(kx; m)sn(ky; m’)].
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Transforming m 1/m and rearranging terms within the brackets results in

(4.14)
am (kx+ iky;-) =sin- [ k. sn(x; m) ][1-dn2xi m)sn2(y; m’)] 1/2

+ i. tanh -1 [k. cn(x; m)sd(y; m’)].

In the strictest sense, relations such as these are incorrect whenever 1/m < 1 unless
the values of the real and imaginary parts of the variable z are specifically restricted
as stated above or as in (3.1) and (3.2). In contrast, however, the identity of (4.14) is
valid as written when 1/m > 1 for arbitrary z, the branchpoints excepted. Thus, the
reciprocal parameter transformation for the amplitude function, (4.14), can be rewritten
succinctly (although essentially symbolically when z is complex) in the form

(4.15) am (kz; 1/m)=sin-l[k sn(z; m)], 0<m<_-I

noting that limit am (z; m) 0 as m - c. In particular, note that, for z real (or y 4tK’),
the pragmatic identity am (kx; I/m)=sin- [k. sn(x; m)] gives the correct value of
the amplitude function for all values of x.

The similarity between the reciprocal parameter transformation in the form of
(4.11) and the descending Landen transformation, (4.10), is remarkable and is, in part,
related to the fact that f+(ml)=f+(1/m). By combining these two equations and
invoking the result in (4.1), it is possible to write a completely general identity that
relates the amplitude functions in the three regions of real m as follows"

(4.16) am (z; m)=am (k’z;-m/m’)+am ((1- k’)z; 1/ml)

with (-m/m’)<=O<=m<=l <=(1/ml).

4.5. The ascending Landen transformation. Adding (4.10) and (4.11) leads immedi-
ately to the ascending Landen transformation for the amplitude function as follows:

am (z; m) =1/2am [(1 + k’)z; m]+1/2am[(1-k’)z; 1/m]
(4.17)

=1/2 am [(1 + k’)z; m]+1/2 sin -1 [ksn[(1 + k’)z; m]].

Note that many texts refer simply to "the Landen transformation," invariably meaning
the descending Landen transformation corresponding to (4.10) above. The relationships
for the JEF corresponding to (4.10) are rational ones [5], [23], whereas those corre-
sponding to the ascending Landen transformation, (4.17), are algebraic relations. This
is one instance in which, apart from its conciseness, the form of the amplitude function
transformation is simple and straightforward in comparison to its JEF counterpart.

4.6. The ascending/descending Gauss transformations. The ascending/descending
Gauss transformations are derived by combining the complementary parameter trans-
formation with the descending/ascending Landen transformations [8], 10], [20]. From
(4.4) and (4.10), for 0< m < 1, follows the ascending Gauss transformation in the form

(4.18) gd[i.am[(l+k)z;m]]=gd[i.am(z;ml)]+gd[i.am(z+iK;m)]+-
while, from (4.4) and (4.17), the descending Gauss transformation is found to be

1
gd [i. am (z; m)]=gd [i. am (l+k)z; m]

(4.19)

lgd[i-i.am[K-(l+kl)Z" m]].+2
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As with the Landen transformations, many texts that refer simply to "the Gauss
transformation" invariably mean the ascending Gauss transformation for which the
transformation formulae for the JEF are rational expressions [5], [23], unlike those
corresponding to the descending Gauss transformation for which the JEF identities
are algebraic.

5. The method of the arithmetic-geometric mean and am (x; m). Although, in prin-
ciple, the method of the arithmetic-geometric mean (AGM) (or the theta functions)
could be employed for a complex variable (and, conceivably, for complex m [9]), it
is considerably more practical to calculate the real and imaginary parts of am (z; m)
and the JEF separately using identities such as (4.13). Thus, only strictly real variables
x will hereinafter be considered. In addition, this section will deal with the "classical"
method of the AGM (e.g., King [14]) utilizing various trigonometric or hyperbolic
recursion identities as opposed to purely algebraic versions [6], [21]. The former, while
nominally less efficient computationally, offer the advantage of calculating the true
value of am (x; m) for arbitrarily large Ixl, i.e., including the contribution sr given in
(3.2). Moreover, while the relations between the method of the AGM and the transfor-
mations presented here hold true whichever version is adopted, these relations are
more explicit and thus more readily recognized in the "classical" case.

The method of the AGM begins by iteratively calculating, with 0 < rn < 1, the trio
of numbers

(5.1) a,+l 1/2(an+bn), bn+ (anbn) 1/2

with starting values of ao 1, bo k’, and Co k. The numbers an and bn converge
rapidly to a common limit (=Tr/2K) while cn, as a measure of the "error" with
2 2 2 c2,/4an+ The calculation is stoppedcn an-bn, vanishes quadratically, i.e., cn/ 1.

at the Nth step where, to some prescribed degree of accuracy, cv is negligible. For
the descending Landen version of the AGM, a sequence of angles _, -2, ", o
is then calculated sequentially using the recurrence relation

(5.2) sin (2:I)n_ --Cirri) c--’gn sin (n) withN 2NaNxan

to which the amplitude function and the JEF are related as

am (x; rn) 0, am (K-x" m)=o-+--
2’

(5.3) sn(x; m) sin (o), cn(x; m) cos (o),

dn(x; m)=
cn(x; m) cos (o)

sn(K-x; m) COS

Attention is drawn to the first two identities of (5.3) that, to the best of the author’s
knowledge, have not heretofore been given in any of the papers dealing with the AGM
as a method of evaluating the JEF. Yet, given these two results, it follows that .the
evaluation of the JEF is, in fact, entirely incidental to this method, i.e., it is am (x; m)
and am (K- x; m), which are the primary quantities found via the AGM from which
the JEF are then calculated from simple trigonometric expressions.

To indeed establish the validity of the identities listed in (5.3), it is first noted that
the (an, bn, cn) scale described by (5.1) is exactly equivalent to sequential applications
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of the descending operator f_(mi) of (4.5), i.e.,

ko k

kl- (1 k)/(1 / k)=f_(m)= cl/a

(5.4) kE=(1-k)/(l/k)=fE(m)=cE/a2

kn/l (1- k’)/(1 / k’)=f_/l(m)- Cn/l/an/

and where K(m)= (r/2)(1 / kl)(1 / k2) (r/2aN). With the identification of kn
c,,/an, the recurrence relation (5.2) is immediately recognized as the ascending Landen
transformation for the amplitude function, (4.17), so that the bn sequence is equivalent
to

(5.5)

o am (x; m)

=am
(l+kl)’ ml

2 am
(1 + k,)(1 + k2)’ mE

=am (l+k)(l+k)...(l+k),m
Note that, even though it is the descending Landen transformation that is the basis of
this particular version of the AGM and transforms the variable bo- bN as immediately
above, it is the ascending Landen transformation for am (x; m) that is used in the
actual calculations to transform bn- bo. With the aid of (4.10), the sequence of
amplitude functions, (5.5), may be re-expressed as

n=am (x; m)+ (1-no)[--am (K-x; m)]
hz l

(5.6)
n--1 2

+(1--tn0)(1--tnl ’,
i=1 j=l

[am [2j 1
K+x; m]-am [2JilK-x; m]]

and

(5.7)
,,=-2"x+ sin

j=j(l+q2 /b)
r

2 "x + sech sin
2K j=lJ K

Equation (5.6), in particular, establishes the identities given in (5.3), while (5.7) offers
explicit testimony to the extraordinarily rapid convergence inherent to the AGM. This
latter equation states that, for the nth step, the first-order deviation of the variable b,
from linearity will go as q raised to the 2 power, i.e., given the relation of (4.7) for
the nome, the "error" is reduced quadratically on each iteration.
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The particular version of the AGM as just described with bo- k’ and the use of
the recurrence relation (5.2) is referred to as the descending Landen version of the
AGM. When we use bo k and (4.10) as the recurrence relation, the ascending Landen
version of the AGM sequentially raises the parameter to unity where bvgd.
Ascending and descending versions of the AGM based on Gauss transformations are
also possible (Carlson [6]). The use of an ascending and a descending transformation,
in particular, allows the numerical range of m to be restricted to 0 < m _-< 1/2. Whatever
the particular version adopted, however, the calculation of the JEF from the final
results, as for (5.3), proves to be incidental to the method in that the primary quantities
that are calculated via the bn are the amplitude function am (x; m) along with the
"coam" function am (K x; m).

Calculation of am (x; m) along with the JEF for parameter values outside the
range of 0 < m < 1 may be done as directly and efficiently as for the case of 0 < m < 1
through the use of the transformation formulae (4.1) and (4.11). To calculate the
amplitude function and the JEF for the case of a negative parameter -M where
0< M < o, the AGM is calculated as above with a parameter m M/(1 + M) and a
variable x k’ to give the results

am (x;-M) 1-o, am (K(-M)-x;-M) (r/2)- o,
(5.8) sn(x; -M) sin (1-o), cn(x; -M) cos (1-o),

dn(x; -M)= cos (1- o)/COS (o).
To calculate the elliptic functions for the case of a parameter M > 1, the AGM as
described above is calculated using a parameter rn =f/(ml), where ml I/M, and a
variable x/(1- k’) to give the results

am (x; M) 2o-1, am (x/kl; 1/M)
(5.9) sn(x; M) sin (2o-), cn(x; M) cos (2o- 1),

dn(x; M) cos (1).
Note that, in the case of M > 1, it is not the coam function that is calculated along
with am (x; M) but rather am (x/k 1/M), which yields the value of dn(x; M) directly.
The directness of these algorithms, i.e., the calculation of the actual values of the
amplitude function(s), may be contrasted with algorithms that calculate the JEF for
parameters less than zero or greater than 1 as either rational or algebraic expressions
involving values of JEF having 0< rn < 1 (e.g., [4]).

6. Concluding remarks. The results presented in this paper have shown that the
various linear and quadratic transformations of the JEF can be represented concisely
by the corresponding transformation of the Jacobian amplitude function am (z; m).
The nature of the amplitude function for arbitrary, real m has been shown to be
markedly different according to whether m < 1 or rn > 1, being a singly periodic function
with a strictly imaginary period when m < 1 and rn 0 while, for m > 1, am (z; m) is
a doubly periodic function with both a real and an imaginary period. Finally, the
method of the arithmetic-geometric mean has been shown to be principally a method
for the calculation of the functions am (x; m) and am (K- x; m) directly from which
then follow the values of the various JEF.
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